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Abstract

While there are always differences in children’s input, it is unclear how often these differ-
ences impact language development — that is, are developmentally meaningful — and why they
do (or do not) do so. We describe a new approach using computational cognitive modeling that
links children’s input to predicted language development outcomes, and can identify if input
differences are potentially developmentally meaningful. We use this approach to investigate if
there is developmentally-meaningful input variation across socio-economic status (SES) with
respect to the complex syntactic knowledge called syntactic islands. We focus on four island
types with available data about the target linguistic behavior. Despite several measurable input
differences for syntactic island input across SES, our model predicts this variation not to be
developmentally meaningful: it predicts no differences in the syntactic island knowledge that
can be learned from that input. We discuss implications for language development variability
across SES.
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1 Introduction

1.1 Identifying if input differences are developmentally meaningful

There is a lot of naturally-occurring variation in children’s input, including how long children are
talked to every day, which people talk to them (e.g., adults, other children), what environments
they experience language interaction in (e.g., home, daycare, school), and what people talk to
them about, among many other types of variation. Importantly, not all this input variation is de-
velopmentally meaningful — that is, not all input variation impacts language development in a way



that causes different trajectories (e.g., measurable delays in knowledge development) or different
knowledge to develop (e.g., dialectal variation). So, while input differences may appear, the input
is not different when it comes to supporting language development. However, some input variation
does indeed impact language development — this variation is then developmentally meaningful.

For instance, developmentally-meaningful input deficits would lead to language development
delays. As a concrete example, we have evidence that language development delays appear across
socio-economic status (SES), with lower-SES children behind their higher-SES peers for different
components of language development (e.g., vocabulary development: Hart and Risley| 1995} Hoff]
2003, language processing: Fernald et al.[2013)). Importantly, variation in children’s input can often
predict later language development (Hart and Risley, |1995; [Huttenlocher et al., 2002, 2010; Rowe,
2012; [Weisleder and Fernald, 2013; [Hirsh-Pasek et al., 2015; |Schwab and Lew-Williams, 2016)),
suggesting a causal link between observed input variation and language development variation,
including the observed language development delays across SES.

Still, when we identify developmental delays that may be linked to variation in children’s input,
it is often unclear which of the known delays may be caused (at least in part) by which specific
input differences, and why. Certainly, there are observed differences in total input quantity as well
as the composition of the input across SES (though input differences also exist within SES: Blum
20155 Sperry et al.2018). For instance, when it comes to total input quantity at the word level, some
studies have found that lower-SES children may encounter significantly fewer words of caregiver
speech than their higher-SES peers (Hart and Risley, [1995; Schwab and Lew-Williams, 2016).
For input composition, differences across SES have been observed at the lexical and foundational
syntactic levels (Huttenlocher et al., 2010; Rowe, 2012; Rowe et al., 2017). These differences
include the relative frequency of word types, word tokens, and rare words, the diversity of syntactic
constructions, and the relative frequency of decontexualized utterances like explanations (Oh, we
can’t put them in the bus because the bus is full of blocks), pretend (I'll save you from the wicked
sister), and narrations (He is going to look in your nose and your throat and your ears).

Again, what is often unclear is whether a specific measurable input difference matters for de-
veloping a specific component of language. For instance, there are components that do not appear
to be delayed across SES, despite the input differences (e.g., some types of complex syntactic
knowledge: de Villiers et al.|2008;; |Vasilyeva et al.[2008)). That is, some aspects of language devel-
opment remain constant despite contextual variability that surfaces as measurable input differences
(Hoft], 2006). Moreover, there are many components where we simply do not know if there are
developmental delays across SES, despite known input variation.

From an intervention perspective, if we believe an input-based language delay is occurring,
it is important to understand what aspect of the input has the disparity so that interventions can
target that aspect. That is, not only is it useful to know that a developmentally-meaningful input
difference exists, but it is useful to know exactly what part of the input is in fact impacting the
development of specific language knowledge and why. So, being able to causally link children’s
input to their developing language knowledge is valuable, because this link allows us to predict if
a measurable input difference will potentially cause a difference in language development.

One way to make this causal link between children’s input and their developing knowledge, of-
ten measured via some observable behavior, is to use computational cognitive modeling (e.g., Pearl
and Sprouse, 20132015, 2019} 20215 Scontras and Pearl, 2021} Pearl, 2021} |Dickson et al., [2022).
A computational cognitive model aimed at explaining some component of language development
can concretely implement a specific learning theory that describes how the input is used by chil-
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dren to update their hypotheses about language over time; children’s language knowledge is then
reflected in their observable language behavior. In this way, computational cognitive modeling
connects theories of language development, empirical data on children’s input, and child behav-
ioral experiments. Thus, a computational cognitive model allows us to test explicit hypotheses
about the language knowledge that could be derived from the information available in children’s
experience (Hoff, 2006). In other words, a computational cognitive model can test hypotheses
about what particular aspects of the input may matter and why. More specifically, we can use a
computational cognitive model to predict if a measurable input difference will matter for the de-
velopment of a specific component of language knowledge — that is, when a difference is predicted
to be developmentally meaningful, and why it is predicted to be developmentally meaningful.

This computational cognitive modeling approach complements a standard way that relies on
correlation to determine if a measurable input difference is developmentally meaningful: observe
some input difference, observe language development outcomes, and then see if the observed input
difference is correlated with any observed outcome difference. If so, the language input difference
might cause the language development outcome difference. In this case, targeting the input differ-
ence for intervention may lead to improved language development outcomes (e.g., input-based in-
terventions allowing lower-SES students to improve their language comprehension: Huttenlocher
et al.[[2002). If input-based intervention is indeed effective, this is support that the language input
difference caused the observed language outcome difference, and was therefore developmentally
meaningful. However, why that input disparity caused the language development outcome differ-
ence is still unknown. Moreover, carefully designing, implementing, and evaluating such interven-
tions can often be costly in terms of both time and resources. Computational cognitive modeling
can offer a way to predict beforehand if an input difference is likely to cause a language develop-
ment difference, and so help inform the design of intervention-based approaches that assess if an
input difference is developmentally meaningful.

Importantly, because a computational cognitive model describes exactly how the input can
cause the predicted knowledge to develop, the model can also determine if an observed input
difference is predicted not to be developmentally meaningful. That is, the model can identify con-
textual variation surfacing in children’s input that is predicted not to impact language development
(Hoft], 2006). In this case, we would expect an input-based intervention targeting that aspect of
the input to be ineffective at improving children’s development of the language knowledge that
depends on that input aspect.

1.2 Input differences for syntactic island knowledge

Here, we harness this computational cognitive modeling approach to identify if input differences
across SES for certain aspects of complex syntax are predicted to impact development of that
knowledge and so be developmentally meaningful. We focus on a certain type of complex syntactic
knowledge called syntactic islands that concerns wh-dependencies, such as wh-questions (e.g., the
acceptable Who did Lily think the pretty kitty was for? vs. the far less acceptable Who did Lily think
the kitty for was pretty?). In syntactic theory (Chomsky, |1965; Ross, |[1967; Chomsky, 1973)), syn-
tactic islands are structures that interfere with wh-dependencies, so that wh-dependencies crossing
them are far less acceptable (sometimes called “ungrammatical””). Knowledge of syntactic islands
thus allows speakers to judge which wh-dependencies in their language are more vs. (far) less ac-
ceptable; that is, even if speakers have never heard a particular wh-dependency before, they can use
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their knowledge of syntactic islands to judge how acceptable it is. This ability to judge dependency
acceptability means that speakers with knowledge of syntactic islands have internalized something
quite sophisticated about the syntax of wh-dependencies: not simply how to understand the wh-
dependencies that occur in their language, but also (i) how acceptable different wh-dependencies
are, and (i1) which ones are far less acceptable (and therefore unlikely to occur) because those
wh-dependencies cross syntactic islands. From a developmental perspective, we can then investi-
gate how children come to have this knowledge about syntactic islands, and more specifically, how
children’s input influences that language development.

We first briefly review what is currently known about the development of wh-dependency
knowledge, particularly with respect to syntactic islands. We then discuss syntactic island knowl-
edge in more detail, and describe the particular syntactic islands we focus on; we selected these
islands due to the available empirical data on the behavior that signals successful knowledge de-
velopment (specifically, judgment data from adults and children). We then review a computa-
tional cognitive model for learning syntactic islands that specifies how the input causes the rele-
vant knowledge to develop (Pearl and Sprouse, [2013)); this model implements a specific learning
theory for how children use their input to acquire knowledge of syntactic islands. The learn-
ing theory implemented in the model specifies that the relevant aspect of children’s input involves
wh-dependencies, which rely on “wh-words” like what and who in English (among others). We ad-
ditionally summarize prior modeling results by Pearl and Sprouse| (2013) where the model learned
from higher-SES child input and successfully demonstrated knowledge of four syntactic islands,
as evidenced by the acceptability judgment patterns it predicted. We hypothesize that children
across SES would use the same learning process to learn about syntactic islands from their input,
as specified by the learning theory implemented in the computational cognitive model. With this
hypothesis in hand, we then use the same computational cognitive model to investigate the impact
of input variation across SES for learning about syntactic islands.

We begin by looking at the distributions of wh-dependencies in American English child-directed
speech (CDS) between higher-SES and lower-SES populations. We first provide a descriptive cor-
pus analysis comparing higher-SES to lower-SES input. We then assess total input quantity differ-
ences by deriving realistic estimates of the total quantity of wh-dependencies that higher-SES vs.
lower-SES children would hear by age four; age four is when children across SES seem to demon-
strate some knowledge about one of the syntactic island types we investigate (de Villiers et al.,
2008)). This input quantity assessment highlights what can potentially be a significant difference in
total quantity of wh-dependencies that children hear across SES by age four.

With realistic estimates of the input data to higher-SES and lower-SES children, we then pro-
vide a computational cognitive modeling analysis of the input composition, using the model of
Pearl and Sprouse (2013). The model predicts the syntactic island knowledge that higher-SES
and lower-SES children would be able to acquire on the basis of their wh-dependency input by
age four, as evidenced by the acceptability judgment patterns they would generate for a variety of
wh-dependencies.

Our computational cognitive modeling analysis predicts that the lower-SES input supports the
development of knowledge about the four syntactic islands we investigate by age four just as well
as the higher-SES input does. This is true despite the differences in both total quantity and the
distributions of wh-dependencies. Our results thus suggest that the input variation across SES is not
developmentally meaningful by age four; that is, the input for learning about these four syntactic
islands does not fundamentally differ across SES. This result accords with known developmental
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evidence for one type of syntactic island, and predicts additional developmental similarities for the
other three types we investigate here.

Interestingly, our modeling analysis predicts that a syntactic building block involving com-
plementizer that (e.g., that in Who do you think that Lily likes?) is crucial for successfully de-
veloping knowledge of two syntactic island types. This building block comes from a different
wh-dependency type in higher-SES CDS vs. lower-SES CDS, which highlights that surface input
composition differences may mask deeper input composition similarities. We discuss limitations
of our current findings, model predictions that are testable with future work, and implications for
variability in language development across SES.

2 The development of wh-dependency knowledge across SES

Currently, less is known about the development of complex syntactic knowledge across SES (es-
pecially with respect to wh-dependencies) than about the development of lexical and foundational
syntactic knowledge. Still, we do know about the development of some wh-dependency knowledge
and a little about the wh-dependency input.

For wh-dependency knowledge, higher-SES English-learning children at 20 months seem to
represent the full structure of wh-dependencies in wh-questions (e.g., Which cat did the dog bump ?)
and relative clauses (e.g., Show me the dog [who the cat bumped]), rather than relying on vocabulary-
based heuristics to understand these wh-dependencies (Seidl et al., 2003} |Gagliardi et al., 2016;
Perkins and Lidz, [2020). Higher-SES children are also able to correctly repeat back well-formed
wh-questions like Who can Falkor save? and generate new well-formed wh-questions by two and
a half to three years old (Valian and Casey, |2003).

By age four, we see similar knowledge across SES about several aspects of wh-dependencies
(see|de Villiers et al.| (2008) for empirical data across SES, as well as a review of prior empirical
data from higher-SES children). This knowledge includes sensitivity to preferred interpretations of
certain wh-dependencies — that is, which interpretations are more or less preferred because those
interpretations depend on which wh-dependencies are more or less preferred.

