
Why movement comes for free once you have adjunction

Thomas Graf
Stony Brook University

1 Introduction
1.1 Overview
This paper presents a novel answer to the question why Move might be an integral
part of language. The answer is rooted in the computational framework of sub-
regular complexity, which has already been fruitfully applied to phonology. The
computational perspective reveals that Merge belongs to the class TSL (tier-based
strictly local) if the grammar also allows for recursive adjunction. Any cognitive
device that can handle this level of computational complexity also possesses all
the resources that are needed for Move. In fact, Merge and Move are remarkably
similar when viewed as instances of TSL. Consequently, Move has no additional
computational or conceptual cost attached to it and comes essentially for free.

1.2 Background
Every version of Minimalist syntax distinguishes at least two operations: Merge,
and Move. Merge represents the ability to build larger structures from smaller ones
and thus is indispensable for language. Move, on the other hand, captures the dis-
placement property, i.e. that sometimes parts of a sentence are pronounced in a
position that is different from the position where they are interpreted. In order to
explain why Move is also a fundamental property of languages, Chomsky (2004)
reduces Move to Merge by defining it as the process of merging a structure S with
a proper subpart P of S. Movement of P is thus reanalyzed as re-merger of P . As
a result, Move is no more complex than Merge and comes for free in any system
that has the computational resources to carry out Merge operations.

Recent computational findings on the subregular complexity of Merge and Move
call the validity of this reduction into question. Subregular complexity is concerned
with measuring the power of computational devices that are weaker than the already
fairly simple finite-state machines. Surprisingly, it seems that such devices are still
expressive enough for natural language (Heinz 2009; Heinz & Idsardi 2013; Chan-
dlee 2014; Jardine 2016; Aksënova et al. 2016; Graf 2017; a.o.). While subregular
complexity has mostly been defined for string-based systems, it can be extended
to trees and thus to syntax. Results that have done so have found a pronounced
difference between Merge and Move.

Graf (2012) and Graf & Heinz (2015) have shown that in the formal frame-
work of Minimalist grammars (MGs; Stabler 1997, 2011), Merge belongs to the
class strictly local (SL), whereas Move falls at least into the more powerful class
TSL, which enhances SL with tree tiers. The complexity of Move can even go be-
yond TSL depending on how one formalizes intermediate movement. That Merge
is SL and Move TSL suggests that the reduction in Chomsky (2004) proceeds in the



wrong direction: Move is not a special case of Merge, but Merge is a computation-
ally limited, special case of Move.

This paper provides a solution to this challenge by reevaluating the subregular
complexity of Merge. While it is true that Merge is SL, this holds only for grammars
without adjunction. In grammars with adjunction, there is no longer an upper bound
on the distance between a head and its arguments. As a result, Merge moves beyond
SL into the class TSL, which is also occupied by Move. It follows that Merge and
Move are of comparable complexity. Remarkably, though, it also holds that their
respective computations are almost exactly the same. Therefore, Move can indeed
be regarded as a simple and very natural generalization of Merge.

1.3 Structure of the paper
The paper works its way towards this conclusion as follows: I first discuss the
result of Graf (2012) that Merge is in SL (§2). The result itself is less important
than the method by which it is obtained: the structure-building operation Merge
is converted into a conjunction of constraints on MG derivation trees, and each
constraint is in turn equated with a set of well-formed derivation trees in order to
measure its subregular complexity. The same method is used in §3 to show that
even though Merge is still SL in MGs with limited versions of adjunction (§3.1,
§3.2), recursive adjunction pushes the subregular complexity of Merge from SL to
TSL (§3.3, §3.4). In §4, I then contrast the TSL-view of Merge against the TSL-
view of Move as developed in Graf & Heinz (2015). Based on this comparison, I
conclude that the two operations are almost exactly the same, mirroring Chomsky’s
reduction of Move to Merge at a computational level.

2 Complexity of Merge
Let us first consider the complexity of Merge in isolation, following in the footsteps
of Graf (2012). This requires a computational model of Merge, which is provided
by MGs. MGs are closely modeled after Minimalist syntax, although they differ in
some respects. I will point out such differences whenever they are crucial for the
results of this paper. This will be rare, though, as the core insights apply to any
variant of Minimalism that adopts some version of subcategorization and feature-
driven movement.

I first discuss how Merge works in MGs in general (§2.1) and how it can be
reanalyzed as constraints on derivation trees (§2.2). I then show that Merge (in
MGs without adjunction) is a locally bounded dependency and thus belongs to the
very simple class SL (§2.3). These results provide the backdrop for the subsequent
discussion of Merge in MGs with adjunction (§3).

2.1 Merge in Minimalist grammars
Following MG tradition, but contrary to some recent proposals in Minimalist syn-
tax, we assume that Merge does not apply freely but is mediated by a feature-driven
subcategorization mechanism. That is to say, every LI has a category feature X−

and possibly one or more selector features Y+ that encode what arguments the



LI requires. These category and selector features fully control the application of
Merge.

