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1 Why model?
Just like other scientific tools of investigation, modeling is something we use to answer certain
kinds of questions. For syntactic acquisition, these questions tend to concern the process of acqui-
sition that yields adult syntactic knowledge – that is, how exactly syntactic acquisition proceeds,
using particular learning strategies (Pearl and Sprouse, 2015). In essence, an informative model
of syntactic acquisition is the embodiment of a specific theory about syntactic acquisition. So,
to build an informative syntactic acquisition model, you need to first have a theory about how
syntactic acquisition works. Then, the model can be used to (1) make all the components of that
acquisition theory explicit, (2) evaluate whether it actually works, and (3) determine precisely what
makes it work (or not work).

1.1 Making the components explicit
It might seem surprising at first to claim that one benefit of modeling is that it makes theory
components explicit – but this truly is important. It often turns out that the acquisition theories that
seem explicit to humans don’t actually specify all the details necessary to implement the strategies
these theories describe. For example, suppose a proposed learning strategy is that children use
triggers in their input to signal certain parametric values, and the triggers are explicitly defined
ahead of time for children (perhaps through Universal Grammar (UG)). As a concrete example,
let’s say that the trigger for wh-movement is seeing a wh-word in a position different from where
it’s understood (e.g., what in the question What did the penguin do what?). So, the learning
strategy for acquiring the right wh-movement structure in your language involves identifying these
wh-movement triggers.

Are we finished? Not quite. What do children need in order to recognize the appropriate wh-
movement trigger in their input? They probably at least need to know that a certain word is one of
these special wh-words (in English, this would include who, what, how, and so on). They probably
need to be able to reliably segment the words in the utterance and recognize that the wh-word is
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not appearing where it’s understood (which means they need to understand enough of what the
utterance means). They probably need to be able to remember the existence of the fronted wh-
word in the utterance long enough and reliably enough so they can update their internal parameter
value. They probably need to ignore the utterances in English where the wh-word doesn’t move
(e.g., echo questions like The penguin did what?).

And then, what about the wh-in-situ option (for languages like Mandarin Chinese and Japanese)
– is there a trigger for that as well? If so, what is it? More specifically, suppose we only have a trig-
ger defined for wh-movement. In this case, we’re effectively implying that the lack of that trigger
indicates wh-in-situ. This is fine as a supposition, but how exactly does that work in practice? For
instance, is wh-in-situ a default setting that’s overridden by the wh-movement trigger? This isn’t
unreasonable as a default assumption and might result from a general tendency to disprefer move-
ment unless the language indicates otherwise (e.g., based on something like the Minimal Chain
Principle: De Vincenzi 1991, Sakas and Fodor 2012, Fodor and Sakas 2017). Or, if there are no
defaults, does a child use indirect negative evidence to decide that her language uses wh-in-situ?
In particular, she would observe that wh-movement keeps not happening when she expects it to.
If this is the learning strategy, then how long does she have to wait before she decides that her
language doesn’t have wh-movement?

These are just some of the aspects of the triggering theory that need to be specified in order
to implement it in a model. More generally, by trying to build an implementable model for a
particular syntactic acquisition theory, we can see where the gaps are. This is because a computer
program can only implement an acquisition theory where every relevant detail is specified (Kol,
Nir and Wintner, 2014, Pearl, 2014, Pearl and Sprouse, 2015). So, even if an acquisition theory
has already been developed, a computational model provides a way to flesh out the necessary
components of that theory.

1.2 Evaluating the theory and explaining what happened
Once an acquisition theory is specified enough to implement in a computational model, we can
then evaluate it by comparing the predictions it generates against the empirical data available from
children. I should note that we have to be somewhat careful about interpreting model results. There
are two basic outcomes: (1) the model predictions match children’s data, or (2) they don’t.

If the predictions match, this is an existence proof that the acquisition theory, as implemented
by the computational model, is a way that acquisition could proceed. That is, the computational
model demonstrates exactly how successful acquisition could work. So, this model is support
for that acquisition theory. Notably, however, this modeling evidence doesn’t rule out alternative
acquisition theories. This is why I emphasized could above: Just because the model demonstrates
one way acquisition could work doesn’t mean that other ways couldn’t also work. So, modeling
evidence is interpreted with respect to the implemented acquisition theory only.

Still, of course, sometimes the model predictions don’t match children’s data. What then? This
is then evidence against that acquisition theory, as implemented by the model. That is, we can’t
immediately rule out all versions of the acquisition theory unless we explicitly implement them (or
rule them out for principled reasons). Remember: A model often specifies components of a theory
that the original theory didn’t. So, if this particular theory implementation doesn’t work, maybe
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it’s a problem with those components, and not the theory more broadly. The only way to know
is to test each of the possible implementations, or rule them out in principle somehow. This of
course becomes hard to do in practice – there may be quite a number of implementations for any
given acquisition theory. (Just think about all the implementational details for the triggering the-
ory described in the previous section.) The other option, ruling implementations out on principle,
depends greatly on the principles available and how agreed upon they are. (Are these principles
of human computational capacity, theoretical economy, something else?) This practical consider-
ation about model interpretation is why we may often seen published results involving models that
succeed (even if the results also include models that fail), rather than only results about models
that fail.

Related to that, if you have an implemented model (whether it succeeds or fails), a very useful
benefit is that you can look inside it to determine what exactly makes it work or not work. This is
something that’s much more difficult to do with children’s minds. That is, we can sift through the
components of the implemented acquisition theory to see which ones are important for acquisition
success. For example, suppose we have a successful implementation of the triggering theory for
learning about wh-movement. We can see if it’s important for English children to ignore wh-echo
questions where there’s no wh-movement, or how necessary a Mandarin Chinese default wh-in-situ
value is. Suppose we find that these components are vital for filtering children’s input appropriately
(e.g., ignoring echo questions) or navigating the hypothesis spaced based on the input (e.g., a
default wh-in-situ value) – that is, without them, the model’s predictions don’t match children’s
behavior. Then, we can say that these are necessary components of the successful acquisition
theory that explains how children learn where wh-words appear in their language. And we can
also explain why (e.g., one component filters the input and the other helps children navigate the
hypothesis space).

This highlights how modeling can be used as a tool for both developing and refining acquisition
theories. Notably, an acquisition theory actually includes two types of theories: theories of the
learning process and theories of the representations to be learned. An informative model requires
us to be explicit about both. So, when we build a model that incorporates both theory types and
see the results, we get feedback about both. To understand why an informative model incorporates
theories of the learning process and theories of representation, it’s helpful to consider all the pieces
that go into characterizing the language acquisition task.

1.3 Characterizing the acquisition task
There have been several recent discussions of the acquisition process (Pearl and Mis, 2011, Pearl
and Sprouse, 2013b, Pearl, 2014, Lidz and Gagliardi, 2015, Omaki and Lidz, 2015, Pearl and
Sprouse, 2015, Pearl and Mis, 2016), and I find the model articulated by Omaki and Lidz (2015)
and more fully by Lidz and Gagliardi (2015) to be especially helpful (shown in Figure 1). This
model specifies components external and internal to the child during the acquisition process, and
is meant to capture the iterative process of acquisition unfolding over time.

External components are observable. We can observe the input signal available to children
during acquisition, and we can also observe children’s behavior at any stage of development, either
through naturalistic productions or clever experimental designs.
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Figure 1: Model of the acquisition process from Lidz & Gagliardi (2015), highlighting the contri-
butions of several key components. Observable components are external to the child (input signal
and the child’s behavior). Internal components include the pieces used to perceptually encode
information from the input signal (perceptual encoding), the pieces used to produce the observ-
able behavior (perceptual intake and production systems), and the pieces used for inference over
the perceptually encoded intake (inference engine). These yield the next stage of the developing
grammar, which itself is used in subsequent perceptual encoding.

The internal components involve several clusters. The first cluster centers around perceptual
encoding – that is, it concerns the information in the input signal that the child is able to perceive
at this stage of development. The perceptual intake that results from this depends on the child’s
developing grammar (i.e., the linguistic knowledge currently available), the parsing procedures that
are able to apply that linguistic knowledge in real time to the incoming input signal, and a variety
of extralinguistic systems (e.g. memory, pattern recognition) that are also necessary for extracting
information from the input signal. This serves to highlight the intrinsic link between developing
representations and developing processing abilities during acquisition (Lidz and Gagliardi, 2015,
Omaki and Lidz, 2015, Phillips and Ehrenhofer, 2015).

When the child generates observable behavior, she relies on the current representations she’s
been able to perceptually encode (the perceptual intake). She then applies her production systems
to those representations to generate behavior like speaking or responding nonverbally (e.g., looking
at a picture representing a scene described by an utterance she just heard).

The last cluster involves the inference process – that is, the process of updating internal hy-
potheses about the developing grammar, given the input data perceived as relevant. The data
perceived as relevant has been referred to as the acquisitional intake, and is based on the percep-
tual intake. Notably, the acquisitional intake is typically not all of the perceptual intake. That is,
it’s not everything the child is able to encode. Instead, depending on what the child is trying to
learn, what’s relevant is likely some subset of the perceptual intake. This is where UG can have an
impact: it can filter the perceptual intake down to the relevant pieces.
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For example, consider the wh-movement triggers we discussed before. Suppose a child hears
What did the penguin do? and is at the stage of development when she can perceptually encode
several aspects of the utterance: the individual words, the utterance’s phrase structure, and the
dependency between what and the place where it’s understood after do. If the child is still learning
whether her language has wh-movement, UG will highlight for her the salient information in her
representation: what has moved, as indicated by the dependency. This piece of her perceptual
intake is relevant for learning about wh-movement, and so the wh-movement acquisitional intake
consists of that information alone – the rest of the information is irrelevant for learning about wh-
movement. Inference occurs over this piece of acquisitional intake, presumably strengthening the
child’s belief that her language has wh-movement.

This inference process thus updates the child’s developing grammar. Because the developing
grammar is involved in the perceptual encoding process, every update to the developing gram-
mar can impact what the child is able to perceive from the input signal. In our example of wh-
movement, suppose the child has just decided that her language uses wh-movement, based on the
acquisitional intake accrued. This may allow her developing parser to extract wh-dependencies
more reliably in future utterances. So, for instance, she might now be able to correctly extract
the wh-dependency in a longer utterance like What did Jack think that Lily said the penguin did?,
where before this information might not have been available to her.

Inspired by this acquisition model, I want to suggest several components for precisely defining
the acquisition task that an acquisition theory is meant to solve.

1. Initial state: What knowledge, abilities, and learning biases does the modeled child already
have? These include both language-specific and domain-general components. In Figure 1,
the initial state encompasses the current status of the developing grammar, parsing proce-
dures, extralinguistic systems, production systems, UG, and the inference engine. This is the
starting point for the modeled child, given the acquisition task being considered.

2. Data intake: What data is the modeled child learning from? This captures the pipeline from
the external input signal to perceptual encoding to the acquisitional intake. The external
input is what’s available for the child to learn from. Her perceptual encoding filters down that
input signal to what she’s capable of perceiving at this stage of development (the perceptual
intake). The acquisitional intake is the result of further winnowing down, based on the
modeled child’s initial state (e.g., UG). So, this is where we can see the immediate impact
of the modeled child’s initial state – those initial state components influence what’s in the
modeled child’s acquisitional intake.

3. Inference: How are updates to the modeled child’s internal representations made? This is
the inference engine from Figure 1, which operates over the acquisitional intake to yield the
latest developing grammar representations.

4. Learning period: How long does the modeled child have to learn? This is represented by
the arrow in Figure 1 from the developing grammar that results from the inference engine to
the developing grammar that affects subsequent perceptual encoding. That is, this is when
the iterative process of updating the developing grammar occurs.
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5. Target state: What does it mean for the modeled child to succeed at learning? We can assess
this by matching model output against observable data from children, i.e., their behavior in
Figure 1. So, it’s useful to have a model that can generate behavioral output (e.g., Perfors,
Tenenbaum and Regier 2011, Pearl and Sprouse 2013a, 2015, Pearl and Mis 2016). How-
ever, if we’re confident about which internal representation a particular observable behavior
corresponds to (i.e., a specific developing grammar component, such as +wh-movement), we
may match model output directly against that grammatical knowledge (e.g., Yang 2004).

These components correspond to implementable computational model components of an ac-
quisition theory. More specifically, the acquisition task can be characterized by these components,
and an acquisition theory consists of specifying each component according to a theory of develop-
ing representations and a theory of developing processing abilities.

In the rest of this chapter, I’ll first highlight some modeling framework basics, including con-
siderations of cognitive plausibility, different explanatory levels of modeling, and some commonly
used inference mechanisms. I’ll then discuss several modeling case studies in syntactic acquisi-
tion, including both parametric and non-parametric approaches to modeling syntactic acquisition.
I’ll conclude with some thoughts on exciting new directions for syntactic acquisition modeling.

2 Some modeling framework basics

2.1 Designing informative models: Cognitive plausibility
In order for our modeling results to tell us something about how children develop syntactic knowl-
edge (i.e., for a model to be an informative model and not just an interesting programming exer-
cise), we need to believe that the model reasonably approximates aspects of a child’s acquisition
process. The way to do this is to make sure the model components are cognitively plausible. That
is, we make reasonable assumptions for what’s actually going on during the acquisition process
in children when implementing each model component. But how do we know what’s cognitively
plausible for any given component? This is where prior theoretical, corpus, and experimental
research can help.