For instance, four-year-olds (like adults) can interpret wh-dependencies like “How did the boy
say he hurt himself?” with how modifying the embedded clause verb hurt; so, the wh-question
can be interpreted as asking about how the boy hurt himself. Children as young as four are also
sensitive to the difference between the possible interpretations of “How did the mom learn what to
bake?” The preferred interpretation has sow modifying the main clause verb learn (i.e., a possible
answer is “from a recipe book”); the strongly dispreferred interpretation has sow modifying the
embedded clause verb bake (i.e., a possible answer would be “in a glass dish”).

As another example, four-year-olds across SES are sensitive to the difference between the
possible interpretations of “What is Jane drawing a monkey that is drinking milk with?” The
preferred interpretation has what linked to a position outside the relative clause (“What is Jane
drawing [a monkey that is drinking milk] with _ . ?”), with a possible answer of what Jane is
drawing with (e.g., “a pencil”); the strongly dispreferred interpretation has what linked to a position
inside the relative clause (“What is Jane drawing [a monkey that is drinking milk with __,p4:]7”),
with a possible answer of what the monkey is drinking with (e.g., “a straw”).

So, developmental outcomes by age four across SES are similar with respect to preferred
and dispreferred interpretations for certain wh-dependencies; these interpretations rest on chil-



dren being sensitive to how preferred (or dispreferred) the different wh-dependencies themselves
are. These developmental outcome similarities suggest that input differences across SES for these
types of wh-dependency knowledge should not be developmentally meaningful.

Still, we know much less about any input differences there might be for wh-dependencies, let
alone how children’s input leads to the development of these types of wh-dependency knowledge
despite any input variation that might be present. More generally, much remains unknown, in-
cluding (i) the input variation present across SES for learning about wh-dependencies, (i1) how the
input scaffolds the development of this complex syntactic knowledge, (iii) why any input variation
present does not lead to different developmental outcomes for certain wh-dependency knowledge
across SES by certain ages, and (iv) whether any input variation present is developmentally mean-
ingful for other types of wh-dependency preferences that have yet to be assessed in children across
SES.

3 Syntactic islands

A key component of syntactic knowledge is the ability to have long-distance dependencies, where
there is a relationship between two words that are not next to each other. Long-distance depen-
dencies, such as the wh-dependencies between the wh-word what and eat in can be arbitrarily
long (Chomskys, |1965; Ross, [1967; (Chomsky, [1973). In|(1), we can see that this wh-dependency
can stretch across one, two, three, or four clauses. In each case, what is understood as the thing
Falkor ate, despite what not being next to eat.

(D) What did Falkor eat  ,a:?
What did Atreyu see Falkor eat _ ,pq:?
What did the Childlike Empress say Atreyu saw Falkor eat _ ,54:?

What did Bastian hear the Childlike Empress say Atreyu saw Falkor eat _ ,p4:?

o o

However, adult speakers find different wh-dependencies to be more or less acceptable (sometimes
referred to as “allowed” or “grammatical” vs. “disallowed” or “‘ungrammatical”), with some wh-
dependencies being far less acceptable than others. As mentioned previously, this marked decrease
in acceptability has been attributed to specific syntactic structures, called syntactic islands, that
interfere with long-distance dependencies (Chomsky, [1965; Ross, 1967; Chomsky, 1973)). Four
example syntactic islands are in|(2), with * indicating very low acceptability and [...] highlighting
the proposed island structure that interferes with a wh-dependency in English.

2) a. Complex NP island

*What did Falkor make [the claim [that Atreyu fought _ ,q:1]1?7
b. Subject island

*What did Falkor think [[the joke about _,,;,,¢] Was hilarious]?
c.  Whether island

*What did Falkor wonder [whether Atreyu bought _ ,,,4:]?
d. Adjunctisland

*What did Falkor worry [if Atreyu buys _ 417

During language development, children must infer and internalize the knowledge that allows the



appropriate preferences for long-distance wh-dependencies. This knowledge allows them to rec-
ognize that the questions in|(2)|are far less acceptable, while the questions in|(1)|are much moreso.
We note that this recognition is a measurable behavior of children’s internalized knowledge. That
is, distinguishing more acceptable questions like [(T)| from far less acceptable questions like [(2)]is
one way to indicate knowledge of the relevant syntactic islands (whatever form that knowledge
may take).

4 Assessing knowledge of syntactic islands

Previous work assessing children’s knowledge of syntactic islands has focused on which interpreta-
tions of wh-dependencies are preferred, rather than the relative acceptability of the wh-dependencies
directly (Otsu, 1981; de Villiers et al., |1990; Roeper and Seymour, |1994; |de Villiers and Roeper,
1995; McDaniel et al., [1995; Vainikka and Roeper, 1995} de Villiers and Pyers, 2002; |Coles-White
et al., 2004;|de Villiers et al., 2008). The idea was that it is easier to ask children if they prefer a par-
ticular interpretation that relies on a certain wh-dependency (something more similar to naturalistic
communication) rather than asking children directly how acceptable they find that wh-dependency
(something more meta-linguistic that requires reasoning about language forms). Suppose children
disprefer a certain interpretation (e.g., “What is Jane drawing a monkey that is drinking milk with?”
with what interpreted as “the straw”); this (dis)preference can be interpreted as children finding
the wh-dependency that the interpretation relies on (e.g., “What is Jane drawing [a monkey that is
drinking milk with __,q:]?”) less acceptable. So, this behavior can then be interpreted as children
knowing about the syntactic island that interferes with that wh-dependency (e.g., a Complex NP
island). That is, when children disprefer a particular interpretation, this indirectly indicates their
knowledge of a particular syntactic island: the syntactic island interfering with the wh-dependency
that the dispreferred interpretation relies on.

A more direct way to assess syntactic island knowledge is with the less-natural task of directly
judging how acceptable a wh-dependency is (e.g., in the previous work of |Sprouse et al.|[2012)).
When the stimuli are carefully designed (as discussed below), relative differences in judged ac-
ceptability can be used to compare the acceptability of island-crossing wh-dependencies against
the acceptability of wh-dependencies that do not cross islands, yet are similar in other important
ways to the island-crossing ones. The key idea is that knowledge of the relevant syntactic island
is signaled when the island-crossing wh-dependency is still judged as far less acceptable (Sprouse
et al., [2012). We therefore follow Sprouse et al.| (2012)), and use acceptability judgment data to
indicate knowledge of syntactic islands, and follow Pearl and Sprouse| (2013, 2015) in using these
acceptability judgment patterns as a measurable target state for development. In particular, follow-
ing Pearl and Sprouse| (2013), the computational cognitive model we implement will attempt to
predict the appropriate acceptability judgment patterns found by Sprouse et al.[(2012) that indicate
knowledge of different syntactic islands.

Sprouse et al.| (2012) investigated the four islands from A sample stimuli set for each is-
land type is shown in (3)H(6), where island structures are indicated with [...]. These stimuli were
designed using a 2x2 factorial design, involving two factors deemed important for judging accept-
ability: wh-dependency length (matrix vs. embedded) and absence/presence of an island structure
in the utterance (non-island vs. island). Each island stimuli set therefore had four wh-dependency
types: matrix+non-island, embedded+non-island, matrix+island, and embedded+island. The em-



bedded+island stimulus in each case involved an island-crossing wh-dependency, and so was sup-
posed to be far less acceptable than the others.

3)

“4)

&)

(6)

Sample Complex NP island stimuli

a.

b.

matrix+non-island

Who __ ,no claimed that Atreyu fought the goblin?
embedded+non-island

Who did Falkor claim that Atreyu fought 5,7
matrix+island:

Who __,», made [the claim that Atreyu fought the goblin]?
embedded+island:

*Who did Falkor make [the claim that Atreyu fought _ ,,;,]?

Sample Subject island stimuli

a.

b.

matrix+non-island:

Who __,», thinks the joke is hilarious?
embedded+non-island:

What does Falkor think __,,;,q: 1S hilarious?

matrix+island:

Who __,», thinks the joke about Atreyu is hilarious?
embedded+island:

*Who did Falkor think [[the joke about __,,;,] was hilarious]?

Sample Whether island stimuli

a.

b.

matrix+non-island:

Who __,n, thinks Atreyu bought the medallion?
embedded+non-island:

What does Falkor think Atreyu bought _ ,,q:?
matrix+island:

Who __,», wonders if Atreyu bought the medallion?
embedded+island:

*What did Falkor wonder [whether Atreyu bought _ ,54:]?

Sample Adjunct island stimuli

a.

b.

matrix+non-island:

Who __,n, thinks Atreyu bought the medallion?
embedded+non-island:

What does Falkor think that Atreyu bought 547
matrix-+island:

Who __ ,n, worries if Atreyu bought the medallion?
embedded+island:

*What did Falkor worry [if Atreyu buys _ ,p4t]?

This design allows syntactic island knowledge to surface as a superadditive interaction of ac-

ceptability judgments; this superadditivity appears as non-parallel lines in an interaction plot, such
as those in Figure[I] which come from the judgments of higher-SES adults tested by [Sprouse et al.



(2012). We briefly review the logic behind this interpretation, as described in Sprouse et al.|(2012).

For example, consider the Complex NP plot in the top row, where there are four acceptability
judgments, one for each of the stimuli in [(3)] The matrix+non-island dependency of [(3a)| has a
certain acceptability score — this is the top-lefthand point. There is a (slight) drop in acceptability
when the matrix+island dependency of is judged in comparison to [(3a)| — this is the lower-
lefthand point. We can interpret this as the unacceptability associated with simply having an island
structure in the utterance. There is also a drop in acceptability when the embedded+non-island
dependency of [(3b)] is judged in comparison to [(3a)| — this is the upper-righthand point. We can
interpret this as the unacceptability associated with simply having an embedded wh-dependency.
If the unacceptability of the embedded+island dependency of were simply the result of those
two unacceptabilities (having an island structure in the utterance and having an embedded wh-
dependency), the drop in unacceptability would be additive and the lower-righthand point would
be just below the upper-righthand point (and so look just like the points on the lefthand side).
However, this is not what we see. Instead, the acceptability of [(3d)] is much lower than this.
This much-lower acceptability is a superadditive effect for the embedded-+island stimuli. So, the
additional unacceptability of an island-crossing-dependency like — interpreted by Sprouse
and colleagues (Sprouse et al., 2012 Pearl and Sprouse, 2013, 2015) as implicit knowledge of
syntactic islands — appears as a superadditive interaction in these types of acceptability judgement
plots. This superadditive acceptability judgment pattern appears for all four island types tested by
Sprouse et al| (2012) from [2); Complex NP, Subject, Whether, and Adjunct islands.

S Linking children’s input to syntactic island development

From a computational cognitive modeling standpoint, a modeled learner who can successfully ac-
quire knowledge from its input of any of the four syntactic islands, as measured via acceptability
judgments like those of Sprouse et al.|(2012), should be able to reproduce the superadditive judg-
ment pattern described above. So, the target behavior for successful development is generating
the superadditive judgment pattern for a set of wh-dependency stimuli associated with a particular
syntactic island. [Pearl and Sprouse| (2013) proposed a concrete learning theory — the first of its
kind — to specify a precise quantitative link between children’s input and this measurable output
behavior, and then implemented this learning theory in a computational cognitive model

This learning theory is based on the intuition that children will learn what they can from all the
wh-dependencies available in the input, rather than ones that are identical to the wh-dependencies
they need to judge the acceptability of. To do this, the learning theory proposes that children

'We note that there are several more recent computational modeling approaches using non-symbolic
frameworks such as LSTMs (see [Linzen and Baroni||2021| for a review) that have also been used to learn
about syntactic knowledge, including syntactic islands. However, these models do not, to our knowledge,
implement a concrete learning theory — or at least not one that is easy to interpret from the model (see
Pearl 2019 and |Linzen and Baroni|2021| for more discussion on this point). Thus, these models contrast
with the Pearl & Sprouse model used here, which implements an easy-to-interpret learning theory for syn-
tactic islands. Another more recent computational cognitive model by |Dickson et al.| (2022) encodes an
easy-to-interpret learning theory that learns about syntactic islands as a by-product of learning how to effi-
ciently represent the structure of wh-dependencies. We discuss alternative modeling approaches further in
the general discussion.



