Binominal each and association with the structure of
distributivity

Abstract

Binominal each, alongside distributive numerals, has been argued to exhibit an ‘association-
with-distributivity’ effect (Champollion 2015, Kuhn 2015, 2017, see also Henderson 2014).
In this paper, I show that analyses along these lines fall short of some empirical general-
izations established for binominal each, including Counting Quantifier Constraint (Safir and
Stowell 1988, Sutton 1993, Szabolcsi 2010) and Extensive Measurement Constraint (Zhang
2013). Instead, I submit that binominal each does not associate with distributivity, but with the
internal structure of distributivity, i.e., the internal, mereological structure of the functional
dependency induced by distributive quantification. Concretely, it imposes a monotonicity con-
straint that the measure function provided by its host should track the part-whole structure of
the functional dependency induced by distributivity. Since monotonic measurement typically
tracks the part-whole structure of the object being measured (Schwarzschild 2006, Wellwood
2015), this amounts to saying that binominal each measures distributivity, with help from the
measure function contributed by its host. The proposal is couched in a version of dynamic
plural logic that resembles the original Dynamic Plural Logic in van den Berg (1996) but also
incorporates more recent innovations such as domain plurality and delayed evaluation, found
in its cousin logic Plural Compositional DRT (Brasoveanu 2006, 2008, 2013).

1 Introduction

The need to provide a compositional semantics for free pronouns in natural language, such as the
one in (1-a), has inspired a more dynamic way for looking at meaning (Kamp 1981, Heim 1982,
1983, Groenendijk and Stokhof 1991, Dekker 1994, a.o.). For example, in Dynamic Predicate
Logic (DPL), Groenendijk and Stokhof (1991) invite us to go beyond the standard semantics of first
order logic, which fails to assign an appropriate interpretation for the first order formula in (1-b-i1),
intended as a translation of the second clause of (1-a). Their key insight is to treat sentences not
as truth conditions, i.e., functions from indices (i.e., possible worlds and/or assignments) to truth
values, but as context change potentials, i.e., relations between contexts. In DPL, a context is an
assignment function mapping different discourse variables to their respective values.

With help of DPL, both sentences in (1-a) can be treated as a set of pairs of variable assign-
ments, composed via relation composition (see Groenendijk and Stokhof 1991:pp.54). For con-
creteness, the first sentence is translated as (1-c-1). The existential quantifier resets the value asso-
ciated with the discourse variable x in an input assignment (i.e., the notation g[x]h) and associates
it with a man that came in. The new value for x is recorded in all assignments in the output. When
the second sentence, translated as (1-c-ii), is interpreted relative to these output assignments, the



pronoun ke can retrieve the value stored in x and add to it a new condition that the value belongs
to a set of entities that sat down.

(D) a. A* man came in. He, sat down.
b. () Ix(manx /\ came.in x)
(i1)) sat.down x
c. () {(g,h)|glxIhAh(x)€ man/Ah(x) € came.in}
(i) {(g,h)|g=hAh(x) € sat.down}

Making values dynamic provides a way to model pronominal binding, which may happen at a
distance and across sentence boundaries. However, Krifka (1996) observes that it is still inadequate
to handle so-called ‘dependent pronouns’, as shown in (2).

(2)  Every* boy saw a¥ movie. Theyy really enjoyed ity.

In this sentence, the singular pronoun may refer to a particular movie that every boy saw, or a
different movie for each boy. The former reading is straightforwardly predicted by DPL. However,
the latter reading requires access to the functional dependency between the boys and the movies
they saw, a piece of information not directly available in DPL without further extensions.

If a pronoun does nothing fancier than what a discourse variable does, i.e., reading in a context
and returning a value, a convenient way to grant it access to dependency is to make dependency
part of a context fed to the pronoun'. To enable this, van den Berg (1996) devises Dynamic Plural
(Predicate) Logic (DPIL) on the basis of DPL to store value dependency. This is done by upgrading
the meaning of sentences again, this time from relations between assignments, to relations between
sets of assignments. These sets of assignments are capable of keeping track of dependencies in a
discourse, as we will see shortly.

To distinguish the more complex context in DPIL from the simpler one in DPL, van den Berg
calls his context an ‘information state’, or ‘info-state’ for short. Figure | shows an info-state
as a matrix following the convention in the literature. It records the dynamic effect of the first
clause in (2) (how this record comes about in a compositional way is given in Section 5). The top
row records the discourse variables, x for the boys and y for the movies (and perhaps also other
variables introduced before this utterance.) The leftmost column lists all the variable assignments
in the info-state. Each cell in the middle represents a value, i.e., a value a particular assignment
function assigns a variable to. Each column then encodes the collective value a variable receives
under a set of assignments, so x stores all the boys and y stores all the movies associated with these
boys.

G| x|y |..
g1 b1 | m1
g2 b2 | m2
g3 b3 | m3

Figure 1: An info-state in DPIL

I'This is not the only option that has been explored in the literature. See Elworthy (1995) and Krifka (1996) for two
prominent alternatives.



Because an info-state is a set of assignments, it is capable of recording dependency using
assignments. For example, in this info-state, we see that the values stored in y changes depending
on the values stored in x. A formal notion of dependence can be found in (40) in Section 5.
For now, it suffices to have an intuitive sense of it. With dependency being part of a dynamic
contribution and hence part of a context, a pronoun like it in (2) can now refer to a different movie
for a different boy—we just need to make reference to the dependency. It is also worth pointing out
that semantic interpretation in DPIL is non-deterministic, so there may be alternative info-states
encoding different values and dependencies.

The original DPIL has been enriched and modified in subsequent studies, especially Nouwen
(2003), and Brasoveanu (2006, 2008, 2013). However, the main architecture, namely, that sets
of assignments (or stacks in Nouwen 2003) can be used to encode dependency, remains. This
architecture has been capitalized on to account for many interesting phenomena, some of them
having to do with dependency in pronominal anaphora (e.g., Nouwen 2003, Brasoveanu 2008),
while others pertaining to non-proniminal dependency-thirsty expressions like dependent indefi-
nites (Brasoveanu and Farkas 2011), distributive numerals (Henderson 2014, Champollion 2015,
Kuhn 2017), reciprocals (Dotlacil 2010) and adjectives like same and different (Dotlacil 2010,
Brasoveanu 2011, Kuhn 2017), and bare cardinal partitives (DeVries 2016).

Building on the architecture of DPIL, the present paper makes three contributions. First, it
recognizes that distributivity not only contributes values and dependency recordable in an info-
state, the very info-state also encodes the internal, mereological structure of the distributivity
dependency”’. Second, it demonstrates that binominal each makes reference to such a mereolog-
ical structure of distributivity. Third, it offers a version of DPIL that allows us to take the full
advantage of van den Berg’s innovation to arrive at an explanatory account of binominal each.
These contributions are expanded further in the remainder of this section.

It is quite easy to see that in the info-state in Figure 1, there is a dependence relation between x
and y. So, we can talk about how the values stored in y change in relation to the values stored in x
and vice versa. For example, y has a value m2 when x has a value b2, and x has a value b3 when
y has a value m3. However, there is also information about the internal, mereological structure
of the distributivity dependency. This is best seen when we turn the info-state in Figure | into a
semi-lattice, as shown in Figure 2. The elements in this semi-lattice are non-empty subsets of the
set of assignments in G, referred to as ‘sub-states’ in this paper. The lines connecting the sub-states
represent the proper subset relation. Since these sub-states contain discourse information, we can
also think of the proper subset relation as an ordering relation on informativity—a bigger sub-state
contains more discourse information than a smaller sub-state.

With this mereological structure in place, we gain a new kind of perspective on information
stored in info-states. With help of info-states, studies such as van den Berg (1996), Nouwen
(2003), Brasoveanu (2008, 2011), Brasoveanu and Farkas (2011), Henderson (2014) and Kuhn
(2017) can speak of how the values stored in a variable, say y, change depending on the values
stored in another variable, say x, accounting for a wide range of dependency-thirsty expressions.
With mereological structure added as another dimension of info-states, we can now speak of the

2Landman 2000 and Champollion 2010, 2017 are two other studies that make explicit the mereological structure of
distributive predication, both with help of event semantics. While the present study is couched in dynamic semantics
instead of event semantics, it can still be seen as extending the mereological approach to distributivity. More con-
cretely, it provides evidence that there are natural language expressions that piggyback on the mereological structure
of distributivity, in addition to the ones identified in Landman (2000) and Champollion (2017).
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Figure 2: Mereological structure of a distributivity dependency

algebraic properties of the information stored in an info-state. For example, do we get more stuff by
going from a smaller sub-state to a bigger sub-state? For another example, if the values associated
with a particular variable are transformed into another algebraic structure, such as by means of
measurement, how does that structure stand in relation to the mereological structure of the info-
state?

It is one thing to recognize that there is a mereological structure to the dependency encodable
in an info-state, it is another to show that this property matters for natural language. In this pa-
per, I identify binominal each as an expression that capitalizes on the mereological structure of
distributivity dependency.’ An example involving binominal each is given in (3).

3) The boys read one book each.

a. Distributivity inference: Each boy read a book.
b.  Variation inference: More than one book was read by the boys.

Previous studies have noted that the presence of binominal each correlates with two inferences:
a distributivity inference and a variation inference. The distributivity inference indicates that the
predicate containing each holds true of every atomic subpart of the plural individual that typi-
cally serves as the subject, as shown in the inferences in (3-a); the variation inference requires the
witness for the cardinal indefinite one book to exhibit variation in association with distributivity.
Based on these two inferences, recent studies such as Champollion (2015) and Kuhn (2017) clas-
sify binominal each as a distributive numeral marker, following Henderson (2014)’s seminal work
on the latter. Briefly speaking, an indefinite marked by binominal each, like distributive numerals,
signal distributive quantification and variation of witnesses. Distributivity quantification creates
an info-state with dependency information. The variation component piggybacks on the depen-
dency, requiring a particular variable to store a plurality of values in the dependency. This line
of research makes binominal each a case of ‘association with distributivity’ (see also Brasoveanu
2011, Bumford and Barker 2013; Bumford 2015).

However, accounts along the lines of ‘association-with-distributivity’ fall short of explaining
a few important generalizations about binominal each, including : (i) its widely observed affinity
to counting quantifiers beyond numeral expressions (e.g., Safir and Stowell 1988, Sutton 1993),

31t is plausible that distributive numerals should also be treated along the same lines as binominal each proposed in
this study, but I have not collected sufficient cross-linguistic data to verify this. Other distributivity markers that form
a paradigm with binominal each include adnominal jeweils in German and ge in Mandarin. See Zimmermann (2002)
for a detailed discussion of the selectional properties of the former and Li and Law (2016) for the latter. I reserve a
more detailed investigation of these two distributivity markers for another occasion.



and (ii) a less well-known observation that it requires its host to contribute an extensive measure
function (Zhang 2013). Instead, I argue that binominal each does not just piggyback on the de-
pendency in an info-state, they make active use of the mereological structure of the dependency.
More precisely, they require that the measurement of the values in a particular variable stand in
a monotonic relation to the mereological structure of the distributivity dependency.” Since this
monotonicity condition makes reference to distributivity and the internal structure of its depen-
dency, I call it d-monotonicity to distinguish it from the closely related, yet different, notion of
monotonicity found in the studies of Schwarzschild (2006), Rett (2014) and Wellwood (2015).

To facilitate the implementation of d-monotonicity, I devise a version of dynamic plural logic
intermediate between DPIL and PCDRT. Like DPIL and unlike PCDRT, it inhibits dependency
arising from random assignment, and checks lexical relations in a collective manner. However,
like PCDRT and unlike DPIL, it allows Linkean plural individuals to be in the range of assignment
functions. This logic is also extended with tools for measurement beyond cardinality, which are
absent in DPIL and PCDRT. The resulting logic is a dynamic plural logic with domain pluralities
and various sorts of measure functions. I call this logic DPILM to show its descendancy from
DPIL.

The rest of this paper is organized as follows: Section 2 introduces PCDRT-theoretic analyses
of distributive numerals (extended to binominal each), demonstrating how the variation inference
is modeled as an association-with-distributivity effect. Readers who already have backgrounds in
PCDRT, especially those who are familiar with Henderson (2014), Champollion (2015) or Kuhn
(2017) can skim or skip this part. Section 3 discusses the challenges faced by the PCDRT-theoretic
accounts, showing that it is not enough to just consider the dependency introduced by distribu-
tivity. Section 4 sketches an account for binominal each that makes crucial use of the structure
of a distributivity dependency and measurement to arrive at a monotonicity constraint called ‘d-
monotonicity’. D-monotonicity answers the challenges raised in Section 3 but is not implemented
in a compositional manner. Section 5 lays out DPILM, with help of which d-monotonicity is im-
plemented compositionally. Section 6 examines how d-monotonicity interacts with negation and
downward monotone quantifiers, showing that formulating d-monotonicity in a dynamic semantics
like DPILM makes correct predictions regarding the interactions. Section 7 compares the present
proposals with previous studies on binominal each. Section & concludes.

