
Grammar is NOT a Computer of the Human 
Mind/Brain

Prakash Mondal
Indian Institute of Technology Hyderabad

Biography
Prakash Mondal is Assistant Professor of Linguistics and Cognitive Science at the Indian Institute of Technology 
Hyderabad, India, and the author of Language, Mind and Computation (Palgrave/Springer Nature, 2014), 
Language and Cognitive Structures of Emotion (Palgrave/Springer Nature, 2016), and Natural Language and 
Possible Minds (Brill, 2017).

Publication Details
Journal of Cognition and Neuroethics (ISSN: 2166-5087). February, 2018. Volume 5, Issue 1.

Citation
Mondal, Prakash. 2018. “Grammar is NOT a Computer of the Human Mind/Brain.” Journal of Cognition and 
Neuroethics 5 (1): 85–100.

Journal of
Cognition
andNeuroethics



86

Abstract
This paper will attempt to debunk the idea that human language grammar as part of the Faculty of Language 
(FoL) is intrinsically a computing device. The central argument here is that grammar does not compute. One 
way of demonstrating this is to show that the operations of grammar in the Generative model do not have 
the character typical of computations. Thus, the central operation of grammar Merge, which combines lexical 
items to produce larger expressions, can be defined as a recursive function, but it does not share the inductive 
properties of recursive functions in mathematics in view of the consideration that recursive functions define 
computability. On the other hand, if the language faculty is a computing system, the language faculty must 
inherit the halting problem as well. It is easy to impose the halting problem on the selection of lexical items 
from the lexicon in such a manner that FoL may or may not terminate over the selection of lexical items. We 
can say: there is no FoL way of telling if FoL will ever terminate on x or not when x is a selection from the 
lexicon. The halting problem for FoL is disastrous for the view that grammar is a computing system of the 
brain/mind since it detracts from the deterministic character of FoL. This has significant repercussions not just 
for grammar that cannot be restricted to any limited view of mental computation but also for the nature of the 
cognitive system as a whole since any cognitive domain that is (supposed to be) language-like cannot be said 
to compute as well.

Keywords
Grammar, Faculty of Language, Computation, Merge, Halting Problem, Cognition

Introduction
The idea that the grammar of human language is a formal system which forms part 

of the human mind realized as the Faculty of Language (FoL), and is a computing device 
has been advanced and popularized by the influential paradigm of Generative Grammar. 
The reason why this has been highly influential is that human language grammar is 
thought to be a kind of software installed on the brain hardware when a language is 
acquired by members of Homo Sapiens. Human language grammar, as part of our mind, 
which seems to be a non-physical intangible entity, is positioned at a higher-level of 
abstraction than the brain structures in which it is ultimately realized, just like the level of 
software in any modern day computer is situated at a level of abstraction removed from 
the level of the electrical circuitry. This makes the abstractness of the system of grammar 

Grammar is NOT a Computer of the Human 
Mind/Brain

Prakash Mondal



Mondal

87

possible. Thus, this is supposed to explain why grammar as a formal system, just like 
a mathematical system (for instance, the system of arithmetic), generates an infinite 
number of linguistic expressions from a finite stock of words. While many theoretical 
linguists and cognitive scientists have, over the period, criticized and contested another 
influential view associated with the theory of Generative Grammar (Chomsky 1995, 
2000), which is that humans are born with a biologically-hardwired capacity for language 
called Universal Grammar. Theoretical linguists and cognitive scientists have not found 
anything wrong with the idea that the language faculty, which is supposed to be a 
mental system, is intrinsically a computing device. 

The Abstraction Relation:
Grammar

<fA1, ... , fAn> arrow-down

Brain Structures

Figure 1: The Abstraction Relation

Here, grammar can be thought to abstract away from the underlying brain structures 
by way of a number of abstraction functions such as fA1 ... fAn, which perform a series 
of mappings to move away from the neurobiological structures and then reach into the 
higher level of abstraction from the lower-level of realization in the brain hardware. This 
ensures that grammar remains at a distance sufficient for a level of abstraction removed 
from the level of physical realization. Thus, for example, if there is an abstraction function 
fAi that maps some neural state onto some state of the FoL, the idea is that if some state 
of the FoL changes to another state, then the designated change must be caused in some 
way by a change in the underlying brain state. There must be many such abstraction 
functions, since states of the FoL are abstractions whose configurations and transitions 
are to be related to the state changes in the neural hardware in ways that can be formally 
characterized. In this way, the state transitions in the physical system of the brain are 
to be mapped onto the state transitions of the FoL. This ensures that grammar, as part 
of the FoL, can execute operations that are sufficiently abstract, on the one hand, and 
are yet physically realized in the brain structures on the other. But, these operations 
are customarily understood and claimed to be computations, and grammar as a system 
performing such computations is thus a computing device. This is so because the FoL is 
supposed to be a computational system. Hence, before we proceed further, we need to 