Figure 1: Higher-SES adult acceptability judgments from [Sprouse et al. (2012), showing means
and standard deviations of adult judgments. These judgments are interpreted as demonstrating
implicit knowledge of four syntactic islands via a superadditive interaction of acceptability judg-
ments for the selected wh-dependencies that cross dependency length (matrix vs. embeddeded)
with the absence/presence of an island structure (non-island structure vs. island structure) in a 2 x
2 factorial design.
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break wh-dependencies they encounter into smaller building blocks that can be used to construct
any wh-dependency, and not necessarily just the wh-dependencies they have encountered before.
So, these smaller building blocks are the internalized knowledge that corresponds to syntactic
island knowledge. That is, by drawing on these learned building blocks, children can generate
acceptability judgements, just as they would presumably draw on their syntactic island knowledge
to generate acceptability judgments.

Pearl and Sprouse (2013) evaluated their computational cognitive model by allowing it to learn
from a realistic sample of higher-SES CDS, and then seeing if it could generate the superadditive
acceptability judgment patterns from [Sprouse et al.| (2012). They found that the modeled learner
could indeed generate the appropriate patterns (see Figure 2)). This finding supported the learning
theory implemented in the model for explaining the development of syntactic island knowledge in
higher-SES children. Additionally, the specific finding that wh-dependencies crossing Complex NP
islands are far less acceptable (Figure 2] upper left) aligns with higher-SES child wh-dependency
(dis)preferences at age four for wh-dependencies crossing Complex NP islands (de Villiers et al.,
2008)); this alignment also supports the learning theory implemented in the model. Because the
model could match available data on output behavior when it learned from children’s input, we use
it here as a tool for evaluating variation in children’s input.
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Figure 2: Higher-SES child judgments generated from the computational cognitive model in Pearl
and Sprouse| (2013). These generated judgements can be interpreted as demonstrating implicit
knowledge of four syntactic islands via a superadditive interaction of acceptability judgments for
the selected wh-dependencies that cross dependency length (matrix vs. embeddeded) with the
absence/presence of an island structure (non-island structure vs. island structure) in a 2 x 2 factorial
design. Log probabilities correspond to acceptability judgments, with log probabilities closer to 0
indicating higher acceptability.
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The model’s learning theory assumes children can characterize a wh-dependency as a syntactic
path from the head of the dependency (e.g., What in through a set of phrase structures that
contain the tail (e.g., _,na¢) Of the wh-dependency, as shown in These structures cor-
respond to phrase types that make up wh-dependencies, such as Verb Phrases (VP), Inflectional
Phrases (IP), and Complementizer Phrases (CP), among others. Importantly, these are the struc-
tures that wh-dependencies would cross to create the link between the head of the dependency
and the tail of the dependency. Under this view, children simply need to learn how acceptable the
syntactic paths are for different wh-dependencies, which cross different phrase structures.

The learning process itself is implemented as a probabilistic learning algorithm that tracks
local pieces (i.e., the building blocks) of these syntactic paths. The learning algorithm assumes
the learner breaks the syntactic path into a collection of “syntactic trigrams” (groups of three units
derived from the syntactic path) that can be combined to reproduce the original syntactic path, as
shown in The modeled learner then tracks the frequencies of these syntactic trigrams in the

%For discussion of the motivation for the model’s implementation choices, including using information
only from wh-dependencies, using trigrams as opposed to n-grams of other sizes, the specification of the
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input, encountering one data point at a time. After the learning period is complete, the modeled
learner uses these learned frequencies to calculate probabilities for all syntactic trigrams potentially
comprising a wh-dependencyﬂ and so generate the probability of any wh-dependency (as shown
in [(8)} [O)). More specifically, any wh-dependency’s probability is the product of the individual
trigram probabilities that comprise its syntactic path, as shown in Importantly, relying on the
frequencies of syntactic trigrams (rather than the frequencies of entire wh-dependencies) allows
the modeled learner to generate probabilities for any wh-dependency, including wh-dependencies
that it has never seen before in its input. So, an unseen acceptable wh-dependency can still have a
higher probability than an unseen one that is less acceptable, depending on the syntactic trigrams
comprising each wh-dependency.

@) What did Falkor claim that Atreyu fought _ ,54:?

a.  Syntactic structures containing the wh-dependency:
What did [;p Falkor [y p claim [¢p that [;p Atreyu [y p fought _ o p0: 111117
b.  Syntactic path of wh-dependency:
start-1P-VP-CPy},,.-1P-VP-end
c. Syntactic trigrams 7' € syntactic path:
= start-IP-VP

IP-VP-CPy,
VP-CP;, - IP
CPypqi-1P-VP
IP-VP-end

(8) Smoothed probabilities of trigrams:

~ _ count(start—IP—VP)
p(StCl}"t-IP-VP) ™ total count of all trigrams

p(IP-VP-end) s — countIP—V D —end)

total count of all trigrams
&) Probability of new wh-dependency: What did Engywook tell Atreyu _ ,nq:?
Syntactic structures = What did [; p Engywook [y p tell Atreyu _ ,p4:71]
Syntactic path = start-IP-VP-end
trigrams = start-1P-VP, IP-VP-end
Probability = p(start-1P-VP-end) = p(start-IP-VP)*p(IP-VP-end)

(10) General formula for generating a wh-dependency’s probability:

Htm‘gramsGT p(tmgram)

trigrams as comprised of these particular phrase structures, when special start and end symbols are added,
calculating trigram probabilities, and the method of aggregating trigrams into a wh-dependency, see Pearl
and Sprousel (2013)).

3The modeled learner smooths these probabilities by adding 0.5 to all trigram counts. This smoothing
allows the modeled learner to generate a non-zero probability for wh-dependencies composed of trigrams
it has never seen before. However, it gives these wh-dependencies a much lower probability than wh-
dependencies composed of trigrams it has in fact seen before. See |[Pearl and Sprouse| (2013} 2015) for
further discussion of this point.
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The probability generated by the modeled learner corresponds to how acceptable the wh-
dependency is predicted to be. In this way, the modeled learner can generate judgments of wh-
dependencies. If the learner can generate the same pattern of judgments that adults do, we can
interpret this predicted judgment behavior as the learner internalizing some version of the knowl-
edge adults use to make those judgments. In this case, that means the modeled learner has inter-
nalized knowledge (via the syntactic trigrams) that allow it to replicate the knowledge contained
in syntactic islands. So, we can interpret this as the modeled learner having learned about those
syntactic islands.

For the stimuli sets used by Sprouse and colleagues (Sprouse et al., 2012} Pearl and Sprouse,
2013} 2015)), each wh-dependency stimulus can be transformed into its respective syntactic path
(see Table [I)). Then, the syntactic trigram probabilities learned from children’s input can be used
by the modeled learner to generate predicted acceptability judgments. This is the process that
allowed [Pearl and Sprouse] (2013)) to generate the judgment patterns in Figure [2] which matched
higher-SES adult judgment patterns and so were interpreted as the modeled learner successfully
developing knowledge of those four syntactic islands, when given higher-SES children’s input.

Table 1: Syntactic paths for experimental stimuli that the modeled learner can generate acceptabil-
ity judgments for, in a 2x2 factorial design varying dependency length (matrix vs. embedded) and
absence/presence of an island structure (non-island vs. island). Island-spanning dependencies are
indicated with a *.

Complex NP islands Subject islands
matrix non | start-1P-end start-1P-end
embedded non | start-IP-VP-CPyp,;-IP-VP-end start-IP-VP-CP,,,,;;-1P-end
matrix island | start-1P-end start-1P-end
embedded island [*start-IP-VP-NP-CPyj,q:-1P-VP-end |*start-IP-VP-CP,,,,;;-1P-NP-PP-end
Whether islands Adjunct islands
matrix non | start-1P-end start-1P-end
embedded non | start-IP-VP-CPypq-IP-VP-end start-1P-VP-CPy,:-1P-VP-end
matrix island | start-1P-end start-1P-end
embedded island [*start-IP-VP-CPypeiper-IP-VP-end [*start-IP-VP-CP; ¢-IP-VP-end

We note that the learning theory implemented in this computational cognitive model requires
children to have certain (potentially sophisticated) knowledge and abilities in place. More specif-
ically, children are assumed to be able to reliably (i) parse utterances in their input into phrase
structure trees, (ii) extract the syntactic paths for the wh-dependencies, (iii) track the frequency of
the syntactic trigams, and (iv) calculate the probability for the complete syntactic path of a wh-
dependency, based on its syntactic trigrams. It remains for future work to determine when children
are able to accomplish these prerequisite tasks, especially if there is variation with respect to when
they can. However, once children can indeed do these things, children would be able to harness
the input the way this computational cognitive model does.
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6 Input analysis across SES through age four

Here we assess input variation across SES, focusing on the information necessary for developing
knowledge of the four syntactic islands in The learning theory reviewed above assumes that
the relevant input aspect is the wh-dependencies and the syntactic trigrams that comprise those
wh-dependencies. So, we consider information available to children across SES in both the wh-
dependencies and the syntactic trigrams. Because prior child behavioral work indicates that both
higher-SES and lower-SES four-year-olds disprefer wh-dependencies crossing Complex NP is-
lands (Otsu, 19815 de Villiers and Roeper, (1995; de Villiers et al., 2008 we consider variation
present in children’s input across SES through age four.

We begin characterizing children’s input for learning about syntactic islands by providing a
descriptive analysis of the wh-dependencies and syntactic trigrams available in samples of higher-
SES and lower-SES CDSﬂ We then estimate the total quantity of wh-dependency input available
across SES through age four, finding a potentially large difference in the total quantity of wh-
dependencies.

We then use the computational cognitive model from |Pear] and Sprouse (2013) to predict the
syntactic island knowledge children would learn by age four from their input. More specifically, the
modeled learner learns from the estimated wh-dependency input that higher-SES and lower-SES
children encounter by age four, in terms of both the total quantity of wh-dependencies encountered
and the distributions of those wh-dependencies. The modeled learner then predicts the acceptability
judgments that would be generated by higher-SES and lower-SES children for the four sets of
stimuli from Sprouse et al.| (2012). We see if these predicted acceptability judgments suggest
any input-based differences across SES by age four, which would signal that differences in the wh-
dependency input were indeed developmentally meaningful. Conversely, similarity in the predicted
acceptability judgment patterns would signal that wh-dependency input differences are predicted
not to be developmentally meaningful.

6.1 Input samples

Higher-SES. Our higher-SES input samples are the data used by |Pearl and Sprouse (2013), and
come from the structurally-annotated Brown-Adam (Brown, [1973), Brown-Eve (Brown, |1973)),
Valian (Valian, 1991)), and Suppes (Suppes, |1974) corpora from the CHILDES Treebank (Pearl
and Sprouse, 2013). These data are child interactions involving 24 children between the ages of
one and a half and four, containing 101,838 utterances with 20,923 wh-dependencies.

Lower-SES. Our lower-SES input samples come from a subpart of the HSLLD corpus (Dickin-
son and Tabors, [2001) in CHILDES (MacWhinney, 2000), where SES was defined according to
maternal education and annual income. Maternal education ranged from 6 years of schooling to

4We note that the wh-dependencies we refer to as crossing Complex NP islands are referred to in those
prior studies as dependencies crossing argument barriers with a relative clause.

3> Appendix [B| additionally provides an information-theoretic analysis quantifying how similar the wh-
dependency and syntactic trigram distributions are in CDS across SES, compared to these distributions
within SES but across child-directed vs. adult-directed speech.
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some post-high school education. Annual income did not have hard lower and upper bounds; in-
stead, 70% of the families reported an annual income of $20,000 or less, while 21% of the families
reported an income of over $25,000. The annual income of the remaining 9% was unreported. In
this dataset, we focused on the Elicited Report, Mealtime, and Toy Play sections, which represent
more naturalistic interactions. We also drew our samples from Home Visit 1, which recorded child
language interactions involving children between the ages of three and five. Our sample contained
31,875 utterances and 3,904 wh-dependencies directed at 78 children. We extracted and manu-
ally annotated all wh-dependencies with syntactic structure, following the format of the CHILDES
Treebank, as described in the accompanying documentation for the CHILDES Treebankﬂ (Pearl
and Sprousel 2013).