For example, the noun cat has only one feature, the category feature N−. There-
fore it can be selected by any LI that is looking for a noun, but it cannot take any
arguments of its own. The determiner a, on the other hand, has the selector feature
N+ and the category feature D−. More precisely, a carries the feature string N+

D− — the order of the features indicates that the determiner first has to merge with
a noun before it can merge with an LI that is looking for a DP. The same logic
dictates that the feature specification of the possessive marker is N+ D+ D− as it
first merges with the possessee NP, then with the possessor DP, and only then can it
act as a DP and merge with an appropriate selector.

While feature ordering is never explicitly assumed in Minimalist syntax, there
is an implicit consensus that whatever mediates selection exercises tight control
over the order of arguments. This is why, say, v selects a VP as its complement
and a subject DP as its specifier, rather than the other way around. The ordered
Merge features of MGs thus are closely in line with linguistic practice, despite
initial appearance to the contrary. For each LI, its string of selector and category
features describes exactly what Merge steps an LI will partake in, similar to any
other theory of subcategorization.

A sequence of Merge steps can be represented as a derivation tree as in (1a),
with the corresponding phrase structure tree shown in (1b). Each Merge step of the
derivation is represented by an interior node labeled with •.

(1) a. Derivation tree
•

•

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

•

scolded :: D+D+V− her :: D−

b. Corresponding phrase structure tree
VP

DP

DP

the cat

D′

’s owner

V′

scolded her

Derivation trees provide a more abstract description of syntactic structure that
focuses on the grammatical operations rather than their output, the derived struc-
tures. In the terminology of Chomsky (1986), they are a direct representation of I-
language operations, not objects of E-language. A derivation tree acts as a common
blueprint for all of the following: a canonical X′-tree (Jackendoff 1977), the com-
pacted X′-tree in (1b), a bare phrase structure set (Chomsky 1995), a PF-structure



with prosodic modifications in the spirit of Richards (2016), a logical form, or sim-
ply the output string. Each one of these can be produced from the same derivation
tree. For this reason, derivation trees provide a unified representation format and
are the ideal measuring rod for the complexity of the grammar’s operations modulo
differences in output representations.

The next section explains how Minimalist operations can be reinterpreted as
constraints on derivation trees, which in turn makes it possible to equate the com-
plexity of operations with the complexity of constraints over derivation trees.

2.2 Merge as a constraint on derivation trees
As discussed at the beginning of §2.1, Merge is a feature-triggered operation in
MGs. So a computational system that has to correctly apply Merge must ensure
that no requirements of the feature calculus are violated. For Merge, this involves
two factors:

(2) Conditions on Merge
a. For every LI l and selector feature X+ of l, X+ must be checked as part

of an application of Merge.
b. Let t and u be two syntactic objects headed by ht and hu, respectively.

Then t and umay be merged iff the first unchecked feature of ht is some
selector feature X+ and the first unchecked feature of hu is the category
feature X−.

These conditions on Merge can be translated into constraints on the shape of deriva-
tion trees. The definition of these constraints is fairly simple once a few key con-
cepts have been put in place.

The first one is the notion of an ancestor chain of a node m. The full ancestor
chain consists of all the nodes that are distinct from m and dominate m. The ances-
tor chain of length n consists of the n structurally lowest nodes in the full ancestor
chain. In (1b), the full ancestor chain of ’s is 〈D′,DP,VP〉, whereas the ancestor
chain of length 2 is 〈D′,DP〉.

Ancestor chains are the basis for another two formal terms, host and D[erivational]-
root. Every LI with exactly n selector features (n ≥ 0) is a host of itself and a host
of every node in its ancestor chain of length n. Furthermore, ifm is the highest node
in l’s ancestor chain of length i ≤ n, then m is hosted by the i-th selector feature
of l. The D-root of an LI l is the structurally highest node hosted by l. Intuitively,
the D-root of an LI is the derivational counterpart to its maximal projection in the
derived tree.

In (1a), ’s is the host of itself, its mother and the mother of its mother; the root
node, on the other hand, is hosted by scolded. More precisely, the root node is
hosted by the second D+ feature on scolded. The D-root of ’s is the left daughter of
the root node, and the root node is the D-root of scolded.

With the notions of ancestor chain, host, and D-root sufficiently formalized,
Merge can be recast as the conjunction of three constraints on derivation trees.

(3) Merge constraints on derivation trees
a. Uniqueness

Every Merge node is hosted by exactly one LI.



b. Full selection
Every LI with exactly n selector features hosts exactly n Merge nodes.

c. Match
Let m be a Merge node hosted by the selector feature X+ on l. Then
exactly one of its daughters must be the D-root of an LI with category
feature X−.

A derivation tree contains an illicit Merge application iff one of the constraints
above is violated.

(4) a. Violation of uniqueness (too many hosts)
•

•

•

the :: N+D− eht :: D+N−

•

’s :: N+D+D− owner :: N−

•

scolded :: D+D+V− her :: D−

b. Violation of uniqueness (no host)
•

•

he :: D− •

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

•

scolded :: D+D+V− her :: D−

c. Violation of full selection
•

•

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

scolded :: D+D+V−

d. Violation of match
•

•

•

the :: N+D− cat :: N−

•

’s :: N+D+D− he :: D−

•

scolded :: D+D+V− her :: D−



The representational, constraint-based view of the operation Merge allows us to
assess the complexity of Merge in terms of a specific formal problem. Let Lex be a
set of LIs annotated with selector and category features in the usual manner. Then
there is a unique (and usually infinite) set of well-formed derivation trees that can be
built from Lex . In formal language theory, such a set is called a tree language, just
like a string language is a set of strings. With respect to Merge, the only criterion
for well-formedness of a derivation tree is whether it obeys the constraints in (3).
Therefore the complexity of Merge can be equated with the complexity of these
derivation tree languages, which is readily established with the help of previous
work from formal language theory.