Journal of Cognition and Neuroethics

88

understand what computation is and, in what sense, grammar, or for that matter, the FoL 
is said to be a computational system. 

In what Sense is Grammar (FoL) a Computing Device?
When one raises a question about whether something is computational, a lot 

depends on whether one deploys the right concept of computation to a phenomenon at 
hand, while checking if the given phenomenon falls under computation. The concerns are 
similar when we focus on language and wonder, in what sense, the system of grammar 
performs computations. Even though there is an amount of vagueness embracing the 
notion of computation applying to the FoL, it appears that linguistic computation, as 
performed by the FoL, jells well with the classical view of computation on which symbolic 
inputs are mapped to symbolic outputs according to some well-defined rules that are 
defined over those symbolic units which exist in the form of linguistic strings. This notion 
of computation lies in the narrowest region in the whole hierarchy of varieties of digital 
computation (Piccinini and Scarantino 2011). This notion of linguistic computation 
has been adopted in much of formal linguistics implicitly or explicitly because the 
representational vehicles of language are discrete in form. But, it is not clear whether 
we can take linguistic computation to be a kind of generic computation covering both 
digital and analog computations. Although this question may not a have clear answer, 
as most linguistic frameworks that apply the notion of computation do not demarcate 
the notion of computation, the answer is more likely to be no. What is noteworthy here 
is that the digital notion of computation has been the central principle in the model 
of cognition advanced in the field of cognitive science, in general, and presupposed 
in much of theoretical linguistics, in particular. The analog sense of computation is 
not in harmony with the view of linguistic computation on the grounds that analog 
computational processes are driven and determined by the intrinsic representational 
content of the vehicles that are analog in nature, whereas digital computation involves 
mappings of inputs onto outputs that are executed without any regard to the content-
determining properties of the representational digital vehicles (O’Brien and Opie 2011). 
This squares well with what Chomsky (1980) has espoused, especially when he thinks 
of linguistic computation in the sense that the mentally instantiated system that can be 
identified with the FoL is a computing device of some sort. Thus, he maintains that ‘… 
“autonomous” principles of mental computation do not reflect in any simple way the 
properties of the phonetic or semantic “substance” or contingencies of language use.’ 
From this, we can draw the conclusion that linguistic computation does not plausibly 



Mondal

89

encompass the analog sense of computation. Taken in the light of these considerations, 
linguistic computation cannot be regarded as a type of generic computation that 
embraces both digital and analog computation. 

As we proceed, we shall require the appropriate notion of computation to accompany 
the critique that follows. This will help get a grip on the concept of linguistic computation 
when dealing with the view that grammar is a computing device of some sort. Central 
to any notion of computation are the following important elements: (i) a function that 
is computed; (ii) a system which computes the function; and, (iii) an effective procedure 
(also called an algorithm). This is also evident in the Church-Turing Thesis, which states 
that anything that can be computed with an effective procedure in the physical world 
can be computed in Turing machines. Related to this is the computational thesis in 
mainstream cognitive science that postulates that the human mind, or the brain, is itself 
a computing system. The rationale seems to make sense only when we suppose that the 
human brain is ultimately a physical object of some kind that can run computations just 
like any other physical system that executes computations. We may now wonder what 
the right physical system is that runs, or is appropriate for, linguistic computations. If 
we follow the lines of thinking adopted in Chomsky (1995, 2000), then we can make 
sense of the physical system fit for linguistic computation. In fact, the physical system for 
running linguistic computations is a system or module of the brain dedicated to language. 
Thus, it is the language faculty in the brain/mind that computes because the language 
faculty is conceived of as the physical organ specific for language situated within the 
confinements of our brain. The language faculty computes because it is supposed to have 
a computational procedure that engages in all kinds of linguistic computation. The next 
essential ingredient of computation is a function, or rather a computable function. The 
domain of such functions in formal linguistics may well correspond to the domain of 
formal operations that apply to structures to make structural distinctions of linguistic 
representations, when linguistic structures are inserted, erased and thereby altered. In 
this sense, we can take linguistic computations of the FoL to be the operations of a 
version of the Turing machine that works on a potentially infinite tape and reads, writes, 
or erases symbols on the tape. In a nutshell, the functions that can fall under linguistic 
computation are those which subscribe to the formation, substitution, and deletion 
of phrases, sentences, or larger linguistic expressions. Significantly, this is the process-
oriented aspect of computation implicit in the specification of the Turing machine. 
That the system of grammar can be taken to be executing computable functions, or 
rather algorithms, accords well with the abstraction-oriented aspect of computation, 
which consists in the specification of computable functions that can be implemented by 