Limitations of corpus samples. Because we draw our samples from already existing corpora
freely available through CHILDES, they do differ on other factors besides SES. Such factors in-
clude age range of the children sampled, number of children sampled, gender ratios of the children
sampled, size of the samples, and myriad factors related to the child language interactions them-
selves, including specific topics of conversation and contexts in which the interactions occurred.
Though there are overlaps for some of these factors, such as age range (three- and four-year-
olds) as well as some topics and contexts of interactions (meal times and toy-playing sessions),
it is certainly possible that the non-SES-based differences between these samples impact the wh-
dependency distributions.

With respect to the age range differences in these samples, analyses from Pearl and Sprouse
(2013) suggest that there is little difference in wh-dependency distribution when comparing higher-
SES CDS between one and four years old with adult-directed speech. Because the differences
between CDS and adult-directed speech are generally more pronounced than CDS at different
ages, this prior analysis suggests that the age range differences in the samples here may not impact
the wh-dependency distributions so much. However, a valuable avenue for future work is to collect
data across SES that more explicitly controls for many other factors in order to know more clearly
which factors do and do not impact the wh-dependency distribution in the input.

Wh-dependency coding. The structural annotations of the wh-dependencies in each sample in-
dicate the syntactic structure necessary to characterize the syntactic paths of wh-dependencies. We
coded the syntactic paths of the dependencies as in shown below with a different example
in @]) Following [Pearl and Sprouse| (2013)), the CP phrase structure nodes were further sub-
categorized by the lexical item serving as complementizer, such as CPyyqt, CPoyhether, CPif, and
CP,,,;- This subcategorization allows the modeled learner to distinguish dependencies judged by
higher-SES adults to be more acceptable, like from those judged to be far less acceptable,
like[(TTb)|(Cowart,[1997). With these syntactic paths characterizing wh-dependencies, we can then
assess the distribution of the wh-dependencies in each input sample.

(11 a. Who do you think _ 5, read the book?
syntactic path: start-IP-VP-CP,,;-IP-end

This documentation is available with the downloaded corpus at https://www.socsci.uci.edu/~Ipearl/
CoLalab/CHILDESTreebank/childestreebank.html and at https://childes.talkbank.org/derived/ (called the
Pearl_Sprouse_Corpus at that URL).
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b. *Who do you think that _ 5, read the book?
syntactic path: *start-IP-VP-CPyq:-IP-end

6.2 Descriptive corpus analyses

Wh-dependencies. Our corpus analyses found 12 wh-dependency types in common between the
higher-SES and lower-SES child input samples (out of 26 total in the higher-SES and 16 total in
the lower—SES)E] So, the higher-SES input sample contained 14 wh-dependency types not in the
lower-SES input sample, and the lower-SES input sample contained 4 wh-dependency types not in
the higher-SES input sample, as shown in the lefthand column of Table 2]

We see first that there is a striking similarity in the two most frequent wh-dependency types
across SES: the same two account for the vast majority of wh-dependency types in children’s
input across SES (higher-SES: 89.5%, lower-SES: 85.8%), and these two types seem to occur in
similar proportions (shown in Fj This suggests a high-level distributional similarity in the
wh-dependency input across SES, despite the individual wh-dependency differences.

(12) Proportions of the two most frequent wh-dependency types across SES

a. 1° most frequent: start-IP-VP-end (e.g., What did Lily read __,pq;?)
76.7% higher-SES, 75.5% lower-SES

b. 2™ most frequent: start-IP-end (e.g., What _,har happened?)
12.8% higher-SES, 10.3% lower-SES

When we compare the rate of wh-dependencies across SES (i.e., how often an utterance has a
wh-dependency), we find another difference, with wh-dependencies occurring more frequently in
higher-SES CDS (higher-SES: 20,932/101,383 = 20.5%, lower-SES: 3,904/31,875 = 12.2%; two-
proportion z-test: z=33.3, p<.01). Over time (as detailed in section [6.3)), this rate difference can
lead to a considerable difference in the total quantity of wh-dependencies encountered.

Syntactic trigrams. For syntactic trigrams, which serve as the building blocks of wh-dependencies
under the Pearl & Sprouse learning theory, our corpus analysis found 19 syntactic trigrams in com-
mon between the higher-SES and lower-SES child input samples (out of 29 total for the higher-SES
and 20 total in the lower-SES). So, the higher-SES input sample contained 10 syntactic trigrams
not in the lower-SES input sample, and the lower-SES input sample contained 1 syntactic trigram
not in the higher-SES input sample, shown in the righthand column of Table

As might be expected from the wh-dependency descriptive analysis, the most frequent syntac-
tic trigrams are also very similar across SES; this is because these trigrams come from the most

7A more detailed description of the wh-dependency distribution across SES is available in Appendix

81n fact, despite the sample size differences (20,923 vs. 3,904), the most frequent wh-dependency pro-
portion (76.7% higher-SES vs. 75.5% lower-SES) is indeed not significantly different across these samples
(two-proportion z-test: z=1.62, p=.10). However, the second most frequent wh-dependency proportion
(12.8% higher-SES vs. 10.3% lower-SES) does seem to be different, despite the surface similarity in pro-
portions (two proportion z-test: z=4.34, p<.01).

A more detailed description of the syntactic trigram distribution across SES is available in Appendix
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Table 2: Wh-dependencies and syntactic trigrams unique to speech samples directed at higher-SES
and lower-SES children, respectively. Unique syntactic trigrams are on the same row as the unique
wh-dependencies they come from.

wh-dependencies

syntactic trigrams

only higher-SES

start-IP-VP-CP ,,.-IP-VP-PP-end IP-VP-CPy,p,
(e.g., What did she put on for you to dance to __,pqt?) VP-CPo-IP,
CPjo.-IP-VP

start-IP-VP-CP,,,;;-1P-VP-IP-VP-IP-VP-end

(e.g., What did he think she wanted to pretend to steal __pqt7)
start-IP-VP-CP,,,,;;-1P-VP-IP-VP-PP-end

(e.g., Who did he think she wanted to steal from __,p07?)
start-IP-VP-CP,,,,;;-IP-VP-NP-end

(e.g., What did he think she said __ 34t about it?)
start-IP-VP-CP,,,;1-1P-VP-PP-PP-end

(e.g., What did he think she wanted out of __ ,hat?)

start-IP-VP-CPy},-IP-VP-end CPypai-1P-VP
(e.g., What did he think that she stole __,nqt7)
start-IP-VP-1P-end VP-IP-end

(e.g., Who did he want __,p,, to steal the necklace?)
start-IP-VP-IP-VP-IP-VP-PP-end

(e.g., Who did he want her to pretend to steal from __,p0?)
start-IP-VP-IP-VP-NP-end

(e.g., What did he want to say __nqt about it?)
start-IP-VP-IP-VP-NP-PP-end

(e.g., What did she want to steal more of __,hat?)

start-IP-VP-NP-end VP-NP-end
(e.g., What did she say __,pqt about the necklace ?)
start-IP-VP-PP-CP,,,;;-IP-VP-end VP-PP-CP,.u1,
(e.g., What did she feel like he saw __,pqt?) PP-CP,1-1P
start-IP-VP-PP-NP-PP-end VP-PP-NP,
(e.g., What do you put it on top of __what?) PP-NP-PP

start-IP-VP-PP-IP-VP-end
(e.g., What did he think about stealing __,pat?)

only lower-SES
start-IP-VP-CP,,,,;;-IP-VP-NP-PP-end
(e.g., What did he think it was a movie of __,hat?)
start-IP-VP-IP-VP-IP-VP-PP-IP-VP-end
(e.g., What did you want to try to plan on doing __,nqt7?)
start-IP-VP-PP-IP-VP-end
(e.g., What did she think about buying _ ,naqt?)
start-IP-VP-CP;j,q-1P-end CPypor-IP-end
(e.g., What do you think that __,1,q¢ happens?)

frequent wh-dependency type, start-IP-VP-end. More specifically, the two trigram types that col-
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lectively account for the majority of the trigrams in the wh-dependency input (start-1P-VP, IP-VP-
end) are the same across SES and account for the vast majority of the input (higher-SES: 81.7%,
lower-SES: 80.3%). Moreover, these two syntactic trigrams occur in similar proportions m (shown
in[(I3)). So, as with the wh-dependency types, this descriptive analysis suggests a high-level dis-
tributional similarity in the syntactic trigram input across SES, despite the individual syntactic
trigram differences.

(13) Proportions of the two most frequent trigram types across SES

a. 1% most frequent: start-IP-VP
41.8% higher-SES, 41.4% lower-SES
b. 2™ most frequent: IP-VP-end
39.9% higher-SES, 38.9% lower-SES

6.3 Realistic estimates of total input quantity across SES through age four

To estimate the total quantity of wh-dependency data that children from different SES backgrounds
encounter through age four, we can draw on available empirical data sources to estimate both how
long children have to learn (i.e., the learning period) and how much data they encounter during
that learning period. More specifically, we can estimate when children would begin harnessing the
wh-dependency information in their input (i.e., when the learning period for syntactic islands could
plausibly start), how much time passes between that starting point and age four (i.e., the length of
the learning period), and how many wh-dependencies children across SES would encounter during
that learning period.

When children’s learning period plausibly starts. To begin learning about the relative ac-
ceptability of different wh-dependencies, children must be able to process the structure of wh-
dependencies. Current research suggests that children begin to represent the full structure of wh-
dependencies (e.g., wh-questions and relative clauses) at 20 months (Seidl et al., 2003}; Gagliardi
et al., 2016; Perkins and Lidz, [2020). So, we estimate 20 months as the starting point of the
learning period for syntactic islands, which depend on wh-dependencies.

How much time awake during the learning period. Taking four years old as the end point
of the learning period for syntactic islands, the estimated learning period is then from 20 months
through the end of age four (59 months). We estimate the number of hours awake by drawing
on |Davis et al. (2004), who summarize the hours asleep for young children at different ages (one
through four), as shown in Table Based on these estimates, we can then estimate the hours
awake between 20 months and 59 months, and sum those hours to estimate the total hours awake
during this learning period. Our calculations in Table 3yield about 14,174 hours awake (~850,450
minutes awake).

10As with the wh-dependency analysis, despite the sample size differences (43,786 vs. 8,464), the first
and second most frequent syntactic trigram proportions (15! most frequent: 41.8% higher-SES vs. 41.4%
lower-SES; 2"¢ most frequent: 39.9% higher-SES vs. 38.9% lower-SES) are not significantly different
across these samples (two-proportion z-test for the 15 most frequent: z=0.68, p=.49; for the 2"¢ most
frequent: z=1.72, p=.085).
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Table 3: Calculating the total hours (cumulative waking hrs) and minutes (cumulative waking
mins) awake for children between the ages of 20 and 59 months, the estimated learning period for
syntactic islands. These calculations are based on waking hours per day (waking) and total waking
hours. Cumulative hours awake are shown at age one (20-23 months), two (24-35 months), three
(36-47 months), and four (48-59 months).

age age range waking total waking hours cumulative waking hrs
one | 20-23 months 10 11 hrs/day * 365 days/yr * 4/12 = 1216.67 1216.67
two | 24-35 months 11 11 hrs/day * 365 days/yr = 4015 5231.67
three | 36-47 months 12 12 hrs/day * 365 days/yr = 4380 9611.67
four | 48-59 months 12.5 12.5 hrs/day * 365 days/yr = 4562.5 14174.17

cumulative waking mins
14174.17 * 60 min/hour
850450.2

How many wh-dependencies during the learning period. Based on the estimated minutes
awake during the learning period, we can then estimate the total quantity of wh-dependencies
children encounter. More specifically, we estimate this quantity by drawing on estimates of the
number of utterances children from different SES backgrounds hear per minute and our own cor-
pus samples of the rate of wh-dependencies in children’s input.

To estimate utterances per minute across SES, we draw on work by Rowe| (2012) and Hoff-
Ginsberg (1998)). Rowe (2012)) examined word tokens per minute at ages 18 months, 30 months,
and 42 months across SES, finding that quantity of word tokens per minute appears to remain
steady (rather than increasing). So, we assume here that the rate of utterances per minute across
SES also remains the same during the learning period from 20 months to 59 months. |Hoff-Ginsberg
(1998) identified average rates of utterances per minute for children age 21 to 24 months from fam-
ilies with different SES backgrounds: (i) parents who were college-educated and worked in profes-
sional positions (which we will associate with higher-SES), and (i1) parents who were high-school
educated and worked in semi-skilled, unskilled, or service positions (which we will associate with
lower-SES). The higher-SES children heard 15.8 utterances per minute (standard deviation 4.2),
while the lower-SES children heard 13.0 utterances per minute (standard deviation 4.2). To capture
95% of each population, we consider the range of utterance rates within two standard deviations
from the average, as shown in Table 4| (higher-SES: 7.4-24.2 utterances/minute; lower-SES: 4.6-
21.4 utterances/minute).