2.3 Merge without adjunction is in SL
We are now in a position to evaluate the result in Graf (2012) that Merge belongs to
the so-called class SL. First of all, the theorem can now be stated more precisely.

(5) Complexity of Merge
Let G be an MG whose only operation is Merge. Then the derivation tree
language of G is in SL.

So it is not Merge itself that is in SL, but rather we use Merge-only derivation tree
languages as a proxy for measuring the complexity of the operation that produces
these languages.

SL is short for strictly local, and this name already indicates why Merge is in
SL. In contrast to Move, Merge does not establish a dependency between two nodes
that are arbitrarily far away from each other. Instead, selector and argument are very
close to each other. The class SL is a mathematical formalization of this intuition.

For the sake of exposition, let us first consider a string-based example from
phonology. The process of intervocalic voicing can be viewed as a constraint
against voiceless consonants that are flanked by vowels. We may express this sym-
bolically as a constraint ∗V[−voice]V. The string bahazam obeys this constraint,
whereas bahasam violates it. But how would a computational device determine that
the first string is well-formed and the second one ill-formed?

One simple solution is a scanner. Imagine a search window moving through
each string from left to right. For our example, the window is only large enough
to see three adjacent segments at a time. Each sequence of three adjacent segments
is compared against the constraints imposed by the grammar. If at any given time
the window contains a sequence that matches the pattern ∗V[−voice]V, the string is
illicit. If, on the other hand, the search window can make it all the way to the end
of the string without seeing even one forbidden configuration, the string is well-
formed.

A string language is SL-k iff one can specify a finite number of constraints such
that a scanner with a search window of size k can correctly determine for every
string whether it is well-formed or ill-formed. A string language is SL iff it is SL-k
for some k.

SL has mostly been explored for string languages (see Heinz 2015 and refer-
ences therein), but it can be lifted from strings to trees. In this case, the search
window moves through a tree instead of a string, and its length measures how deep



into the tree one gets to see at any point. For example, a search window of size 2
can only see a node and its daughters, whereas a window of size 3 can also see the
daughters of the daughters. For Merge to be SL, there has to be some k for each
MG (the value may differ between grammars) such that a search window of size k
is sufficient to detect any potential violations of the constraints in (3).

Consider once more the example derivation from (1a), repeated here:

(1a′) •

•

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

•

scolded :: D+D+V− her :: D−

For the sake of exposition, we will assume that these LIs are representative of the
whole grammar insofar as no LI has more than two selector features. Now let us
look at how a search window of size 4 can correctly enforce all Merge constraints
in (3) given such an upper limit.

In order to determine that the merger of the and cat is licit, a window of size 2
would actually suffice. Within this window, we see that the Merge node is uniquely
hosted, that full selection is satisfied for the, and that cat has a matching category
feature. Hence a window of this size is also enough to block illicit configurations
like the one we encountered in (4a).

(6) •

•

the :: N+D− cat :: N−

•

•

the :: N+D− eht :: D+N−

But a window of size 2 is not enough for all configurations. Verifying that all
Merge requirements are met with respect to ’s demands an increase of the search
window size from 2 to 3. This is illustrated in (7), where no window of size 2 can
detect that the second argument of the possessive marker is a VP rather than a DP.
A window of size 3 does, though, because it can see both ’s and sleeps at the same
time.

(7) •

•

•

John :: D− sleeps :: D+V−

•

’s :: N+D+D− owner :: N−

A size 3 window will also notice the unhosted Merge node from (4b), as is shown
below.



(8) •

•

he :: D− •

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

•

scolded :: D+D+V− her :: D−

Since no LI has more than two selector features, every Merge node must be the
mother of an LI with one selector feature or the mother of the mother of an LI with
two selector features. Consequently, a search window of size 3 necessarily includes
the host of the highest Merge node, if it has one. This is not the case in the tree
above, which is thus inferred to be illicit.

In addition, a size 3 window will recognize all full selection violations. Full
selection requires an LI l with exactly n selector features to have an ancestor chain
of length n. This can be violated only if the length of the full ancestor chain of l
does not exceed n − 1. In our example, where no LI has more than two selector
features, no LI with two selector features may have a full ancestor chain of length
1. Suppose that we use the special marker > to indicate the top edge of the tree.
This node is not part of the tree, it is just a notional trick to highlight that a size 3
window can tell whether the mother of scolded has a mother, too. In order for full
selection to be satisfied, no search window of size 3 may contain both > and an LI
with two selector features.