Theoretical research can help define parts of the initial state (the developing grammar, the
contents of UG), which then impacts the data in the modeled child’s acquisitional intake. The
inference process may also be defined by theoretical work (e.g., language-specific inference mech-
anisms, such as the Structural Triggers Learner of Sakas & Fodor: Sakas and Fodor 2001, 2012,
Sakas 2016). The target knowledge state (the developed grammar) is also typically defined by
theoretical proposals for knowledge representations.

Corpus analysis can help define aspects of the data intake, in particular the input that children
encounter as child-directed speech (which they subsequently perceptually encode). Corpus anal-
ysis can also provide quantitative descriptions of children’s linguistic productions, which is one
type of behavior that can indicate the underlying grammar (either the developing representations
during the learning period or the target representations after the learning period is completed).

Experimental results can help define parts of the initial state (the parsing and extralinguistic
abilities available at a particular age), which impact how the input is perceived (perceptual in-
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take). Experimental results can also define how children’s developing production systems generate
observable behavior from underlying linguistic representations. Experimental results additionally
help define what inference abilities are available for the modeled child, how long the modeled
child’s learning period is, and what behavior the modeled child should display both during the
learning period and afterwards, when the target knowledge has been acquired.

Practically speaking, it can still be non-trivial to make each model component cognitively plau-
sible, despite all this information. For example, let’s consider the input component, something
external to the child that we might try to estimate using corpus analysis. The key question is anal-
ysis of what: Do we think the relevant information is contained only in child-directed utterances
(which we have large samples of from electronic resources like the CHILDES database (MacWhin-
ney, 2000)), or do we also need detailed information about the visual scene, accompanying actions,
or other discourse context (some of which is available in CHILDES, but far less often)? If what we
believe to be relevant input information is not easily available in existing corpora, corpus analysis
won’t help. We’ll have to make an educated guess about what reasonable input looks like for those
dimensions that we don’t have precise estimates for.

As another example, consider the learning period. For some acquisition problems, we have
empirical data about exactly what children know when; for others, we may only have the typically
developing adult knowledge state or an atypically developing learner’s final knowledge state. In
these latter cases, it may difficult to determine what should count as a plausible learning period.
Again, because modeling requires us to implement all the model components explicitly, we may
simply have to make an educated guess.

The target state can also present cognitive plausibility challenges, since we have to consider
exactly what representations the modeled child ought to learn and what behavior that modeled
child ought to produce in order to demonstrate that the target representation has been learned. If
we have detailed empirical data available about the stages of learning (e.g., through experimental
results or corpus analysis of children’s productions), this can be a reasonable comparison for the
model child’s output – we can try to capture the appropriate learning trajectory (e.g., Alishahi and
Stevenson 2008). However, if we don’t, we may need to rely on other measures of what counts as
acquisition success (Pearl, 2014). Perhaps the modeled child should attain adult-like knowledge. If
so, we can use behavior correlated with adult knowledge as the desired target behavior (e.g., Pearl
and Sprouse 2013a,b, 2015). Perhaps we have a measure of behavior at one particular age (when
the child may not yet have the adult knowledge). If so, we can use that behavior as a metric of
what the learner should have learned by that age (e.g., Pearl and Mis 2016). Perhaps we know that
the target knowledge will be used to bootstrap future acquisition processes – e.g., the developing
grammar impacts future perceptual encoding of linguistic representations. If so, we can measure
how useful the modeled child’s developing representations are, regardless of whether they match
adult representations (e.g., Phillips and Pearl 2014a,b, 2015a, Bar-Sever and Pearl 2016).

The larger point about implementing a model of syntactic acquisition is that we should strive as
much as possible to make sure each component is psychologically grounded. If empirical data are
available to guide our implementation, then this is straightforward. However, sometimes the data
we need aren’t available yet, and so we need to make principled decisions about how to implement
a given model component. When we make choices that are not derived from empirical data, we
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have to be prepared to explain why they’re reasonable choices and what impact they have on
the acquisition process. For more detailed discussion of how to computationally model language
acquisition more generally, I recommend the acquisition modeling overviews by Alishahi (2010),
Pearl (2010), Räsänen (2012), Freudenthal and Alishahi (2014), Pearl and Sprouse (2015) and
Pearl and Goldwater (2016). The key is that when we make model implementation decisions in
cognitively plausible ways, our resulting computational model is more likely to tell us something
informative about the syntactic acquisition process in children.

2.2 Levels of explanation
Another important consideration is the level of explanation a model is seeking to provide, as this
impacts decisions about the modeling components. I find it useful to think about this in terms of
Marr’s levels of explanation (Marr, 1982): computational1, algorithmic, and implementational.

A computational-level explanation is about capturing the goal of the acquisition process – that
is, what is the cognitive computation the child is trying to carry out? Another way to think about
this is that we’re trying to correctly conceptualize the acquisition task happening. In the terms
we used previously, is it possible to reach a specific target state, given a specific initial state and
data intake? A computational-level model cares about the form of the underlying representations
and biases (initial state), realistic input (which yields the data intake when combined with the
initial state), and the checkpoint provided by the target state – all of these components should be
implemented in a cognitively plausible way.

Notice, however, that we’re abstracting away from the details of the inference mechanism and
learning period – we’re really just concerned with seeing if we’ve got the right task description (this
is sometimes implemented as an ideal learner model, such as those in Foraker, Regier, Khetarpal,
Perfors and Tenenbaum 2009, Perfors, Tenenbaum and Wonnacott 2010, Perfors et al. 2011, Pearl
2011, and Pearl, Ho and Detrano 2016). Why do we do this? If we find that it’s in fact impossible
to reach the target state, given the initial state and data intake, this is a signal that we may not be
describing the acquisition task correctly. So, if we try to implement specific learning strategies
to solve that acquisition task, we’ll probably find that none of them work (see Pearl (2011) for
an example of this in metrical stress acquisition). We can save ourselves from being doomed to
failure by making sure we first have a reasonable computational-level model of the acquisition
task. A successful computational-level model will validate the underlying representations and
biases in the initial state that went into it, because this model demonstrates how those initial state
assumptions can lead to the target state using realistic input. In short, a computational-level model
can demonstrate that it’s possible in principle to solve that acquisition task using a specific set of
assumptions about the initial state.

But what about being possible for humans? This is where an algorithmic-level model helps
us (sometimes implemented as a process model, such as those in Regier and Gahl 2004, Yang

1 Note that this is a different use of “computational” than what we mean when we talk about “computational mod-
eling”. This is an unfortunate overloading of the term “computational”, with two distinct meanings. Computational as
an explanation level is what I talk about in this section. Computational as a modeling technique means implementing
a model concretely with a computer program. I’ll try to distinguish these meanings by using “computational-level
models” for the explanation level and “computational modeling” for the technique.
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2004, Pearl and Lidz 2009, Pearl and Sprouse 2013a, and Pearl and Mis 2016). Algorithmic-level
models are concerned with the steps humans would carry out to solve the acquisition task, and
often include considerations of incremental processing and limited memory, as well as a realistic
learning period for the steps to be carried out in. An algorithmic-level model can demonstrate that
the acquisition task can be solved with the cognitive and time limitations children have. That is,
it’s possible for children to solve the specified acquisition task using a particular set of assumptions
about the initial state.

What typically differs between computational-level and algorithmic-level models is the infer-
ence process implementation. A computational-level inference process is focused on simply com-
pleting the computation accurately – there is no claim that the way inference is being carried out in
the model is the way humans carry out inference. As a concrete example, Gibbs sampling is a sta-
tistical inference algorithm currently used in some computational-level models (e.g., Perfors et al.
2010, 2011, Phillips and Pearl 2015b), and it has the happy property of being guaranteed to con-
verge on the best answer if given enough time to search the (potentially infinite) hypothesis space.
While this inference algorithm involves a particular (clever) process of iteratively searching the hy-
pothesis space, it’s unlikely that humans perform the same process when they’re doing inference.
So, models using this inference process typically aren’t concerned with learning period consider-
ations, which encode how long the child has to perform the steps of the inference process. Put
simply, because the steps of computational-level inference aren’t the same as the steps of human
inference, paying attention to how long it takes a modeled child to accomplish computational-level
inference isn’t really related to how long children have to accomplish their inference.

This contrasts with algorithmic-level models, whose inference process is meant to represent the
steps children would go through to perform their inference (e.g., Regier and Gahl 2004, Yang 2004,
Pearl and Lidz 2009, Pearl and Sprouse 2013a, and Pearl and Mis 2016). This is why algorithmic-
level models are sensitive to the cognitive limitations children have when performing inference
(e.g., limited memory) and the time limitations imposed by the learning period. In some cases,
the algorithmic-level inference is known to be a heuristic approximation of computational-level
inference (e.g., Regier and Gahl 2004, Pearl and Lidz 2009, Bonawitz, Denison, Chen, Gopnik
and Griffiths 2011, Pearl and Mis 2016); in other cases, it’s not obviously so (e.g., Yang 2004,
Pearl and Sprouse 2013a).

The last explanation level is implementational, and this is concerned with how the cognitive
computation of the acquisition task is implemented in the brain. This has direct links to the
algorithmic-level explanation: If we think we have the right steps to carry out the acquisition
computation, how are they actually carried out in the available neural medium? This involves
a deep understanding of neural architecture, as the specific relevant properties of the brain need
to be simulated (e.g., how information is represented in a distributed manner, the way neurons
spread information to each other, the structural subdivisions of the brain). This consideration has
significant impact on how the initial state assumptions, data intake, inference, and target state are
encoded in the model. As an example focusing on the initial state, if we think there’s a bias to have
a default wh-movement value of no movement, what does that actually look like neurally? That’s
what we would need to encode in an implementational level model. Because the field is currently
developing the linking theories between linguistic theory and cognitive neuroscience, this repre-
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sents an exciting area of future collaborative research for syntacticians, computational modelers,
and cognitive neuroscientists.

2.3 Inference
As noted above, inference is how the modeled child updates the developing grammar representa-
tions. Below I discuss some common inference components and inference implementations used
in the syntactic acquisition modeling literature, though this is by no means an exhaustive list.

2.3.1 Counting things

A very common component in the modeled inference process is the ability to count things, which
is a domain-general ability. In syntactic acquisition models, the more important thing for inference
is what’s being counted – this is where the learning theory and representational theory come in
handy. These theories, through the initial state and its effect on the data intake, determine what
actually makes it to the inference process – i.e., what things are counted. Depending on the theories
involved, the inference mechanism could be operating over counts of lexical items (Freudenthal,
Pine, Aguado-Orea and Gobet, 2007, Freudenthal, Pine and Gobet, 2009, 2010, Freudenthal, Pine,
Jones and Gobet, 2015), syntactic category sequences (Perfors et al., 2010, 2011), syntactic signals
realized in certain overt structures (Sakas and Fodor, 2001, Yang, 2004, Legate and Yang, 2007,
Mitchener and Becker, 2010, Pearl and Sprouse, 2013a, Becker, 2014, Sakas, 2016), or something
else entirely. Importantly, for our purposes as modelers, the inference mechanism itself doesn’t
change. Once we define the units over which inference is operating, inference then simply operates.

Counts are typically translated into probabilities (e.g. 700 instances of an element appearing
in 1000 data points translated to ≈2 0.7), and this provides a sense of how relatively frequent the
element is. Probabilities also have an intuitive interpretation as beliefs about categorical options.
For example, let’s consider the two wh-movement options: +wh-movement and -wh-movement.
A probability of 0.7 for +wh-movement (and a probability of 0.3 for -wh-movement) might rea-
sonably be interpreted as the modeled child believing +wh-movement is more likely to be true.
This can also be thought of as the modeled child picking +wh-movement 70% of the time if asked
to generate an utterance involving a wh-word. In this way, probabilities can make it easier to
link categorical representations to observable behavior (e.g., a child using +wh-movement in her
utterances about 70% of the time).

As a practical note, probabilities derived from counts typically involve smoothing, where things
never observed still have a very small amount of probability assigned to them. This is because zero
probability is very final – something with zero probability can never, ever occur. In contrast,
something with a very small probability may occur only very occasionally, but it’s not impossible.
This is useful when we consider the acquisition task: Children get a finite data sample and have
to make generalizations from it. It could be that some element they never observe is actually
ungrammatical – but it could also be the case that it’s just very rare. So, assigning the element
a very small probability gives some wiggle room for generalization purposes. Perhaps later on,

2See discussion about smoothing below for why the ≈ is used.
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evidence will come in that indicates this element is just fine, such as actually hearing someone use
it in naturalistic speech. If the element has zero probability, no amount of evidence can change that
belief. But, if the element has a very small probability, belief in the element can still be adjusted.