Journal of Cognition and Neuroethics

90

algorithms in a system. If the computational character of the FoL is considered under the 
cover of the abstraction-oriented aspect of computation, then all that really matters is the 
specification of computable functions to be implemented in the putative computational 
system of the language faculty. That the specification of computable functions that 
grammar, as a system, is supposed to execute is possible has been shown for the central 
operations of grammar in the Minimalist model of grammar, especially for Merge, which 
is understood to concatenate syntactic objects (see Mondal 2014). In this context, 
Foster’s (1992) notion of an algorithm as a sequence of transitions between the states of 
a machine is handy enough. In particular, Merge combines two syntactic objects to form 
a single syntactic object (which is actually a set). Thus, for a sentence like ‘John loves a 
car’, we have Merge (a, car) = {a, car} and Merge (loves, Merge(a, car))= {loves, {a, car}} 
and then (John, Merge (loves, Merge(a, car)))= {John, {loves, {a, car}}}. Note that the 
formulation of Merge for the generation of the linguistic expression ‘John loves a car’ 
is recursively specified--more will be said on this below. An algorithmic representation 
of the operations of Merge for the phrase ‘a car’ can thus be schematized as (1), by 
following Foster.

(1)	 [SO1: a SO2: car L: Σ] → [SO: a, car L: Σ] → [SO: {a, car} L: Σ] → 

	 [SO: Σ {a, car}]

Here, SO is a syntactic object and L denotes the label of an SO, and Σ is the actual value of 
L. Thus, each item on the left of the colon is the label, and the one on the right designates 
the value of that label. Each item enclosed within braces represents a ‘snapshot’ of the 
state of a computation, and the arrow represents a transition between one such state 
and another. Now that the operation Merge has been shown to have a computational 
character in defining computable functions that can be coded as algorithms, the core 
generative engine of the FoL can be said to run computations by virtue of containing 
computable functions defined over the symbols the system of grammar operates on. 
This ensures that the system of grammar is viewed as a computing device whose 
computational nature can be characterized in the standard terms of the execution of 
computable functions. 

Why Grammar (or FoL) is not a Computing Device
We may now look into the reasons why grammar or the FoL cannot be considered 

to be a computing device. Since the system of grammar is a computing device in virtue 
of defining computable functions, it possesses the abstract capacity of generating infinite 



Mondal

91

linguistic expressions just as an abstract system of arithmetic generates infinite arithmetic 
expressions. The relevant mathematical property here is the recursive character of the 
operations the system of grammar instantiates. An analogy from mathematics can be 
drawn in order to demonstrate how grammar as a system is intrinsically computational. 
Take, for instance, a recursive function that increments the value of a given number by 1: 
ƒ(n)= n+1 when n is a natural number. Thus, ƒ(5)= 5+1= 6 when n=5, for example. This 
function is recursively defined, in the sense that the given function is specified in terms 
of each calculated value of its own output. Hence, this function can also be specified in a 
manner that involves the invocation of the same function. So, we can write ƒ(n)= ƒ(n-1) 
+1. It may be noted that an inductive definition forms an intrinsic part of the formulation 
of the incremental function here. This is because the inductive definition licenses the 
inference that the function can be specified in terms of each calculated value of its own 
output by way of an invocation of itself. As shown above, the generative mechanism of 
grammar has a recursive characterization in virtue of the fact that the generation of an 
infinite number of linguistic expressions is part of the recursive definition of the operation 
Merge. That is, the putative computational system of the language faculty possesses this 
mechanism by virtue of having the operation called Merge. Therefore, it seems clear that 
all that matters is the specification of the function concerned, not how this function 
is implemented in the language faculty in real time. This must be so because Merge is 
defined as a function in intension. If grammar is a computing system in this sense (as far 
as the mapping function so defined is concerned), it is not unreasonable to think that the 
relevant properties of recursive functions that hold true for the set of natural numbers 
should also be found in the set of natural language expressions generated by Merge or by 
any conceivably analogous computational mechanism of grammar. Let’s see how we can 
test this formal parallelism. Suppose we have the following sentences which are output 
by Merge:

(2)	 (Amy + (trusts+ (a + man + … + … +… )) ) 

(3)	 (Amy +…+ … + (trusts+ (a + man)) ) 

The sentence in (2) can be taken to have an unbounded expansion which goes on like 
this: ‘Amy trusts a man who is known to have three mansions which are located in three 
different countries that form a certain contour around a place that defies any description 
…’. Likewise, (3) can be also be unboundedly long such that its expansion may run like: 
‘Amy who is one of the finest scholars at our university which motivates the study of 
culture in unexplored territories which may not have any access to education… trusts a 



Journal of Cognition and Neuroethics

92

man’. The problem for Merge is that it cannot get off the ground in (2) since Merge, as a 
constructive operation, starts and continues to work in a bottom-up fashion, whereas it 
can never terminate, even if it does start in (3). Note that recursively defined functions 
in mathematics are such that they may never terminate, hence this particular argument 
certainly cannot have the appropriate force it should have, since, after all, Merge taken 
as a mapping function is defined in intension. However, functions operating on (the set 
of) natural numbers, as in ƒ(n)= n+1, at least get off the ground when there are inputs to 
be mapped onto outputs, regardless of whether they terminate. To put it in other words, 
functions operating on (the set of) natural numbers do not spell out the problem of not 
starting in the first place, while Merge contains the germ of the problem of not starting 
in the first place as well as inheriting the problem of non-termination. One may try to 
circumvent this problem for Merge by postulating null items that are assumed to exist in 
the unboundedly long sentence in (2) in order to save Merge from getting stuck into this 
trap. If the same strategy is adopted, then the null items which may be taken to be the 
stand-ins or proxies for the relative clauses constituting the expansion in (3) may also be 
assumed to have been Merged. For all its appeal, this strategy is groundless because items 
empty of substance are inserted in a linguistic expression which is not even a well-formed 
expression and perhaps does not even exist due to its unbounded or unfinished form. 
We end up inserting items empty of substance into an expression, which, as a whole, is 
already empty of content. The result is anything but a meaningful statement. Plus, this 
detracts from the operational character of Merge because Merge does not concatenate 
null items. This is the case in the Minimalist model of the language faculty, for there is a 
ban imposed on the FoL that disallows items which have not present in the selected set 
of lexical items on which computations are to operate. Besides, null items for chunks as 
big as relative clauses cannot be selected from the lexicon, nor can they be justified on 
linguistic grounds, since nothing would then prevent one from postulating null sentences 
whether simple or complex. 

The worry does not, of course, stop here. There is another, deeper, more fundamental 
problem residing in the postulation of formal parallels between recursive functions in 
mathematics and the putative computational mechanism of grammar. Just for instance, 
the principle of mathematical induction applies to all well-formed functions when it is 
used as a proof technique to test whether something holds for an infinite set because we 
cannot check all items in a potentially infinite set. So, as per the principle of mathematical 
induction, if some proposition P holds for n, it also holds for n + 1. The second step in this 
formulation constitutes an inductive generalization that may also be aligned with various 
other kinds of generalizations drawn inductively by human beings. Let’s now reconsider 



Mondal

93

the example in (2) to determine whether mathematical induction can be applied to it. 
The example (2) has been represented the following way in (4).

(4)	 ‘Amy trusts a man’ + Rclk (where Rclk =k number of relative clauses)

 Since it is necessary to render (2) in a manner that makes it amenable to the application 
of mathematical induction, the formulation of (2) in (4) serves to demarcate the domain, 
that is, the portion Rclk, over which mathematical induction can be taken to apply. One 
of way accomplishing this is the following way of characterizing the relevant set so that 
we state that mathematical induction applies over the set in (5).