(9) >

•

•

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

scolded :: D+D+V−

A size 3 window thus rules out many illicit Merge configurations for our exam-
ple grammar, but still not all of them. Only a window of size 4 can correctly evaluate
the Merge dependency that holds between scolded and the head of its specifier. The
reason is exactly parallel to what we saw in (7) for ’s and its specifier, except that
the head of the specifier selects two arguments now instead of one, which increases
its distance to ’s.



(10) •

•

Mary :: D− •

likes :: D+D+V− John :: D−

•

scolded :: D+D+V− her :: D−

Crucially, though, the search window does not need to grow past size 4 for this
grammar. The reader is invited to verify this for themselves: no matter how large
the derivation tree, every violation of a Merge constraint can be detected within
a window of size 4 as long as no LI selects more than two arguments. In fact, it
holds for every MG that the size of the search window never needs to exceed k+ 2,
where k is the maximum number of selector features on a single LI. It is thanks
to this tight link between window size and maximum number of arguments that the
complexity of Merge stays within the class SL.

3 Merge with adjunction: from SL to TSL
Let us take stock of the findings so far: The complexity of Merge has been charac-
terized in terms of the complexity of derivation tree languages that contain all trees,
and only those, that obey all the Merge-related constraints in (3). Since Merge is a
local relation, all these constraints can be enforced within a small search window
of bounded size. This confirms the theorem of Graf (2012) that Merge belongs to
SL, one of the weakest known classes of formal languages.

But the locality of Merge is not an intrinsic property of the operation, it depends
on the grammar as a whole and can be disrupted by other operations. This is ex-
actly what we will observe in this section. Once an adjunction operation is added to
MGs, the distance between a selector and the head of its argument can grow without
bounds due to the unlimited iterability of adjuncts. This is not necessarily a prob-
lem, as there are many different ways to implement adjunction (§3.1), and many
of those still allow for Merge to be regulated in a local fashion as long as one can
only adjoin to arguments (§3.2). However, once it becomes possible to adjoin to an
adjunct, i.e. once adjunction may apply recursively, Merge is no longer SL (§3.3).
Instead, it is pushed into the more complex class TSL (§3.4). As mentioned earlier
and as will be discussed in detail in §4, Move also belongs to TSL. Therefore the
subregular complexity of a grammar with Merge and adjunction is not increased by
the addition of Move.

3.1 Models of adjunction
There are numerous MG implementations of adjunction, some of which are more
complex than others (see Fowlie 2013 and Graf 2014 for further details). In order
to make the computational argument that Move is no more complex than Merge as
strong as possible, I will adopt an implementation in §3.2 that keeps the complexity
increase for Merge fairly minimal. Other formalizations of adjunction are so intri-
cate that they push Merge far beyond TSL. Quite generally, the more information is



encoded directly in the adjuncts via features, the smaller the increase in subregular
complexity for Merge.

That said, there is one implementation that is even simpler than the one I will
adopt. This variant reduces adjunction to a special case of selection and thus does
not alter the complexity of Merge at all. For example, old would not be treated as
an adjective that adjoins to the noun car, but as a noun that selects car.

(11) Adjunction as category-preserving selection
•

old :: N+N− car :: N−

It seems strange to treat old as a noun, though, so a more elaborate version might
instead posit an empty head ε :: N+A+N− which implicitly converts an adjective
into an NP-adjunct.

(12) Adjunction as category-preserving selection by an empty head
•

old :: A− •

ε :: N+A+N− car :: N−

This analysis still allows for an unlimited number of adjuncts, and it is also possible
to adjoin to an adjunct.

(13) a. Multiple adjunctions
•

rusty :: A− •

ε :: N+A+N− •

old :: A− •

ε :: N+A+N− car :: N−

b. Recursive adjunction
•

•

very :: Adv− •

ε :: A+Adv+A− old :: A−

•

ε :: N+A+N− car :: N−

Even though this analysis is appealing in its simplicity, its conflation of argu-
ments and adjuncts is also a detriment. Without further stipulations, this view pre-
dicts that arguments and adjuncts should behave the same. Yet there is plenty of



empirical evidence to the contrary. For example, arguments are usually easier to
extract (and extract from) than adjuncts, and pronouns within certain adjuncts seem
to be less restricted with respect to their choice of binders. Such differences are less
surprising if adjunction is a separate operation in the grammar, as I will assume for
the remainder of the paper.

3.2 Merge with non-recursive adjunction is SL
Frey & Gärtner (2002) propose to model adjuncts as LIs that have an adjunction
feature X∼ instead of a category feature Y−. The adjunction feature requires an
LI to adjoin to another LI l with category feature X−, provided that l has already
selected all its arguments. The category feature X− of l is not checked by any of
the adjuncts, which permits repeated adjunction to the same phrase.

(14) •

a :: N+D− ∼

morose :: N∼ ∼

grumpy :: N∼ ∼

old :: N∼ man :: N−

Without an upper bound on the number of adjuncts per phrase, Merge dependencies
become unbounded. In the example above, more and more adjuncts can be added to
increase the distance between a and man by any desired amount. As a result, there
is no k such that a window of this size is guaranteed to contain both LIs.