2 Background: Distributive numerals in the PCDRT tradition

A framework in which recent studies on distributive numerals and binominal each, such as Hender-
son (2014), Champollion (2015) and Kuhn (2017), are couched is Plural Compositional Discourse
Representation Theory (PCDRT). This framework, devised by Brasoveanu (2006, 2008, 2013), is
a cousin of Dynamic Plural (Predicate) Logic (DPIL, van den Berg 1996, also Nouwen 2003). Like
DPIL, PCDRT is a dynamic logic using sets of assignments (i..e., info-states) as contexts to model
dependency information in discourse. Henderson (2014) extended PCDRT to account for distribu-
tive numerals in Kaqchikel. The framework is later extended to account for binominal each in
Champollion (2015), with few modifications, and Kuhn (2017), with more substantial differences.
The primary concern of the present paper is to defend an alternative formulation of the variation

“Monotonicity here is understood as a non-decreasing and non-constant mapping, instead of a strictly increasing
mapping, as found in Schwarzschild 2006 and Wellwood 2015.



inference that does not just make use of the distributivity dependency, but also its internal structure,
to shed light on Counting Quantifier Constraint and Extensive Measurement Constraint. For this
reason, [ use Henderson (2014)’s framework for distributive numerals as a representative and will
not go into the differences among his study and other studies in the PCDRT tradition.

There are two ways for dependency to enter an info-state in PCDRT, via random assignment or
via distributivity (with help of random assignment). In PCDRT, random assignment, as defined in
(4), is responsible for variable introduction, just like random assignment in DPL and DPIL.

Definition Random assignment (PCDRT)

4) a. G[x]]H:=Vg e G Fh € H such that g[x]h and Vh € H 3g € G such that g[x|h
b. glxlh: =W #x.g(v) =h(v)

For example, let info-state G as depicted in Figure 3 be the input info-state and let G’ as depicted
in Figure 4 be the output info-state.

Gl.. . |lyl...
g1 oo a
g2 b
g3 ... | C

Figure 3: An info-state in PCDRT

G'|[...|y|x]|...
g || ... |a|d
gyl ...|ble
gl ... [c|f

Figure 4: Dependency in PCDRT

We know that G[x]G’ holds because each assignment in G has a G’-descendent with which
it at most differs on the values assigned to x (i.e., the values assigned to y remain intact), each
assignment in G’ has a G-ascendent with which it also at most differs on the values assigned to x.
Importantly, since PCDRT does not restrict the way random assignment assigns values to a new
variable, random assignment is free to introduce dependency (or not) into an info-state. This is
a new innovation not found in DPIL, which explicitly inhibits dependency introduced by random
assignment (see van den Berg 1996:101-102). In Section 3.1, I discuss the repercussion of this
design feature on the analysis of binominal each in the PCDRT tradition, ultimately arguing for a
dependency-free formulation of random assignment.

In order for distributivity to introduce dependency into an info-state, PCDRT crucially differs
from the more well-known DPL in the way it treats distributive quantification. In DPL, distribu-
tivity as a kind of universal quantification is internally dynamic but externally static, transmitting
(dynamic) binding information only from its restriction to its scope, but not recording the binding
information once the quantification is evaluated. By contrast, PCDRT follows DPIL in treating
distributivity as fully dynamic. To see this, let us zoom into the distributivity operator o, defined
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in (5). Basically, the  operator splits an input info-state into singleton sets of assignments, then
updates each set with ¢ and finally collects all the updated sets as the output info-state. If ¢ has
any dynamic effect, it is recorded in H and can be used later.

Definition Distributivity (PCDRT, see Henderson 2014)

5) G[6(d)]H = T iff there is a partial function f from assignments to sets of assignments s.t.

a. G =domain f and H =Jrange f
b. VgeG.{g}¢](fg)=T

With this much background on PCDRT, we can now translate a sentence with binominal each
such as (6) in light of Henderson (2014)’s analysis of distributive numerals. The noun phrase
with binominal each is analyzed as an existential quantifier with a post-suppositional test marked
by the overline, as in (7). The existential quantifier is dynamic, in the sense that it introduces a
discourse variable x for storing dog-values. The post-suppositional test, according to Henderson
(2014), 1s a test evaluated ‘after all the at-issue content is evaluated.” As we shall see shortly, the
post-suppositional test eventually escapes the scope of a distributivity operator when it is evaluated.

6) The students hugged one dog each.
(7)  one dog each* :=AP.[x] A\one x Adog x AP xAx > 1

Both the existential quantifier part and the post-supposition part have a cardinality test, albeit de-
fined differently. The cardinality test associated with the existential quantifier is known as domain-
level cardinality and is defined in (8), while the cardinality test associated with the post-supposition
is an evaluation-level cardinality and is defined in (9).

Definition Domain-level cardinality (PCDRT)

8) Glone x]JH=Tiff G=Hand Vh € H. {x' | x’ <hxAatom x'}| =1
Definition Evaluation-level cardinality (PCDRT)

) Gx>1[H=TiffG=Hand{hx|he H}{ > 1

The domain-level cardinality test is evaluated by checking the cardinality of the set of atomic parts
of an individual assigned by each h. The evaluation-level cardinality test works by gathering all
values of a variable under a set of assignments and checking the cardinality of the resulting set. It is
responsible for deriving the variation inference. In simple words, domain-level cardinality is eval-
uated locally, while evaluation-level cardinality is evaluated globally. Accordingly, (7) identifies a
set of atomic dogs satisfying some property P and the post-supposed evaluation-level cardinality
test globally checks that the resulting set of dogs has more than one member.

At first glance, (7) looks almost headed for a contradiction. What sort of dogs count as one
and more than one at the same time? This is where the ingenuity of Henderson’s account comes
in. Once a distributive numeral is embedded inside a bigger structure with a distributivity operator,
distributivity sets a barrier between the two cardinality tests, interpreting the domain-level cardi-
nality test inside the scope of distributivity and deferring the evaluation-level cardinality test until
after distributivity is fully evaluated.



To see this concretely, consider a fuller representation of (6), in which the distributive numeral
takes narrow scope relative to the (covert) distributivity operator, as in (10) (there is a variety of
ways to compositionally derive the truth condition. See Henderson (2014) and Kuhn (2017) for
two examples.)”. In this structure, the post-suppositional test falls inside the scope of distributiv-
ity. However, due to the definition of post-suppositions as delayed evaluations, (10) has the same
interpretation as (1 1), in which the post-suppositional test is evaluated outside the scope of dis-
tributivity. This way, a contradiction is avoided: of course we can talk about each student hugging
a dog and more than one dog being hugged by all the students.

(10) maxY(studenty) A &,([x]\one x/A\dog x/\hug xy/A\x>1)
(11) maxY(studenty) A &,([x]Aone x/Adog x/A\hug x y) Ax > 1
In the final representation (11), maximization by max¥ delivers the biggest set of students,

whose members are then distributivity checked for atomicity and hugging of dogs. The results are
then stored in an output info-state, as shown in Figure 5.

G y G y [x]\one x/\dog x/\hug x y H y X

H y x
(py maxstudent y) o by [ 91 [ 1] (s [di ] UrreTg,

maxVY (student y)
G y [x]\one x/\dog x/\hug x y H y X

92 | % g2 | S2 hy | s | do ha s |

Figure 5: Interpreting distributivity in (6)

The post-supposition tests each output info-state, requiring that it has at least two distinct values
stored in x. This can only be satisfied if at least a student hugged a dog distinct from the dog
hugged by another student. All those info-states that pass the post-suppositional test are kept and
those that fail the test are tossed. A sentence is interpreted ‘true’ as long as there is at least one
info-state in the output. Evaluation-level plurality is an ingenious way to capture the variation
inference and has been followed by subsequent studies on binominal each such as Champollion
(2015) and Kuhn (2017).

It is worth pointing out that although an evaluation-level cardinality test does not seem to make
reference to the functional dependency introduced by distributivity, it nonetheless does. This is
most obvious from the way an evaluation-level cardinality is computed. It is computed by first
taking the set of values assigned to a variable by different assignments and then finding out the
cardinality of the set. Since these assignments are drawn after a distributivity update, these assign-
ments together store the functional dependency introduced by distributivity. By stating that the
values associated with a variable is evaluation-level plural, it requires the functional dependency
to store at least two values for that variable, giving rise to a case of association with distributivity.

In short, the main innovation in the PCDRT-theoretic analyses is that binominal each have a
two-part contribution. Inside the scope of distributivity, it contributes a normal existential quanti-
fier with a cardinality condition. Outside the scope of distributivity, it contributes an evaluation-
level plurality requirement that associates with the functional dependency of distributivity. The

SInside the scope of distributivity, y is required to be singular, i.e., one y. It serves two purposes: (i) ensuring that
we are distributing down to atoms, instead of some bigger covers, and (ii) ensuring that we discard mixed readings,
i.e., each student hugged a dog and some of them also hugged another dog together. The latter is possible because y
is only required to store all the relevant students collectively, in whichever way one sees fit. There is no guarantee that
it maps each student to an assignment.



different loci of evaluation is made possible by use of post-supposition. The rest of the present pa-
per focuses on the empirical and theoretical challenges faced by the PCDRT approach to binominal
each and what opportunities these challenges bring. I refer the reader to Brasoveanu (2006, 2008,
2013) for more details about PCDRT and to Henderson (2012, 2014) for the particular version of
PCDRT adopted to analyze distributive numerals. As for how post-suppositions are defined in PC-
DRT, please refer to Brasoveanu (2013) and Henderson (2014). If the reader is interested in how
post-suppositions can be translated into a more standard scope taking account, an example is given
in Section 5.3, following the spirit of Charlow (to appear). An alternative scope-taking strategy is
explored by Kuhn (2017).

3 Empirical challenges

3.1 Association with distributivity

Although the PCDRT approach offers an intuitive way to capture the variation inference of bi-
nominal each, it does not address a fundamental issue about binominal each, namely, a sentence
with binominal each always expresses distributivity. This is the reason why distributive numeral
markers like binominal each has long been argued to be a distributivity operator (Choe 1987, Safir
and Stowell 1988, Link 1998; Zimmermann 2002; a.0.)

As discussed in Section 2, random assignment in PCDRT is designed not only to contribute a
variable, but also to introduce dependency (albeit non-deterministically). This can be seen with the
definition of random assignment in (4). What this random assignment does is that when introducing
a variable, each assignment function in the set of assignment functions is free to assign a different
value to the variable. To see the relevance of this, let’s consider the cumulative reading of the
sentence in (12) and its translation into PCDRT in (13).

(12) Three students read five books.
(13) [x] Aboy x A|x| =3[yl Abook y Aly|=5Aread y x
A formula of this form may relate many pairs of input and output info-states. A possible one is

given in Figure 6, in which different values stored in x correspond to different values stored in y.
Hence, there are a plurality of values stored in y in the output info-state.

[x]Aboy xA|x|=3 G x [yl Abook yAfive y/Aread H x Y

X oy X X|= 00 ive rea X

== [ g1 | 5108 |= Y " E gi | 818y | by @by ®bs
g2 | S2bSs3 g2 | S2BS3 b, &by P bg

Figure 6: Dependency in a cumulative reading

As a consequence, if binominal each is attached to three books in (12), as in (14), the PCDRT
approach wrongly predicts that the sentence with the cumulative reading is acceptable.

(14) Three students read five books each.

After all, the post-supposition y > 1 contributed by binominal each is satisfied in the info-state H
shown in Figure 6, as there is more than one value stored in y in the global info-state. There are



two values, to be concrete. However, (14) only receives a distributive interpretation, i.e., each of
the three students read five books.”

Kuhn (2017) notices this problem, and suggests building distributivity into the meaning of
binominal each. This strategy resolves the empirical issue of over-generation, but instead raises
the question why the cumulative version of binominal each has never been reported. In other
words, given that cumulative readings also have dependency, why don’t we see a lexical item that
forces the cumulative reading and ensures evaluation-level plurality? In languages with distribu-
tive numerals, when a numeral phrase receives a special morphology or marker requiring it to
have evaluation-level plurality, it seems that it only ever has a distributive reading, and never a
cumulative reading, as pointed out by Kuhn (2017).

In short, if we start with PCDRT, random assignment in this framework can always generate
dependency and hence helps satisfy the evaluation-level plurality requirement of binominal each,
making it difficult to model the close relationship between the distributivity component and the
variation component. If we take this relationship seriously and make no revisions to the key in-
sights of Henderson (2014), the minimal change we need to bring about is a framework that inhibits
dependency arising from random assignment. In fact, such a framework already exists. van den
Berg (1996) discusses in detail the pros and cons for dependency-introducing random assignment
and dependency-free random assignment, and opts for the latter. Therefore, in DPIL, random as-
signment is incapable of introducing dependency into an info-state. Distributivity then becomes
the only way to give rise to dependency, and hence explains why the variation component is only
compatible with distributivity. The present paper develops a logical framework, detailed in Section
5, that is a natural descent of DPIL in regard to its restrictive introduction of dependency.