(5)	 {‘Amy trusts a man’, ‘Amy trusts a man who is known to have three 
mansions’,

	 ‘Amy trusts a man who is known to have three mansions which are 
located in three different countries’ …}

 But what are the appropriate properties of this set, or of the members of this set, 
that can help establish that some proposition precisely formulated holds for the n+1th 
expression only if it holds for the nth expression? In what sense can the expression ‘Amy 
trusts a man’ be supposed to be the nth expression? Or, in what sense can the expression 
‘Amy trusts a man who is known to have three mansions’ be the n+1th expression and 
so on? What are the exact properties of these expressions such that their succession can 
mimic that of natural numbers when the natural numbers that are inputs or outputs of 
a function are defined in terms of a function? One suggestion that can be implemented 
here is that the relevant proposition that needs to be tested has to be formulated by 
tracking the depth of concatenation of relative clauses. That is, one may say that ‘Amy 
trusts a man’ is an expression with the value of the depth of concatenation fixed at 0, 
and similarly, ‘Amy trusts a man who is known to have three mansions’ has the depth of 
concatenation set at 1 and so on. This may be supposed to reflect the progression of these 
expressions at par with that of natural numbers. So the proposition to be tested is that 
the concatenation of a relative clause to a sentence whose verb phrase is transitive returns 
a well-formed expression of English. This can be couched in terms that may be supposed 
to ride especially on the inductive generalization that the attachment of a relative clause 
to a sentence whose verb phrase is transitive always yields a well-formed expression of 
English. The specific rule may be formulated in terms of phrase-structure rules familiar 
in formal linguistics. The advance of formulating such a rule is necessitated by the 
consideration that the rule has to be maximally general so that inductive definitions hold 



Journal of Cognition and Neuroethics

94

true for (4) or even (5). Let formulation in (6) be the exact phrase-structure rule that we 
need to capture this inductive definition:

(6)	 Sentence (S) → Noun Phrase (NP) Transitive Verb Phrase (TVP) + 
Rclk 

But the problem is that the rule in (6) can never ground (4) or (5) in an inductive 
generalization, simply because rules like this overgenerate. Nothing stops (6) from 
generating (7), below:

(7)	 *Amy trusts a man which is known to have three mansions which 
are located in oneself that forms a certain contour around hers that 
has any description …

 Likewise, there is nothing that can prevent one from having an expansion in (4) at some 
n+1 level that renders the whole expression grammatically illegitimate, as in (8), below:

(8)	 *Amy trusts a man who is known to have three mansions which 
will sold tomorrow. 

An attempt to import grammatically relevant, context-sensitive information, and 
selectional properties of predicates and other expressions into the contexts of (7-8) will 
inevitably vitiate the prospect of having a rule that will possess such a general character 
as to be amenable to an inductive definition. This is because when we say that if the 
incremental property of the function ƒ(n)= n+1 considered above holds for the number n, 
induction guarantees that it will also hold true of the n+1th number. That is, mathematical 
induction ensures and safeguards the generality of the induction without any provisos 
or conditions fixed for the induction to apply in the first place. Needless to say, this is 
doomed to fail for natural language expressions. There is the following dilemma when 
we turn to natural language. On the one hand, we require something like a function that 
can have the desired formal generality across a potentially infinite range of expressions, 
and on the other hand, the nature of natural language grammar is such that it defies the 
formulation of any such function. It is important to recognize, in this connection, that 
neither the compositional function nor the intuitive sense of concatenation can serve 
this purpose. The former is of no substantive value in this particular case because natural 
language abounds in non-compositionally formed expressions (idioms, for example). 
Thus, we can have expressions such as ‘take for granted,’ ‘beat around the bush,’ ‘call 
time on,’ etc. whose meanings are not strictly determined by the combinations of the 
meanings of the parts of the whole expressions. Concatenation, on the other hand, as 



Mondal

95

an operation is too trivial to have any linguistic value since the output expressions from 
the operation of concatenation can be deviant or ungrammatical. There is nothing that 
can, for instance, prevent one from concatenating ‘an’ with ‘ball’ or even ‘for’ with ‘done’, 
which will yield ‘an ball’ or ‘for done,’ both of which are ill-formed in English.