Smoothing can be intuitively implemented via pseudocounts, where the modeled child imag-
ines she’s seen each element a certain number of times (typically <1) before ever encountering
any data. In our wh-movement example, we might implement this as the modeled child using a
pseudocount of 0.5 for each option. So, initially, the probabilities for each option would look like
this:

p(+wh) = count+wh+0.5

count+wh+0.5+count−wh+0.5
= count+wh+0.5

count+wh+count−wh+2∗0.5 = 0+0.5
0+0+2∗0.5 = 0.5

2∗0.5 = 0.5

p(-wh) = count−wh+0.5

count+wh+0.5+count−wh+0.5
= count−wh+0.5

count+wh+count−wh+2∗0.5 = 0+0.5
0+0+2∗0.5 = 0.5

2∗0.5 = 0.5

This means that as soon as the model’s seen a single data point (for either option), the proba-
bility is very much swayed in that direction. Let’s say we see 1 +wh-movement data point.

p(+wh) = count+wh+0.5

count+wh+0.5+count−wh+0.5
= count+wh+0.5

count+wh+count−wh+2∗0.5 = 1+0.5
1+0+2∗0.5 = 1.5

2
= 0.75

p(-wh) = count−wh+0.5

count+wh+0.5+count−wh+0.5
= count−wh+0.5

count+wh+count−wh+2∗0.5 = 0+0.5
1+0+2∗0.5 = 0.5

2
= 0.25

Lots of data will yield a probability pretty close to the unsmoothed probability (e.g., the case
where we see 700 +wh-movement data points and 300 -wh-movement data points).

p(+wh) = count+wh+0.5

count+wh+0.5+count−wh+0.5
= count+wh+0.5

count+wh+count−wh+2∗0.5 = 700+0.5
700+300+2∗0.5 = 700.5

1001
= 0.6998

p(-wh) = count−wh+0.5

count+wh+0.5+count−wh+0.5
= count−wh+0.5

count+wh+count−wh+2∗0.5 = 300+0.5
700+300+2∗0.5 = 300.5

1001
= 0.3002

I should note that translating counts directly to probabilities like this is just one way to generate
probabilities for different aspects of the developing grammar (e.g., used by Pearl and Sprouse
2013a). I discuss two other common inference approaches below that generate probabilities for
competing hypotheses by using more sophisticated reasoning over the counts available.

2.3.2 Reinforcement learning

Reinforcement learning is a principled way to update the probability of a categorical option which
is in competition with other categorical options, e.g., +wh-movement vs. -wh-movement. Yang
(2002, 2004) uses an implementation by Bush and Mosteller (1951) called the linear reward-
penalty scheme. As the name suggests, there are two choices when a data point is processed –
either the categorical option under consideration is rewarded or it’s punished. This translates to the
option’s current probability being increased (rewarded) or decreased (punished).

The inference process’s update function involves a parameter γ that determines how quickly the
modeled child updates her beliefs on the basis of a single data point (i.e., how much she shifts the
probability between the different options). The larger γ is, the more probability the modeled child
shifts after processing a single data point. The other consideration is what the previous probability
of the option was – this impacts how much shifting is possible. So, the important variables are
these:

(1) a. γ: This is the learning rate (and is typically a number smaller than 1).
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b. po1t : This is the previous probability of the option under consideration o1 (at time t).
For example, this might be p+wht .

c. poit : This is the previous probability of the opposing option(s) oi for each of the i
remaining options. For example, this might be p−wht when we only have the two
options +wh-movement and -wh-movement competing with each other.

When the modeled child processes a data point, these probabilities are updated by focusing on
one option (e.g., +wh-movement) and updating the collective option probabilities based on whether
the option under consideration is rewarded for being compatible with the data point or punished
because it’s not compatible with the data point. For example, if the data point What did the penguin
do? is processed considering the +wh-movement option, the data point can be accounted for: The
fronting of what can be due to movement. So, the +wh-movement option is rewarded – its prob-
ability increases and the probability of all other options (here, simply -wh-movement) decreases.
This is shown in (2b), with the learning rate γ=0.1, and the previous probabilities of both options
= 0.5. In contrast, suppose the data point is an echo question like The penguin did what?. If this
is processed with the +wh-movement option, the data point can’t be accounted for because move-
ment of what is expected, but not seen here. So, this data point would punish +wh-movement – its
probability decreases, as shown in (2c).

(2) Linear reward-punishment
a. p+wht = 0.5, p−wht = 0.5, γ=0.1, 2 options (N=2)
b. reward +wh-movement:

i. p+wht+1 = p+wht + γ*(1-p+wht) = 0.5 + 0.1*(1-0.5) = 0.55
ii. p−wht+1 = (1-γ)* p−wht = (1-0.1)*0.5 = 0.45

c. punish +wh-movement:
i. p+wht+1 = (1-γ)*p+wht = (1-0.1)*0.5 = 0.45

ii. p−wht+1 = γ
N−1 + (1-γ)*p−wht = 0.1

2−1 + (1-0.1)*(0.5) = 0.55

Interestingly, while this is typically an algorithmic-level model inference procedure simulating
the steps a child would use to accomplish inference, it has predictable convergence behavior when
unambiguous data are available in the data intake. More specifically, because unambiguous data are
compatible only with a single option (e.g., wh-fronting data compatible with +wh-movement, but
not -wh-movement), these data will always reward that option – presumably, the correct one for the
language – and punish all other options. This will cause the correct option to receive a probability
near 1, given enough unambiguous data in the child’s intake. So, models implementing this kind of
inference procedure will often do analyses of the child’s intake with respect to unambiguous data,
rather than implementing this inference mechanism explicitly (e.g., Legate and Yang 2007, Yang
2012, Legate and Yang 2013) – see section 3.1.2 for more detailed discussion of studies of this kind.
For example, a data intake analysis might demonstrate that +wh-movement has a 25% advantage
over the -wh-movement option. This could occur because 30% of the data are unambiguous for
+wh-movement and 5% of the data are unambiguous for -wh-movement, yielding the 30-5=25%
+wh-movement advantage. On the basis of this alone, we would conclude that a modeled child
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using a linear reward-penalty inference mechanism would converge on the +wh-movement value
for her language. Again, this is without needing to explicitly implement the inference algorithm.
This property can make this inference mechanism very attractive for testing different acquisition
proposals. It also highlights the simulation effort that can be saved by understanding the known
properties of the inference mechanism being modeled.

2.3.3 Bayesian updating

Bayesian updating is another kind of probabilistic inference mechanism, and it involves both prior
assumptions about the probability of different options (typically referred to as hypotheses) and an
estimation of how well a given hypothesis fits the data. Pearl and Goldwater (2016) provide a
detailed overview of Bayesian updating for language acquisition modeling, and I’ll summarize the
key points here.

A Bayesian model assumes the learner has some space of hypotheses H , each of which repre-
sents a possible explanation for how the data D in the data intake were generated. Given D, the
modeled child’s goal is to determine the probability of each possible hypothesis h ∈ H , written as
P (h|D), which is termed the posterior for that hypothesis. This is calculated via Bayes’ Theorem
as shown in (3).

(3) P (h|D) = P (D|h)∗P (h)
P (D)

= P (D|h)∗P (h)∑
h′∈H P (D|h′)∗P (h′)

∝ P (D|h) ∗ P (h)

Let’s walk through each of the terms in (3). In the numerator, P (D|h) represents the likelihood
of the data D given hypothesis h, and describes how compatible that hypothesis is with the data.
Hypotheses with a poor fit to the data (e.g., the -wh-movement hypothesis for a dataset with 30%
unambiguous +wh-movement data) have a low likelihood; hypotheses with a good fit to the data
have a high likelihood. How the likelihood itself is calculated is often a modeling choice. A
simple way is basic compatibility, similar to the linear reward-penalty scheme: If the hypothesis
can’t account for the data, its likelihood is (near) 0. In contrast, if the hypothesis can account for
the data, its likelihood is (near) 1.

P (h) represents the prior probability of the hypothesis. Intuitively, this corresponds to how
plausible the hypothesis is, irrespective of any data. This is often where considerations about the
complexity of the hypothesis will be implemented by the modeler (e.g., considerations of simplic-
ity or economy, such as those included in the grammar evaluation metrics of Chomsky 1965, and
those explicitly implemented in Perfors et al. (2011)). So, for example, more complex hypotheses
may have lower prior probabilities.

The likelihood and prior make up the numerator of the posterior calculation, while the de-
nominator consists of the normalizing factor P (D), which is the probability of the data under any
hypothesis. Mathematically, this is the summation of the likelihood * prior for all possible hy-
potheses in H , and ensures that all the hypothesis posteriors sum to 1. Notably, because we often
only care about how one hypothesis compares to another, calculating P (D) can be skipped over
and the numerator alone used (hence, the ∝ in (3)). As a concrete example, suppose we have two
hypotheses in H , h1 and h2. Suppose we calculate the likelihood * prior (lp) for each, and get the
following: lph1 = 0.2, lph2 = 0.1. If we only care how h1 compares to h2, we can calculate this
directly (called the posterior odds ratio) as 0.2

0.1
= 2, which indicates h1 is twice as probable as h2.
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If we take the time to normalize the probabilities and calculate the posterior for each hypothesis,
we would get p(h1|D) = 0.2

0.2+0.1
= 0.666, p(h2|D) = 0.1

0.2+0.1
= 0.333. Doing the same comparison

between h1 and h2 as before, we get 0.666
0.333

= 2, which again shows the h1 is twice as probable as h2,
given these data. So, because this relative hypothesis comparison is the information the modeled
learner is typically interested in, modelers will often use the likelihood * prior probabilities for
each hypothesis, rather than normalizing the hypothesis probabilities by p(D).

Something to note is that Bayesian updating can be done as a computational-level inference,
with the data seen all at once and inference conducted over that batch of data (e.g., Foraker et al.
2009, Perfors et al. 2010, 2011). Bayesian updating can also be done as algorithmic-level inference,
with the data seen incrementally and inference conducted over each data point as it’s encountered
(e.g., Regier and Gahl 2004, Pearl and Lidz 2009, Pearl and Mis 2016).

Another interesting aspect of Bayesian updating is that it can be implemented hierarchically,
such that there are different levels of abstraction where the hypothesis space is concerned (Good-
man, 1955, Kemp, Perfors and Tenenbaum, 2007, Kemp and Tenenbaum, 2008). More specifi-
cally, there may be hypotheses about specific observable properties, and more abstract hypotheses
(called overhypotheses) about the nature of those more specific hypotheses. A concrete example
taken from Pearl and Lidz (2013) can help demonstrate the intuition of this, specifically linking
it to the concept of linguistic parameters used in the generative linguistics tradition (Chomsky,
1981).

Suppose an English-learning child has a collection of utterances in her data intake. Some
utterances contain verbs and objects, and whenever there’s an object, suppose it appears after the
verb, e.g., see the penguin rather than the penguin see. Other utterances contain modal verbs and
nonfinite main verbs, and whenever both occur, the modal verb precedes the main verb, e.g., could
see rather than see could. A child could be aware of the shared structure of these sentences –
specifically that these observable forms can be characterized as the head of a phrase appearing
before its complements, as shown in (4).

(4) Shared structure in observable forms: Phrasal heads before complements
a. see the penguin VP

V

see

NP

the penguin
b. could see IP

I

could

VP

see

This “head-first” idea can be encoded at a level that describes utterances in general, and would
represent an overhypothesis about structure which is similar to the classical headedness linguistic
parameter: namely, phrases have their heads before their complements. Each of the examples
from (4) instantiates this overhypothesis for particular phrases, VPs and IPs, and so predicts the
specific hypotheses these data support: VPs have their heads before their complements and IPs
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have their heads before their complements. Each of these specific hypotheses strengthens the more
abstract head-first overhypothesis, and allows the child to make predictions about phrases not yet
encountered. For example, if this child encountered an utterance with a preposition surrounded by
NPs, such as penguins on icebergs, there are (at least) two structural hypotheses possible, shown
in (5).

(5) Possible structures for penguins on icebergs
a. head-first: NP

N

penguins

PP

P

on

NP

icebergs
Meaning: penguins who are on icebergs

b. head-last: NP

PP

NP

penguins

P

on

N

icebergs

Meaning: icebergs that are on penguins

Using the head-first overhypothesis for both the NP and the PP, the child would prefer the first
structure, whose meaning indicates this is about penguins who are on icebergs (rather than icebergs
that are on penguins). Importantly, the child could have this head-first preference about NP and
PP structure, even without having encountered a single NP or PP data point. This is the power
of overhypotheses, and is the same powerful intuition that made the classical notion of linguistic
parameters attractive to developmental linguists. Children can learn how to make generalizations
for data they’ve never seen before on the basis of the data they do see precisely because of the
abstract system underlying the generation of the observable data.3

In short, the classical notion of a linguistic parameter is an abstract structural property that con-
strains the hypothesis space of the child. So, a classical linguistic parameter is an overhypothesis
about the specific structural hypotheses available. Because of this, there may be a very intuitive
connection between hierarchical Bayesian inference and syntactic acquisition with parameters, and
this particular application of Bayesian updating is an exciting area of future research in syntactic
acquisition.