Our corpus estimates of wh-dependency rate suggest that higher-SES children’s input consists
of about 20.5% wh-dependencies (20,923 wh-dependencies of 101,838 utterances), while lower-
SES children’s input consists of about 12.2% wh-dependencies (3,904 wh-dependencies of 31,857
utterances). Table |4 shows the resulting range of total wh-dependency quantity heard during the
learning period across SES: 1,293,545-4,230,241 for higher-SES children, and 479,144-2,229,063
for lower-SES children. While there are some points where there appear to be similar total quan-
tities of wh-dependencies in children’s input across SES (e.g., 2 standard deviations below the
higher-SES average = 1,293,545 while the lower-SES average = 1,354,103), there can be a marked
disparity in total quantity. On average, higher-SES children will hear about twice as many wh-
dependencies as lower-SES children (fggﬁggzz.og In the most extreme case, higher-SES chil-
dren at the top of the higher-SES range (2 standard deviations above the average: 4,230,241) hear
nearly 9 times as many wh-dependencies as lower-SES children at the bottom of the lower-SES
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4,230,241 _
479,144 =8.8.

range (2 standard deviations below the average: 479,144):

Table 4: Calculating the range of total wh-dependencies (total wh-dep) that higher-SES and lower-
SES children encounter between the ages of 20 and 59 months, the estimated learning period for
syntactic islands. These calculations are based on 850,450.2 waking minutes between these ages,
estimated ranges of utterance rates per min (utt/min), based on average rates (average) and standard
deviations (s.d.) across SES, and wh-dependencies in the input (wh-dep/utt) across SES.

utt/min  * min * wh-dep/utt = total wh-dep
higher-SES * 850,450.2 * 20,932/101,838
-2 s.d. 7.4 = 1,293,545
-1s.d. 11.6 = 2,027,719
average 15.8 = 2,761,893
+ 1 s.d. 20.0 = 3,496,067
+ 2 s.d. 24.2 = 4,230,241
lower-SES * 850,450.2 *  3,904/31,875
-2s.d. 4.6 = 479,144
-1s.d. 8.8 = 916,624
average 13.0 = 1,354,103
+ 1 s.d. 17.2 = 1,791,583
+ 2 s.d. 21.4 = 2,229,063

6.4 Summary and implications of corpus analyses

Our descriptive corpus analyses highlight both high-level similarities and differences in the distri-
butions of wh-dependency information in children’s input across SES. Children’s input is similar
with respect to the most frequent wh-dependency types and syntactic trigrams, as well as how
frequent they are; children’s input is different with respect to specific wh-dependency types and
syntactic trigrams unique to each sample, as well as the rate of wh-dependencies in the input.
Moreover, our estimate of the total quantity of wh-dependencies heard during the estimated learn-
ing period for syntactic islands (through age four) highlights how the total quantity can be quite
different across SES, with higher-SES children potentially hearing nearly nine times the quantity
of wh-dependencies as lower-SES children.

However, recall that for at least one syntactic island type we investigate (Complex NP is-
lands), children across SES seem to have developed a similar (dis)preference by age four for wh-
dependencies crossing that island (Otsu, 1981} de Villiers and Roeper, (1995 lde Villiers et al.,
2008). So, we might expect that the input differences across SES that we have found so far are not
developmentally meaningful by age four for learning a dispreference for wh-dependencies crossing
Complex NP islands. This is a prediction we can evaluate using the computational cognitive model
from |Pearl and Sprouse (2013)). Note that each island type involves different syntactic structures —
therefore, even if knowledge of one syntactic island type can develop from children’s input (e.g.,
Complex NP islands), there is no guarantee that knowledge of all these island types can develop
from that same input.

Of course, as noted previously, there is suggestive evidence from prior modeling work by |Pearl
and Sprouse| (2013) that higher-SES input can support development of all four syntactic island
types. However, the input sample used in those prior analyses is not as realistic as the range we
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explore in our own modeling analyses here, summarized in Table[d Thus, our analysis with a more
realistic range of higher-SES input will serve as a more comprehensive comparison to our analysis
with lower-SES input, and thus of input variability across SES for learning about syntactic islands.

6.5 Computational cognitive modeling analysis

We conducted the computational cognitive modeling analysis by implementing a modeled learner
that uses the learning theory of Pearl and Sprouse|(2013)), and then allowing that modeled learner to
learn from the estimated input samples described above. In particular, the modeled learner learned
from the range of quantities of wh-dependencies estimated for higher-SES children by age four,
with the wh-dependencies distributed as in our higher-SES corpus sample; similarly, the modeled
learner learned from the range of quantities of wh-dependencies estimated for lower-SES children
by age four, distributed as in our lower-SES corpus sample. For each input set, the modeled learner
estimated syntactic trigram probabilities and could then generate probabilities for any desired wh-
dependency, whether seen or unseen in its input.

We then demonstrate what this modeled learner would learn about the syntactic island types we
investigate from its input, as measured by its predicted judgments on the wh-dependency stimuli
from Sprouse et al.| (2012)), reviewed in |(3)H(6)| and characterized by the syntactic paths in Table
The target state for development is adult-like acceptability judgment patterns (which are super-
additive, as in Figure[I)). As mentioned above, previous computational cognitive modeling results
from Pearl and Sprouse| (2013)) using higher-SES input were able to generate this superadditive
judgment pattern for all four syntactic island types, as shown in Figure 2] Our current analysis will
see if the higher-SES predicted judgment patterns replicate when using more realistic estimates of
higher-SES input encountered by age four. We will additionally be able to predict the lower-SES
judgment patterns resulting by age four, and see how those compare to the predicted higher-SES
judgment patterns. In this way, we will be able to compare the input across SES by age four for
learning about these four syntactic island types.

6.5.1 Analysis implementation and visualization

For each SES type (higher vs. lower), a modeled learner was run on 1000 representative input
sets sampled according to the relative frequencies of the wh-dependencies in our corpus samples;
each input set matched the estimated input quantity being modeled (2 standard deviations below
average, 1 standard deviation below average, average, 1 standard deviation above average, 2 stan-
dard deviations above average). Averages of these 1000 runs for each SES type and estimated
input quantity are plotted in Figures [3and 4] with the log probability averages and standard devia-
tions for each wh-dependency stimuli type available in Appendix [C] Standard deviations were not
plotted as they were too small to appear on the graphs.

6.5.2 Complex NP islands

The computational cognitive modeling analysis for Complex NP islands predicts acceptability
judgment patterns for the wh-dependency stimuli from Sprouse et al.| (2012), as shown in Fig-
ure [3] For higher-SES child-directed input (left side of Figure [3)), we see the same superadditive
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judgment pattern that higher-SES adults had in |Sprouse et al.|(2012), and which the prior compu-
tational cognitive modeling analysis of |Pearl and Sprouse (2013) found. This judgment pattern can
be interpreted as demonstrating implicit knowledge of the Complex NP island. In particular, the
island-crossing dependency (an embedded dependency with an island structure in it) is far less ac-
ceptable than expected if its acceptability were solely based on it being an embedded dependency
with an island structure present in the utterance. Thus, these results support prior computational
cognitive modeling work suggesting that higher-SES input can lead to implicit knowledge of the
Complex NP island, as assessed by the superadditive judgment pattern.

Figure 3: Predicted four-year-old child judgments for Complex NP stimuli by a modeled learner
learning from higher-SES (left) and lower-SES (right) input data ranges (2 standard deviations
below average (-2sd), 1 standard deviation below average (-1sd), average (avg), 1 standard devia-
tion above average (+1sd), 2 standard deviations above average (+2sd)). Averages are shown from
1000 modeled learner runs per input range. Both interaction plots show the superadditive pattern
that appears in adult judgments of these wh-dependencies, given the factorial design crossing de-
pendency distance (matrix vs. embedded) with the absence/presence of an island structure in the
utterance (non vs. island).
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We see this same judgment pattern in the predicted judgments derived from lower-SES child
input (right side of Figure [3). So, these results additionally suggest that there is no predicted
difference in Complex NP island knowledge by age four across SES. In particular, both higher-
SES and lower-SES children should find wh-dependencies that cross Complex NP islands to be far
less acceptable. These results align with prior child behavioral data from|de Villiers et al.| (2008])
suggesting that children across SES disprefer wh-dependencies crossing Complex NP islands. That
is, our computational cognitive modeling results predict that four-year-olds across SES should
judge such wh-dependencies as much less acceptable, which seems to be true.

So, the computational cognitive model correctly predicts that (i) higher-SES children should
disprefer wh-dependencies that cross Complex NP islands, and that (ii) lower-SES children should
also disprefer these wh-dependencies. Moreover, a more precise prediction is that both higher-SES
and lower-SES children should show the same, adult-like superadditive acceptability judgment
pattern on this wh-dependency stimuli set by age four. Taken together, these results suggest there is
no predicted developmentally-meaningful difference by age four in children’s input across SES for
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learning about the Complex NP island, and this prediction aligns with currently available empirical
evidence. With this in mind, we now turn to the predictions for the other three island types.

6.5.3 Subject, Whether, and Adjunct islands

The computational cognitive modeling analysis for Subject, Whether, and Adjunct islands pre-
dicts acceptability judgment patterns for the wh-dependency stimuli from |Sprouse et al.[(2012), as
shown in Figure [ For higher-SES child-directed input (left side of Figure []), we see the same
superadditive judgment pattern that higher-SES adults had in Sprouse et al.| (2012), and which the
prior computational cognitive modeling analysis of |Pear]l and Sprouse| (2013) found. This judg-
ment pattern can be interpreted as demonstrating implicit knowledge of Subject, Whether, and
Adjunct islands. In particular, the island-spanning dependencies (embedded dependencies with
an island structure in them) are far less acceptable than expected if their acceptability were solely
based on them being embedded dependencies with an island structure present in the utterance.
Thus, these results support prior computational cognitive modeling work suggesting that higher-
SES input can lead to implicit knowledge of Subject, Whether, and Adjunct islands, as assessed by
the superadditive judgment pattern.

We see this same judgment pattern in the predicted judgments derived from lower-SES child
input (right side of Figured)). So, these results additionally suggest that there is no predicted differ-
ence in Subject, Whether, or Adjunct island knowledge by age four across SES. In particular, both
higher-SES and lower-SES children by age four should find wh-dependencies that cross Subject,
Whether, and Adjunct islands to be far less acceptable.

So, as with the Complex NP island, the computational cognitive model predicts that (i) higher-
SES children should disprefer wh-dependencies that cross Subject, Adjunct, and Whether islands,
and (ii) lower-SES children should also disprefer these wh-dependencies. As with the Complex NP
island type, a more precise prediction is that both higher-SES and lower-SES children should show
the same, adult-like superadditive acceptability judgment pattern on these wh-dependency stimuli
sets by age four. Taken together, these results suggest there is also no predicted developmentally-
meaningful difference in children’s input by age four across SES for learning about Subject,
Whether, or Adjunct islands.

6.5.4 Summary of modeling results

As mentioned above, our computational cognitive modeling analysis predicts no difference in chil-
dren’s knowledge across SES by age four about these four island types, as assessed by accept-
ability judgment patterns for specific sets of wh-dependencies. These predictions can be tested
experimentally in future child behavioral work that gathers acceptability judgments.

If these predictions are indeed true, and there is no difference in acceptability judgments for
all four of these island types by age four across SES, then those future behavioral results would
additionally support our basic finding: lower-SES input is equivalent to higher-SES input when
it comes to the development of this syntactic island knowledge. That is, the measurable input
differences across SES are not developmentally meaningful. Importantly, because of the learning
theory implemented concretely by the modeled learner, we understand why this result occurs, both
in general and more specifically. In general, the observable differences in the wh-dependency
distributions in children’s input across SES do not matter for the part of that input that scaffolds
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Figure 4: Predicted four-year-old child judgments for Subject, Whether, and Adjunct stimuli by a
modeled learner learning from higher-SES (left column) and lower-SES (right column) input data
ranges (2 standard deviations below average (-2sd), 1 standard deviation below average (-1sd),
average (avg), 1 standard deviation above average (+1sd), 2 standard deviations above average
(+2sd)). Averages are shown from 1000 modeled learner runs per input range. All interaction plots
show the superadditive pattern that appears in adult judgments of these wh-dependencies, given the
factorial design crossing dependency distance (matrix vs. embedded) with the absence/presence of
an island structure in the utterance (non vs. island).
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knowledge of these syntactic islands. More specifically, the necessary building blocks (i.e., the
specific syntactic trigrams associated with each wh-dependency) appear in the appropriate relative
frequencies in children’s input across SES.