Beyond that, Merge cannot defined as a recursive function, given that recursive 
functions define computability. Thus, for example, addition is a recursive function 
because it can invoke itself as an input. So +(3, 5)=8 and then +(8, 8)=16 can be better 
expressed as +(+(3,5), 8)=16. Also, note that the inputs and outputs are all members of 
the set of natural numbers. This is not so for natural language. If Merge(John, runs)= John 
runs, we cannot have something like Merge(Merge(John, runs), John runs)=John runs 
John runs. That is, ‘John runs John runs’ is not a well-formed string in English. This can be 
generalized to any language other than English. The relevant property is called the closure 
property of functions or operations defined on natural numbers. Closure properties make 
it possible for natural numbers to be defined within the bounds delimited by the set 
of natural numbers. That is, it is closure properties of natural numbers that tell us that 
both 5 and 4 in 5+4 =9 are natural numbers and so is the number 9. Similarly, both the 
input numbers and the output number involved in the operation of multiplication in 
5×7=35 are natural numbers. There is nothing in natural language that is even remotely 
closer to this mathematical property when we look at the relevant linguistic expressions. 
Therefore, the following expression in (9), which results from the Merging of ‘Amy trusts 
a man’ with ‘Amy trusts a man who is known to have three mansions’ is ungrammatical: 

(9)	 * Amy trusts a man Amy trusts a man who is known to have three 
mansions.

Finally, and most importantly, it may also be supposed that the problem of non-
termination is in general true of procedures specified in abstraction, given that all 
procedures in practical reality must terminate, and if so, the problem of non-termination 
cannot be characterized as a problem for the computational mechanism of grammar. As 
we shall soon see, this may not be a problem for mathematical functions, or even for the 
Turing machine, since they are intrinsically mathematical, or purely abstract objects, not 
anchored in any physical system, though they can be implemented or instantiated in a 
physical system. But, this does not hold true for the computational mechanism of the 
language faculty since the language faculty is by its intrinsic character a mental system 
or a mental organization. In fact, the halting problem (Turing 1936) that is intrinsic to 
the model of computation inherent in the specification of the Turing machine must also 
apply to the putative computational system of the language faculty if the mapping 



Journal of Cognition and Neuroethics

96

function of the putative computational system of the language faculty is translated into 
the operations implicit in the specification of the Turing machine. Even if there could be 
intensional differences between the model of computation implicit in the specification 
of the Turing machine and the mapping function in standard mathematical formalisms 
of computability despite the fact that they are descriptively or extensionally equivalent 
(see Soare 1996), such intensional differences—whatever they turn out to be—cannot 
be brought forward in order to dodge the halting problem for Turing machines. The 
reason is that the extensional equivalence between the model of computation implicit 
in the specification of the Turing machine and the mapping function in formalisms of 
computability is all that matters to the extrapolation of the halting problem to the 
putative computational system of the language faculty. Any intensional differences 
arise from a certain way in which computations are looked at or viewed by humans, and 
this cannot be built into the language faculty itself. Nor can these differences ground a 
different mode of computational operations that avoids the halting problem, because the 
problem of non-termination inherent in the halting problem is a fundamental part of any 
formulation of computation abstracting away from the real world.

One way of demonstrating the problem is to take lessons from the halting problem 
(Turing 1936) that is intrinsic to the model of computation inherent in the specification 
of the Turing machine. If the language faculty is a computing system, the putative 
computational system of the language faculty must also face the vagaries of the halting 
problem. The language faculty in the Minimalist model of Generative Grammar (Chomsky 
1995) selects lexical items from the lexicon and then applies the binary operation Merge 
that combines these lexical items, and finally maps the constructed objects to the sound 
system (Phonological Form) and the meaning system (Logical Form). It is easy to 
impose the halting problem on the selection of lexical items from the lexicon in such a 
manner that the putative computational system of the language faculty may or may not 
terminate over the selection of lexical items. By following Partee, Ter Meulen, and Wall 
(1990), we can define the halting problem for the language faculty the following way.

L={x: a TM accepts x}

Here, L is a language that is defined as a set of xs, which are the strings generated/
accepted by a Turing machine TM. Let’s assume that the xs here are discrete lexical items 
that can be drawn from the lexicon. When FoL is said to terminate on x, it actually 
completes the task of selection of x from the lexicon. So, we can have N={x: FoL selects 
and terminates over x}, where N is the set of xs, and this set can otherwise be conceived 
of as a list. The halting problem for FoL is simply this: there is no FoL way of telling if 



Mondal

97

FoL will ever terminate on x or not. Suppose that one insists that it is possible. We then 
have N’={E(FoL): FoL selects and terminates over E(FoL)} where E(FoL) is the encoding 
of an FoL that is the input to the same FoL itself. Since E(FoL) itself can be in the form of 
lexical items, just as x is, it is okay to have E(FoL) as an input. Since FoL is a computing 
system, N’ is decidable by FoL. From this, it follows that the complement of N’, which is, 
say, N’’, is also decidable by some version of FoL, say, FoL’. If so, we have N’’={x’: x’ not 
the encoding of any FoL, or else x’ is the encoding of an FoL that does not select and 
terminate over E(FoL). Now we can ask if E(FoL’) is a member of N’’. That is, is E(FoL’)∈ 
N’’. 