3This way of learning is sometimes referred to as children using indirect positive evidence, and complements
learning with direct positive evidence and indirect negative evidence. See Pearl and Mis (2016) for more discussion
on this point, and its impact on acquisition.
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3 Some actual models
As with the brief review of some of the common syntactic acquisition modeling frameworks, this is
an illustrative overview of several syntactic acquisition models, rather than an exhaustive one. Due
to space considerations, I’ll be focusing on models of syntactic acquisition at a developmental stage
when syntactic categories are already known. However, I should note that modeling the fundamen-
tal process of syntactic category acquisition is an energetic research area as well (e.g., Mintz 2003,
Xiao, Cai and Lee 2006, Wang and Mintz 2008, Chemla, Mintz, Bernal and Christophe 2009,
Erkelens 2009, Frank, Goldwater and Keller 2009, Weisleder and Waxman 2010, Wang, Höhle,
Ketrez, Küntay, Mintz, Danis, Mesh and Sung 2011, Frank, Goldwater and Keller 2013b, Gutman,
Dautriche, Crabbé and Christophe 2015, Bar-Sever and Pearl 2016, among many others). All the
approaches reviewed below assume that syntactic categories – and often phrase structure – are
(near) adult-like before the syntactic acquisition processed being modeled would initiate. For each
one, I’ll briefly describe the general acquisition task each model is attempting to capture, using the
modeling components already discussed: initial state, data intake, inference, learning period, and
target state. I’ll then summarize the main findings for each model, highlighting the connections to
theories of linguistic representation and theories of the learning process.

3.1 Parametric approaches
As mentioned above, a linguistic parameter – just like a statistical parameter – is meant to be an
abstraction that can account for multiple observations (e.g., having a head-first value accounts for
multiple observations of phrase structure across different phrase types). Once the child knows the
value of the parameter, she can use it to make predictions about other data she expects to see.
This is an excellent property from an acquisition standpoint, because a child can learn about the
linguistic parameter’s value from a variety of data she encounters, and then use it to infer the form
of other data she may rarely (or never) encounter (Hyams, 1987, Pearl and Lidz, 2013). That is,
by using parameters, the range of observations a child has to make to learn her syntactic grammar
is greatly reduced. So, linguistic parameters are a way to solve the induction problems associated
with syntactic acquisition (sometimes called the poverty of the stimulus) – the child constrains
her syntactic generalizations on the basis of her data intake coupled with the linguistic parameters
she’s already aware of.

For this reason, syntactic acquisition using parameters has been a core area of acquisition
modeling in generative syntax (Clark, 1992, Gibson and Wexler, 1994, Niyogi and Berwick, 1996,
Fodor, 1998b,a, Sakas and Fodor, 2001, Sakas and Nishimoto, 2002, Yang, 2002, Sakas, 2003,
Yang, 2004, Fodor and Sakas, 2005, Fodor, Sakas and Hoskey, 2007, Sakas and Fodor, 2012,
Sakas, 2016, Fodor, 2017, Fodor and Sakas, 2017). Notably, this is true despite disagreement
over the specific linguistic parameters needed to account for the world’s languages and the non-
trivial relationships between different hypothesized parameters (e.g., see discussion in Boeckx and
Leivada 2014, who note that once you assume a realistic number of parameters, you end up with
a “complex, subway-map-like network”). This complexity is one reason why many parametric
learning approaches focus on how to navigate the acquisition of syntax using linguistic parameters.
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Put simply, just because a child already knows these parameters exist doesn’t mean it’s obvious
how to connect them to the observable data. The acquisition theory work is often about how
the child can recognize the parametric signatures in her data intake and use them to acquire the
correct syntactic parameter values for her language. The modeling work then implements different
proposals for doing this.

3.1.1 Learning by parsing: The structural triggers learner

The structural triggers learner (STLearner) is an acquisition proposal investigated primarily by
Fodor and Sakas (Fodor, 1998b,a, Sakas and Fodor, 2001, Sakas and Nishimoto, 2002, Fodor and
Sakas, 2005, Fodor et al., 2007, Sakas and Fodor, 2012, Sakas, 2016, Fodor, 2017, Fodor and
Sakas, 2017). This approach considers the problem of learning the syntactic parameters for a
language from observable data that contain structural triggers recognized by a child during the
process of parsing the input. For this reason, it’s sometimes referred to as the learning-by-parsing
approach.

The key intuition of the STLearner is that the child wants to comprehend the utterances around
her, and uses her ability to parse an utterance – successfully or not – as a way to identify the
structural properties of her language’s grammar. Her a priori knowledge of linguistic parameters
is implemented as a set of “treelet” options she can use to decode the structure of an utterance. For
example, the treelets corresponding to a headedness parameter would include a “head-first” option
and a “head-last” option, and could be implemented as in (6).

(6) Treelets for the headedness parameter
a. head-first: XP

X Comp
b. head-last: XP

Comp X

As the child incrementally encounters an utterance, she uses the treelets available to parse the
structure of the utterance. In the initial stages of learning, she hasn’t settled on any parametric
options yet, so all the treelets are available (e.g, both the head-first and head-last treelet). As she
identifies the language-specific treelets corresponding to her language’s grammar (e.g., head-first
for English), only the language-specific treelet is available for parsing. So, the developing grammar
consists of the language-specific treelets that are available to be deployed during parsing. In the
model terms from before, the STLearner uses parsing with the developing grammar options to
transform the input into the perceptual intake.

To transform the perceptual intake into acquisitional intake, the STLearner leverages parsing
ambiguity to identify reliable parametric cues to learn from. More specifically, the observable
signatures of different parametric options can be difficult to detect, especially in the early stages of
acquisition when few parameters are set. This is because an observable utterance can be compatible
(here: parseable) with combinations of different parametric options (here: treelets) – that is, an
utterance is ambiguous for which parametric options it signals.
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As a simple example of the ambiguity problem, let’s consider some example parameters from
the CoLAG dataset that Fodor and Sakas use to investigate the STLearner. This dataset4 consists
of 3072 natural-language-like artificial languages constructed using 13 binary syntactic parameters
that relate to grammatical phenomena such as head direction, null subjects, wh-movement, and
topicalization. Three parameters are (i) a headedness parameter that connects to various phrases
including VP, (ii) ItoC movement, and (iii) Optional Topic. The treelets for headedness are above
in 6, and the treelets for ItoC movement and Optional Topic are in (7-8). For +ItoC, the inflection
I (typically joined with the verb, such as in see+ed = saw: V+I) moves to the C position; -ItoC
doesn’t allow this movement. For Optional Topic (?Top), some phrase (indicated with XP) can
move to the specifier position of CP, but doesn’t have to; for Obligatory Topic (+Top), some phrase
must move to that position.

(7) Treelets for the ItoC parameter
a. +ItoC: CP

C

V+I

IP

NP
tV+I VP

...
b. -ItoC: CP

C IP

NP
V+I VP

...

(8) Treelets for the Optional Topic parameter
a. Optional Topic (?Top): CP

(XP) C ..
b. Obligatory Topic (+Top): CP

XP C ..

Now, with these parametric treelets in mind, suppose a child encounters the following utter-
ance: I saw penguins. With only these three parameters, we have seven options for how to parse
this utterance, as shown in (9).

(9) Seven parses for I like penguins, assuming V-to-I movement (tsee in V, saw in I)
4 Available at http://www.colag.cs.hunter.cuny.edu/downloadables.html

18

http://www.colag.cs.hunter.cuny.edu/downloadables.html


a. Parse 1: head-first, -ItoC, ?Top (no movement option)
CP

C IP

NP

I
I

saw

VP

V

tsee

NP

penguins
b. Parse 2: head-first, -ItoC, ?Top (movement option) or

Parse 3: head-first, -ItoC, +Top
CP

NP

I
C IP

NP

tI
I

saw

VP

V

tsee

NP

penguins
c. Parse 4: head-first, +ItoC, ?Top (movement option) or

Parse 5: head-first, +ItoC, +Top
CP

NP

I
C

saw

IP

NP

tI
I

tsaw

VP

V

tsee

NP

penguins
d. Parse 6: head-last, +ItoC, ?Top (movement option) or

Parse 7: head-last, +ItoC, +Top
CP

NP

I
C

saw

IP

NP

tI
I

tsaw

VP

NP

penguins

V

tsee
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Notably, every single parametric option is used in some possible parse (head-first vs. head-last,
+ItoC vs. -ItoC, ?Top vs. +Top). So, at first blush, it’s unclear exactly what to take away from this
utterance. What is this data point telling the child about winnowing down her grammatical choices
(if anything)? This highlights the learning issues surrounding ambiguous data. As this data point
shows, early in learning before the child has set (m)any parameters for her language, data are more
likely to be ambiguous. So, what’s a child to do?

This is where the process of parsing is helpful for an STLearner. Fodor and Sakas suggest that
an STLearner can pay attention to where in the parse the ambiguity arises. Using that information,
an STLearner can pull out useful pieces of information in order to update the developing gram-
mar. That is, by paying attention to where ambiguity arises during the parse, a child can make
a more informed grammar update. This grammar update then directly affects subsequent percep-
tual encoding and ambiguity detection. The discoveries that Fodor and Sakas have made in their
STLearner investigations are primarily about how children could learn with syntactic parameters
in the presence of ambiguity.

I’ll now summarize the main components of the STLearner approach, in the modeling terms
from before. The initial state of the learner includes knowledge of the parametric treelets, the abil-
ity to deploy these treelets during parsing, and the ability to detect ambiguity during parsing. Sakas
(2016) notes that the parametric treelets may be building blocks derived from a more fundamental
generative system (such as that used by the Minimalist Program). This would align with the idea
that the parametric treelets represent explicit structural hypotheses selected from the larger implicit
hypothesis space that this generative system can produce (see Perfors 2012 for helpful discussion
about explicit and implicit hypothesis spaces more generally in cognition).

The input for the STLearner are utterances from the target language, abstracted into structural
categories such as Subject, Auxiliary, Verb, Object and Preposition, along with observable features
such as finiteness and illocutionary force. For example, the utterance I saw penguins would be
represented as something like Subject Verb+finite Objectdirect [declarative]. Notably, the utter-
ance types in the STLearner’s input don’t have the same frequencies as the ones in child-directed
speech. For example, there is one utterance for Subject Verb+finite Objectdirect [declarative] in
the STLearner’s input, even though a child might encounter many sentences of this form (I saw
penguins, The penguins were cute, A penguin ate a fish, etc.). So, this is an abstraction of the input
children actually do encounter, and impacts the kinds of questions that can be addressed. In partic-
ular, STLearner investigations are often focused on treacherous ambiguities that are salient in this
kind of abstracted input, and would presumably be even more damaging if the input frequencies
were a more direct reflection of child-directed speech.

The STLearner’s perceptual intake is typically the full parse of the utterances using parametric
treelets as long as there’s no ambiguity; when there’s ambiguity, the perceptual intake may either
be a sample full parse highlighting the points of ambiguity or a partial parse that ceases at the
first point of ambiguity. The exact perceptual intake depends on the acquisition proposal being
implemented, as does the acquisitional intake. STLearner acquisition proposals typically differ on
whether the acquisitional intake includes ambiguous portions of the parse or not.

Inference implementations are typically at the algorithmic level, and split into deterministic
variants that rely on triggering and non-deterministic variants that rely on trial and error search. The
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more common deterministic variant incrementally processes the acquisitional intake, and makes a
single irreversible decision about the correct parametric treelet for the language when the learner
deems it appropriate. This decision can incorporate simplicity metrics for dealing with ambigu-
ity, such as preferring treelets that don’t involve movement (sometimes called the Minimal Chain
Principle) and preferring treelets that don’t involve null elements (sometimes called Avoid Empty
Category) (Sakas and Fodor, 2012). Non-deterministic variants often incorporate a reinforcement
learning component, where treelets used for successful parses have their probability increased.

Because STLearner investigations are typically concerned with relative learnability of different
languages within the CoLAG domain, there are no a priori restrictions on the length of the learning
period. Rather, what’s interesting is how long the learning period would need to be in order to
learn one language vs. another, or what the maximum learning period would need to be to learn
any of the 3072 languages in the domain, given the ambiguities present. The target state is simply
the correct set of parameter values (parametric treelets) for the target language. Learning periods
are measured by the number of utterances processed, and have ranged from just a few utterances
to hundreds of thousands to infinite (in the case of ambiguities that can’t be overcome).

Key findings from the STLearner approach include the following:

1. The ability to detect ambiguity during parsing is crucial for a learning strategy relying on
deterministic inference.

2. Having a way to learn something from ambiguous data is useful – if a deterministic learner
is waiting for perfectly unambiguous data, she may be waiting forever.

3. A potentially useful way to handle ambiguous data is to have additional learning biases that
refine the inference done in the presence of ambiguous acquisitional intake. These biases
include refining the structures considered informative, imposing default values, and ordering
the acquisition of parameters.

3.1.2 Variational learning

The variational learning (VarLearn) approach (Yang, 2002, 2004, Legate and Yang, 2007, Yang,
2012) sidesteps explicit consideration of ambiguity and relies on probabilistic search of the para-
metric hypothesis space. More specifically, a VarLearner will have some number of parameters,
with different possible values, and each of those values will be assigned some initial probability.
(This is typically a uniform probability, so that if there are two options like +ItoC and -ItoC, each
will start with probability 0.5.) When encountering a data point, the VarLearner probabilistically
samples a complete grammar of parameter values, based on the probability of those values. So,
in a parametric hypothesis space with the three parameters head-first/head-last, +ItoC/-ItoC, and
?Top/+Top, a VarLearner pulls out a single grammar, such as [head-first +ItoC,?Top] with proba-
bility p(head-first)*p(+ItoC)*p(?Top). Whichever grammar is sampled, the VarLearner then sees
if the grammar can account for the data point. For example, the grammar above would be able to
account for the utterance I saw penguins (parse 4 from (9)), but not the utterance I penguins saw.
If the grammar can account for the data point, all the participating parameter values are rewarded;
if not, all parameter values are punished.
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The VarLearner uses a reinforcement learning inference approach, and as mentioned in section
2.3.2, this means that unambiguous data are very impactful as they are only compatible with one
parameter value. For example, data can be unambiguous for the head-first value, which means they
will always reward grammars with head-first and always punish grammars with head-last. Over
time, this means, the parameter value with more unambiguous data in the intake (an unambiguous
data advantage) will succeed. As mentioned in section 2.3.2, this is why VarLearner approaches
typically do an analysis of the acquisitional intake, focusing on the unambiguous data perceived
by the VarLearner to be available. In particular, these approaches focus on the unambiguous ad-
vantage one parameter value has over another. The higher the unambiguous data advantage for a
parameter value, the faster a child using the VarLearner strategy should converge on that parameter
value. This means that age of acquisition predictions can be made from careful analysis of the
acquisitional intake. Specifically, parameter values that have higher unambiguous data advantages
are learned earlier.