7 Discussion

Our computational cognitive modeling analysis suggests that higher-SES child input is equivalent
to lower-SES child input with respect to how the wh-dependency input can support the development
of certain syntactic island knowledge by age four. This is true despite the small differences in wh-
dependency distribution and the potentially large differences in total quantity of wh-dependency
input encountered by age four. Notably, small distributional differences could have mattered, as
children’s learning is often impacted by relative frequency differences of different items in their
input (e.g., see Ramscar et al.[2013a)) and Ramscar et al.|2013b). Yet, we did not find this — instead,
any measurable wh-dependency input differences across SES are not predicted to be developmen-
tally meaningful with respect to learning this syntactic island knowledge. That is, surface input
differences mask deeper input similarities across SES.

One benefit of our computational cognitive modeling approach is that it implements a learning
theory specifying a causal link between children’s input and their observable language behavior.
In particular, it makes predictions about children’s observable behavior (here: acceptability judg-
ments for wh-dependencies at age four) that can be evaluated against existing and future child
behavioral data. Current data from|de Villiers et al.| (2008) align with the predictions for Complex
NP islands, supporting the learning theory implemented in the computational cognitive model. We
note again that, to our knowledge, this is the first learning theory of this kind for syntactic islands
that is specified enough to generate precise, testable predictions from children’s input. Thus, we
believe it is valuable to continue evaluating the learning theory’s predictions against empirical data,
though of course future work may explore other learning theories for syntactic islands and evaluate
their predictions against available empirical data.

In particular, future child behavioral work can investigate the specific predicted acceptability
judgements for Complex NP islands, to further evaluate both the learning theory and the predic-
tion that there should be no difference in this Complex NP island knowledge across SES by age
four. Future child behavioral studies can also investigate the predictions for the other three island
types (Subject, Whether, and Adjunct), where the computational cognitive modeling analysis also
predicts no differences across SES by age four.

Below, we first discuss some interesting input differences across SES involving the comple-
mentizer that, which the learning theory implemented by the computational cognitive model iden-
tifies as important for the development of certain syntactic island knowledge. We then turn to other
testable model predictions for related syntactic knowledge concerning wh-dependencies. We then
consider the plausibility of the prior knowledge and abilities assumed by the learning theory im-
plemented in the model; these prerequisites are also potential points of variation across SES that
could therefore impact when children across SES could harness the information in their input in
the way the learning theory proposes. We additionally discuss limitations of this computational
cognitive model, and consider alternative computational modeling approaches that can be used to
evaluate developmentally-meaningful input variation.
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7.1 Interesting input differences involving complementizer that

There is a striking difference in the exact wh-dependency distribution across SES that is predicted
by the learning theory to be crucial for learning about two of the syntactic island types, Whether and
Adjunct islands. This input difference involves particular structural building blocks, which come
from wh-dependencies that have the complementizer that and so are characterized by syntactic
trigrams with CPyj,; in them.

As noted before in the only distinction between certain wh-dependencies judged more
acceptable and other wh-dependencies judged less acceptable by higher-SES adults is the comple-
mentizer. With respect to the wh-dependencies we have investigated here, wh-dependencies like
with complementizer that are judged as more acceptable, while equivalent wh-dependencies
like [(T4b)| with complementizers like whether (Whether islands) or if (Adjunct islands) are judged
as far less acceptable. Again, the only difference in the syntactic path of these wh-dependencies is
CP;p,q for the wh-dependency in and CPpetner or CP; s for the wh-dependencies in

(14) a.  What do you think that Jack read _ 547
syntactic path: start-IP-VP-CPyp,q:-IP-VP-end
b. *What do you wonder whether/if Jack read _ ,,;4:?
syntactic path: *start-IP-VP-CP ,peiherif-IP-VP-end

This instance highlights that it is important for children to encounter wh-dependencies in their input
that involve complementizer that (and not whether or if), if children are to learn about Whether and
Adjunct islands the way the learning theory here proposes. When children do in fact encounter wh-
dependencies with complementizer that (CPy,;), the learning theory here can leverage the CPy,
piece to predict that should be judged as more acceptable than

However, wh-dependencies involving CPy,,; are actually fairly rare in naturalistic usage. Pearl
and Sprouse (2013)) only found 2 of 20,923 (0.0096%) in high-SES CDSE]Based on our estimated
input ranges by age four for higher-SES children, this would correspond to about three to ten wh-
dependencies with CPy,; every month In our lower-SES CDS sample, there are 2 of 3,094
(0.051%) wh-dependencies involving CPy,,;. Based on our estimated input ranges by age four for
lower-SES children, this would correspond to about six to 29 wh-dependencies with CPy,, every
monthE] If these corpus samples are accurate, this calculation highlights that lower-SES children
could actually hear a crucial building block far more often in their input than higher-SES children
do (i.e., lower-SES: 29 times vs. higher-SES: ten times per month even at the highest input esti-
mates); this is true despite higher-SES children likely hearing more wh-dependencies overall before
age four. That is, input quantity for this particular input aspect (i.e., wh-dependencies involving

""They additionally found that CP;,,; wh-dependencies are rare in both high-SES adult-directed speech
(7 of 8,508 = 0.082%) and adult-directed text (2 of 4,230 = 0.048%).

2Two standard deviations below the average: CPyp,¢ rate W%Q * 1,293,545 wh-dependencies in the
learning period = 124; 124 / 40 months in the learning period = 3.1 CPy,: wh-dependencies per month.
Two standard deviations above the average: CPyj; rate ﬁ * 4,230,241 wh-dependencies in the learning
period = 404; 404/40 months in the learning period = 10.1 CPy,,; wh-dependencies per month.

13Two standard deviations below the average: CPy,q; rate ﬁ * 479,144 wh-dependencies in the learning
period = 245; 245 / 40 months in the learning period = 6.1 CP;y,; wh-dependencies per month. Two standard

2

deviations above the average: CPypq; rate 555; * 2,229,063 wh-dependencies in the learning period = 1142;

1142/40 months in the learning period = 28.6 CPy,,+ wh-dependencies per month.
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CPypqt) 1s estimated to be more for lower-SES children, rather than for higher-SES children, in
contrast to total wh-dependency quantity.

Interestingly, the type of wh-dependency in children’s input that contains the crucial CPy,;
building block also appears to differ across SES, based on our corpus samples. In the higher-SES
sample, both CP,;,; dependencies are of the same type: start-IP-VP-CPy,.-IP-VP-end instances
like However, in our lower-SES CDS sample, the CP;;,; building block comes from a
different wh-dependency type, which happens to be a “that-trace violation” judged as much less
acceptable by higher-SES adults (Cowart, [1997)): start-IP-VP-CPy,q-IP-end instances like [(15)]

(15) What do you think that __,,,,; happens?

What do [;p you [y p think [¢p,,,, that [;p _ wnat [vp happens]]]]]?
syntactic path: start-IP-VP-CP,q;-IP

That is, the key linguistic experience allowing a lower-SES child to acquire the same syntactic
knowledge about Whether and Adjunct islands as a higher-SES child actually comes from data
that would be unlikely to occur in a higher-SES child’s input. It is unlikely to occur because
that data type is judged less acceptable by higher-SES adults, who produce the CDS. This finding
underscores the power of learning theories that generate the linguistic knowledge of larger struc-
tures (such as wh-dependencies) from smaller building blocks (such as syntactic trigrams), like the
learning theory here. In particular, children with different input experiences who rely on smaller
building blocks may be able to find evidence for the same building blocks (e.g., syntactic trigrams
involving CPy;,,;) in different places (e.g., different wh-dependencies involving CP;;).

However, we note again that these findings and implications rest on the accuracy of our corpus
samples. In particular, for the lower-SES CPy;,; wh-dependencies, it is possible that these wh-
dependency instances were speech errors from the adult speakers. We feel this possibility is less
likely, as the two wh-dependency instances came from two different speakers, and so are more
likely to reflect naturalistic lower-SES usage. Still, future work can evaluate this prediction that
these wh-dependencies would in fact be judged as acceptable by lower-SES adults.

However, suppose these wh-dependency instances in the lower-SES corpus samples were in
fact speech errors and so are unlikely to occur in lower-SES children’s input in general (this
would be because lower-SES adults would find them as unacceptable as higher-SES adults do).
In that case, we would not expect lower-SES children in general to encounter these CPy,,; wh-
dependencies. Because these were the only wh-dependencies in our lower-SES sample contain-
ing CPypq;, we might then expect that lower-SES children do not in fact encounter any CPy,q;
wh-dependencies. Without the crucial CPy,,; building block in lower-SES children’s input, the
learning theory would predict that lower-SES children would not in fact judge wh-dependencies
crossing Whether and Adjunct islands as any less acceptable than wh-dependencies crossing em-
bedded clauses with complementizer that. That is, the learning theory would predict no difference
in judged acceptability of the wh-dependencies in|(14a) and [(14b)l So, lower-SES children would
not learn the same syntactic knowledge as higher-SES children with respect to Whether and Ad-
junct islands, as reflected in judged acceptability of the relevant wh-dependencies.

In this situation, the computational cognitive modeling analysis would predict a developmentally-
meaningful input difference across SES for Whether and Adjunct islands. In particular, higher-SES
children’s input would be predicted to support the development of this knowledge, while lower-
SES children’s input would not. More specifically, lower-SES children would be predicted to
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not have the adult-like superadditive judgment pattern by age four for the Whether and Adjunct
wh-dependency stimuli, in contrast with higher-SES children.

To explore whether this input situation is in fact occurring, there are at least two specific things
we can investigate in future work, using both corpus and behavioral techniques. First, we can
analyze larger samples of lower-SES input to see if and how wh-dependencies with CPy,,; occur.
The CHILDES database (MacWhinney, 2000) has additional data from the HSLLD corpus (Dick-
inson and Tabors, 2001)) that we drew from for our lower-SES corpus sample here, as well as other
lower-SES CDS samples in the Hall (Hall and Tirrel |1979) and the Brown-Sarah (Brown, |1973)
corpora.

Second, we can use behavioral techniques to evaluate whether lower-SES adults judge as ac-
ceptable the specific wh-dependency with CPy;,,; that we found in our lower-SES sample (i.e., the
“that-trace violation”). If so, this would support the plausibility of lower-SES adults using this
wh-dependency type in lower-SES children’s input, rather than it being a speech error. Lower-SES
children would then be likely to encounter this wh-dependency type, and importantly, the CP,,
building block it contains. If instead lower-SES adults find that CPy;,; wh-dependency type less
acceptable (as higher-SES adults do), this would suggest that the instances in our lower-SES cor-
pus sample were speech errors. In that case, lower-SES children would not be likely to encounter
this wh-dependency type in their input in general. Information about the CP,;,, building block,
used to learn about Whether and Adjunct islands, would need to come from some other type(s) of
wh-dependency involving CPy;,;, if lower-SES children are to learn about these islands the way
higher-SES children are proposed to do.

7.2 Other predictions

While our investigation here focused on four island types and the specific wh-dependency stimuli
related to them, where empirical data were already available about their judged acceptability, the
learning theory is capable of generating predictions for any wh-dependency. Recall that this is
because the learning theory proposed that all wh-dependencies are comprised of the same building
blocks (i.e., the syntactic trigrams). So, the learning theory proposes that children are learning
about those building blocks from their input, and then can use those building blocks to judge the
acceptability of any wh-dependency.