3.2 Counting Quantifier Constraint

Evaluation-level plurality offers an intuitive way to capture the variation inference of binominal
each. However, it does not capture an important observation that has puzzled linguists for years—
the so-called Counting Quantifier Constraint. The background of this constraint is that the distri-
bution of binominal each is very restricted (Safir and Stowell 1988; Zimmermann 2002; Stowell
2013). Sutton (1993) concludes that only counting quantifiers, i.e., noun phrases with (modified)

%Henderson (2014) is aware of this problem, and hence requires variables to have only one value at the evaluation-
level (i.e., x = 1) by default. This is an interesting strategy to remove undesirable dependencies introduced into
discourse by the powerful random assignment in PCDRT. The random assignment proposed in Section 5.1 of this
paper, which is based on van den Berg (1996), can be seen as a more ‘automatic’ way of getting rid of undesirable
dependencies—they are not generated in the first place.

On a related note. Evaluation-level cardinality serves two functions in Henderson (2014): to force dependence
(when set to x > 1) and forbid dependence (when set to x = 1 ). This is closely related to the distributivity operator
in van den Berg (1996), with which dependence between variables is allowed and without which it is disallowed. A
decision on which strategy is better is a delicate one. However, distributivity is often thought of as a grammatical
device that does not necessarily require morphological reflexes while evaluation-level cardinality often calls for mor-
phological support. Therefore, the more morphological reflexes we see of evaluation-level cardinality constraints, the
more support we have for using them as the default strategy for marking (in)dependence. On the other hand, if we
can show that morphological reflexes for evaluation-level cardinality (like x > 1) can be analyzed as doing something
more than just signaling (in)dependence, then we have an argument that the (in)dependence may come from a more
basic part of grammar. In this paper, I demonstrate that at least in the analysis of binominal each, there is no need
to use evaluation-level cardinality, which takes away part of the shine of using this special cardinality to manage the
(non-)generation of dependency.
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numerals and vague quantity words like many, a few or several, can host binominal each (see also
Szabolcsi 2010). All other noun phrases are rejected. The contrast is illustrated in (15) and (16).

( \

two
at least two
more than two )
(15) The boys saw o few movies each.
several
many
( 0
some
a certain
the .
(16) *The boys saw those movies each.
few
most

all

\

Most theories of generalized quantifiers take indefinites to align with counting quantifiers in
contributing existential quantifiers (Barwise and Cooper 1981). Although bare noun phrases are
sometimes analyzed as kind-terms, they nonetheless also contribute existential quantification after
the kind-level meaning is shifted to an object-level meaning in episodic sentences (e.g., Carlson
1977, Chierchia 1998, Dayal 2004). If existential quantification is what standardly introduces
discourse variables via random assignment, then the first two cases in (16) should have the same
PCDRT-theoretic translation as (17).

(17)  max*(boy x) A\ dx(lyl Amoviesy/Asawy x) Ay > 1

As long as it is not the case that the boys saw the same movies, the evaluation-level plurality test
is satisfied. In other words, these sentences should be well-formed, contrary to fact.

In the next subsection, I show that however useful as a descriptive label, Counting Quantifier
Constraint does not reliably help us pick out the class of noun phrases that can host binominal
each. What matters to binominal each is the measure function embedded inside its host.

3.3 Extensive Measurement Constraint and Monotonicity

Counting Quantifier Constraint has been around for a while, but only quite recently did Zhang
(2013) notice that it is insufficient even as a description. Concretely, Zhang (2013) observes that the
type of measurement also plays a crucial role in constraining what counting quantifiers may host
binominal each: extensive measurements give rise to good hosts but non-extensive measurements
give rise to hostile hosts.

It is widely assumed that numeral expressions such as two students and seven feet have more
structure than what meets the eye. In addition to the number word and the common noun, they
also contain measure functions like cardinality, height, weight, speed, and temperature. Ac-
cording to Lgnning (1987), a measure function denotes a mapping between a class of physical
objects and a degree scale that preserves a certain empirically given ordering relation, such as “be
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lighter than” or “be cooler than.” Degrees are further mapped to numbers by unit functions like
pound or kilogram. Krifka (1989, 1998) classifies measure functions into two types—extensive
and non-extensive measure functions. Crucially, these two types of measure functions differ from
each other with respect to the property additivity. For example, weight is extensive since for any
object, its weight is equal to the weight of all its parts added together; whereas temperature is
non-extensive since the temperature of an object is not always equal to adding up the temperature
of its parts.

The examples in (18) and (19) demonstrate Zhang’s observation that binominal each can only
be hosted by a noun phrase with an extensive measure function. To rule out the concern that some
of the non-intensive measure functions give rise to a more complex structure, as in the case of
speed, or a less natural noun phrase, as in the case of purity, a minimal pair using the measure
phrase 60 degrees is offered. In (18-d), 60 degrees is a measurement of the angles, and in (19-a),
the same form is a measurement of the temperature of drinks.

(18) a. The boys read two books each. cardinality
b. The girls walked three miles each. distance
c. The windows are four feet (tall) each. height
d. The angles are 60 degrees each. angle
(19) a. *The drinks are 60 degrees (Fahrenheit) each. temperature
b. *The girls walked at three miles-per-hour each. speed
c. *The gold rings are 24 Karat each. purity

Analyses based on evaluation-level plurality do not expect the contrast between (18) and (19),
since they do not have a component making reference to the property of measure functions. In
addition, they wrongly predict that binominal each cannot be hosted by measure phrases other
than those involving cardinality. Consider (18-c), in which every window has the same height,
i.e., four feet. In other words, there is only one height-value that the windows are associated with,
which should fail the evaluation-level plurality requirement. The fact that (18-c) is judged true and
acceptable is therefore unexpected.

In fact, binominal each is not the only natural language item that cares about the distinction be-
tween extensive and non-extensive measurement. Schwarzschild (2002, 2006) points out a similar
contrast in pseudo-partitives: pseudo-partitives admit extensive measurement, as in (20), but reject
non-extensive measurement, as in (21).

(20) a. two pounds of cherries weight
b.  thirty liters of water volume
21) a. *five degrees Celsius of the water in this bottle temperature
b. *five miles an hour of running speed

In addition, Wellwood (2015) observes similar contrasts in comparatives. Both sentences in (22)
can express comparisons involving extensive measurement, but neither can express a comparison
involving non-extensive measurement. For example, in (22-a) the amount of the soup that Al
bought is larger than the amount of the soup that Bill bought. The amount may be understood in
terms of volume or weight, but not temperature.

(22) a. Al bought as much soup as Bill did. volume, weight, *temperature
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b. Al ran as much as Bill did. time, distance, *speed

Schwarzschild (2002, 2006) accounts for the sensitivity of measurement constructions to types
of measure function by invoking the notion of monotonicity. Wellwood (2015) provides a formal
definition of this monotonicity condition on measurement, as shown in (23). This condition re-
quires the part-whole structure of the domain of a measure function be preserved in the domain of
degrees.

(23) Monotonic Measurement (Wellwood 2015)
A measure function p is monotonic iff

a. there exists X,y € Dpar, such that x #y, and
b.  forall x,y € Drpar, if x Py, then p(x) <% u(y)

The monotonicity constraint of Schwarzschild and Wellwood says the following: only mono-
tonic measure functions can be used in the measurement constructions like pseudo-partitives or
comparatives. Consequently, extensive measure functions, but not non-extensive ones, pass the
constraint. Consider a portion of coffee, ¢, and two of its proper parts, ¢c1 and c2. ¢ necessarily
measures a greater degree by volume or weight than that of the parts ¢1 and c2, but ¢, ¢1 and
c2 typically have the same temperature. If they don’t, the temperature of the c is falls somewhere
between the temperature of ¢1 and the temperatures of c2, making temperature non-monotonic.

It is reasonable to assume that constructions with binominal each also obey some form of
Monotonicity Constraint. This has the following effect: to qualify as a host of binominal each, a
noun phrase must have a measure function, and the measure function must be an extensive measure
function to satisfy Monotonicity Constraint. It is clear that Monotonicity Constraint straightfor-
wardly accounts for the sensitivity of binominal each towards extensive and non-extensive measure
functions. In addition, it illuminates Counting Quantifier Constraint. Counting Quantifiers are a
type of measure phrases, typically involving the extensive measure function cardinality. By con-
trast, bare nouns and indefinites do not contribute any measure function, making them unsuitable
hosts. Additionally, Schwarzschild (2006) shows that NPs with Q-adjectives like many, a few,
a little and a lot of have a syntax similar to measurement phrases and must be associated with
a monotonic measure function. In this respect, NPs formed out of them are no different from
counting quantifiers.

3.4 Interim summary

It is important to understand which component of the PCDRT-theoretic analyses the three empirical
challenges actually challenge. At the core of in the PCDRT-theoretic analyses are the following
two pieces:

e A dynamic plural logic allowing information about plurality and dependency to be recorded.

e An evaluation-level plurality constraint that accounts for the variation inference.
The first empirical challenge does not target the whole dynamic plural logic tradition, but only

disagrees with how flexibly one should allow dependency to be introduced into a discourse record.
It is still useful to have a dynamic plural logic that records plurality and dependency so that we
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can make reference to this structured discourse record to state some form of the evaluation-level
constraint to deliver the variation inference. The second and third empirical challenges target
the evaluation-level plurality constraint, suggesting that it is not precise enough to capture why
counting quantifiers with extensive measurement should be privileged.

The purpose of the present paper is precisely to offer an analysis that deviates from the PCDRT-
theoretic analyses in these two regards. At the heart of the analysis is a monotonicity constraint that
makes reference to measurement and distributivity. To ease the reader into this novel monotonicity
constraint, I first lay out the key ideas of the constraint without the burden of a compositional
semantics in Section 4, allowing the reader to assess the validity of the monotonicity constraint
and to imagine their own semantic framework in which such a constraint may be embodied. Then,
in Section 5.1, I suggest a concrete dynamic logic to implement the monotonicity constraint in a
compositional manner. The dynamic logic is rooted in the tradition of van den Berg (1996) but
also has innovations borrowed from the PCDRT framework.

4 Discourse-level monotonicity, informally

I propose that binominal each introduces a constraint that ensures the measure function in its
host to be monotonic relative to the internal structure of the functional dependency established
by distributivity. In slightly more concrete terms, the distributivity expressed in (24) establishes a
dependency between the boys and the movies, as visualized in Figure 7.

24) The boys saw two movies each.

f: boy — movie

/\‘
bbb, m;@EmyEmsdmy

by b, mi;Pm; ms3dmy
I

Figure 7: Dependency established via distributivity

Here, boy1 saw movie1 and movie2, while boy2 saw movie3 and movie4. The movies seen be-
tween the two boys are movie1, movie2, movie3 and movie4. Let’s assume a function f that maps
each boy to the movies he saw and also sums of boys to the sums of movies they saw. In other
words, f encodes the functional dependency induced by distributivity and is cumulatively closed
(just like an info-state encoding functional dependency). With f, we can define a monotonicity con-
dition on a measure function p relative to distributivity, as in (25). I call this type of monotonicity
‘d-monotonicity’.

(25) Monotonicity relative to distributivity (d-monotonicity, with f)
A measure function p is d-monotonic iff there is a function f such that

a. NON-DECREASING MAPPING
Va,a’ € domain f. a < a’ — u(fa) < u(f a’), and
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b. NON-CONSTANT MAPPING
3b,b’ € domain f. u(f b) # u(f b’)

(25-a) requires that the part-whole relation found in the domain of f be mapped non-decreasingly
to the measurement of the range of f. Since f encodes the functional dependency induced by dis-
tributivity, this amounts to making reference to the structure of distributivity. In other words, we
are referring to parts of a distributivity dependency that stand in a part-whole relation. Modulo
the association with f, (25-a) is a standard definition of non-decreasing monotone functions. It
is weaker than the definition of monotonic measure functions found in Wellwood (2015), which
picks out strictly increasing functions among the non-decreasing ones. 1 will return to this differ-
ence after demonstrating how the definition in (25) works as a whole. (25-b) requires measurement
variability in the range of f. It is comparable, but crucially not the same, as evaluation-level plu-
rality found in the PCDRT-theoretic analyses. I will also return to their differences shortly.