This does not imply, though, that Merge is no longer SL. The only reason
why one might want to fit a and man into the same search window is to verify
that the match constraint of (3) is still obeyed: N+ on a must have a matching
counterpart N− on man. But that can also be determined indirectly by looking at
the adjunction feature N∼. Since an LI with feature N∼ requires the presence of
an LI with category feature N−, the presence of the latter can be inferred from the
former.

(15) •

a :: N+D− ∼

grumpy :: N∼ ∼

old :: N∼ man :: N−

•

a :: N+D− ∼

very :: A∼ ∼

very :: A∼ old :: A−

Of course this presupposes that no derivation tree contains illicit adjunction steps,
e.g. an NP-adjunct that adjoins to a VP or, even worse, to nothing at all. This
assumption is entirely innocent for the purposes of this paper because the focus is
on the subregular complexity of Merge, not adjunction. How exactly adjunction is



to be regulated via constraints on derivation trees is orthogonal to the paper’s goals
and will be put aside here. At this point, the important insight is that Merge is still
SL in the original adjunction system of Frey & Gärtner (2002).

That Merge is SL holds even if adjuncts may select arguments of their own. As
long as no adjunct may undergo adjunction before all its selector features have been
checked, a fixed-size window is still sufficient because each adjunct can only select
a bounded number of arguments.

(16) •

a :: N+D− ∼

•

child :: N− loving :: N+N∼

∼

∼

well-liked :: N∼ ∼

young :: N∼ man :: N−

While adjuncts may take arguments, the current system makes it impossible
for them to contain adjuncts of their own — adjunction can only target phrases
whose head has a category feature, but category features and adjunction features
are mutually exclusive. Next we will see that relaxing this condition pushes Merge
beyond SL.

3.3 Merge with recursive adjunction is not SL
Suppose that adjuncts still carry a category feature, which is immediately followed
by an adjunction feature. For example, the feature string of old would now be
expanded from N∼ to A−N∼. Since category features are the only prerequisite for
attracting adjuncts, this system allows for adjunction to an adjunct.

(17) Recursive adjunction
•

a :: N+D− ∼

∼

very :: Adv−A∼ ∼

very :: Adv−A∼ old :: A−N∼

car :: N−

This minor change has major repercussions as Merge is no longer guaranteed to
be in SL. As in §3.2, the head h and its selectee smight be separated by an arbitrary
number of adjuncts a1, a2, . . . , am. But now each ai may have an arbitrary number
of adjuncts ai1 , ai2 , . . . , ain of its own, so that each ai is also arbitrarily far away



from h. Consequently, the search window does not necessarily contain the adjunct
feature of any ai, which one could infer the category feature of s from.

One might attempt to infer the adjunction feature of ai from some aij , mirroring
our earlier strategy to infer the category of s from a nearby adjunction feature. But
recursive adjunction makes this impossible, too. Each adjunct aij of adjunct ai may
also have an arbitrary number of adjuncts, so that aij might not be part of the search
window either. Given a sufficiently large number of recursive adjunction steps, a
search window containing the head h will only contain the Merge node above h and
a humongous number of adjunction nodes labeled∼, but none of the adjuncts them-
selves. Without any other feature-carrying nodes in the search window, there is not
enough information to determine indirectly whether the selectee s has a matching
category feature for the relevant selector feature on h.

At a more abstract level, the challenge posed by recursive adjunction compared
to its non-recursive counterpart is the increased difficulty in decomposing a non-
local dependency into a local one. With non-recursive adjunction, the non-local
Merge dependency is instead mediated by local dependencies between h and a1,
a1 and a2, a2 and a3, . . . , and finally am and s. With recursive adjunction, this
decomposition is not helpful because each one of these dependencies may still be
non-local, given that each ai may have an unbounded number of adjuncts of its
own. These adjuncts of the adjuncts may also have adjuncts, so that the result of
decomposing their non-local dependencies may again be a collection of non-local
dependencies. The recursive nature of adjunction entails that there is no upper
bound on how often one has to decompose non-local dependencies to end up with
local ones, and this is why Merge is pushed out of SL.

Although Merge is no longer SL in a grammar with recursive adjunction, that
does not mean that it does not display any degree of locality. The next section shows
that if one has a mechanism to mask out irrelevant parts of a derivation tree, Merge
is once again SL. The combination of SL with such a masking mechanism is the
core idea behind TSL.

3.4 Merge with recursive adjunction is TSL
Suppose that we take the derivation tree in (17) and remove all nodes except those
that either are hosted by a selector feature X+ or carry a category feature X− but
no adjunction features. Let us call the structure produced by this removal step
the X-tier that is projected from the derivation tree. Example (18) illustrates the
construction of an N-tier, which contains all Merge nodes hosted by N+, all non-
adjunct LIs with N−, and nothing else. For mathematical convenience, we also add
a dedicated root node> to ensure that a tier is always a tree (cf. (20)). The presence
of > will also be useful in §4.

(18) Constructing an N-tier



•

a :: N+D− ∼

∼

very :: Adv−A∼ ∼

very :: Adv−A∼ old :: A−N∼

car :: N−

>

•

car :: N−

Now contrast (18) with the N-tiers projected from ill-formed derivations.