There are in fact additional data available about children’s preferences and dispreferences for
certain wh-dependencies across SES (e.g., from |de Villiers et al. 2008]). So, the learning theory
itself can be evaluated by seeing how well it can capture those known preferences. For instance, de
Villiers et al. (2008) found that four-year-olds across SES prefer a wh-dependency like What did he
fix the table with __,;4;? (With syntactic path start-1P-VP-PP-end) over a wh-dependency crossing
a Complex NP syntactic island. This preference is easily captured by comparing the probabilities
generated by the model learning from either higher-SES or lower-SES input data: the probability
for the preferred wh-dependency is much highe yielding a prediction that children across SES
prefer that wh-dependency, just as children across SES actually do.

Of course, there are many wh-dependencies for which we do not know children’s preferences

“Higher-SES: the preferred dependency has a predicted log probability about 10'® times more probable
than the dispreferred one. Lower-SES: the preferred dependency has a predicted log probability about 102
times more probable than the dispreferred one.
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(e.g., the that-trace violations discussed above). In these cases, the model’s predictions can be used
to design future child behavioral studies that can evaluate those predictions. In addition, because
the model generates more precise predictions about judged acceptability patterns (for which we
do not currently have child behavioral data) rather than simple preference, future child behavioral
studies can be designed to test predicted acceptability judgment patterns in children across SES.

7.3 Learning prerequisites and possible variation

It is not trivial to leverage the information from wh-dependencies that the learning theory relies
on. More concretely, several foundational knowledge components and processing abilities must
be “good enough” to learn the specific syntactic island knowledge investigated here the way the
learning theory assumes. First, children must know about syntactic phrase structure; they must be
able to use that phrase structure knowledge to extract the syntactic path of a wh-dependency in real
time (including accurately identifying where the wh-word is understood). As noted in section
current research suggests children begin to represent the full structure of wh-dependencies at 20
months (Seidl et al., 2003; |Gagliardi et al., [2016; Perkins and Lidz, 2020}, which is why we took
that age as the starting point for our modeled learners. Yet, it is possible that that there is variation
across SES on when this ability is good enough, as there are known delays in language processing
in lower-SES children compared to their higher-SES counterparts (Fernald et al., [2013).

Children must also know to break syntactic paths into smaller syntactic trigram building blocks
that can be used to generate a probability for any wh-dependency; they must be able to identify
these syntactic trigrams in real time. As with extracting the syntactic path, it is possible that a
“good enough” version of this ability could be delayed in lower-SES children relative to their
higher-SES counterparts because it involves language processing.

In addition, children must know to track the relative frequency of the syntactic trigrams and
know to combine these syntactic trigrams to generate the probability for a new wh-dependencys;
they must be able to do both of these in real time. These components rely on statistical learning
abilities, as they involve sensitivity to input frequencies and the ability to aggregate probabilistic
information. Recent work on statistical learning abilities across SES (Eghbalzad et al., 2016, [2021)
found no differences by age 8. It is therefore possible that younger children across SES also would
not differ in statistical learning abilities, though of course they might.

More generally, it is possible that the components reviewed above that are related to language
processing are delayed in lower-SES children, while the domain-general components related to
statistical learning are not. Any delays could lead to lower-SES children being less able to harness
the complex syntactic information available in their input as early as higher-SES children do. This
inability to harness information would occur even if the necessary information is in fact there (as
our modeling analysis predicts it to be). However, prior child behavioral work by lde Villiers et al.
(2008) suggests that any delays present are surmounted by the time children are four years old
when it comes to learning certain preferences about Complex NP islands, as there are no delays
across SES. So, those prior behavioral results suggest that the necessary prerequisites for learning
about syntactic islands are good enough across SES for some amount of time before age four. This
then means the computational cognitive model predictions here are likely plausible by age four.
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7.4 Using computational models to evaluate input variation

The computational cognitive model we used here to evaluate input variation seemed reasonable
because prior work demonstrated its ability to learn from children’s input and match available
empirical data on observable behavior. Yet, this model has limitations. For instance, this model
currently only learns about wh-dependencies, rather than implementing a more general-purpose
syntactic learning theory. That is, it is unclear if the model can be used to learn about other syntactic
phenomena involving dependencies (e.g., binding relations between pronouns like him and their
antecedents like Atreyu in Jareth banished Atreyu,, after meeting hima) If we believe children do
not use a learning strategy tuned to wh-dependencies specifically, then the computational cognitive
modeling analysis here may not accurately represent what children would learn from their input.

Another limitation is that the model here operates over the abstract representations of phrase
structure. While it is generally uncontroversial that children have abstract representations they rely
on when learning from their input, the exact form of those representations is often not agreed upon.
In contrast, models that learn from less-abstract representations that are easier to agree upon, such
as words, may serve as alternative input evaluation tools. Several recent computational models
learn by trying to predict the next word in a sequence, and along the way, these models internalize
a variety of syntactic knowledge, including knowledge about syntactic islands (e.g., |(Wilcox et al.
2018; |[Futrell et al.[2019; (Chaves|2020; |Warstadt et al.[2020; [Wilcox et al.[2021). To the extent we
believe the computations that these models perform are equivalent to the mental computations that
children perform, future work can use these models to evaluate input variation as we have done
here.

More generally, future work can aim to use the modeling approach demonstrated here to eval-
uate input variation, relying on whatever computational cognitive model seems reasonable. How-
ever, it is indeed important that the chosen model be a plausible implementation for what children
could be doing to extract information from their input and learn from that extracted information.
When the particular computational cognitive model is plausible in this way, we can be more confi-
dent in using that model to evaluate whether input variation is potentially developmentally mean-
ingful, as we have done here.

8 Conclusion

We have provided a new approach for identifying if and when variation in children’s input could
be developmentally meaningful. This approach harnesses computational cognitive modeling and
complements existing behavioral approaches. In particular, a computational cognitive model can
be used to assess if a particular measurable difference is likely to be developmentally meaningful;
the model does so by predicting what children should be able to learn from their input, because the
model concretely implements a theory of learning from that input. If input variation is potentially
developmentally meaningful, then the model predicts different learning outcomes; in contrast, if
input variation is not developmentally meaningful, the model predicts similar learning outcomes.
One practical benefit of this approach is that it is typically less costly to implement in terms
of time and resources, compared to behavioral approaches that assess developmental outcomes
and then look for correlations with children’s input. However, this approach does require that

15See Pearl and Sprouse| (2013)) for more discussion.
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reasonable samples of children’s input are available, as well as a learning theory that specifies
how the input causes linguistic knowledge to develop over time. Still, with the input samples
and learning theory in hand, the computational cognitive modeling approach can provide a “first
pass” input variation assessment, which can predict if input differences are likely to matter. These
predictions can be followed up by targeted behavioral work evaluating the predictions, and thus
offer a way to guide future research relying on behavioral approaches.

To demonstrate the computational cognitive modeling approach, we applied it to input varia-
tion across SES related to the development of syntactic island knowledge. Our model predicted
that there were no developmentally-meaningful input differences by age four, as equivalent out-
comes were predicted to occur for all the island types we investigated, despite measurable input
differences. One predicted developmental similarity about a specific island type aligns with prior
child behavioral work, though more targeted behavioral work can investigate the precise outcome
predictions for that island type as well as the predictions for the other island types. More generally,
because the learning theory implemented in the model provides an explicit link between the input
and language knowledge development, this approach can help us better understand (i) when and
why observable input differences are not predicted to be developmentally meaningful, (i1) what
parts of the input are predicted to be especially important, and (iii) where those important parts
appear in different input samples that reflect different language input experiences.

This result broadens the body of research on language input variation across SES to include the
nature of the input for more complex syntactic knowledge, such as syntactic islands. This is the
first comparison across SES that uses a computational cognitive modeling approach to investigate
the impact of input variation with respect to learning about syntactic island knowledge. Our results
suggest that if we do see developmental differences in syntactic island knowledge across SES,
it is not because of meaningful differences in the information available in the input. Instead,
children’s ability to harness that information may differ. In short, the information for learning
about these syntactic islands is predicted to be there for children to use, no matter their SES — a
key developmental step may instead be for them to figure out how to use it.
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A Appendices
A.1 Wh-dependency distribution across SES

Table shows the distribution of wh-dependencies across the different corpora, including the lower-SES
and higher-SES CDS corpora, as well as higher-SES adult-directed speech and adult-directed text corpora.
The wh-dependencies in common across all four corpora are used when calculating the Jensen-Shannon
divergence analyses in Appendix

Table A1: Distribution of wh-dependencies in lower-SES CDS (L-CDS) and higher-SES CDS (H-CDS), as
well as higher-SES adult-directed speech (H-ADS) and text (H-ADT). Percentages are shown for syntactic
paths, based on the total wh-dependencies in each corpus, with the quantity observed in the corpus on the
line below. An example of each syntactic path is given below the path. Dependencies in common across
all four corpora are in bold. The dependency in the lower-SES CDS sample that is judged to be far less
acceptable by higher-SES adults is in pink bold italics.

Distribution of wh-dependencies in the input
Syntactic path and example utterance L-CDS | H-CDS | H-ADS | H-ADT
1P 103% | 12.8% | 17.2% | 33.0%
Who saw it? 402 2680 1464 1396
IP-VP 75.5% | 76.7% | 73.0% | 63.3%
What did she see? 2949 | 16039 6215 2677
IP-VP-AdjP-IP-VP 0.0% 0.0% | <0.1% 0.1%
What are you willing to see? 0 0 1 5
IP-VP-AdjP-IP-VP-PP 0.0% 0.0% | <0.1% 0.0%
What are you willing to go to? 0 0 1 0
IP-VP-AdjP-PP 0.0% 0.0% | <0.1% | <0.1%
What are they good for? 0 0 1 1
IP-VP-CPy,,-IP-VP-PP 0.0% | <0.1% 0.0% 0.0%
What did she put on for you to dance to? 0 1 0 0
IP-VP-CP,,;-1P 0.1% 0.1% 0.6% 0.3%
Who did he think stole it? 5 24 52 12
IP-VP-CP,,,;-1IP-VP 0.9% 1.1% 0.4% 0.2%
What did he think she stole? 39 236 30 8
IP-VP-CP,,,;;-IP-VP-IP-VP <0.1% 0.1% | <0.1% 0.0%
What did he think she wanted to steal? 3 28 3 0
IP-VP-CP,,,;;-IP-VP-IP-VP-IP-VP 0.0% | <0.1% 0.0% 0.0%
What did he think she wanted to pretend to steal? 0 2 0 0
IP-VP-CP,,,;;-IP-VP-IP-VP-IP-VP-PP 0.0% 0.0% | <0.1% 0.0%
Who did he think she wanted to pretend to steal from? 0 0 1 0
IP-VP-CP,,,,;;-IP-VP-IP-VP-PP 0.0% | <0.1% 0.0% 0.0%
Who did he think she wanted to steal from? 0 1 0 0
IP-VP-CP,,,,;;-IP-VP-NP 0.0% | <0.1% | <0.1% | <0.1%
What did he think she said about it? 0 1 5 1
IP-VP-CP,,,;;-IP-VP-NP-PP <0.1% 0.0% 0.0% 0.0%
What did he think it was a movie of? 3 0 0 0
IP-VP-CP,,,;;-IP-VP-PP 0.1% 0.1% | <0.1% | <0.1%
What did he think she wanted it for? 4 28 5 1