Extensive Measurement Constraint Let me start by demonstrating how d-monotonicity captures
Extensive Measurement Constraint. Consider (24) with a function f as illustrated in Figure 7. The
measure function in this case is cardinality (or pearg). It is clear that (24) in this setup satisfies
(25). First, suppose we take elements b1, b2 and b1#b2, the former two are proper subparts of the
last one. f maps bl to m1é&m2, b2 to m3@&m4 and b16b2 to m1Em2@&m3@m4. The cardinality
function 1 maps f bl to 2, f b2 also to 2, and f b1®b2 to 4, as shown in Figure 8. Since the
measurement of the range of f does not decrease (in fact, it increases) as we consider increasingly
bigger elements in the domain of f, we can conclude that (25-a) is satisfied. In addition, there are
at least two elements in the domain of f that get mapped to elements in the range of f that also
yield different measurements. For example, bl and b1é@b2 are such a pair, so are b2 and b1®b2.
We can conclude that (25-b) is also satisfied.

f: boy — movie Ucard : mMovie — d
— T oo
bldb2 m1em2em3omd 4
bl b2 mlém2  m2dm3 2
/ M AN -

Figure 8: Extensive measurement tracks the internal structure of distributivity

(25-a) alone is a rather weak condition. In fact, as long as the measure function involved in
the host of binominal each is extensive, it is always satisfied, regardless of how many elements
there are in the domain and the range of f. One can verify this by constructing scenarios with
only one element in the domain of f and/or only one element in the range. In addition, if pgjm 1S
non-extensive, as long as the range of f is a singleton, or the range of pgim is a singleton, (25-a) is
satisfied. Therefore, to have the right strength, (25-a) has to be complemented by (25-b).

What (25-b) requires is that the values stored in the range of f must yield different degrees
after being measured by a measure function. This rules out the possibility of all values in the range
of f having the same measured degree. For example, (26) has a non-extensive measure function
temperature (or pemp) that typically yields a uniform degree for all the values in the range of
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f, as illustrated in Figure 9. It is predicted to fail non-constant mapping, i.e., (25-b), and hence
violate d-monotonicity. Note that it does not violate NON-DECREASING MAPPING in (25-a), as
the measurement is indeed a non-decreasing mapping of the domain of f, albeit in a trivial way as
there is only one degree in the range of Lemp.

(26) *The boys bought 60-degree coffee each.

f:boy — coffee Htemp : cOffee — d
bldb2 cldc2de3dbed N
/\ /\ .60
bl b2 clde2 c3kped -
N

Figure 9: Non-extensive measurement dose not track the internal structure of distributivity

If measuring the range of f indeed yields different degrees, as in the case of cardinality measure-
ment as illustrated in Figure &, non-constant mapping is satisfied.

Interestingly, f and ugim may happen to be the same function, and the contrast between exten-
sive and intensive measurement still holds, as shown in (27-a) and (27-b).

27 a. *The coffees are 60 degrees each.
b.  The angles are 60 degrees each.

In these two examples, a predicative measure phrase helps map individuals in the distributivity
key to the corresponding degrees of measurement as indicated by the measure phrase. Concretely,
the coffees (or angles) are distributively checked for their temperature (or degree). So, f encodes
a functional dependency between coffees (or angles) and their temperatures (or degrees). Liemp
(or Hang) 1s identical to f in being a temperature (or angle) measure function. Both sentences
satisfy NON-DECREASING MAPPING as stated in (25-a). However, (27-a) fails NON-CONSTANT
MAPPING while (27-b) satisfies it. This is because there is only one temperature, i.e., 60 degrees,
in association with f in (27-a), but two degrees, i.e., 60 degrees and 120 degrees, in association
with f in (27-b). The contrast is illustrated in Figure 10.

f:angle — d Uang:angle — d f : coffee — d Htemp : CcOffee — d

T
ajda, 120 Clm
/\ ‘ /\ 60

aj a 60 Ci C2

w
(a) Angle (b) Temperature

Figure 10: Measure phrase host
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At first glance, NON-CONSTANT MAPPING, as conceived here, is quite similar to evaluation-
level plurality, as formulated in Henderson (2014), Champollion (2015) and Kuhn (2017). For one
thing, they both require a non-constant function. However, they crucially differ in whether they
make reference to the internal mereological structure of the domain and the range of f. Evaluation-
level plurality does not, while NON-CONSTANT MAPPING does. Moreover, evaluation-level plural-
ity does not have a measurement component while NON-CONSTANT MAPPING does. Despite these
differences, the two make very similar predictions if we are only concerned with individuals in the
range of f and cardinality measurement. After all, more values in the range of f automatically
means a bigger plurality and hence a larger measurement.

To see how the two notions differ, we need to let f map not just individuals to individuals, but
also individuals to degrees, i.e., let f store the dependency provided by measure functions. We also
need to extend evaluation-level plurality accordingly so that we have designated degree drefs x4
for storing degrees, as illustrated in (28).

Definition Evaluation-level plurality (PCDRT)
(28) Gxq > 1JH=Tiff G=Hand|{h xq |h € H}| > 1

Again, evaluation-level plurality is defined by considering the values, i.e., degrees in this case,
stored in xgq globally. If all assignments assign the same degree to the variable, then there is
no variation of degrees at the evaluation level. In other words, evaluation-level plurality unde-
sirably neutralizes (27-a) and (27-b). The neutralization happens not because accounts based on
evaluation-level plurality do not have measure functions, but because they fail to take into consid-
eration the mereological nature of the functional dependency induced by distributivity. We may say
that they succeed in accounting for variability in association with distributivity, but fail to account
for variability in association with the structure of distributivity.

Switching to measurement instead of values preserves the variation requirement. In particular,
(25-b) entails that the range of f is not a singleton, regardless of the type of measure function
involved. Should it be a singleton, there would be no measurement variability in the range of f.
This predicts that (29) fails the monotonicity constraint.

(29) *The boys saw two movies each, namely Inception and The Matrix 1.

One may suspect that (25-b) alone is sufficient to guarantee the variation inference and the
privilege of extensive measure functions. It is not. It can be satisfied with a non-extensive measure
function as long as the function yields different degrees for different values in the range of f. For
example, consider binominal each whose host is a measure phrase with a modified numeral, such
as (30-a) and (30-b). Figure 11 illustrates how f and pgijm Works in these two sentences.

30) a. *The drinks are more than 60 degrees each.
b. The angles are more than 60 degrees each.

(30-a) satisfies NON-CONSTANT MAPPING (as well as evaluation-level plurality), as the range
of f has different degrees. However, it is still not well-formed. This is because it violates NON-
DECREASING MAPPING: there is a pair of elements in the domain of f that stand in a part-whole
relation whose corresponding measurement fails to preserve the the order of the pair, as indicated
by the crossing lines in Figure | 1a. By contrast, (30-b) satisfies both NON-CONSTANT MAPPING
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f:coffee —+d u:coffee —d f:angle—d p:angle —d

75 h140
C1PCy a;day

Ci C aj az\/ 75
S~ 6 T~ T 65
(a) (30-2) (b) (30-b)

Figure 11: Violation (a) and observation (b) of non-decreasing mapping

Expressions compatibility with measure units host binominal each
(modified) numerals yes yes

two, at least/most two, e.g., two pounds e.g., two books each
more/less than two more than five miles

e.g., Hackl (2000), Kennedy (2015)

quantity expressions yes yes

a few, a couple, many e.g., a few gallons e.g., many movies each
e.g., Rett (2014), Solt (2015)

quantity comparative yes yes

more, as many (much) as e.g., as many pounds as as many books each
e.g., Wellwood (2015)

quantificational determiners no no

no, some, few, most, every, all e.g., *most miles e.g., *most books each

Table 1: Expressions that can (and cannot) form a host for binominal each

(as well as evaluation-level plurality) and NON-DECREASING MAPPING, as indicated in Figure
11b.

Counting quantifier constraint Lastly, we predict that noun phrases without an appropriate mea-
sure function component cannot host binominal each. A natural question that arises is how we
can diagnose the presence of a measure function component. I do not have a satisfactory answer
at this point. However, compatibility with unit functions like pound(s) and mile(s) seems to be a
rather reliable test: if a determiner-like expression is compatible with measure units like pounds
and miles, then it can form a noun phrase that can host binominal each. Some examples are given
in Table 1.’

It has been pointed out that noun phrases with the indefinite article a are better than those with
the determiner some in hosting binominal each, although not all speakers accept them equally well
(Safir and Stowell 1988, Szabolcsi 2010, Milacic et al. 2015), as illustrated in (31).

3D a. %The boys read a book each.

7Some sometimes does occur with unit functions, as in gained some inches and lost some pounds. In these cases,
the unit functions are interpreted as standing in for the entities they measure, i.e., height and weight, respectively.
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b. *The boys read some book(s) each.

Interestingly, a is also compatible with unit functions in ways that some is not. Of course, this
is not at all surprising given how many linguists think that (synchronically and/or diachronically)
a is derived from one (e.g., Perlmutter 1970, Chierchia 2013, Kayne 2015). Given these consid-
erations, it is conceivable that a is ambiguous between a (weak) numeral one and an existential
determiner, while some is only an existential quantificational determiner without a measure func-
tion component.

(32) a. amile, a pound, an inch
b. *some mile(s), *some pound(s), *some inch(es)

NON-DECREASING and NON-CONSTANT vs. strictly increasing The decision on a weaker form
of monotonicity, one in terms of a non-decreasing mapping, instead of a strong form requiring a
strictly increasing mapping, as suggested in Wellwood (2015), is empirically motivated. Consider
(33). It is judged true in a scenario like Figure 12a, in which both boy1 and boy3 saw moviel,
while boy2 saw movie2. Since the range of the mapping function serves as the domain of the
measure function, we can compose the two functions to form a composite function, pgimof as
illustrated in Figure 12b: the domain of the function is the values associated with the distributivity
key, i.e., the boys in this case, and its range is the measured degree of the values introduced by the
host, i.e., the cardinality of the movies.

(33) The boys watched one motive each.

f:boy — movie Leargof : boy — d

@ @ bi®b,®bs
2
@ @ bbby, bidbs bydbs
1
@ bl b2 b3
(a) Dependency between boys and movies (b) Dependency established by icargof

Figure 12: Non-decreasing mapping

In this situation, the cardinality of f by is the same as that of f b;®bs. Similarly, the respective
cardinality of f by®b, and f by®bs is the same as that of f b;@b,y®bs. In other words, the
composite function is non-injective.

If the monotonicity constraint is formulated to require a strictly increasing mapping, like (34),
the situation in Figure 12 is predicted to be incompatible with (33), precisely because of the non-
injective nature of the composite function illustrated in Figure 12b.

(34) Strictly increasing d-monotonicity (rejected)
Va,a’ edomain f. a < a’ — p(f a) < u(f a’)
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However, formulating the monotonicity constraint as a non-decreasing and non-constant map-
ping, as in (25), does not run into this problem. The composite function in Figure 12b is non-
decreasing and non-constant. Therefore, it is predicted that (33) is acceptable in the scenario
depicted in Figure 12a.

5 Formalizing d-monotonicity

Now that d-monotonicity has been established, we are ready to supplement it with a more com-
positional semantics. In fact, it is not difficult to imagine what kind of framework we need to
implement d-monotonicity compositionally. The framework should satisfy the following criteria:

e Criterion 1: It should allow us to talk about measure functions of various sorts.

e Criterion 2: It should allow us to introduce distributivity dependency and its structure and
refer back to it. In other words, it should make concrete how f is assembled.

e Criterion 3: Since measurement kicks in after f is established, we need a way to split up the
contribution of a host marked by binominal each, evaluating one part (i.e., the basic seman-
tics of the host) inside the scope of distributivity and the other part (i.e., d-monotonicity)
outside the scope of distributivity. The former provides the necessary ingredient to build
distributivity and hence the function f. The latter can access f after it is assembled.

Criterion 1 is very easy to satisfy. Any framework that can be enriched to include pluralities
and measure functions can be used to model monotonicity. Therefore, a decisive choice depends
on the remaining two criteria.

A well-known framework satisfying Criterion 2 is Dynamic Plural Logic of van den Berg
(1996) and its close cousin Plural Compositional DRT, devised in Brasoveanu (2006, 2008, 2013).°
Both approaches have been used to model phenomena pertaining to distributivity. PCDRT has
been used more often in the literature of distributive numerals, by Henderson (2014), Champollion
(2015) and Kuhn (2017). In this paper, I develop a hybrid approach that is intermediate between
DPIL and PCDRT, and enriched to include various sorts of measurement. The developed logic lets
assignment functions range over not only atomic individuals, as in van den Berg (1996), but also
plural individuals, as suggested in Brasoveanu (2008). However, it sides with van den Berg (1996)
in inhibiting dependency introduced by random assignment. Rather, the privilege to introduce
dependency into discourse is reserved for a distributivity operator. This is crucially different from
the PCDRT tradition, which allow any random assignment to introduce dependency into discourse.
I argue in Section 7.1 that this choice explains why d-monotonicity is only seen with distributive
predication.’

8There are other frameworks that track distributivity dependency. For example, Landman (2000) and Champollion
(2017) develop accounts for distributivity based on event semantics, in which the dependency is retrievable from
events. Huang (1996) develops a semantics for distributivity based on skolem functions, in which the distributivity
dependency can be retrieved by using skolem functions. The merit of DPIL is that it not only tracks the dependency
in context, but the built-in anaphoric device (i.e., discourse variables) allows us to access the dependency relatively
easily.