With this in mind, let’s consider the initial state, data intake, inference, learning period, and
target state of VarLearners. The initial state consists of both prior knowledge and abilities. First,
the VarLearner must know the parameters and their values. It must also be able to probabilistically
sample a grammar to parse with, based on the current probabilities associated with the parameter
values, and then parse data using that grammar. This allows the VarLearner to recognize that a data
point is compatible or incompatible with this grammar. The VarLearner must also have the ability
to do probabilistic inference (here, reinforcement learning) to update parameter value probabilities.

The VarLearner’s input is typically utterances of the target language, encountered with the same
frequency that they’re encountered in child-directed speech. The perceptual intake of an utterance
is the representation that results from parsing with the probabilistically sampled grammar. This
then yields the acquisitional intake: either successful parsing (and a signal to reward all participat-
ing parameter values) or unsuccessful parsing (and a signal to punish all participating parameter
values). Inference is an algorithmic-level probabilistic update using reinforcement learning, based
on the acquisitional intake. The learning period is measured in the number of utterances encoun-
tered before reaching the target state, which is the set of correct parameter values for the language.

Again, as mentioned, because the data perceived by the VarLearner as unambiguous for a
parameter value are massively impactful on the acquisition outcome (in fact determining it), Var-
Learner studies typically focus on the nature of the acquisitional intake and what unambiguous
data advantages emerge. All the VarLearner studies reviewed below are of this kind.

Yang (2002, 2004, 2012) uses a VarLearner approach to successfully predict the relative order
of acquisition of certain parameter values in different languages, based on the unambiguous data
advantage a VarLearner would perceive for each. Table 1 demonstrates the striking qualitative fit
between the perceived unambiguous data advantage in child-directed speech and the age of acqui-
sition for six difference parameter values. This suggests that both the VarLearner representations
of the unambiguous data and the VarLearner learning mechanism may be on the right track for
understanding how children identify the correct values for parameters in their language.

Legate and Yang (2007) use a VarLearner approach to explain the different rates of optional
infinitives (OIs) in child-produced speech, which are observed to vary by language. OIs, sometimes
called root infinitives, are instances where children appear to use the non-finite verb form in main
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Table 1: The qualitative fit Yang discovered between the unambiguous data advantage (Adv) per-
ceived by a VarLearner in its acquisitional intake and the observed age of acquisition (AoA) in
children for six parameter values across different languages.

Param Value Language Unambiguous Form Unambiguous Ex Adv AoA
+wh-fronting English wh-fronting in questions Who did you see? 25% <1;8
+topic-drop Chinese null objects Wǒ méi kànjiàn 12% <1;8

I not see
“I didn’t see (him)”

+pro-drop Italian null subjects in questions Chi hai visto 10% <1;8
who have seen
“Who have you seen?”

+verb-raising French Verb Adverb Jean voit souvent Marie 7% 1;8
Jean sees often Marie
“Jean often sees Marie”

-pro-drop English expletive subjects There’s a penguin on the ice. 1.2% 3;0
+verb-second German Object Verb Subject Pinguine liebe ich. 1.2% 3;0-3;2

Dutch penguins like I
“I like penguins”

-scope-marking English long-distance wh questions Who do you think is on the ice? 0.2% >4.0
without medial-wh

(“root”) clauses, and specifically in places where adults can’t. Some cross-linguistic examples
highlighted in Legate and Yang (2007) are shown in Table 2.

Table 2: Optional infinitive examples in child-produced speech in different languages, and their
intended meaning.

English Dutch French German Hebrew
Papa have it. Thee drinken Dormir petit bébé Mein Kakao hinstelln Lashevel al ha-shulxan
Papa haveINF it tea drinkINF sleepINF little baby my cocoa putINF sitINF on the-table
“Papa has it” “Drinks tea” “Little baby sleeps” “Puts my cocoa” “Sits on the table”

Interestingly, children’s frequency of OI use seems to vary by language, with some children us-
ing them very infrequently and tapering off OI use prior to age two (e.g., Spanish children), while
other children still use OIs fairly frequently into age three and beyond (e.g., English children).
Legate and Yang (2007) investigate a parametric account involving one key linguistic parameter,
which they refer to as +/-Tense. As its name suggests, this parameter is sensitive to the linguistic
expression of tense in a language: +Tense languages like Spanish express tense morphosyntacti-
cally (e.g., Spanish duerme=sleeppres+3rd+sg = “He/she/it sleeps”); -Tense languages like Mandarin
Chinese don’t, relying on other linguistic mechanisms to communicate tense (e.g., Mandarin Chi-
nese Zhangsan zai da qiu = Zhangsan ASPECT play ball = “Zhangsan is playing ball.”). So, this
parametric account suggests that children using OIs may be using a -Tense grammar for an ex-
tended period of time, when their language is in fact a +Tense language. As the children encounter
more unambiguous +Tense data in their acquisitional intake, the +Tense grammar is rewarded and
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the -Tense grammar generating the OIs is punished until it’s no longer active. How fast this happens
depends on how many unambiguous +Tense data are available.

From a VarLearner perspective, the +Tense option is rewarded (and -Tense punished) every
time an utterance is encountered with overt tense morphology. So, the quantity of data with tense
morphology in child-directed speech determines the +Tense unambiguous data advantage. This
then determines how quickly children acquiring +Tense languages figure out that OIs are not al-
lowed. Legate and Yang (2007) use the VarLearner approach to analyze the acquisitional intake of
Spanish, French, and English children (who are all learning +Tense languages), and find a quali-
tative fit between the unambiguous data advantage and these children’s production of OIs. More
specifically, the unambiguous data advantage for +Tense in Spanish > French > English, while
Spanish OI production < French OI production < English OI production. So, the greater the un-
ambiguous data advantage for +Tense in a language’s child-directed speech, the faster children
acquiring that language stop using OIs.

3.2 Non-parametric approaches
There are also many syntactic phenomena whose acquisition process isn’t represented with lin-
guistic parameters. I review several studies of this kind below, beginning with a non-parametric
account of children’s cross-linguistic OI production. I’ll then discuss some other phenomena re-
lying only on syntactic input during the acquisition process, including the structure-dependence
of linguistic representations and constraints on wh-dependencies. I’ll conclude with other studies
related to the interpretation of pronouns, integrating the development of syntactic knowledge and
referential knowledge.

3.2.1 Optional infinitives (OIs) again

Freudenthal and colleagues (Freudenthal et al., 2007, 2009, 2010, 2015) developed a non-parametric
model of syntactic acquisition called MOSAIC (Model of Syntactic Acquisition in Children) which,
like the parametric VarLearner, is able to account for the different cross-linguistic rates of OIs in
children’s speech. Instead of parameters, MOSAIC relies on an incremental probabilistic learning
mechanism directly related to the child’s perceptual intake. This mechanism keys into children’s
developing memory and parsing abilities.

More specifically, a MOSAIC learner has a strong utterance-final bias (in the spirit of a recency
memory effect), which causes this learner to encode utterance-final phrases in child-directed input.
As the MOSAIC learner’s familiarity with the linguistic elements in utterances increases, utter-
ances can be parsed and encoded more easily. This allows the encoded utterance-final phrases to
become longer (e.g., instances of Can Papa have it? successively encoded as it, have it, and Papa
have it).

The MOSAIC implementation of Freudenthal et al. (2015) also includes two additional biases.
The first is a smaller utterance-initial bias, in the spirit of a primacy memory effect, which allows
the learner to preferentially encode utterance-initial elements as well as utterance-final elements.
The second is a bias to replace verb forms with what the child perceives to be the default form at
that stage of development (e.g., go replacing goes), which can be viewed as a memory retrieval
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error during speech production. These two additional biases allow the MOSAIC learner to both
(i) capture the rate of English OIs more precisely, while maintaining the quantitative fit to the
other language OI production rates, and (ii) generate observed OI constructions that involve partial
utterance pieces from both the beginning and end of utterances in child-directed speech (e.g.,
Where he go? coming from Where did he go?).

MOSAIC’s algorithmic-level implementation highlights Freudenthal and colleagues’ theoreti-
cal account of the observed OI production: OIs are really portions of longer utterances in children’s
input that include compound finite forms, i.e., a modal or auxiliary verb (like can or did) with a
non-finite form (like have or go) for utterances like Can Papa have it? and Where did he go?
Notably, this account of the linguistic representation development relies very much on other devel-
oping abilities. Representations of utterance pieces (rather than the whole utterance) result from
children’s developing memory and parsing abilities imperfectly encoding the input into the child’s
perceptual intake. The output from a MOSAIC learner is a fairly direct reflection of this underlying
linguistic representation in the perceptual intake, potentially including memory retrieval errors that
occur during speech production.

This approach, relying on simple implementations of children’s memory and parsing limita-
tions, captures additional observed behavior about the nature of OIs in child-produced speech. For
example, Freudenthal et al. (2009) demonstrate that a MOSAIC learner captures the “Modal Refer-
ence Effect” in Dutch and German (and its absence in English), where Dutch and German children
tend to use OIs more frequently in modal contexts while English children don’t. For the MO-
SAIC learner, this is due to the frequent use of compound finite forms with modals in Dutch and
German child-directed speech, and their relative scarcity in English child-directed speech. This
MOSAIC learner also captures the presence of the “Eventivity Constraint” in Dutch and German
and its reduced effect in English, where Dutch and German children tend to use OIs predominantly
with eventive verbs like go, while English children do so less often. As with the Modal Reference
Effect, this behavior comes directly from the composition of Dutch, German, and English child-
directed speech: The vast majority of Dutch and German compound finite examples are used with
eventive verbs, while fewer eventive uses occur in English.

As Freudenthal et al. (2010) note, both a VarLearner and a MOSAIC learner can capture the
cross-linguistic patterning of OI errors reasonably well. Because a MOSAIC Learner has addi-
tional explanatory coverage about the specific verbs that appear as OI errors, we might prefer its
account of OI development for now.

3.2.2 Structure dependence

The nature of linguistic representations is generally agreed to be hierarchical, with units inside
other units (e.g., phrases inside other phrases). Moreover, rules for manipulating linguistic ele-
ments rely on this structure, rather than operating over simpler representations such as linear word
order. A traditional example of this is complex yes/no question formation in English, where we
can think about a yes/no question like (10a) as being a structure-dependent transformation of the
declarative utterance in (10b) which involves the same core contentful elements.
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(10) a. [CP Can the penguin [CP who is on the iceberg ] tcan find a fish ]?
b. [CP The penguin [CP who is on the iceberg ] can find a fish ].

Why do we call this structure-dependent? One common way to describe the transformation
in (10) is with the rule “Move the auxiliary in the main clause to a position at the front of the
utterance”. This rule relies on the structural notion of “main clause”. Importantly, there are other
potential rules that aren’t structure-based (i.e., they’re structure-independent), such as “Move the
last auxiliary”. Structure-independent rules aren’t able to account for the full range of English
complex yes/no questions, though some (like the one mentioned above) are often compatible with
most yes/no questions in child-directed speech.

From a developmental standpoint, children seem to know that syntactic rules like those control-
ling complex yes/no question formation in English ought to be structured-dependent: The classic
study by Crain and Nakayama (1987) demonstrates this knowledge in children as young as three
years old. Interestingly, from an input standpoint, it turns out that English children are likely
to encounter very few examples of complex yes/no questions that would unambiguously indicate
that a structure-dependent rule is required (Pullum and Scholz, 2002, Legate and Yang, 2002).
So, English children’s seemingly rapid development of this structure-dependent knowledge is an
intriguing mystery.

Importantly, there are really two pieces to children’s structure-dependent knowledge: (i) lin-
guistic representations are hierarchically structured, and (ii) rules manipulating linguistic elements
utilize this structure. One hypothesis about where these two knowledge pieces come from is that
children have an innate bias to use hierarchical structure, both in how they represent language and
how they hypothesize rules that manipulate linguistic elements. In the simplest form, this bias
has often been described as children innately knowing to only consider structure-dependent repre-
sentations and to only hypothesize structure-dependent rules (Chomsky, 1971, Berwick, Pietroski,
Yankama and Chomsky, 2011).