(19) •

a :: N+D− ∼

∼

very :: Adv−A∼ ∼

very :: Adv−A∼ old :: A−N∼

Mary :: D−

>

•

•

a :: N+D− ∼

∼

very :: Adv−A∼ ∼

very :: Adv−A∼ old :: A−N∼

•

the :: N+D− car :: N−

>

•

•

car :: N−

In both cases, the tier contains a Merge node that does not have an LI among its
daughters. From the peculiar shape of these projected N-tiers one can immediately
infer that the match constraint from (3) is violated in the corresponding derivation
trees.

Note that the inverse is not necessarily true: an N-tier where every Merge node
has exactly one LI among its daughters may still have been projected from an illicit
derivation tree. But then some other tier, e.g. the D-tier, will be ill-formed.

(20) >

a :: N+D− •

•

a :: N+D− ∼

∼

very :: Adv−A∼ ∼

very :: Adv−A∼ old :: A−N∼

•

likes :: D+V− car :: N−

>

•

car :: N−

Example (20) shows that if one projects a tier for each kind of category/selector
feature, then any violations of the match constraint will surface on these tiers in the
form of a Merge node without an LI as a daughter.
(21) Match over tiers

No tier must contain a Merge node without exactly one LI among its daugh-
ters.1

1For the sake of exposition, I make the simplifying assumption that no LI contains both a cate-



The constraint indirectly enforces the match condition on Merge as a condition
on the shape of Merge tiers. It yields the desired result even in configurations where
a Merge node has multiple daughters on a tier.

(22) •

a :: N+D− ∼

•

child :: N− loving :: N+A−N∼

∼

well-liked :: N∼ ∼

young :: N∼ man :: N−

>

•

•

child :: N−

man :: N−

While there is not enough room to flesh out this sketch into a formal proof, it
should be clear that even though the match constraint on Merge is not local over
derivation trees, it is local over the Merge tiers that are projected from these deriva-
tions. But what about the other two constraints in (3), uniqueness and full selection?
These constraints are in fact SL even over derivation trees with recursive adjunc-
tion. This is because they regulate how Merge nodes are to be hosted by LIs with
selector features. Since adjunction can only target LIs that have already had all their
selector features checked, no adjunction node can occur between a Merge node and
the LI that hosts it. So adjunction does not disrupt the locality of these dependen-
cies, and thus they are still in SL. The challenges of adjunction are all limited to the
match constraint; as we just saw, it is still local over the right kind of structure.

Let me briefly summarize the findings on Merge in MGs with adjunction. As in
MGs without adjunction, Merge is a combination of three constraints on derivation
trees: uniqueness, full selection, and match. The first two are SL irrespective of
whether the grammar has an adjunction operation. The latter, match, is SL only if
adjunction cannot apply recursively. Otherwise, it requires the projection of Merge
tiers for every category/selector feature X — over these tiers, match reduces to the
requirement that every Merge node must have exactly one LI among its daughters.

This combination of tier projection and local conditions on these tiers is the
hallmark of the subregular class TSL (Heinz et al. 2011). Just like SL, TSL was
originally defined for string languages rather than tree languages. Lifting it from
strings to trees is slightly more complex than for SL. Without going too much into
technical details, one has to specify two components:

(23) Components of TSL definition for trees
a. The projection function determines which nodes are ignored and which

are added to the tier. In standard TSL, the projection function makes
this decision based solely on the label of the node, but more powerful
versions also allow local context to be taken into account (De Santo &
Graf 2017). Merge requires such a structure-sensitive tier projection to
determine what feature a Merge node is hosted by.

gory feature X− and a selector feature X+. Such LIs introduce several technical complications in
how the constraints must be stated, but do not affect the overall subregular complexity of Merge.



b. The licensing function maps each node in the tier to a language L of
permitted strings. The tier is illicit if the node’s string of daughters is
not a member of L. Again this function may consider only the label of
the node or take its structural context into account.
For Merge, the licensing function only considers the node label. It maps
each • to the language •∗l•∗, where •∗ denotes 0 or more instances of •,
and l is an LI. LIs are mapped to the empty set by the licensing function,
which encodes that they must be leaf nodes.

Within the class of TSL, Merge is actually fairly simple. While its tier projec-
tion function has to take a limited amount of context into account, the licensing
function only considers node labels. In addition, the string language •∗l•∗ is very
simple — it is TSL-2 in the sense of Heinz et al. (2011) and is a syntactic coun-
terpart to well-known phonological phenomena. For example, the requirement that
every phonological word has exactly one primary stress corresponds to the formal
language σ∗σ́σ∗, where σ denotes an unstressed syllable and σ́ a stressed one. The
parallels between •∗l•∗ and σ∗σ́σ∗ are evident. In sum, the subregular complexity
of Merge is still very limited even though it has been pushed from SL to TSL.

It was already mentioned at the very beginning of the paper that Move, given
certain assumptions, is also TSL. However, the parallels between Merge and Move
extend far beyond that. As we will see next, Move tiers are constructed and regu-
lated in exactly the same fashion as Merge tiers, which reveals an enormous amount
of parallelism between the two operations.