If we assume E(FoL’)∉ N’’, then E(FoL’) is not one of the items selected by FoL’, and 
hence FoL’ does not select E(FoL’). Therefore, FoL’ is a version of FoL that does not accept 
its own encoding. This ends up making E(FoL’)∈ N’’ true. Contradiction! If, on the other 
hand, we assume that E(FoL’)∈ N’’, then FoL’ selects and terminates over E(FoL’). But, 
since E(FoL’)∈ N’’, by our assumption, FoL’ cannot select and terminate over E(FoL’). 
Hence, FoL’ does not select and terminate over E(FoL’). Again, a contradiction! 

The halting problem for the FoL can prove to be fatal because the FoL may never 
execute computations, as computations get off the ground only when lexical items 
are combined through Merge. Additionally, this damages the deterministic character 
of the FoL on the grounds that the computational system that the FoL is supposed 
to be always maps the outputs of Merge to the sound and meaning systems without 
fail. The question of the FoL having options in its trajectories or paths of operations 
does not even arise, also because the computational system operates beyond space and 
time. Simply speaking, the system of grammar, as a computing device, does not cease to 
always map syntactic objects to semantic and phonological representations. If this is how 
computations are always supposed to operate over the symbols that syntactic objects 
are, then the FoL inherits a deterministic character from the way the linguistic machine 
functions. But, the halting problem imposed over the selection of lexical items, which 
actually kick-starts the computational processes in the FoL, undermines this determinism, 
or rather, this deterministic mode of operation of the FoL. This is guaranteed by the 
fact that now the FoL may sometimes execute computations or may not terminate 
on the already started computational processes. This is not how the FoL is thought to 
function since the FoL is assumed to offer an optimal solution to the demands posed by 
the interface systems (the conceptual and articulatory-perceptual interfaces of the brain/
mind) connected to the meaning and sound systems. That is, if the FoL is supposed 
to ensure a kind of optimization between the computational processes of the syntactic 
engine and the demands placed on it by the interface systems of the mind, the halting 



Journal of Cognition and Neuroethics

98

problem for the FoL eliminates the possibility of the FoL offering an optimal solution to 
the demands posed by the interface systems. If there is no lexical selection, then there 
is no computation that can run over the symbols picked up from the lexical inventory. 
If this happens in some non-deterministic way, then the FoL may or may not meet the 
requirements placed by the interface systems, thereby turning into an inelegant system, 
though it is supposed to be an elegant system of optimization. 

Implications
The upshot of the whole discussion in this paper is that grammar does not compute. 

If grammar does not compute, then there is no reason to think that this conclusion will 
block humans from producing and comprehending an unbounded number of linguistic 
expressions. The question of whether and how humans produce and comprehend an 
unlimited number of linguistic expressions has nothing whatsoever to do with the 
computational character of the device itself. Let’s take the following consideration. While 
languages may or may not be infinite, in the appropriate mathematical sense of the term, 
this has nothing to do with whether humans can or cannot produce and comprehend an 
unlimited number of linguistic expressions (see Lobina 2017). Here, the symbolic nature 
and form of languages is dissociated from the psychological capacity of humans to make 
use of the symbolic system of language to produce/comprehend an unbounded number 
of linguistic expressions. In a similar vein, if grammar, as part of the FoL, which is a 
mental system, does not compute, then this does not in any way block the possibility 
that humans can produce and comprehend an unlimited number of linguistic expressions. 
The reason for this is that grammar, when conceived of as a computing device within 
the Minimalist model of the language faculty, is taken to be frozen from real space and 
time constraints, this makes grammar more like a purely abstract symbolic system devoid 
of contact with the real world. But, the fact that humans produce and comprehend an 
unlimited number of linguistic expressions has some connection to the real space and time 
considerations, as humans do process linguistic expressions of an unbounded number in 
real time and space. Therefore, even if grammar as a purely abstract system does not 
compute, this, in itself, has nothing to allow or disallow the human psychological capacity 
to produce and comprehend an unlimited number of linguistic expressions. This licenses 
the conclusion that the psychological capacity of humans to produce and comprehend 
an unlimited number of linguistic expressions must be ultimately segregated from the 
purely abstract properties of grammar, whether admitting of the conception of grammar 
as computing device in itself. 