A competing hypothesis is that children can converge on this knowledge – in particular, the
nature of the correct rules (ii above) – without an innate bias for structure-dependence. Reali and
Christiansen (2005) demonstrate that a probabilistic learning model sensitive only to bigram and
trigram word frequencies in English child-directed speech seems to distinguish between grammat-
ical and ungrammatical forms of complex yes/no questions. That is, without a bias for structure-
dependent rules (and in fact without relying on structure-dependent representations at all), this
algorithmic-level model can distinguish between grammatical yes/no questions like Is the boy who
is watching Mickey Mouse happy? and ungrammatical variants like *Is the boy who watching
Mickey Mouse is happy?

However, Kam, Stoyneshka, Tornyova, Fodor and Sakas (2008) demonstrated that the modeled
learner of Reali and Christiansen (2005) benefited from a “lucky fluke” in the particular corpus
used as input and the particular sentences chosen as test sentences. More specifically, bigram in-
formation irrelevant to complex yes/no question formation in general was used to distinguish the
tested complex yes/no questions. When tested on a wider range of complex yes/no questions in
English (such as discriminating the grammatical Is the wagon your sister is pushing red? from
the ungrammatical *Is the wagon your sister pushing is red?), this modeled learner did not suc-
ceed. So, this potential structure-independent learning strategy does not in fact work (at least as
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implemented).
A very interesting variant of the innate bias hypothesis focusing on the structure-dependent

nature of linguistic representations was explored by Perfors et al. (2011). They considered that
children might not need to innately restrict their hypotheses to structure-dependent representa-
tions. Rather, children’s innate bias might be to allow structure-dependent representations into the
hypothesis space in the first place – not to disallow other competing hypotheses from also being
there. That is, children’s innate bias is about considering structure-dependent representations as
one of the potential representations at all. This is a less specific innate bias than one which requires
children to only allow structure-dependent representations in their hypothesis space.

Using a computational-level hierarchical Bayesian model5, Perfors et al. (2011) showed that
a modeled learner can leverage English child-directed speech input (abstracted into sequences of
syntactic categories like DETERMINER NOUN VERB DETERMINER NOUN for The penguin ate a
fish) to determine that hierarchically structured linguistic representations are preferable to other
possible linguistic representations. The key is that evidence in favor of structure-dependent rep-
resentations comes not just from the examples of complex yes/no questions, but also from many
other kinds of utterances. So, other utterances favoring structure-dependent representations serve
as indirect positive evidence in favor of structure-dependent representations when representing
complex yes/no questions. Through the hierarchical Bayesian learner’s use of overhypotheses, it
was able to leverage this evidence.

Moreover, using the specific structure-dependent representations the modeled learner con-
verged on, it would be able to parse certain grammatical complex yes/no questions and be unable
to parse other ungrammatical ones. Perfors et al. (2011) interpreted this to mean that the modeled
learner would have the correct judgments about which complex yes/no questions were grammati-
cal. This is based on the intuitive idea that if the learner can’t parse the utterances with its current
grammar, these utterances aren’t grammatical for it. So, this model demonstrates that it’s in prin-
ciple possible to have innate knowledge that is more general about the structure-dependence of
linguistic representations, yet which still allows acquisition to proceed successfully from the data
English children typically encounter.

Why only in principle? Remember that computational-level models (like this one) aren’t nec-
essarily using inference procedures we think humans use – rather, the point is to discover if the
conceptualization of the acquisition task and the learning assumptions involved lead to success-
ful acquisition. This hierarchical Bayesian model demonstrates that these assumptions about
structure-dependence will in fact do that if children are capable of doing optimal inference to
identify the optimal representational hypothesis. However, this type of model abstracts away from
some of the cognitive limitations children have – such as memory and processing limitations –
which potentially impact children’s ability to do optimal inference. It remains for future research
to determine if the learning assumptions used in this model still allow successful acquisition of
structure-dependent representations to occur even when there are cognitive limitations on the in-
ference process.

5Note that “hierarchical” for Bayesian models refers to having overhypotheses as discussed in section 2.3.3, not to
having hierarchical structure in the hypothesized linguistic representations.
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3.2.3 Constraints on wh-dependencies: Syntactic islands

One hallmark of the syntax of human languages is the ability to have long-distance dependencies:
relationships between two words in a sentence that are not adjacent to each other. Long-distance
dependencies, such as the dependency between what and stole in (11a), can be potentially infinite
in length.6 However, there are specific syntactic structures that long-distance dependencies can’t
cross. These structures are known as syntactic islands. Four examples of syntactic islands are
shown in (11b)-(11e) (Chomsky, 1965, Ross, 1967, Chomsky, 1973)). During acquisition, children
must infer the constraints on long-distance dependencies that allow them to recognize that the wh-
dependencies in (11b)-(11e) are not allowed, while the wh-dependency in (11a) is fine.

(11) a. What does Jack think that Lily said that the goblins stole twhat?
b. *What do you wonder [whether Jack bought twhat]? (whether island)
c. *What did you make [the claim that Jack bought twhat]? (complex NP island)
d. *What do you think [the joke about twhat] was hilarious? (subject island)
e. *What do you worry [if Jack buys twhat]? (adjunct island)

Pearl and Sprouse (2013a,b, 2015) investigated an algorithmic-level model for learning these
constraints on long-distance dependencies. This probabilistic learning model relies on the idea that
children can characterize a long-distance dependency as a path from the head of the dependency
(e.g., Who in (12)) through the phrasal nodes that contain the tail of the dependency, as shown
in (12a)-(12b). Under this view, children simply need to learn which long-distance dependencies
have licit syntactic paths and which don’t. The probabilistic learning algorithm of Pearl & Sprouse
tracks local pieces of these syntactic paths. More specifically, it breaks the syntactic path into a
collection of syntactic trigrams that can be combined to reproduce the original syntactic path, as
shown in (12c).

(12) Who did Jack think that the story about penguins amused twho?
a. Phrasal node structure containing the wh-dependency headed by Who:

6Of course, there’s clearly an upper bound on the number of words and/or clauses that an English speaker can keep
track of during language processing. However, this restriction appears to be based on the limited nature of human
working memory capacity rather than an explicit structural restriction on the length of English wh-dependencies.
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CP

Who

did IP

Jack VP

think CP

that IP

NP

the story about penguins

VP

amused twho

Who did [IP Jack [V P think [CP that [IP the story about penguins [V P amused twho]]]]]?
b. Syntactic path of wh-dependency:

start-IP-VP-CPthat-IP-VP-end
c. Syntactic trigrams ∈ Trigramsstart−IP−V P−CPthat−IP−V P−end:

= start-IP-VP
IP-VP-CPthat

VP-CPthat-IP
CPthat-IP-VP

IP-VP-end

The learning strategy implemented in the model tracks the frequencies of these syntactic tri-
grams in children’s acquisitional intake, which come from every instance of a wh-dependency
that the modeled learner perceives. The learner later uses these frequencies to calculate probabil-
ities for all syntactic trigrams comprising a wh-dependency. This allows the modeled learner to
generate the probability of any wh-dependency because any wh-dependency can be broken into a
subset of these same syntactic trigrams. For example, the wh-dependency in What did the penguin
eat twhat? can be characterized as in (13), and its probability generated from some of the same
syntactic trigrams observed in (12).

(13) What did the penguin eat teat?
a. Phrasal node structures containing the wh-dependency:
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CP

What

did IP

NP

the penguin

VP

eat twhat
What did [IP the penguin [V P eat twhat]]?

b. Syntactic path of wh-dependency:
start-IP-VP-end

c. Syntactic trigrams ∈ Trigramsstart−IP−V P−end:
= start-IP-VP

IP-VP-end

The generated probability corresponds to whether that dependency is allowed, with higher
probabilities indicating grammatical dependencies and lower probabilities indicating ungrammati-
cal dependencies. Pearl and Sprouse (2013a,b, 2015) let the modeled learner’s input be a quantita-
tively and qualitatively realistic sample of English child-directed speech. With this input encoun-
tered incrementally, the modeled learner estimated syntactic trigram probabilities and could then
generate probabilities for any desired wh-dependency.

Pearl & Sprouse mapped the learner’s generated probability for a wh-dependency to its assess-
ment of how acceptable a wh-dependency is. In particular, Pearl & Sprouse drew on acceptabil-
ity judgment data from Sprouse, Wagers and Phillips (2012) about the four syntactic islands in
(11b)-(11e) to provide a behavioral target for the model’s output. The modeled learner was able
to replicate the observed acceptability response pattern that indicated knowledge of these syntac-
tic islands. So, Pearl & Sprouse interpreted this to mean that this learning strategy relying on
the syntactic trigrams of wh-dependencies was a reasonable way for English children to acquire
knowledge of these islands.

Interestingly, this is another example of less-specific prior knowledge being sufficient to ex-
plain acquisition of certain linguistic phenomena. In the Government and Binding framework of
the 1980s, syntacticians proposed a constraint called the Subjacency Condition to explain the ac-
quisition of syntactic islands. This constraint basically says that dependencies can’t cross two or
more bounding nodes (Chomsky 1973, Huang 1982, Lasnik and Saito 1984, among others). If a
dependency crosses two or more bounding nodes, a syntactic island effect occurs. What counts
as a bounding node varies cross-linguistically, though bounding nodes are always drawn from the
set {NP, IP, CP}. So, when using this representation, children needed to learn which of these are
bounding nodes in their language, though they already know (via UG) about the restriction the
Subjacency Condition imposes and the set of possible bounding nodes. This was fairly specific
prior knowledge.

The strategy of Pearl and Sprouse (2013a,b, 2015) shares the intuition with Subjacency that
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there’s a local structural anomaly when syntactic islands occur. However, instead of characterizing
this anomaly with bounding nodes, Pearl & Sprouse suggested that it could be described as a low
probability region with respect to the phrase structure nodes that characterize the wh-dependency.
The learner recognizes this low probability region via low probability syntactic trigrams. There was
no need for the learner to know about a hard constraint prohibiting the crossing of two bounding
nodes, and in fact no need for the learner to identify bounding nodes at all. Instead, children
would need to identify the phrase structure nodes containing the wh-dependency and break that
syntactic path into syntactic trigrams – certainly no trivial matter and perhaps requiring innate,
linguistic knowledge as well. Importantly however, the knowledge of syntactic trigrams and how
to use them doesn’t seem to be as specific to learning islands as the knowledge about bounding
nodes and how to use them. Syntactic trigrams may be useful for other syntactic phenomena, and
probabilistic learning is useful for both linguistic and non-linguistic phenomena.

So, the investigations of Pearl & Sprouse offer an alternative for both representing syntactic
islands knowledge and acquiring this knowledge from the available input. On the representation
side, syntactic trigrams comprised of simple phrase structure nodes will do instead of bounding
nodes, and no hard-coded constraint about which abstract units a wh-dependency can cross is
required. On the acquisition side, Pearl & Sprouse provide a concrete account of how English
children would leverage the proposed syntactic trigram representation to acquire a constraint about
the units a wh-dependency can cross. Importantly, this constraint derives directly from a simple
dislike of low probability items, rather than being specific to the acquisition of syntactic islands.

3.2.4 Incorporating reference

The three examples I’ll discuss below involve the acquisition of pronouns. Interpreting a pronoun
in context typically involves both syntactic knowledge and referential knowledge, and so pronoun
acquisition also requires the integration of different knowledge types.

3.2.4.1 English anaphoric one. The first example is about learning to interpret English anaphoric
one (Regier and Gahl, 2004, Foraker et al., 2009, Pearl and Lidz, 2009, Pearl and Mis, 2011, Payne,
Pullum, Scholz and Berlage, 2013, Pearl and Mis, 2016). Suppose the following scenario occurs:
You see a red bottle, and your friend comments, “Oh look – a red bottle! Do you see another one
around anywhere?”

What kind of bottle is your friend looking for? The use of one in your friend’s utterance is
anaphoric – that is, it’s the pronoun use of one. To understand this utterance and know what bottle
to look for, you have to interpret the pronoun: Is the one your friend referring to a second red
bottle or just a second bottle of whatever color? Both interpretations are generally available to
adults, though there may be some preference for referring to a second red bottle in this context.
How does this work?

The interpretation has to do with the antecedent of one – that is, what linguistic string it stands
in for. The phrase “another one” can be interpreted in two ways: “another red bottle” or “another
bottle”, given the previous utterance’s use of “a red bottle”. So, the antecedent of one can be either
red bottle or bottle. When the antecedent is red bottle, one refers only to a red bottle; when the
antecedent is bottle, one can refer to a bottle of any color.
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This highlights one way we think pronoun interpretation operates: We look for the antecedent
of the pronoun, and then look for a referent compatible with that antecedent. Importantly, we think
the way we determine a pronoun’s antecedent depends on the syntactic category of the pronoun,
with the idea that pronouns take antecedents of the same category. So, the reason one can take
either red bottle or bottle as its antecedent is because one is a category that includes both these
strings. One name for this category is N′ (Chomsky, 1970, Jackendoff, 1977), and it includes both
modifier+noun strings like red bottle and noun-only strings like bottle.7

With respect to syntactic category, there are plenty of other options for what a pronoun’s cate-
gory might be – perhaps it’s a simple Noun category, or a phrasal category like NP. These categories
allow a different range of potential antecedents. If one were a Noun, its antecedents could only be
nouns – this would make interpreting “another one” as “another red bottle” impossible because
“red bottle” is more than just a noun. But of course, that interpretation is perfectly possible, so
this rules out category Noun. If one were category NP in this context, its antecedent would be a
red bottle and we would expect the phrase “another one” to be disallowed – after all, we can’t say
“another a red bottle”. But again, this is perfectly possible, so this rules out one being category
NP in this context.