Besides van den Berg (1996), many studies have observed that distributive quantification has a much easier time
introducing dependency than non-distributive quantification, such as cumulative and collective quantification. Some
examples are Nouwen (2003), Solomon (2011), and Bumford (2015).
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Criterion 3 essentially asks for a split-scope mechanism. Several alternatives have been ex-
plored in the literature. An option is by means of a post-supposition (Henderson 2014, Cham-
pollion 2015), as discussed in Section 2. Kuhn (2017) points out that post-suppositions, without
further assumptions, predict the lack of locality in the licensing of distributive numerals. The pre-
diction is not borne out, as distributive numeral licensing is subject to locality (Kuhn 2017, Char-
low, to appear). The follow example, modeled after a similar unacceptable Hungarian sentence
reported in Charlow (to appear, ex.104), shows this point.

(35) *The linguists would be happy if two theories each are refuted.

This sentence cannot mean ‘for every linguist, he or she would be happy if two theories are
refuted.” This is likely due to the fact that the distributive numeral ‘two theories each’ is embedded
inside an island. To model the island sensitivity of distributive numerals, Kuhn (2017) suggests
a scope-taking analysis, in which a distributive numeral like two theories each has to undergo
quantifier-raising (QR) to take wide scope. A drawback of Kuhn’s QR analysis is that it fails to
account for the grammaticality of distributive numerals with a bound pronoun inside them.

(36) Minden rendezd benevezte két-két filmjét.
every director entered  two-two film-POSS.-3SG-ACC
‘Every* director entered two fils of hisy (in the competition).’

In this Hungarian example, the noun phrase restriction of the distributive numeral has a (pos-
sessor) pronominal bound by the quantifier that licenses the distributive numeral. If the distributive
numeral has to take wide scope over its licensor to be licensed, then the pronoun is left unbound.

Based on considerations of island sensitivity and pronominal binding, Charlow (to appear)
suggests a slightly more involved scope-taking mechanism, one that uses higher order meaning.
While deferring a more detailed discussion until Section 5.3 as to what higher-order meaning a
binominal each phrase has, it suffices to note that Charlow’s higher-order meaning approach has
a very similar empirical coverage as the post-supposition approach, with the exception of island
sensitivity, which favors the former. In this study, I adopt the higher-order meaning approach for
it has better empirical coverage, although the choice is largely immaterial to the main claim that
binominal each makes reference the mereological structure of distributivity.

It should be clear by now what kind of framework is needed to account for the novel properties
of distributive numerals observed in this paper. In the next sections, the essential components of
such a framework is provided. I begin by discussing the general framework in Section 5.1, followed
by translating d-monotonicity into this framework, and lastly in Section 5.3 d-monotonicity is
implemented in a compositional manner.

5.1 Formal background: DPILM

The background for the account is van den Berg’s Dynamic Plural Logic (DPIL, van den Berg
1996), extended to include measure functions beyond cardinality.'" T call this logic Dynamic Plu-
ral Logic with Measurement (DPILM). van den Berg’s approach is also adopted and extended in

10The logic in van den Berg (1996) is three-valued, i.e., evaluation can result in truth, falsity or undefinedness. I will
adopt a simpler version here, by only stating the true transitions, i.e., the pairs of assignments that are in the denotation
of a sentence.
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Nouwen (2003) and DeVries (2016). This approach is modified in nontrivially ways in Brasoveanu
(2006), to give rise to Plural Compositional DRT (PCDRT). PCDRT is then adopted to account for
distributive numerals in Henderson (2014), Champollion (2015) and Kuhn (2017). The current
account represents the only account targeting distributive numerals in van den Berg (1996)’s tra-
dition. In section 5.1.1, I argue that DPIL, for it ties distributivity and dependency, allows us to
understand binominal each and its d-monotonicity requirement in a much more transparent way.
The remainder of this section introduces DPILM.

5.1.1 General architecture

In DPILM, interpreting a formula yields a relation between information states, just as in DPIL
and PCDRT. An information state is a set of assignment functions. This differs minimally from
the more well known Dynamic Predicate Logic (DPL), which interprets a formula as a relation
between assignments, rather than sets of assignments. So, here comes our first formal definition,
of information states.

Definition: Information states (info-states)
(37) An info-state is a set of assignment functions.

Following a common practice in the literature, an information state is represented as a matrix.
The first row has the discourse variables (x,y,...), also known as discourse referents (or d-refs for
short), introduced into the info-state (G) so far. The first column lists the variable assignments in it
(91, 92, -..). All the other individual cells store a value obtained by applying a variable assignment
to a discourse variable. Each column (headed by a discourse variable) stores the collective values
assigned to the variable by all the assignments together. Each row (headed by assignments) stores
the values a single assignment assigns to all the variables. By considering different assignments,
we get potentially different values for the variables, enabling us to talk about dependency among
variables.

G X Yy
g1 a d
g2 b | edf
g3 c | def

Figure 13: An information state G in DPILM

Although not explicitly mentioned in previous studies using info-states, an info-state also stores
the mereological structure of the assignments, as shown in the assignment semi-lattice in Figure
14a. On the basis of the assignment mereology, we can derive the mereology of the values stored
in the variables in an info-state. For example, the corresponding values assigned to the variable y
by sub-states with various numbers of assignments are organized into a semi-lattice in Figure 14b.
It is precisely the ability of info-states to store the mereological structure of the assignments that I
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capitalize on to implement d-monotonicity, which makes crucial reference to the internal structure
of the distributivity dependency encoded in the assignments.

{91.92.93} =G {d.edf.daf=Gy
{91,092} {9193} {92,903} {d,esf} {d.def} {dfesf}
{91} {92} {93} {d} {edf} {dept}
(a) Mereological structure of G (b) Mereological structure of G y

Figure 14: Mereology of an info-state

We turn to assignment functions next. In DPIL, an assignment function only has atomic individ-
uals in its range. This is so because the goal of van den Berg (1996) is to reduce all domain-level
pluralities (i.e., the pluralities found in the model other than the pluralities of assignments) into
discourse-level, or evaluation-level, pluralities. However, since DPILM needs to deal with mass
nouns and measurement, I modify this assumption and let assignment functions range over any
entity (atomic or plural) in a domain.

Definition: Assignment function

(38) An assignment function g takes a variable and when defined, returns a (possibly plural)
individual.

This is essentially the same modification that Brasoveanu (2008) has made to DPIL in PCDRT.
The motivating idea is that if DPIL sets out to model plurality, like the plurality in many static
frameworks, then depriving itself of domain plurality (plurality in the range of assignment func-
tions) results in a framework that fails to deal with any domain that lacks well-defined atomicity,
like the domains of mass nouns, atelic events, and spatial and temporal intervals (see, for example
Bach 1986).

Of course, introducing domain plurality into DPIL comes with a price tag. The system thus
developed has two types of pluralities. Discourse plurality, also known as evaluation plurality,
comes from considering a plurality of assignment functions. Domain plurality, also known as
referential plurality, comes from considering a single assignment function that assigns a plurality
to a variable. When we talk about cardinality and measurement, we need to be careful and keep
these two types of plurality apart. Fortunately, thanks to the collectivity evaluation of lexical
relations, to be defined in (46), we only need to make reference to evaluation-level cardinality in
this framework.

Assignment functions take (discourse) variables as their arguments. Variables are d-refs intro-
duced into an info-state by specific expressions. The strategy for introducing a variable is by using
random assignment, as defined in (39).

Definition: Random assignment (DPILM)
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(39)  G[X]JH =T iff GIx]H, where

a. GxJH:=3D.H={g*4|ge G &deD}
b. D is a set that may include atomic or plural entities.

This version of random assignment differs from both the DPIL version and the PCDRT version.
Unlike the PCDRT version but like the DPIL version, it does not introduce dependency between
the introduced variable and any existing variable. Unlike the DPIL version but like the PCDRT
version, a single assignment is free to assign any value, atomic or not, to a variable. The result is a
random assignment that may introduce plurality but is still dependency free.'’

An example should help us see how this random assignment works. Assume a domain with
atomic and plural entities ¢, d and cd. Introducing a variable x with the formula [x] on an info-
state G leads to seven outputs info-states. Since we’re bringing domain plurality into the range
of assignment functions, it is necessary for us to represent pluralities as well as singletons. I have
chosen to represent them as atomic individuals and sum-individuals, following the tradition of Link
(1983)."”

G vy Hi y x G vy Hy y x G vy H3 y x
gi | a [:X; h; |a]|c g | a g g |al|d gi | a g g1 | a | cad
g2 | b h, | b|c g2 | b g2 | b|d g2 | b g2 | b | cdd
Hy y x Hs y x He y x
G vy hy |[a|c G vy h; | a G vy hy |a| d
glaghzbc gla[__xghzb c gla[__xghzb d
g> | b hy; [ a|d g> | b hy | a | ced gr | b hs | a | cd
hs | b | d hy | b | cpd hy | b | cd

H7 Yy X

h; | a C

G y hz b C

gi | a [;; hs |a| d

g | b hgy | b| d

hs | a | c®d

he | b | cd

Figure 15: Dependency-free plural-assigning random assignment (DPILM)

Note that in none of these output info-states does the variable y depend on the variable x or vice
versa. To better see this, we need the formal notion of dependence:

Definition: Dependence (Nouwen 2003, see also Kuhn 2017)

7t is generally accepted that whether assignment functions may range over pluralities and whether new variable
introduction is dependency free are two independent design choices of a dynamic plural logic. The particular version
of random assignment devised here offers a concrete demonstration that these two aspects are indeed independent.

12 An alternative is to represent pluralities as sets following the tradition of Scha (1981), Schwarzschild (1996) and
van den Berg (1996). My decision is primary based on readability—the plurality resulting from sets of assignments are
represented as sets already, and having referential pluralities modeled as sets inside these sets is not very aesthetically
appealing.
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(40) y is dependent on x in an information state G iff
Jda,b € Gx.Glx=a Y #Glx=b y

The notation G|x—q Yy is a shorthand for projecting the values stored in the variable y in the info-
state G by only considering those sub-states in which x is assigned the value a. For dependence
between two variables x and y to hold, a variable (say y) should not always be assigned the same
value for different values assigned to x. In other words, the values stored in y is not constant
relative to the values in x.

Since we will make heavy use of value projection, it is handy to have the following ways of
projecting values in an info-state and in its sub-states.

Definition: (Sub-state) value projection

41) a. Gx:={gx:geG}
b. Glk=ay:={gy:9€G&gx=ad}
c. Ghexy={gy:g€eG&gxeX}

Since random assignment in DPILM typically gives us many outputs, some contain straightly
less information that the others, we may want to focus on the most informative output. A maxi-
mization operator, as defined in (42), serves this purpose. It is a very important ingredient in defin-
ing dynamic generalized quantifiers, both in DPIL and PCDRT. The dynamic GQs used in this
paper are simpler and do not make use of maximization. However, maximization is still needed
for plural definites and universal quantifiers, to model their maximality requirements.

Definition: Maximization

42)  G[max*(¢)JH =T iff
a. G[xI A ¢oJH
b. —3H'H(x) < H'(x)&G[[x] A\ p]H’

(43)  H(x) <H'(x) =®H(x) < ®H'(x)

To implement d-monotonicity, it is necessary for info-states to store functional dependencies.
Since random assignment in DPILM does not introduce dependency into an info-state, another
operator needs to fill in the gap. Following DPIL, the distributivity operator 0y serves this purpose.

Definition: Distributivity

(44) G[ox(p)[H=T iff
a. Gx=Hx
b. Vae G x.Gleq [¢] Hx=a =T

The distributivity operator splits up the input info-state into substates based on the values stored
in the subscripted variable (x in this case). It then checks that the formula in its scope, i.e., ¢, holds
for each sub-state. Hence, for each sub-state, a distributivity update generates a set of output sub-
states. These sets of sub-states are then pointwisely put back together to form the output info-state.
If ¢ carries with it a random assignment [x], the new variable gets passed to the output. This way,
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DPILM opens up a door for introducing dependency into info-states.

To take a concrete example, interpreting the formula with a random assignment in the scope
of a distributive operator &y ([x]) relative to the info-state G in Figure 15 first splits up the input
info-state along the y dimension, resulting in two atomic sub-states, as shown in Figure 16. Then
intermediate sub-states are created by updating x to each of the two atomic sub-states and assigning
random values to x. Note that within each leg of the distributive update, there is no dependency
between x and y. However, after pointwisely collecting the intermediate sub-states to form the set
of output info-state, some of the output info-states actually have dependency between x and y, for
example H; and Hj in this case.

Gilx=a Yy x
Lo fale]
Gé|x:a y X
Lo |ald] My x
G|y:a Y G§|x:a Y X g1 | a ¢
gi A (g1 [a]cad] 92 |bjc
H2 y X
G g 5 U gy |a|cC
9l b :"> Gzﬂx:b Yy X = 92 b|d
0 ’ 92 ‘ b ‘ c ‘ Hj y X
Gly=p U Gl — X
@ To] ¥ [& 6 b
9 [b] = 92 [b[d] o | b| d
Gé|x:b y X .
9 | b | cad |

Figure 16: Introducing dependency with help of a distributivity operator

5.1.2 Lexical relations, cardinality and measurement

In DPILM, all lexical predicates are cumulatively closed by default, following the assumptions in
Landman (2000), Kratzer (2007) and Champollion (2017). For this reason, I do not mark a predi-
cate with “*” to indicate cumulative closure.