Mondal

99

This has significant consequences and implications for cognitive computations 
within language, and other cognitive domains, such as vision, motor systems, etc. Any 
mental system or domain that is supposed to be language-like, or to possess properties 
and features (such as systematicity, compositionality, etc.) that are usually attributed to 
language cannot be said to be computing. Nor can it be regarded as a computing device 
of some sort. The cognitive system(s) responsible for thought and reasoning can be a 
good example here, since the system of thought has often been modeled on the system 
of grammar, as in the well-known Language of Thought (LoT) Hypothesis (Fodor 1975, 
2001). Other cognitive domains, such as vision, motor systems, or memory cannot also 
be regarded as systems that run computations on the grounds that problems orthogonal 
to the halting problem imposed on lexical selection within the FoL can be extended to 
these systems. Thus, for example, the visual system can be said to run computations on 
the selection of properties or features such as size, color, shape, texture, depth, etc. of 
the perceptual world whose inputs are processed inside the visual system. Likewise, the 
motor system can be thought to operate on analog values of coordinates of body parts 
to run the appropriate computations for motor actions, and the memory system can 
be said to work on snapshots of events and things in order to assemble, de-assemble, 
sequence, retrieve, and erase memories. In all such cases, the halting problem imposed 
on the initial process of computations can scupper the computing device a cognitive 
domain, such as vision or the motor system, is imagined to be. This is more so because 
cognitive domains such as vision or memory often need to offer sub-optimal solutions to 
the problems posed by the messy world, and the mappings between designated inputs 
and outputs are not always straightforwardly driven by content-less properties of the 
symbols over which computations are supposed to run. That is why various effects, such 
as visual hallucinations and illusions, false memories, and memory blocking, etc. exist. 

There are parallels between this work and the profoundly significant demonstration 
by the mathematical logician Kurt Gödel that mathematics as a formal system cannot 
be reduced to any delimited set of principles. Just as mathematics will always remain 
a never-depleting stream producing new theorems that cannot be bound within any 
predefined confinements of axioms, the formal system of grammar will always remain an 
ever-productive system generating newer and newer axioms and constraints of language 
which cannot be restricted by, and thus reduced to, any limited notion of mental 
computation. 



Journal of Cognition and Neuroethics

100

References
Chomsky, Noam. 1980. Rules and Representations. New York: Columbia University Press

Chomsky, Noam. 1995. The Minimalist Program. Cambridge, Mass.: MIT Press.

Chomsky, Noam. 2000. New Horizons in the Study of Language and Mind. Cambridge, 
Mass.: MIT Press.

Fodor, Jerry. 1975. The Language of Thought. Cambridge, Mass.: Harvard University 
Press.

Fodor, Jerry. 2001. The Mind does not Work that Way. Cambridge, Mass.: MIT Press.

Foster, Carol Lynn. 1992. Algorithms, Abstraction and Implementation: Levels of Detail in 
Cognitive Science. San Diego: Academic Press.

Lobina, David. 2017. Recursion: A Computational Investigation into the Representation 
and Processing of Language. New York: Oxford University Press. 

Mondal, Prakash. 2014. Language, Mind and Computation. London : Palgrave 
Macmillan.

O’Brien, Gerard, and Jon Opie. 2011. “Representation in Analog Computation”. In 
Knowledge and Representation, edited by Albert Newen, Andreas Bartels and Eva-
Maria Jung, 109-128. Stanford: CSLI Publications.

Partee, Barbara, Alice Geraldine Baltina Ter Meulen, and Robert Wall. 1990. Mathematical 
Methods in Linguistics. Heidelberg: Springer.

Piccinini, Gualtiero, and Andrea Scarantino. 2011. “Information processing, Computation 
and Cognition”. Journal of Biological Physics 37:1-38.

Soare, Robert. 1996. “Computability and Recursion”. The Bulletin of Symbolic Logic 2 (3): 
284-321.

Turing, Alan. 1936. “On Computable Numbers with an Application to the Entscheidungs 
Problem”. Proceedings of the London Mathematical Society 42 (2): 230-265.