The acquisition question for interpreting English anaphoric one therefore concerns what syn-
tactic category one is – this is a syntactic acquisition task. However, pronoun interpretation also
concerns how to choose between potential antecedents in context to determine the correct referent.
That is, in the example scenario from before, what kind of bottle are we actually referring to when
we say “another one” – another red bottle or just another bottle? Both red bottle and bottle are po-
tential antecedents because they’re included in category N′. So, to interpret one correctly, we also
need intuitions about the intended referent – this highlights that learning about English anaphoric
one is an acquisition task about referential knowledge as well.

Courtesy of experiments with 18-month-olds by Lidz, Waxman and Freedman (2003) (LWF),
we have some insight about how toddlers interpret English anaphoric one in this kind of context.
More specifically, LWF examined the looking behavior of 18-month-olds to gauge how these tod-
dlers interpret anaphoric one in scenarios fairly similar to the one described above. LWF found that
children of this age behave as if they interpret both “Do you see another one?” and “Do you see
another red bottle?” the exact same way (preferring to look at a red bottle). This notably contrasts
with their behavior when asked “Do you see another bottle?”, where they preferred to look at a
non-red bottle. LWF interpreted this to mean that 18-month-olds select one’s antecedent to be the
N′ string red bottle. This suggests that 18-month-olds recognize one as category N′ and prefer its
antecedent to be the modifier+noun N′ string in this context.

Several computational modeling studies investigated how English children could converge on
this pronoun interpretation knowledge – either the syntactic knowledge alone (Foraker et al. 2009),
or both the syntactic and referential knowledge (Regier and Gahl 2004, Pearl and Lidz 2009, Pearl
and Mis 2011). This meant assessing modeled learners on whether they achieved the target knowl-
edge state. Building on these studies, Pearl and Mis (2016) decided to leverage the available behav-
ioral data from LWF. In the modeling terms from before, Pearl and Mis (2016) assessed whether

7Note that this category may have other names, depending on the particular syntactic theory being used – the
important thing for our purposes is that the category includes both modifier+noun strings and noun-only strings.
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their algorithmic-level Bayesian model could achieve the appropriate target behavior observed in
the 18-month-olds. When their modeled learner was capable of reproducing the 18-month-old
looking behavior, Pearl and Mis could then examine the underlying knowledge state generating
that behavior.

Pearl and Mis found two learning strategies capable of generating the 18-month-old target
behavior when given a quantitatively and qualitatively realistic sample of English child-directed
speech as input. The first strategy restricted the learner’s acquisitional intake to a subset of of data
including only certain utterances using anaphoric one. This strategy generated the target behavior
by using syntactic and referential knowledge similar to adult knowledge, though it was less robust
to different learning scenarios. More specifically, it required certain additional properties to be true
about the learning environment in order to achieve the target behavior.

In contrast, the second strategy did not require these additional restrictions on the learning
scenario – it succeeded in producing the target behavior no matter what. Its approach was to
expand the child’s acquisitional intake to include utterances using any anaphoric pronoun (not just
those using anaphoric one). The indirect positive evidence coming from these additional anaphoric
data points stabilized acquisition of the target behavior. Interestingly, however, the target behavior
was the result of an immature context-dependent representation of anaphoric one. Specifically, a
learner using this strategy only assumed one’s syntactic category was N′ in specific contexts where
the potential antecedent mentioned a property (such as the experimental setup of LWF, where the
previous utterance was “Look - a red bottle!”); in other contexts with no property mentioned (e.g.,
“Look – a bottle!”), one’s category would be N.

This is a very subtle thing – a child using the second strategy would have a knowledge state that
looks quite adult-like in many contexts, but would be revealed as non-adult-like in a few others.
This contrasts with a child using the first strategy, who would always have an adult-like knowledge
state no matter the context. Importantly, we don’t yet know how young children behave in the con-
texts that would reveal whether they always have adult-like knowledge of one’s syntactic category.
This remains for future experimental work. Still, by doing careful computational modeling work
of this kind, we now have much more concrete ideas for the specific contexts that need investigat-
ing. We also have concrete ideas for the learning strategies that enable English 18-month-olds to
acquire the anaphoric one knowledge that they do.

3.2.4.2 Anaphora resolution. When interpreting pronouns, the type of pronoun also places
restrictions on its potential antecedents. Plain pronouns like her behave differently from reflexives
like herself, as we can see in (14) – these pronouns take complementary antecedents.

(14) a. Lily, who adores Sarah, admired her in the mirror. (her 6= Lily, and probably = Sarah)
b. Lily, who adores Sarah, admired herself in the mirror. (herself = Lily, and 6= Sarah)

Each pronoun type has certain restrictions on where its potential antecedents can be located in
the utterance, and these are typically described structurally (e.g., using the notion of c-command:
Chomsky 1973). So, pronoun interpretation (also sometimes called anaphora resolution) is another
example of linguistic knowledge involving structure-dependent rules. Frank, Mathis and Badecker
(2013a) investigated whether a certain type of probabilistic learning strategy, as implemented by
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simple recurrent networks (SRNs) (Elman, 1993, Lewis and Elman, 2001), is capable of inferring
the appropriate structure-dependent rules of anaphora resolution for plain and reflexive pronouns.

SRNs are a type of probabilistic learning model where the learner’s representations are dis-
tributed across a number of units, rather than being explicitly available and manipulable. This is a
bit easier to understand with a concrete example, so let’s consider a specific instance of anaphora
resolution and how it might be implemented in a Bayesian model versus an SRN. To interpret
herself in (14b), a Bayesian model might consider a hypothesis such as “herself refers to Lily”
and an overhypothesis such as “A reflexive must have a c-commanding NP within its own clause
as the antecedent”.8 This hypothesis and overhypothesis are explicit “units” within the Bayesian
learner’s reasoning process (for example, the modeled learner can explicitly assign probabilities to
the hypothesis and overhypothesis).

In contrast, the SRN in Frank et al. (2013a) has 28 units to encode the current word (such as
herself ) and 28 units to predict the referent of that word, in addition to numerous hidden units and
context units that recode the current word and its context in a distributed fashion. This underscores
how the meaning of a single word isn’t encapsulated anywhere. It’s also not obvious where the
“units” of the hypothesis or overhypothesis that the Bayesian learner uses are. This is because
an SRN approach represents a very different idea of what prior knowledge is, how knowledge
can be encoded, and how knowledge can be used to generate the observable linguistic behavior
(such as that of anaphora resolution). As Frank et al. (2013a) note, SRNs have typically been
used to investigate whether structure-dependent knowledge can be learned from a probabilistic
learning approach relying on distributed representations that don’t explicitly include any notion
of structure. All the prior “knowledge” of the SRN is in the modeled architecture connecting the
distributed representations to each other (e.g., that there are 28 input units that connect to 10 hidden
units). Learning involves probabilistically tuning the connection weights between the units of the
distributed representations, based on the input received.

As you may imagine from the preceding description, this can make it difficult to decode what
exactly is causing an SRN to generate the behavior it does. For example, if the output units map
to Lily when the input units map to herself in a particular utterance, is it because the SRN has
a distributed representation of the appropriate structure-dependent rule embedded in it? Or is it
because the SRN’s internalized some other mapping rule that generates the appropriate output in
this case? Frank et al. (2013a) do a particularly fine job of uncovering the inner workings of their
modeled SRN with clever analysis of the distributed representation patterns, specific test cases, and
targeted manipulations of the SRN’s architecture. In order to have the explanatory power we want
from computational models, this is especially important to do for less-transparent computational
models like SRNs.

Because of this effort, Frank et al. (2013a) were able to uncover some striking findings about
the acquisition of anaphora resolution using SRNs of this kind. The SRN that they investigated
represented a computational-level learner as it focused on the impact of the SRN’s learning as-
sumptions rather than empirical details of children’s learning periods. This modeled learner was
attempting to determine the optimal representation given its distributed architecture and a selec-

8And perhaps even an over-over-hypothesis of “Rules should be structure-dependent’’ for generating that specific
overhypothesis, which generates that specific hypothesis.
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tion of potentially informative English sentences containing embedded clauses, reflexives, and
pronouns. After learning from these input data, the SRN was fairly good at identifying the appro-
priate referent for both reflexives and pronouns in the test cases – for instance, the SRN-preferred
referent for reflexives is the correct one around 90% of the time, and SRN-preferred referents for
plain pronouns are in fact allowed by humans around 72% of the time.

However, as Frank et al. (2013a) note, the way the SRN accomplishes anaphora resolution
“diverges in key respects” from the way we think humans do. As one example, when a noun is
linearly adjacent to the main verb (such as Sarah in “Lily, who adores Sarah, admires herself ”),
the SRN pays special attention to that noun. That is, the SRN is relying on a structure-independent
rule for accomplishing anaphora resolution. This contrasts with humans, who don’t appear to have
that kind of bias for anaphor resolution – it doesn’t matter that Sarah is close to admires because
these words aren’t in the same clause.

Another example of this same issue – that is, paying attention to details that don’t matter for
humans – has to do with sentence types. The SRN processes anaphor resolution differently when
the intervening embedded clauses differ in structure. For instance, it treats the resolution of herself
differently in all three of these utterances: “Lily admires herself ”, “Lily, who Sarah adores, admires
herself ”, “Lily, who adores Sarah, admires herself ”. This contrasts with how we believe humans
interpret herself, as only the elements of the main clause are salient to humans.

Frank et al. (2013a) note that the key is “how the network chooses, during learning, to represent
the context” and “whether this representation collapses contexts that are relevantly similar”. This
seems to be the sticking point for the SRN they evaluated – it lacks the prior knowledge necessary
to filter out irrelevant information from its acquisitional intake. This leads to it hypothesizing
“spurious linear generalizations” that human children seem able to avoid. That is, the SRN goes
awry because it lacks prior knowledge about structure that would allow it to filter its input in a
useful way. So, we might reasonably interpret this study as a demonstration that the absence of
structure-dependent knowledge can cause children to perceive their input in an unhelpful way when
learning about anaphora resolution in English.

3.2.4.3 Pronoun classes. As a nice conceptual companion to Frank et al. (2013a)’s study, Orita,
McKeown, Feldman, Lidz and Boyd-Graber (2013) consider the acquisition of anaphora resolution
from a structurally-based standpoint. Their starting premise is that children are biased to assume
that structurally-defined properties are relevant for anaphora resolution. So, when perceiving their
data, children automatically focus on structurally-defined information, such as what structural lo-
cation a pronoun’s antecedent appears at. The acquisition task is then about identifying classes of
pronouns whose antecedents seem to appear in different distributions. That is, if children already
know to be on the lookout for structurally-defined antecedent positions, how many classes of pro-
nouns are there and which words belong to which classes? Once children know this, they can then
interpret any pronoun they encounter – they simply identify which pronoun category the pronoun
belongs to, and consider the antecedents allowed by that pronoun class.

As a concrete example, let’s look again at Lily, who adores Sarah, admires herself in the mirror.
A child using this learning strategy would recognize that herself is a specific pronoun class (which
we adults term reflexives) whose antecedents appear in certain structurally-defined positions. The
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only potential antecedent in one of these positions is Lily, and so Lily must be the referent of
herself.

Interestingly, while this learning approach seems to solve some filtering problems related to
the child’s acquisitional intake, Orita et al. (2013) note that there’s still a knotty learning problem
remaining. The problem is one that highlights the interdependence of acquisition and processing:
Children must sort pronouns into classes based on where their antecedents appear (acquisition), but
children need to know how to interpret a pronoun in order to know where its antecedent appears
(processing). That is, when given “Lily, who adores Sarah, admires herself in the mirror”, if
the child doesn’t already know what class herself belongs to, how can she know whether the
antecedent is Lily or Sarah? If herself is a reflexive, Lily is the right choice; if herself is a plain
pronoun, Lily can’t possibly be the right choice.

Orita et al. (2013)’s insight was that there are other cues to the intended antecedent for a pro-
noun in context. That is, even if the child has no idea what the structural constraints are for a
pronoun, she may be able to guess the intended antecedent from the context available. For exam-
ple, if the utterance “Lily, who adores Sarah, admires herself in the mirror” is used to describe a
scenario where Lily is clearly looking at her own reflection, a child may be able to guess that Lily is
the antecedent of herself. As another example, if that same utterance were embedded in a conver-
sation that made it clear Lily tends to do a lot of gazing at her own reflection, the discourse context
could also allow a child to infer that herself refers to Lily. Based on these guesses about pronoun
antecedents, the child can then get a sense of what the structural distribution of antecedents is for
any given pronoun, and get the acquisition process started for pronoun classes.

Orita et al. (2013) focused on discourse cues, and estimated how guessable a pronoun’s referent
was by taking snippets of recorded conversations between adults and children from the North
American English section of the CHILDES database. An utterance containing one of three NP
categories (reflexive pronouns like herself, plain pronouns like her, or lexical names like Lily)
had that NP deleted and replaced with a blank, with 12 utterances before and 6 utterances after
provided for conversational context. Adult participants were asked to guess what went in the
blank, which provided an estimate of how informative the naturalistic discourse context was for
guessing the identity of the missing NP. Orita et al. (2013) used this as a proxy for how informative
the discourse context would be for a child.