Definition: Cumulativity of lexical predicates

(45) a. J(book):={c,d,c®d,...}
b. J(read):={(a,c),(b,d),(a®bb,cpd),...}

Lexical relations are satisfied collectively, siding with the original DPIL defined in van den Berg
(1996). However, since we now have both discourse plurality and domain plurality, we need to
modify the way DPIL checks lexical relations to adapt to this change. Let me elaborate on this
point.

26



Recall from the previous paragraph that in our model a lexical predicate like book denotes a
set of atomic individuals and their sums. A discourse plurality, i.e., the plurality of values stored
in a discourse variable like x, has the same type as our lexical predicates, i.e., a set of possibly
plural individuals. So, to check whether x satisfies a lexical predicate P, we need to do more than
saying that x is in P. There are in principle two ways to move forward. We can either check that
each member in our discourse plurality is a member in the lexical relation, amounting to checking
lexical relations distributivity, a strategy adopted in PCDRT (see also Brasoveanu 2006, 2008).

However, we can also maintain the spirit of DPIL and check lexical relations collectively. To
do so, there are also two options. The first option is to ‘upgrade’ lexical relations to sets of sets of
possibly plural individuals. The second option is to ‘downgrade’ discourse plurality when check-
ing lexical relations. I opt for the latter option and use a summation operator to bring a set of
individuals to an individual when checking for lexical relations.

Definition: Lexical relations
46)  G[R(x1,.nxn)]JH=T iff G=Hand <@H(x1),...,@H(xn)> € I(R)

The summation operator over discourse pluralities is a useful tool. Let us flesh out its definition
below:

Definition: Discourse-level summation

47)  DG(x) =Dlg(x): g€ G}

Since there are two types of plurality in this framework, to check cardinality and measurement
of the values stored in a variable, we need access to a level that reduces discourse plurality to do-
main plurality. So, if the variable x stores the values c and c® d. When asked how much weight
is associated with x, sometimes we don’t want to count c twice. It turns out that with help of
discourse-level summation, to do so is quite straightforward. We only need to define a cardinality
test on the atomic parts of the individual obtained from discourse-level summation (see also Hen-
derson 2014:53 for a similar way to find the atomic parts of a discourse plurality):

Definition: Cardinality test
(48)  G[ucara x=n]H=Tiff G=Hand [{x":x' <P H(x) N atom(x')}| =n

Measurement other than cardinality can be defined in a similar way, only this time we do not need
to access the atomic parts of our referential plurality. We just need to apply a measure function
(with a parameterized dimension, such as height or volume) to the domain plurality and obtain a
degree (on a particular scale, omitted for simplicity).

Definition: Measurement test
(49) Gludimx=dJH=Tiff G=Hand n(pHx) =d

Lastly, when there is a standardized measurement unit available, such as pound and gallon, it is
assumed to perform a unit test, ensuring that a measurement unit maps a degree to a number.
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Definition: Unit test
(50) Glud=n]H=TiffG=Handud=n

With these essential enrichments and revisions to DPIL, we have obtained DPILM, a version
of DPIL that is friendly to domain plurality, as PCDRT is, and with useful tools for measurement.
Other than the aspects discussed in this section, the core logic largely remains faithful to DPIL. In
the next subsection, I define d-monotonicity in terms of DPILM.

5.2 Proposal: d-monotonicity in DPILM

Recall that in Section 3, I have sketched the main proposal of this paper: binominal each introduces
a constraint known as d-monotonicity, checking the monotonic property of measure functions rel-
ative to the internal structure of the dependency established via distributivity.

(51) Monotonicity relative to distributivity (d-monotonicity, with f)
A measure function p is d-monotonic iff there is a function f such that

a. NON-DECREASING MAPPING
Va,a’ e domain f. a < a’ — p(fa) < u(f a’), and
b. NON-CONSTANT MAPPING
Jb,b’ € domain f. pu(f b) # u(f b’)

The checking of d-monotonicity is facilitated by a function f that maps values stored in the distribu-
tivity key to corresponding values stored in the host. The natural correlate of this f in DPILM is sets
of assignment functions, i.e., info-states. To see this, recall that info-states encode not just values
assigned to variables and dependencies among different variables, but also internal structures of
these dependencies. In more concrete terms, with help of info-states, not only can we retrieve val-
ues associated with the distributivity key and the host of binominal each, given that distributivity
is externally dynamic in this logic, we can also make precise reference to the corresponding values
in the host for all the atomic values and their combinations (i.e., pluralities ) in the distributivity
key. Having access to this structured dependency allows us to conduct measurement on it to check
d-monotonicity. Translating d-monotonicity as a dynamic proposition into DPILM, we obtain (52).

Definition Monotonicity relative to distributivity (d-monotonicity, in DPILM)

(52)  Gldmy pgim]H = Tiff
a. H=G
b. VAL AACGx. ACA'— Hdim(EB Glxea y) < Hdim(@G|xeA/ y)

c. 3IB,B'CGx. udim(@ Glyen y) # Hdim<€BG|xeB' U)

To begin with, d-monotonicity bears two anaphoric indices. The first one corresponds to the vari-
able introduced by interpreting the distributivity key and the second one corresponds to the variable
introduced by interpreting an indefinite host. There is a longstanding tradition in granting binomi-
nal each an anaphoric component, started in the early work of Burzio (1986) and Safir and Stowell
(1988) and later adopted in Dotlacil (2012) and Kuhn (2017). I provide independent justifications
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for using anaphoric indices in Section 6, where I discuss how negation and downward monotone
quantifiers interrupt dynamic binding in binominal each constructions.

To check for d-monotonicity of a measure function in DPILM, we need to access the values
stored in the variable the measure function applies to. (52) says that the measure function p is
monotonic on the dependency between x and y iff

e (52-a): Checking for d-monotonicity does not change the info-state in any way (i.e., it’s a
test).

e (52-b): Measuring y’s values in an info-state storing less x’s values does not yield a bigger
number (or degree) than measuring y’s values in an info-state storing more x’s values.

e (52-¢): In the input info-state, there are at least two sub-parts storing different x”’s values
that also yield different measurement of y’s values.

In addition, I propose that the monotonicity condition in (52) is introduced as an ‘output context
constraint’ in the sense of Farkas (2002) and Lauer (2009, 2012). In particular, (52) is treated as
a constraint that is checked after the at-issue content has been established. If the at-issue content
cannot pass the test, then the truth condition denoted by the sentence is not defined. As a result, the
sentence is undefined, rather than false. This is to model the fact that sentences with binominal each
that fail d-monotonicity (for various reasons) are judged unacceptable and not false, as illustrated
below:

53) a. *The drinks are 60 degrees (Fahrenheit) each.
b. *The boys read some books each.
c. *The boys read one book each, namely Emma.

The constraint is formulated in (54). The connective A indicates that the constraint { applies
after evaluating the at-issue content ¢.

Definition Output context constraint
54  G[dAY]H=G[d]H if H[Y]H = T; otherwise, undefined.

This definition says: the at-issue content given by ¢ has a truth value only if the output context
of ¢ admits . A constraint behaves in a similar way to a presupposition in being a definedness
condition, but it differs from a presupposition as the definedness condition is imposed on the output
context, instead of the input context. This way of understanding d-monotonicity makes novel and
valid predictions about how it interacts with negation and downward monotone quantifiers. These
predictions are discussed in Section 6.1.

5.3 Composition

Like Nouwen (2003) and Brasoveanu (2008), I assume that DPILM is a typed logic. It includes
basic types and derived types as in (55): e for entities, t for truth values, v for events, s for
assignments, d for degrees, n for numbers, and a derived type T — T for functions.

(55) T:e|t|v|s]d|n|T—T
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To keep type description reader-friendly, the following type abbreviations are used:

Name Type Abbr. Variables Examples
L
Info-state s—t - G,H john | sue
mary | peter
indivi-dref s—e e u, v X,y
event-dref s—V v e, e’ e, e’
proposition (s=t)=((s—=t)—t) t o, v John left.
predicate (s—e)=(s—=t)=((s—t)—=t) e—t PP pretty, book
quantifier (e—t) =t Q Q every boy
cardinality functions e —mn m m,m’ Leard
measure functions e—d m m,m’ Hweight

Table 2: Type abbreviations

I propose that a noun phrase hosting a binominal each is a measure phrase. Depending on
whether the measure phrase occurs in an argument position, as in (56-a) and (56-b), or a predicate
position, as in (56-c), it has slightly different types.

(56) a. John bought two apples.
b.  John bought three pounds of chicken.
c. John is six feet (tall).

In an argument position, a measure phrase is a dynamic generalized quantifier (GQ), of type
(e —t) —t. In a predicate position, a measure phrase is simply a predicate, of type e — t. However,
unlike ordinary dynamic GQs and predicates, measure phrases have two additional components:
a measure function and a measure head. The internal structures of different measure phrases are
given in Figure 17.

Argumental measure phrases, analyzed as GQs, are shown in Figure 17a and Figure 17b. If the
measure phrase is a cardinal GQ, the measure head is a silent determiner akin to the silent many
in Hackl (2000). The measure head takes a number, a property and a measure function and returns
a GQ. This measure head is defined in (57-a). If the measure phrase is a non-cardinal GQ, the
measure head is assumed to be provided by a measure unit like pound(s), which takes a number, a
property, and a measure function and returns a GQ, as defined in (57-b).

(37) a. manyY :=AnAPAmAP’ [yl APy AP’y Amy=n
b. poundy := AnNAPAMAP’.[y] A Py AP’y Albs(my)=n

The cardinality measure head many selects (with help of agreement or some other means) a car-
dinality measure function ¢arg (type € — n), while a non-cardinality measure head like pound
selects an non-cardinality measure function, like pyeight (type € — d). A measure function is
assumed to be syntactically present and further away from a measure head, unlike that in Hackl
(2000), which builds the measure function into the meaning of a measure head.
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Figure 17: Argumental and predicative measure phrases

If a measure phrase is a predicative and has a nominal predicate (as in this is two pounds of chicken),
then the measure head takes the same ingredients, but return a predicate rather than a GQ. The cor-
responding definitions of the predicative measure heads are given in (58-a) and (59-a). Lastly,
sometimes a measure phrase may not contain a common head at all, as in this is two pounds. 1
assume that a measure head may optionally not take a nominal predicate as one of its arguments,
giving rise to a measure phrase. Sample definitions of the measure heads are given in (58-b) and
(59-b).

(58) a. many™ = AnAPAmAWP U Amu=n
b. manyM” :=AnAmAumu=n
(59) a.  pound™” := AnAPAMAWP u Albs(my)=n

b. pound™? = AnAmAu.lbs(my)=n

With the assumptions about the internal structure of a measure phrase fleshed out, we are now
ready to add binominal each to the structure. I assume that binominal each attaches to a measure
function and turns the whole measure phrase into a higher-order meaning. Concretely, in a cardinal
GQ, binominal each maps the GQ into a higher-order GQ by turning the measure function from
an argument status (it is sought by a m — Q function) to a function status (it now seeks am — Q
function), as shown in Figure 18a. Similarly, in a measure phrase predicate, each attaches to the
measure function and turns the whole measure phrase predicate into a higher order predicate, as
shown in Figure 18b.
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(b) a higher order measure phrase predicate

Figure 18: Binominal each gives rise to a higher-order meaning

Since binominal each can be hosted by both argumental and predicative measure phrases, and
predicative measure phrases with or without a common noun component, we need to allow it to
be type-polymorphic. I offer the schema for defining binominal each in (60-a), where f may range
over any type «. In addition, when a measure phrase does not introduce any discourse variables, as
in the case of a predicative measure phrase, each only needs to bear one anaphoric index, i.e., the
anaphoric index for the variable storing the individuals measured by the measure function pgim-
This is shown in (60-b).

(60) a. each,y = AmAfAc.c(f m) Adm,y m m—(m-—o)— ((xc—1) —1t)
b. each, :=AmAfAc.c(f m)Adm, m m—(m-—=o)— ((xc—1) —1t)

As already can be seen in (60-a) and (60-b), after turning a GQ (or predicate) into a higher-
order GQ (or a higher-order predicate), binominal each is capable of introducing a d-monotonicity
constraint in a place different from where the original GQ (or predicate) takes scope. For example,
in (60-a), the ‘lower-order’ GQ f m takes scope inside c, but the d-monotonicity constraint is
introduced outside c.

To see a concrete example, after composing with all the ingredients inside an argumental car-
dinal measure phrase, a host with binominal each essentially denotes a higher-order dynamic GQ,
as shown in (61).