4 Move is in TSL, too
The MG operation Move is modeled closely after the Minimalist notion of move-
ment, but it looks very different through the lens of derivation trees. In a derivation
tree, no subtrees are ever moved into a different position — the actual displacement
only happens during the construction of the derived structure. As such, Move is
merely a node in a derivation tree whose distribution is controlled by the presence
of certain features on LIs. Whereas Merge is triggered by the presence of both a
selector feature X+ and a category feature X−, Move requires a licensor feature
f+ and a licensee feature f−. This is illustrated below for a derivation with wh-
movement and case movement, where ◦ represents Move and arrows are used as an
expository device to highlight what moves where.

(24) Derivation tree with wh-movement and case movement



◦

•

does :: T+wh+C− ◦

•

ε :: V+nom+T− •

•

the :: N+D−nom− cat :: N−

•

annoy :: D+D+V− who :: D−wh−

Note that the arrows have been added only for the reader’s convenience as the
MG feature calculus is sufficient to determine what moves where. Once the feature
annotations of all LIs in a derivation are known, Move is fully deterministic in MGs.
This may seem like a marked departure from Minimalist syntax, where occasionally
multiple phrases compete for the right to move to a given position. Such ambiguities
are captured in MGs by allowing different feature annotations for one and the same
LI, so the difference between MGs and Minimalism is again smaller than it seems.

Another important difference is the status of intermediate movement in the fea-
ture calculus. Graf et al. (2016) — generalizing a result of Kobele (2006) — prove
that every MG can be brought into a normal form where intermediate movement
is no longer triggered by features. That is to say, every LI l carries at most one
licensee feature and the only feature trigger for movement is at the final landing
site of l. Any intermediate landing sites are automatically inserted during the con-
struction of the derived structure. For example, a wh-phrase moving from Spec,vP
to Spec,CP automatically leaves a trace/copy in Spec,TP even though no feature
checking of nom+ and nom− takes place. This result isn’t just a technical curiosity
(see Graf 2018 for a detailed defense); Graf & Heinz (2015) show that it is essential
in bringing out the TSL-nature of Move.

Move can be decomposed into two constraints over derivation trees. Both rely
on the notion of occurrence. Given an LI l with licensee feature f−, its occurrence
is the structurally lowest Move node that dominates l and is hosted by a feature
f+. In (24), the higher Move node is the occurrence of who and the lower one the
occurrence of the. A derivation tree is well-formed with respect to Move if three
conditions are satisfied.

(25) Conditions on Move
a. Every LI with n licensor features hosts exactly n Move nodes.
b. Every LI with a licensee feature has an occurrence.
c. Every Move node is an occurrence of exactly one LI.

These constraints are satisfied by (24). But suppose that who carried nom− instead
of wh−, creating an illicit configuration. The higher Move node would not be an
occurrence of any LI, whereas the lower one would be an occurrence of two LIs.



Similarly, if the higher Move node were missing in (24), then the C-head would not
be hosting any Move nodes even though it has licensor features, and who would
have a licensee feature yet lack an occurrence. Any other illicit configurations are
just variations of these few base cases, so that the constraints in (25) are indeed
sufficient for regulating Move.

It is easy to see that Move cannot be SL because there is no upper bound on the
distance between an LI and its occurrence. This does not affect (25a), since every
Move node is only a fixed distance away from its host. But (25b) and (25c), which
establish dependencies between LIs and their occurrences, cannot be SL for this
reason. Just as for Merge, though, the relevant constraints are local over tiers.

For each movement type f , one projects a tier that contains I) all Move nodes
that are hosted by some f+, and II) all LIs with licensee feature f−, and III) nothing
else. Over these tiers, two constraints apply.

(26) Move as constraints over tiers
a. Every Move node has exactly one LI among its daughters.
b. Every LI has a Move node as its mother.

From the perspective of TSL, (26a) maintains that every Move node must have a
string of daughters that fits the pattern ◦∗l◦∗, closely mirroring the language •∗l•∗
for Merge. Constraint (26b) is recast in TSL-terms with the help of the assumed
root node >: its string of daughters must fit the pattern ◦∗.

No constraint like (26b) was mentioned during our discussion of Merge in §3.4,
but it nonetheless has a natural counterpart. It is commonly assumed that only CPs
can be well-formed sentences, whereas TPs or DPs are too small and thus must be
merged with something else. Consequently, only the C-tier may contain an LI that
does not have a Merge node as its mother. So N-tiers, D-tiers, and so on, are exactly
like move tiers in that the root > must have a string of daughters of the form •∗.

This is but a brief sketch of the TSL-nature of Move, with many technical details
meriting extended discussion. Due to space constraints, I unfortunately have to
refer the reader to Graf (2012), Graf & Heinz (2015), Graf et al. (2016), and Graf
(2018). For the purposes of this paper, though, the important issue is the pronounced
parallelism between Merge and Move with respect to subregular complexity. Not
only do they both fall into the class TSL, they are remarkably similar regarding how
tiers are projected and regulated.