More specifically, adults of course already know the structural rules and discourse cues that
determine the antecedent for pronouns of different kinds. The idea was that if an adult can correctly
guess the identity of the missing NP, the discourse information containing the potential antecedents
must be informative enough to do so. That is, if an adult is given “Lily, who adores Sarah, admires

”, and can correctly determine that the missing word is herself, the discourse context must be
what’s driving that guess. Since the adult already knows herself must refer to Lily, the discourse
context is indicating that the missing word must refer to Lily too. This is also what a child would be
able to infer from the discourse context. This means that a child given this very same conversational
snippet – but who doesn’t yet know how to interpret herself – would be able to infer that herself
refers to Lily. This is the key information for learning about the distribution of antecedents for
herself.

The estimate of discourse informativity turned out to differ somewhat by pronoun class – re-
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flexives were harder to guess from discourse context than plain pronouns (68% correct vs. 81%),
though both were far more guessable than chance. Notably, the discourse context seemed to dis-
tinguish fairly well between reflexive pronouns and plain pronouns – rarely was a plain pronoun
guessed where a reflexive actually occurred, and vice versa. This supports the idea that the dis-
course cues available in naturalistic child-directed dialogues are informative for bootstrapping the
acquisition of pronoun classes.

To demonstrate this, Orita et al. (2013) implemented several variants of a computational-level
hierarchical Bayesian model for learning pronoun classes. The input to the model was a subset of
the same dialogues used to derive estimates of discourse informativity, with the modeled learner’s
acquisitional intake consisting of three pieces of information: (i) the pronoun used in the dialogue,
(ii) a distribution over possible antecedents for that pronoun, either harnessing discourse informa-
tivity or not, and (iii) the structural position of the possible antecedents for that pronoun. Using
this approach, Orita et al. (2013) discovered that a learner harnessing discourse informativity learns
exactly the right pronoun classes and their distributions over antecedent positions. This allows the
learner to correctly interpret both reflexive and plain pronouns in context.

Moreover, without that discourse information, pronoun class acquisition is quite poor. Inter-
estingly, learning how to interpret particular pronouns is just as poor even if the modeled learner
already knows there are two classes of pronouns (reflexive vs. plain) and also knows exactly the
right rules about antecedent distribution for each class. That is, the acquisition process for anaphora
resolution still can’t get off the ground without some way to guess what a particular pronoun’s an-
tecedent might be. This might seem surprising at first but makes intuitive sense when you think
about the acquisition problem for a concrete case. For “Lily, who adores Sarah, admires ”, do
we – as adults – know what kind of word belongs in the without some additional context? Even
though we know there are two kinds of pronouns and we know which antecedents each can take,
we just don’t know which pronoun type that word ought to be without additional information. So,
through a computational model, Orita et al. (2013) were able to formally demonstrate that intuition
and also show exactly how integrating discourse information of a particular kind can help solve the
acquisition problem for anaphora resolution.

4 Where we are and where we’re headed

4.1 Where we are
As language scientists interested in understanding syntactic acquisition, we can use computational
modeling to formalize specific proposals about how syntactic acquisition could work and empiri-
cally evaluate those proposals. The model allows us to look inside the acquisition process in a very
precise way so that we can explain exactly how and why the proposal works (or doesn’t). This gives
us a lot of explanatory power, particularly for aspects of syntactic acquisition that are difficult to
understand through other methods (for example, what the data intake can be or which learning
strategies can succeed). Using computational modeling, we can understand more about both the
developing representations in children during syntactic acquisition and the learning mechanisms
that work in tandem with those developing representations.
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The key to building an informative computational model is characterizing the syntactic acqui-
sition task with as much precision as we can. This involves defining several task aspects, including
the modeled learner’s initial state, the data intake used for learning, the inference process that up-
dates the learner’s internal representations, the learning period during which acquisition occurs,
and the learner’s target state. To make our models match the human language acquisition process
as much as possible, we try to ground all these aspects in empirical data. This includes consid-
erations of cognitive plausibility, so that the modeled learner is doing something that we think
children are potentially capable of doing.

When we do this, we have the best chance of creating informative computational models of syn-
tactic acquisition. As discussed earlier in the chapter, there are a variety of ways for computational
models to be informative. Computational-level models investigate whether a specific learning
strategy (and, importantly, the learning assumptions that strategy includes) will work in principle
– if inference were optimal, are these assumptions enough to get the job done? Algorithmic-
level models investigate if a learning strategy will work in practice for children, who have cog-
nitive limitations – when inference is approximate, are these learning assumptions good enough?
Implementational-level models investigate if the strategy will work in practice in children’s brains,
which have biological limitations – when the representations and inference are encoded in the
wetware of the brain, are these learning assumptions good enough?

Something important to remember is that a model’s inference process is about how the modeled
learner updates the underlying representations, based on the data intake. Typically, this involves
more or less fancy ways of counting things, and reasoning about those counts. Where linguistic
theory usually comes in – and what often drives a modeled learner to acquisition success or failure
– is what specifically in the input is being counted. To put it simply, it’s not that things are being
counted, it’s what things are being counted. This is often what varies from acquisition theory to
acquisition theory, and what does the explanatory work.

In this chapter, I surveyed several syntactic acquisition models that demonstrated exactly this,
highlighting the importance of the modeled learner’s assumptions about what data from the in-
put were relevant to learn from, based on what was being learned. These models included both
parametric and non-parametric approaches to syntactic acquisition, and all the models evaluated
specific proposals about the exact knowledge and abilities necessary to solve certain syntactic ac-
quisition tasks. Common elements of the parametric approaches were that (i) data perceived as
unambiguous are particularly impactful, and (ii) the acquisitional intake is generated by parsing
the input data with the currently available parametric options. Notably, parametric approaches rely
on very precise, language-specific innate knowledge, in the form of linguistic parameters. Non-
parametric approaches don’t necessarily have to, although they can incorporate precise, language-
specific prior knowledge. Interestingly, a common element of the non-parametric models surveyed
here is that less-specific prior linguistic knowledge can often be effectively used to solve different
syntactic acquisition tasks. Interestingly, this less-specific prior knowledge often involves a bias
for structured linguistic representations.

Many syntactic acquisition models I discussed also encode very precise ideas about how de-
veloping representations and developing processing abilities work together during syntactic acqui-
sition. An exciting direction in the syntactic acquisition modeling community is to develop more
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articulated models of this kind (Lidz and Gagliardi, 2015, Omaki and Lidz, 2015), which recognize
how syntactic acquisition occurs as part of a larger cognitive system.

4.2 Where we’re headed
This idea of syntactic acquisition occurring as part of broader linguistic (and cognitive) develop-
ment underscores other sources of information we’ll want to integrate into our syntactic acquisition
theories, including other types of syntactic, linguistic, and non-linguistic information. That is, even
for what seems to be an acquisition task that targets a specific piece of syntactic knowledge, chil-
dren may well be using a variety of data sources to either constrain possible hypotheses or helpfully
search through those hypotheses (or both).

We saw this in the case studies of pronoun interpretation, where other syntactic data (English
anaphoric one: data coming from other pronouns) or other linguistic data (anaphora resolution:
discourse information) were successfully leveraged. As another concrete example of this, consider
the process of grouping verbs together into syntactically meaningful classes, such as subject-raising
and subject-control verbs (Becker, 2006, 2007, 2009, Mitchener and Becker, 2010, Becker, 2014).
Subject-raising verbs like seem and happen allow inanimate subjects and non-finite complements
beginning with to, and so allow constructions like “The rock seemed/happened to fall”. The syn-
tactic intuition is that the subject in the main clause has “raised” from its original position in the
embedded clause (The rock seemed/happened The rock to fall), and so doesn’t really meaning-
fully connect with the main clause verb (seem, happen). This contrasts with subject-control verbs
like want and try, which originate in the main clause and “control” the subject of the embedded
clause too – they do need to meaningfully connect with the main verb, which is why “*The rock
wanted/tried to fall” isn’t acceptable (except perhaps in extraordinary interpretations involving an-
imate rocks). So, the syntactic profile of a verb – that is, how it can be used syntactically – can be
predicted by the verb class it belongs to, and this is something useful for children to recognize dur-
ing acquisition. Becker demonstrates that children as young as three or four have already started
doing this, and are sensitive to the conceptual cue of animacy when doing so. In particular, when
an inanimate subject (like The rock) appears as the subject of a verb, children seem to place the
verb in the subject-raising verb class. So, The rock daxed to fall makes children believe dax is a
verb like seem or happen. Becker and Mitchener explicitly demonstrate how this process could
successfully occur in a computational model sensitive to animacy distributional information.

I’m currently working with Jon Sprouse to extend this idea to explain the acquisition of a vari-
ety of verb syntactic classes, using conceptual cues like animacy and thematic roles (e.g., AGENT,
PATIENT, or GOAL), as well as syntactic cues like the distribution of syntactic contexts a verb
occurs in. Our preliminary results suggest that the combination of these data sources can lead
a computational-level Bayesian model to identify syntactically meaningful classes of verbs that
children also seem to identify, including unaccusative verbs (The plate broke), ditransitive verbs
(Jack gave her a cookie), verbs allowing a non-finite complement beginning with to (Jack wanted
to see the penguin), verbs that can appear in the passive (The plate was carried), verbs allowing
a finite complement beginning with that (Jack knew that Lily was right), verbs allowing a finite
complement beginning with whether or if (Jack knew if Lily was right), subject-control verbs (Jack
wanted to see the penguin), subject-raising verbs (Jack seemed to see the penguin), object-control
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verbs (Lily asked Jack to hug the penguin), object-raising verbs (Lily wanted Jack to hug the pen-
guin), psych subject-experiencer verbs (Jack loved Lily), and psych object-experiencer verbs (Jack
surprised Lily). Moreover, the verb classes inferred by this model are a good match to children’s
observable behavior at multiple ages. Through the model, we can explicitly determine which learn-
ing assumptions are best at reproducing children’s observable behavior at a specific ages, and how
these assumptions change over time. Interestingly, the model suggests that progressively more
sophisticated learning assumptions filtering the perceptual intake in different ways are activated as
children get older.

Exploring a broader range of data sources for children’s acquisitional intake may help us better
understand how children solve the induction problems that occur in syntactic acquisition (and
language acquisition more generally). The key idea is that a wealth of indirect positive evidence
may exist for the specific syntactic knowledge children need to acquire, simply because children
are learning a linguistic system as a whole and not just isolated pieces of it. More concretely,
by thinking about syntactic acquisition data this way, we may develop additional answers for the
representations and learning mechanisms necessary for successful syntactic acquisition. These
answers may complement or extend existing proposals for solving acquisition tasks that seem to
require prior knowledge in children (e.g., see a handy list of examples from Hsu and Chater (2010),
along with estimates of which ones are more likely to cause problems for acquisition without
additional prior knowledge).

Of course, children have to know to look (and more importantly, where to look) for just the
right sources of information in the vast input signal around them. This just-right search of the input
likely requires prior knowledge about what to look for (e.g., Perfors et al. 2011, Pearl and Sprouse
2013a, Pearl and Mis 2016). Moreover, children have to be able to reliably extract out the just-
right information from their input. This is where their developing language processing abilities and
extralinguistic abilities have a huge impact, as the articulated models of Lidz and Gagliardi (2015)
and Omaki and Lidz (2015) show. This is why understanding more about children’s developing
parsing and extralinguistic abilities is paramount for building more informative and integrated
computational models of syntactic acquisition. We can also implement more informative models
once we have more precise empirical data about what children know when, and what abilities are
available then.

One current empirical hurdle is the lack of large-scale datasets of syntactically annotated child-
directed speech from different languages. The CHILDES Treebank9 currently provides approxi-
mately 180K utterances of speech directed at North American English children which is annotated
with phrase structure, as well as some animacy and thematic role information. This has been
enough to start evaluating English syntactic acquisition models. Right now, many computational
models of syntactic acquisition focus on English because that’s where the empirical data are easily
available. But that means we only have an English-focused modeling snapshot of the universal
process of syntactic acquisition that all typically-developing children are supposed to go through.
To evaluate our syntactic acquisition theories more thoroughly with computational modeling tech-
niques, we need syntactically annotated data from other languages.

We also need data from other populations that may have quantitatively or qualitatively differ-

9Available at http://www.socsci.uci.edu/∼lpearl/CoLaLab/CHILDESTreebank/childestreebank.html
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ent input than those whose input data we’ve seen so far. For example, we know that there are
both quantitative and qualitative differences in children’s linguistic input across socioeconomic
status (SES) (e.g., see Schwab and Lew-Williams (2016) for an overview). However, we currently
don’t know if the input needed for syntactic acquisition differs quantitatively, qualitatively, or both
across SES. We also don’t know to what extent any such differences impact the development of
the syntactic knowledge itself. This, however, is exactly what a computational model could tell us,
if only we had the data to feed into it.

And that’s really the big picture about using computational models for syntactic acquisition:
They’re informative tools for answering certain kind of questions, provided we have the right
empirical data to base them on. When we understand what knowledge and abilities children have
available at each stage of syntactic development, what data they have available, and what exactly
they know when, we can better determine what building blocks they use to acquire syntax as well
as they do.
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