(61) two manyY movies picarg €ach, , =
Ac.c (AP.[y] /Amovie y/\ tecard Yy =2/\P y) Admy y (Heard)
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Figure 19: Scope taking of a higher order dynamic GQ

This higher-order dynamic GQ looks for a function from GQ to truth values, puts the GQ (i.e.,
two movies) back in the scope of this function and introduces d-monotonicity outside the scope
of this function. Figure 19 shows how scope-taking of the higher-order dynamic GQ works. This
is essentially a ‘split scope’ mechanism that allows two movies to scope both inside and outside
of distributivity. Scoping it inside distributivity gives us the correct narrow scope reading of two
movies and scoping it outside of distributivity allows the d-monotonicity to ‘associate’ with the
internal structure of distributivity dependency.

Assuming the lexical entries in Table 3 for the definite NP the boys, the verb saw and the covert
distributivity operator, we obtain the final meaning of the LF, as shown in (62).

Expression Denotation Type

the boys* AP.max*(boys x) AP(x) Q

saw AuAu’.saw uu’ e—e—t

dist APAW.S (atomu/APu) (e—t)— (e —t)

Table 3: Definite NPs, verbs and the distributive operator

(62)  twoY movies each, <7\Q. the boys* dist (Au’ .Q(?\u. saw uu’ >) )

B

/

x
a. B:=A9. max* <boys x> A\ Oy (atom x A\ Q (Au. saw u x))

atom x /\ [y] /A moviey A

. X
b.  o:=max <bovS X) /\bx ( Meard Y =2 A\ saw y x

) A dm,, (Mcard)
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As shown in (62), the split scope mechanism allows two movies to scope inside the distributivity
operator but d-monotonicity to scope outside the distributivity operator. The ‘association-with-
distributivity’ effect is clearly seen in the d-monotonicity test in (62-b). The test bears an index
X, which is the same index borne by the distributivity operator, i.e., the variable that stores values
based on which an info-state is split up into sub-states to check for distributivity.

To test for d-monotonicity, we first assemble the distributivity update. Assuming a scenario
in which three boys each saw two different movies, the output of the distributivity update can be
visualized in Figure 20.

X
b1 X AMyApy=2Asyx X y
b2 [ 1] (b1 [ miom2 |
b3 X
max* boys x | b1 Ox X NAmyApuy=2Asyx| Xx y
= b2 |~ [b2] b2 | m3om4
al b3
c/ X NMAmMmyApcy=2Asyx| x y
b1 b3 | m5@m6
X y
U b1 | mié&m2
' [b2 | m3om4
b3 | m5&m6

Figure 20: Distributivity update

The d-monotonicity constraint, spelled out in (63), is evaluated against the output of the distribu-
tivity update. It first requires that the info-state be split up into sub-states each storing one or more
values in the variable x. With three values in x, 7 such sub-states can be found (excluding the
empty sub-state, which stores no value in x). Then, it compares these sub-states, requiring that if a
sub-state whose x-value is a proper subset of the x-value of another sub-state, then measuring y’s
cardinality in the former sub-state does not yield a bigger number than measuring y in the latter
sub-state.

a. H=Gand
b. VAL AACGx. ACA'— Hcard (@ G|xeA U) < Hcard <® G|xeA’ U)

c. 3IB,B’C G x. Ucard <®G|xeB U) # Ucard <@ Glxen’ U)

For concreteness, let’s consider two info-states, shown in Figure 21, that verify d-monotonicity.
In info-state G, three boys each watched a different set of two movies. The cardinality of y (i.e.,
the movies) in each x sub-state is provided under the matrix. Since the cardinality of y never
decreases in a bigger sub-state containing more x-values, non-decreasing mapping is satisfied.
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In addition, the cardinality of y is not constant in all the x sub-states, non-constant mapping is
satisfied. As a result, d-monotonicity is satisfied by Info-State G. Another info-state that also
verifies d-monotonicity is Info-State G’, which has two boys seeing two identical movies but a
third boy seeing two different movies. Again, this info-state satisfies both non-decreasing mapping
and non-constant mapping, hence also d-monotonicity.

G x y G" «x y

gi | b1 [ miem2 g [ bl | mldm2

g2 | b2 | m3@m4 g, [ b2 | m1&m2

gs | b3 | m5@&mé g5 | b3 | m3@&m4

Info-state G Info-state G’

Hcard(@A|xe{b1}y) =2 Heard (D G/|x6{b1}y) =2
Heard (D G|x€{b2} y) =2 Heard (D G/’xe{bZ} y) =2
Heard (D G |xe{b3} y)=2 Heard (D G l’xe{bs} y)=2
Heard (D G’xe{bt b2} y)=4 Heard (6D G/|xe{b1, b2} y)=2
Heard (6D G|x€{b1, b3} y)=4 Heard (6D G/|xe{b1, b3} y)=4
Heard (D Glyeqpe, b3y y) =4 Heard (D G'lxeppe, b3y y) =4
Heard (D Glxeip1, b2, b3} Y) =6 Heard (D G'lxep1, b2, b3y Y) = 4

Figure 21: Info-states that verify the boys saw two movies each

Of course, not all distributivity updates satisfy d-monotonicity. If the values stored in y does
not vary across the distributivity dependency, as in Info-State G”. in Figure 22, d-monotonicity
is violated. Recall that since d-monotonicity is modeled as a constraint, the predicted judgment
for the corresponding sentence containing a binominal each is infelicitous, or unacceptable, rather
than false. This is how d-monotonicity captures the variation inference triggered by binominal
each.

G// X y

g; | b1 | miém2
g2 | b2 | m1&m2
g3 | b3 | m1&m2

Info-State G”

Heard (€D G//’xe{m} y)=2
Heard (D G ”|xe{b2} y)=2
Heard (D G lxeppa y) =2
Heard (D G lxep1, b2y Y) =
Heard (D G lxep1, b3} Y) =
Heard (D G ”|xe{b2, b3} y) =
Heard (D G”lvep1, b2, b3y Y) = 2

[NCT N\

Figure 22: An info-state that fails to verify the boys saw two movies each
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H x H x

g1 wi g1 (o}

g2 w2 g2 c2

gs | w3 gs | c3

Info-State H Info-State H’

Hangle(@ H|xe{a1} x) =60 Hiemp(@ Hllxe{m} x) = 60
Hangle(@ H|xe{a2} U) =60 Htemp(@ H/|x€{02} x) = 60
Uangle(@ H|x€{a3} y) =60 Htemp(@ H/|xe{03} x) = 60
Pangle(@ H|x€{a1, a2} y) =120 Htemp(@ Hllxe{m, c2} x) =60
Hangle(@ H‘xe{at a3} y) =120 Hlemp(@ Hllxe{c1, c3} x) =60
Uangle(@ H|xe{a2, a3} y) =120 Htemp(@ Hllxe{c2, c3} x) =60
Hangle(@ H|x€{a1, a2, a3} y) =180 Htemp(@ H/|xe{c1, c2, c3} x) =60

Figure 23: Info-states illustrating Extensive Measurement Constraint

When the measure phrase is a predicate, as in (64-a) and (64-b), the measure phrase does not
introduce a discourse variable. D-monotonicity is checked by just using a single discourse variable,
i.e., the variable storing the values for the distributivity key (the relevant angles for (64-a) and the
relevant coffees for (64-b)).

(64) a. The angles are 60 degrees each.
b. *The coffees are 60 degrees each.

The corresponding d-monotonicity constraints have a similar form, as shown in (65), differing only
respect to whether the values stored in x are angles or coffees, and whether the measure function
measures angle degree or temperature.

(65) G [[dmx(uangle/temp)]]H =T iff
a. H=Gand
b. VAL AA/CGx.ACA'— Hangle/temp (EB Glxea X) < Hangle/temp <@ Glxea X)

c. IB,B'CGx. Hangle/temp <@ Glxe X) £ Hangle/temp (@G|X€B/ X)

As shown in the info-states in Figure 23, it is possible to satisfy d-monotonicity if the measure
function is extensive, as in the case of Hangle (Info-State H), but not if the measure function is
non-extensive, as in the case of piemp (Info-State H".

5.4 Interim summary

I have demonstrated how to translate d-monotonicity as an output constraint in DPILM, a dy-
namic plural logic enriched with domain pluralities and measure functions but otherwise faithful
to van den Berg (1996) (with the exception of negation, see Section 6.1). The use of plural logic
enables us to model distributivity-induced dependency as a discourse plurality, and marrying plu-
ral logic with a dynamic logic allows us to record this dependency and its internal structure. The
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anaphoric component on binominal each retrieves this dependency, and the d-monotonicity con-
straint makes crucial use of the internal structure of this dependency.

In the next section, I take up some predictions of the current proposal, with a goal to show that
the use of dynamic semantics makes correct predictions about some rarely discussed properties of
binominal each, in particular, its interactions with negation and downward monotone quantifiers.

6 Extensions

6.1 Negation

It is well known that negation in dynamic semantics has interesting properties. In DPL, negation
is a static closure that confines any dynamic effect in its scope (Groenendijk and Stokhof 1991).
Translating its definition into DPILM gives rise to (66)."”

(66) Static negation
G[-¢JH=T iff G=H & —3K: G[P]K

Importantly, if an indefinite occurs in the scope of negation, its dynamic effect is not accessible out-
side the scope of negation. For this reason, cross-sentential anaphora is predicted to be impossible,
as shown in (67).

(67) a. John does not own a car. #It’s red.
b. Nobody talked to a man. #He left.

Given the well-documented behavior of negation in dynamic semantics, if binominal each indeed
makes reference to (the structure of) a distributivity dependency via dynamic binding, as proposed
in this study and in recent studies such as Kuhn (2017), one wonders if it interacts with negation
as predicted by dynamic semantics and the treatment of negation. This turns out to be a slightly
more involved question, given the split scope behavior of a noun phrase hosting binominal each
and the fact that d-monotonicity is defined as an output constraint. However, after unpacking the
complexities, I demonstrate that binominal each indeed interacts with negation in a predictable
way.

In a simplest sentence with binominal each and negation like (68), there are four scopal posi-
tions for negation, as indicated in Figure 24.

(68) The students didn’t see one movie each.

3This is a different negation from the ‘dynamic negation’ defined in van den Berg (1996). In particular, van den
Berg wants to give negation a fully dynamic treatment, which would allow dynamic effects to flow out of the scope of
negation. The cost for such a dynamic negation is that a new theory for the interruption effect of negation is necessary.
With such a new theory, it is possible to model the same range of data discussed in this section. In short, the empirical
consequences discussed here does not pertain to the decision on whether static negation is used or dynamic negation
is used in conjunction with mechanisms for dynamic binding interruption.
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(not)

one movie each,

the boys*
dist

(not) see u,u’
A

Figure 24: Four scopal possibilities

According to the definition of static negation, there is no well-formed interpretation if negation
takes scope anywhere between the higher-order dynamic GQ and the GQ trace. In other words, B
and C are not possible scope positions for negation. In position B, the dynamic effect stemming
from the GQ trace (more precisely, the reconstructed GQ to the trace position) is blocked outside
the scope of negation, as shown in (69); in position C, the dynamic effect stemming from both the
reconstructed GQ trace and the distributivity key is blocked, as shown in (70).

[yl A moviey /A _

X |

(69) B. max (boy x> Ay (atom x A ( teard Y = 1 A\ SaWy X Admy y (Ucard)
‘For each boy, it is not true that he saw any movie. The measurement of movies is
d-monotonic to the boys.’

[yl /\ movie y A _

- X

(70) C. (max <boy x) AN (atom x A teardy =1 A sawy x Admy y (Heard)
‘Not every boy saw a movie. The measurement of movies is d-monotonic to the
boys.’

How do we know that (69) and (70) are indeed out? Ideally, we should detect plain unacceptability.
However, due to the availability of scopal option D, which results in a weaker reading, we only
observe the lack of d-monotonicity instead of plain unacceptability in these cases. This is because
a scenario that verifies (69) or (70) (without d-monotonicity) also verifies the reading generated
from having negation in position D. Moreover, d-monotonicity can be negated or sometimes be
ignored when negation is in position D. Therefore, our best evidence that (69) and (70) are indeed
out comes from the fact that in situations where no boy read any book (B), or not every boy read
a book (C), there is no pressure for d-monotonicity to hold. In other words, we simply judge the
sentence to be true in these situations regardless of the status of d-monotonicity. This is suggestive
that d-monotonicity cannot be evaluated in these scope configurations.

Returning to the remaining scopal options A and D. Interpreting negation in positions A and D
gives rise to well-formed interpretations. We begin with A, the simpler case. If negation takes the
narrowest scope, it does not interfere with the dynamic effects associated with the distributivity key
or the dynamic GQ trace, as illustrated in (71-1). As a result, d-monotonicity can be successfully
tested. This can be seen in the paraphrased in plain English in (71-ii), as well as in the sample
follow-up utterance in (71-1iii).
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atom x A [y] /A moviey /A

Heard Y =1 /A saw y x ) /\de,y (Mcard)

71 A (@) max® <boy x) A6, (
(i1) For each boy, there is a movie that he failed to see. By the way, the measure-
ment of the movies is d-monotonic relative to the boys.
(ii1)) Mary didn’t see Avatar, John didn’t see Matrix, and Susan didn’t see Kungfu.