(27) TSL-comparison of Merge and Move
Merge Move

Projection LI with X− LI with f−

• if hosted by X+ ◦ if hosted by f−

Licensing • 7→ •∗l•∗ ◦ 7→ ◦∗l◦∗
> 7→ •∗(or l for C-tier) > 7→ ◦∗

5 Conclusion
Merge and Move have been argued to be very distinct regarding their subregular
complexity as the former falls into the class SL, whereas the latter belongs to the



strictly more powerful class TSL. I have shown that this difference disappears in
grammars with recursive adjunction, where Merge is also TSL. A subregular view
rooted in derivation trees thus reveals Move to be a natural extension of Merge,
mirroring the original argument of Chomsky (2004).

Several issues had to be left open. Most importantly, I only compared the op-
erations in terms of their derivational behavior, rather than their effect on the ex-
ternalization function that produces the derived trees according to the derivational
blueprint. In that respect, Move is still more complex than Merge and adjunction
because it requires the controlled displacement of substructures, which is a compu-
tationally demanding process.

In addition, the subregular complexity of adjunction is still unknown. The same
holds for Merge in a system where adjunction is not controlled by features (cf. Graf
2014), and Move if intermediate movement is also triggered by features. In the
spirit of this paper, though, I expect that these more complex systems will again
display a large degree of parallelism.

References
Aksënova, A., T. Graf, & S. Moradi. 2016. Morphotactics as tier-based strictly

local dependencies. In Proceedings of the 14th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology, and Morphology, 121–130.

Chandlee, J. Strictly Local Phonological Processes. University of Delaware disser-
tation.

Chomsky, N. 1986. Knowledge of Language: Its Nature, Origin, and Use. New
York: Praeger.

Chomsky, N. 1995. Bare phrase structure. In Government and Binding Theory and
the Minimalist Program, ed. by G. Webelhuth, 383–440. Oxford: Blackwell.

Chomsky, N. 2004. Beyond explanatory adequacy. In Structures and Beyond:
The Cartography of Syntactic Structures Volume 3, ed. by A. Belletti, 104–131.
Oxford: Oxford University Press.

De Santo, A., & T. Graf, 2017. Structure sensitive tier projection: Applications and
formal properties. Ms., Stony Brook University.

Fowlie, M. 2013. Order and optionality: Minimalist grammars with adjunction. In
Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13), ed.
by A. Kornai & M. Kuhlmann, 12–20.

Frey, W., & H.-M. Gärtner. 2002. On the treatment of scrambling and adjunction in
Minimalist grammars. In Proceedings of the Conference on Formal Grammar,
ed. by G. Jäger, P. Monachesi, G. Penn, & S. Wintner, 41–52.

Graf, T. 2012. Locality and the complexity of Minimalist derivation tree languages.
In Formal Grammar 2010/2011, ed. by P. de Groot & M.-J. Nederhof, volume
7395 of Lecture Notes in Computer Science, 208–227, Heidelberg. Springer.



Graf, T. 2014. Models of adjunction in Minimalist grammars. In Formal Grammar
2014, ed. by G. Morrill, R. Muskens, R. Osswald, & F. Richter, volume 8612 of
Lecture Notes in Computer Science, 52–68, Heidelberg. Springer.

Graf, T. 2017. The power of locality domains in phonology. Phonology 34.385–
405.

Graf, T. 2018. Grammar size and quantitative restrictions on movement. In Pro-
ceedings of the Society for Computation in Linguistics (SCiL) 2018, 23–33.

Graf, T., A. Aksënova, & A. De Santo. 2016. A single movement normal form
for Minimalist grammars. In Formal Grammar : 20th and 21st International
Conferences, FG 2015, Barcelona, Spain, August 2015, Revised Selected Papers.
FG 2016, Bozen, Italy, August 2016, ed. by A. Foret, G. Morrill, R. Muskens,
R. Osswald, & S. Pogodalla, 200–215, Berlin, Heidelberg. Springer.

Graf, T., & J. Heinz. 2015. Commonality in disparity: The computational view
of syntax and phonology. Slides of a talk given at GLOW 2015, April 18, Paris,
France.

Heinz, J. 2009. On the role of locality in learning stress patterns. Phonology
26.303–351.

Heinz, J., 2015. The computational nature of phonological generalizations. Ms.,
University of Delaware.

Heinz, J., & W. Idsardi. 2013. What complexity differences reveal about domains
in language. Topics in Cognitive Science 5.111–131.

Heinz, J., C. Rawal, & H. G. Tanner. 2011. Tier-based strictly local constraints
in phonology. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, 58–64.

Jackendoff, R. 1977. X-Bar Syntax: A Study of Phrase Structure. Cambridge, MA:
MIT Press.

Jardine, A. 2016. Computationally, tone is different. Phonology 33.247–283.

Kobele, G. M. Generating Copies: An Investigation into Structural Identity in
Language and Grammar. UCLA dissertation.

Richards, N. 2016. Contiguity Theory. Cambridge, MA: MIT Press.

Stabler, E. P. 1997. Derivational Minimalism. In Logical Aspects of Computa-
tional Linguistics, ed. by C. Retoré, volume 1328 of Lecture Notes in Computer
Science, 68–95. Berlin: Springer.

Stabler, E. P. 2011. Computational perspectives on Minimalism. In Oxford Hand-
book of Linguistic Minimalism, ed. by C. Boeckx, 617–643. Oxford: Oxford
University Press.