If negation is to take widest scope over both the asserted distributivity and the output constraint
d-monotonicity, the resulting interpretation may be false or undefined, depending the particular
truth values of the assertion and the constraint.

N X atom x A [y] A moviey N ' —
(72) D. (@) (max (boy x) A dx ( leard Y =1 /\ sawy x Admy y (Keard)

(i) It’s not true (that every boy saw two movies and by the way, the measurement
of movies is d-monotonic to the boys).

Using ¢ to represent the asserted content, i.e., the distributivity update, 1 to represent the output
constraint, i.e., d-monotonicity, A to represent the outcome of the ¢ as constrained by 1V, and — to
represent the predicted outcome of negation over the complex meaning, Table 4 summarizes the
possible interpretation of —.

R
11 10
0 # # | #

Table 4: Negation over complex meaning

Let us begin with the first two rows. When both the distributivity evaluation and the d-
monotonicity constraint evaluation are true, negation is evaluated to ‘false’, in accordance with
native speakers’ intuition that the sentence in (73) is simply a false statement.

(73) In a scenario in which every boy watched a different movie:
The boys didn’t watch one movie each.

When distributivity is evaluated to be true but d-monotonicity is evaluated to be false, negation is
evaluated to ‘undefined’. The cases in (74) and (75) support this prediction.

(74) In a scenario in which all the boys watched one and the same movie:
#The boys didn’t watch one movie each.
(75) In a scenario in which all the cocktails are exactly 60 degrees Fahrenheit.

#The cocktails aren’t 60 degrees (Fahrenheit) each.

When distributivity is evaluated to false. The output is an empty set, so the d-monotonicity
constraint cannot be tested. As a result, A is evaluated to undefined. Applying negation to an
undefined output is also predicted to be ‘undefined’. This is where native speakers’ intuition differs
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from the prediction. Intuitively, if distributivity is false, speakers will simply evaluate the negated
sentence to ‘true’, rather than undefined.

This discrepancy between what the semantics predicts and what native speakers perceive is
actually a more general phenomenon in dynamic semantics. Consider (76) first. Imagine a situation
in which no man came in. The evaluation of a man came in is false in this situation. The result is
the absurd state, i.e., having no info-state in the output. Consequently, /ey in the subsequent clause
has no way to refer to a* man as its antecedent, leading to an undefined evaluation. When the outer
negation is evaluated, it should then be evaluated to undefined. However, this is not what native
speakers do. In fact, they readily judge the negated sentence to be true, instead of undefined. It
seems as if negation has the ability to ignore dynamic binding failure that happens in its scope.

(76) It’s not the case that a* man came in and he, sat down.

However, negation cannot ignore just any dynamic binding failure. For example, it cannot
ignore dynamic binding failure that fails a gender presupposition, as evidence by the fact that (77)
is evaluated to ‘undefined’.

(77)  #It’s not the case that a¥ man came in and she, sat down.

Returning to the last row of Table 4. Native speakers evaluate the negated sentence with bi-
nominal each to be ‘true’, rather than the predicted ‘undefined’, precisely for the same reason.
That is, negation has the ability to ignore dynamic binding failure in its scope. Similarly, negation
only has the ability to ignore dynamic binding failure in this case, but not other anomaly. For ex-
ample, if the measurement involved in the host becomes non-extensive, undefinedness resurfaces,
as demonstrated in (78).

(78) a. *The boys didn’t walked 3 miles per hour each.
b. *The drinks are not 60 degrees each.

6.2 Downward monotone quantifiers

In addition to interacting with negation, binominal each is incompatible with downward monotone
quantifiers, as illustrated in (79-a) (see also Safir and Stowell 1988). That upward monotone and
non-monotone quantifiers are fine is shown in (79-b) and (79-c).

(79) a. *{Few/no/none/at most 10} (of the) boys saw two movies each.
b. Some/many/most (of the) boys saw two movies each.
c. Exactly 10/between 10 and 20 boys saw two movies each.

This is reminiscent of the fact, shown in (80-a), that indefinites in the scope of downward mono-
tone quantifiers also have a hard time supporting a pronoun outside the scope of the quantifiers,
in contrast to indefinites in the scope of upward monotone quantifiers (80-b) and non-monotone
quantifiers (80-c). So, they in (80-a) cannot refer to the collective movies that few boys saw, while
the same pronoun in (80-b) and (80-c) can refer to the collective movies that many (or exactly 10)
boys saw.

(80) a. Few boys saw twoY movies. #They,, 're very boring.
b.  Many boys saw twoY movies. They, re very boring.
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c.  Exactly 10 boys saw twoY movies. They,, re very boring.

The parallelism between the two paradigms is intriguing for two reasons. First, there are visible
anaphors in (80) but not in (79). The fact that even without visible pronouns, a sentence with bi-
nominal each interacts with downward monotone quantifiers in a remarkably similar way suggests
that binominal each has an anaphoric component very similar to overt anaphors like pronouns.
Second, the fact that in both paradigms only downward monotone quantifiers cause trouble is re-
vealing. There must be something in downward monotone quantifiers that interact with dynamic
binding to cause the markedness.

van den Berg (1996) offers an interesting proposal that can help us tease apart downward mono-
tone quantifiers and other quantifiers. In particular, the suggestion is to analyze downward mono-
tone quantifiers as the negated version of their upward monotone duals. For example, few is ana-
lyzed as the negation of many. Without using the full power of dynamic generalized quantifiers,
(81-a) is a way to translate few and (81-b) is a way to translate many in DPILM.

@1) a few* ($,¥) :=—(many*(d,)))
b.  many*(¢d, V) = X] AP A/ \Ucard X > 6, where 0 is a contextually provided thresh-
old.

The crucial bit is the use of negation in the translation of few as not many. If this analysis is on
the right track, then we can reap the benefit of our static negation in the previous subsection. After
all, we have already seen that d-monotonicity cannot be tested if the distributivity update is within
the scope of negation, as dynamic binding cannot reach into the scope of negation.

For concreteness, let us consider the example in (82-a) and its translation into DPILM in (82-b).
Negation is assumed to have a fixed scope (i.e., position C in Figure 24), as it is part of the lexical
meaning of few. Binominal each along with its host takes wide scope over negation. As a result,
d-monotonicity is outside the scope of negation, leading to dynamic binding failure and hence
unacceptability.

(82) a. *Few boys saw one movie each.

[yl A moviey A
b. ([x] AN (boy x) A\ Oy (atom x A teara Y = 1 A\ SaWy X /\ Ucard X > 0

A dmx,y (Hcard)

To summarize, the fact that binominal each cannot be licensed by a downward monotone quan-
tifier provides additional support for using dynamic semantics to model d-monotonicity.

7 Comparisons with and connections to previous studies

7.1 More on studies in the PCDRT tradition

There are three major differences between the proposal developed here and extant studies in the
PCDRT tradition. The first one concerns how the variation inference is modeled. All studies in
the PCDRT tradition follow the insight of Henderson (2014) and treat the variation inference as
a plurality constraint on the global info-state. However, the present study models the variation
inference as a special monotonicity constraint evaluated in association with the internal structure

41



of a distributivity dependency. I have shown that these two strategies make distinct predictions
regarding the types of noun phrases that may host binominal each.

The second difference lies in the dynamic logic in which the constraint giving rise to the vari-
ation inference is couched. Studies in the PCDRT tradition make use of PCDRT, a dynamic plural
logic with domain pluralities, dependency-introducing random assignment, and distributive eval-
uation of lexical relations. The present study is couched in DPILM, a dynamic plural logic with
domain pluralities and a collective evaluation of lexical relations, but crucially no dependency-
introducing random assignment. The two logics make distinct predictions regarding whether vari-
ation inference could in principle occur without distributivity. The PCDRT-theoretic studies say
‘yes’ and our DPILM-theoretic analysis says ‘no’.

I must add that d-monotonicity, the constraint designed to replace evaluation-level plurality,
can be reformulated with minor changes to adapt to a PCDRT-style dynamic plural logic just as
easily. Ultimately, whether a PCDRT-style logic or a DPILM-style logic should be chosen to
couch d-monotonicity should be based on empirical considerations. In particular, if the depen-
dency introduced by random assignment turns out to be very useful, as argued in Brasoveanu
(2006, 2008), then a PCDRT-style logic should be favored. However, there is at least some initial
evidence, reported in Champollion et al. (forthcoming), that the original empirical motivations for
the dependency-introducing random assignment considered in Brasoveanu (2006, 2008) may be
accounted for without the machinery used in PCDRT.

The third difference lies in what kind of meaning status is given to the constraint leading to
the variation inference. In Henderson (2014) and Champollion (2015), it is analyzed as a delayed
at-issue test. In Kuhn (2017), it is modeled as a presupposition. In this study, it is modeled
as a delayed output constraint. Modeling it as an at-issue test fails to account for the fact that
failure of the variation component leads to ungrammaticality instead of falsity. Modeling it as
a presupposition suggests, rather oddly, that the interlocutors should be aware of the variation
component even before the distributivity component is asserted.

Despite these differences, the present paper sides with PCDRT-theoretic studies on many fronts,
including (i) making the variation inference a core component of the semantics of distributive
numerals, (i1) using a dynamic plural logic to model the contribution of distributivity and hence
making the dependency induced by distributivity an accessible component for use by the variation
component, and (ii1) using a delayed evaluation strategy to delay the variation component until
distributivity is evaluated. As such, the present study can be seen as a descendent of previous
PCDRT-theoretic studies.

7.2 Studies in static semantics

There is a vast literature on binominal each couched in static semantics. It is beyond the scope of
the present paper to offer a comprehensive review of previous studies on this topic. However, it is
worth pointing out the major developments that have paved way for the ideas used in the present
paper.

An early study on binominal each is Link (1987). He set the stage for treating binominal each
as a distributivity operator, which is adopted in many subsequent studies, including Zimmermann
(2002), Dotlacil (2012), Champollion (2010, 2017). However, these studies places their primary
focus on the distributivity component and do not really recognize the variation component. As
such, they differ quite drastically from the present paper, which takes the variation component as
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its primary concern.

There are a few studies that take up the variation component. For example, Safir and Stow-
ell (1988) recognize a strong form of the variation component, and conceive binominal each as
a one-to-one distribution function, establishing a one-to-one correspondence between elements
in the distributivity key to elements in the distributivity share. This strong form of variation is
later criticized by Moltmann (1991) and Zimmermann (2002). Cable (2014) extends the seman-
tics established for distributive numerals in Tlingit to binominal each, arguing that each is both
a distributivity marker and bears a variation inference. Despite recognizing the variation compo-
nent, these studies do not account for Counting Quantifier Constraint or Extensive Measurement
Constraint.

Despite these differences, studies in the static tradition have offered great insights to the study
of binominal each in the present paper. For one thing, it has been a longstanding puzzle how
binominal each access the distributivity key. The received wisdom is that there are null pronouns
in the NP that hosts binominal each that help connect it with the distributivity key, as suggested
in Safir and Stowell (1988). This idea is further refined in Zimmermann (2002), with the pronoun
treated as an anaphoric index directly borne by binominal each. The strategy is then imported into
a dynamic framework by Dotlacil (2012) and adopted in Kuhn (2017) and the present paper.

Many studies also share the intuition that each is a marker of quantificational dependence or
subordination. Choe (1987) and Milaci¢ et al. (2015) are notable examples. This intuition is
also relevant in the present study, albeit in a slightly different manner. In previous studies, the
core contribution of binominal each is to signal quantificational subordination. However, in the
present study, the core contribution is a variation component formalized in terms of d-monotonicity.
Quantificational subordination is a necessary but not sufficient condition for using binominal each.

As a final note, I would like to relate the present study to the idea of ‘structure-preserving
binding’, developed in Jackendoff (1996) to deal with a a host of phenomena ranging from telicity
to quantification. Jackendoff suggests to broaden the notion of binding from a relation between
two identical variables to a relation between two variables that are linked in some way. Most
importantly, he argues that it is fruitful to study the links in terms of structure-preserving maps.
He implements structure-perving binding in his own framework of Conceptual Semantics, which
differs from the framework used in this paper quite substantially. However, the core of the idea of
structure-preserving binding resonates with the notion of d-monotonicity developed here.

8 Conclusion

In this paper, I have borrowed the insight from studies such as van den Berg (1996) and Champol-
lion (2017)) that distributivity makes available a dependency with a nontrivial internal structure.
Following many recent studies, this dependency is modeled with help of a dynamic plural logic.
The particular version developed in this paper is a direct descent of van den Berg (1996)’s DPIL.
In addition, I have argued that binominal each piggybacks on this dependency, and introduces
a monotonicity constraint requiring that the measurement of the values associated with its host
tracks the part-whole relation of the dependency. I have demonstrated how the measurement and
monotonicity-based constraint (called d-monotonicity) better accords with two important gener-
alizations on binominal each: Counting Quantifier Constraint and Extensive Measurement Con-
straint. Lastly, I have also shown that a dynamic treatment of binominal each makes correct pre-
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dictions about its interactions with negation and downward monotone quantifiers, justifying the
use of dynamic semantics in this area of research.
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