35



Distribution of wh-dependencies in the input

Syntactic path and example utterance L-CDS | H-CDS | H-ADS | H-ADT
IP-VP-CP,,,;;-IP-VP-PP-PP 0.0% | <0.1% 0.0% 0.0%
What did he think she wanted out of? 0 1 0 0
IP-VP-CP,p,q-1P <0.1% 0.0% 0.0% 0.0%
What do you think that happens? 2 0 0 0
IP-VP-CPy,4-1P-VP 0.0% | <0.1% | <0.1% | <0.1%
What did he think that she stole? 0 2 5 2
IP-VP-CPy,¢-1P-VP-IP-VP 0.0% 0.0% | <0.1% 0.0%
What did he think that she wanted to steal? 0 0 1 0
IP-VP-CPy,4-IP-VP-PP 0.0% 0.0% | <0.1% 0.0%
Who did he think that she wanted to steal from? 0 0 1 0
IP-VP-IP 0.0% | <0.1% | <0.1% 0.0%
Who did he want to steal the necklace? 0 9 2 0
IP-VP-IP-VP 7.5% 5.6% 3.4% 1.3%
What did he want her to steal? 296 1167 287 57
IP-VP-IP-VP-IP-VP <0.1% | <0.1% | <0.1% | <0.1%
What did he want her to pretend to steal? 2 11 6 1
IP-VP-IP-VP-IP-VP-PP 0.0% 0.2% | <0.1% 0.0%
Who did he want her to pretend to steal from? 0 43 6 0
IP-VP-IP-VP-IP-VP-PP-IP-VP <0.1% 0.0% 0.0% 0.0%
What did you want to try to plan on doing? 1 0 0 0
IP-VP-IP-VP-NP 0.0% | <0.1% 0.0% 0.0%
What did he want to say about it? 0 6 0 0
IP-VP-IP-VP-NP-IP-VP 0.0% 0.0% 0.0% | <0.1%
What did he have to give her the opportunity to steal? 0 0 0 1
IP-VP-IP-VP-NP-PP 0.0% | <0.1% | <0.1% 0.0%
What did she want to steal more of? 0 1 1 0
IP-VP-IP-VP-PP 0.8% 0.4% 04% | <0.1%
What did she want to steal from? 35 74 33 4
IP-VP-IP-VP-PP-PP 0.0% 0.0% 0.0% | <0.1%
What did she want to get out from under? 0 0 0 1
IP-VP-NP 0.0% 0.2% 0.1% 0.1%
What did she say about the necklace? 0 52 10 5
IP-VP-NP-IP-VP 0.0% 0.0% | <0.1% | <0.1%
What did he give her the opportunity to steal? 0 0 1 2
IP-VP-NP-PP <0.1% | <0.1% | <0.1% 0.0%
What was she a member of? 1 7 6 0
IP-VP-PP 4.0% 2.5% 4.3% 1.3%
Who did she steal from? 159 524 369 57
IP-VP-PP-CP,,;;-1P 0.0% 0.0% | <0.1% 0.0%
What did she feel like was a very good place? 0 0 1 0
IP-VP-PP-CP,,,,;;-IP-VP 0.0% | <0.1% 0.0% 0.0%
What did she feel like he saw? 0 1 0 0
IP-VP-PP-IP-VP <0.1% 0.0% | <0.1% 0.0%
What did she think about buying? 2 0 3 0
IP-VP-PP-NP 0.0% 0.0% | <0.1% 0.0%
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Distribution of wh-dependencies in the input

Syntactic path and example utterance L-CDS | H-CDS | H-ADS | H-ADT
Where was she at in the building? 0 0 2 0
IP-VP-PP-NP-PP 0.0% | <0.1% 0.0% 0.0%
What do you put it on top of? 0 2 0 0
IP-VP-PP-NP-PP-IP-VP 0.0% 0.0% | <0.1% 0.0%
What is she in the habit of doing? 0 0 1 0
IP-VP-PP-PP 0.5% 0.1% 0.0% 0.0%
What does he eat out of? 1 22 0 0
IP-VP-PP-IP-VP 0.0% | <0.1% 0.0% 0.0%
What did he think about stealing? 0 1 0 0

A.2 Syntactic trigram distribution across SES

Table [A2] shows the distribution of the syntactic trigrams across the different corpora, including the lower-
SES CDS (L-CDS) and higher-SES CDS (H-CDS), as well as higher-SES adult-directed speech (H-ADS)
and adult-directed text (H-ADT). The syntactic trigrams in common across all four corpora are used when

calculating the Jensen-Shannon divergence analyses in Appendix [B]

Table A2: Distribution of the syntactic trigrams across lower-SES CDS (L-CDS) and higher-SES CDS (H-
CDS), as well as higher-SES adult-directed speech (H-ADS) and text (H-ADT). The 14 trigrams in common

across all four corpora are in bold.

Distribution of trigrams in the input

Trigrams L-CDS | H-CDS | H-ADS | H-ADT
AdjP-IP-VP 0.0% 0.0% | <0.1% | <0.1%
0 0 2 5

AdjP-PP-end 0.0% 0.0% | <0.1% | <0.1%
0 0 1 1

CPy,-IP-VP 0.0% | <0.1% 0.0% 0.0%
0 1 0 0

CP, i -1IP-VP 0.6% 0.7% 0.2% 0.1%
49 298 44 10

CP,,;-1P-end | <0.1% | <0.1% 0.3% 0.2%
5 24 53 12

CPypq¢-1P-VP 0.0% | <0.1% | <0.1% | <0.1%
0 2 7 2

CPypq-IP-end | <0.1% 0.0% 0.0% 0.0%
2 0 0 0

IP-VP-AdjP 0.0% 0.0% | <0.1% | <0.1%
0 0 3 6

IP-VP-CPy,, 0.0% | <0.1% 0.0% 0.0%
0 1 0 0

IP-VP-CP,, 0.6% 0.7% 0.6% 0.3%
54 321 96 22

IP-VP-CPyp,; | <0.1% | <0.1% | <0.1% | <0.1%
2 2 7 2
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Distribution of trigrams in the input

Trigrams L-CDS | H-CDS | H-ADS | H-ADT
IP-VP-IP 4.0% 3.2% 2.1% 0.9%
340 1398 353 65

IP-VP-NP <0.1% 0.1% 0.1% 0.1%
4 67 23 9

IP-VP-PP 2.4% 1.6% 2.5% 0.8%
202 698 423 63

IP-VP-end 389% | 399% | 385% | 37.4%
3292 | 17487 6553 2753

NP-IP-VP 0.0% 0.0% | <0.1% | <0.1%
0 0 1 3

NP-PP-IP 0.0% 0.0% | <0.1% 0.0%
0 0 1 0

NP-PP-end <0.1% | <0.1% | <0.1% 0.0%
4 10 7 0

PP-CP,,;-IP 0.0% | <0.1% | <0.1% 0.0%
0 1 1 0

PP-IP-VP <0.1% | <0.1% | <0.1% 0.0%
3 1 4 0

PP-NP-PP 0.0% | <0.1% | <0.1% 0.0%
0 2 1 0

PP-NP-end 0.0% 0.0% | <0.1% 0.0%
0 0 2 0

PP-PP-end <0.1% | <0.1% 0.0% | <0.1%
1 23 0 1

VP-AdjP-IP 0.0% 0.0% | <0.1% | <0.1%
0 0 2 5

VP-AdjP-PP 0.0% 0.0% | <0.1% | <0.1%
0 0 1 1

VP-CPy,,-IP 0.0% | <0.1% 0.0% 0.0%
0 1 0 0

VP-CP,,;;-1P 0.6% 0.7% 0.6% 0.3%
54 321 96 22

VP-CPypi-IP | <0.1% <0.1 | <0.1% <0.1
2 2 7 2

VP-IP-VP 4.0% 3.2% 2.1% 0.9%
340 1389 351 65

VP-IP-end 0.0% | <0.1% | <0.1% 0.0%
0 9 2 0

VP-NP-IP 0.0% 0.0% | <0.1% | <0.1%
0 0 1 3

VP-NP-PP <0.1 | <0.1% <0.1 0.0%
4 8 7 0

VP-NP-end 0.0% 0.1% | <0.1% | <0.1%
0 59 15 6
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Distribution of trigrams in the input
Trigrams L-CDS | H-CDS | H-ADS | H-ADT
VP-PP-CP,, 1 0.0% | <0.1% | <0.1% 0.0%
0 1 1 0
VP-PP-IP <0.1 | <0.1% <0.1 0.0%
3 1 3 0
VP-PP-NP 0.0% | <0.1% | <0.1% 0.0%
0 2 3 0
VP-PP-PP <0.1 | <0.1% 0.0% <0.1
1 23 0 1
VP-PP-end 2.3% 1.5% 2.4% 0.8%
198 671 416 62
start-1P-VP 414% | 41.8% | 41.5% | 38.6%
3502 | 18283 7049 2835
start-IP-end 4.7% 6.1% 8.6% | 19.0%
402 2680 1464 1396

B Input distribution comparisons

One way to quantify how similar (or not) the input distributions are for both wh-dependencies
and syntactic trigrams across SES is to use the Jensen-Shannon divergence (JSDiv) (Endres and
Schindelin, 2003). JSDiv values range from O to 1, with O indicating identical distributions. That
is, higher JSDiv values indicate greater divergence in the distributions, while values closer to 0
indicate distributions that are more similar. In this way, JSDiv analysis provides a way to quantify
similarity between distributions; this makes JSDiv analysis useful as a comparative measure, where
different distributions are assessed for their relative similarity to each other.

With this in mind, we use JSDiv to assess CDS in comparison to adult-directed speech and
text, in order to provide a comparison baseline for the similarity across input samples of both
wh-dependencies and syntactic trigrams. In particular, we assess how similar the lower-SES
and higher-SES CDS wh-dependency and trigram distributions are to those in higher-SES adult-
directed speech (ADS) and adult-directed text (ADT) samples from |Pearl and Sprouse| (2013)),
based on the wh-dependencies and syntactic trigrams in common across these corpus samples.
The adult-directed corpora are described in Table This JSDiv analysis can thus suggest which
factors impact wh-dependency and syntactic trigram distributions more: SES, whether the speech
is directed at children or adults, or whether the input is speech-based vs. text-based. Of course, this
analysis is limited by the corpus samples available. In particular, including samples of lower-SES
adult-directed speech and lower-SES adult-directed text would provide a more complete testbed for
the JSDiv analysis with respect to the factors above. However, the analysis based on the currently-
available samples seems a useful preliminary assessment.

Wh-dependencies. Figure[5|shows the results of the JSDiv analysis for wh-dependencies, calcu-
lated over the distribution of the 9 wh-dependencies (shown in Table [A4) that these four corpora
had in common. We see that lower-SES CDS and higher-SES CDS are the most similar in wh-
dependency distribution (JS: 0.00445), and are more similar than the next closest comparison,
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Table A3: Corpora statistics for lower-SES CDS (L-CDS), higher-SES CDS (H-CDS), higher-SES
adult-directed speech (H-ADS), and higher-SES adult-directed text (H-ADT) samples used for the
JSDiv analysis.

corpora # utterances # wh-dependencies # children ages

L-CDS 31,875 3,904 78 3-5
H-CDS 101,838 20,923 25 1-5
H-ADS 74,576 8,508 N/A N/A
H-ADT 24,243 4,230 N/A N/A

Table A4: The nine wh-dependencies shared across all four corpora that are used in the JSDiv
analysis, and the percentage of the corpora the wh-dependency comprises.

Shared dependencies Example utterance Corpora percentage
start-1P-end Who saw it? 10.3% - 33.0%
start-1P-VP-end Who did she see? 63.3% - 76.7%
start-1IP-VP-CP,,;;-1P-end Who did he think stole it? 0.1% - 0.6%
start-1P-VP-CP,,,;;-1P-VP-end What did he think she stole? 02% -1.1%
start-IP-VP-CP,,,;;-1P-VP-PP-end What did he think she wanted it for? <0.1% - 0.1%
start-1P-VP-IP-VP-end What did he want her to steal? 1.3% - 7.5%
start-IP-VP-IP-VP-IP-VP-end What did he want her to pretend to steal? <0.1%
start-1P-VP-1P-VP-PP-end What did she want to get out from under? <0.1% - 0.8%
start-1P-VP-PP-end Who did she steal from? 1.3% - 4.3%

which is higher-SES CDS vs. higher-SES ADS (JS: 0.00948). This affirms a quantitative similar-
ity across SES in child wh-dependency input, in terms of wh-dependency distribution. Moreover,
these results highlight that CDS across SES is more similar than CDS vs. ADS within SES. We can
tentatively intepret this result as follows: whether the speech is directed at children or adults mat-
ters more than whether speech is coming from a higher-SES or lower-SES population. However,
as mentioned above, this interpretation would be strengthened by having samples of lower-SES
adult-directed speech and lower-SES adult-directed text for a fuller comparison. Still, we note that
these JSDiv results accord with intuitions that speech of any kind is more similar to other speech
than it is to text: higher-SES ADS diverges more from higher-SES ADT (JS: 0.03156) than it does
from either higher-SES CDS (JS: 0.00948) or lower-SES CDS (JS: 0.01576).

Figure 5: JSDiv analyses for lower-SES CDS (L-CDS), higher-SES CDS (H-CDS), higher-SES
adult-directed speech (H-ADS), and higher-SES adult-directed text (H-ADT). Line thickness cor-
responds to similarity, with thicker lines indicating more similar distributions.

0.07718
L-CDS /H@
0.05325
0.03156
0.00445 0.01576
0.00948
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Syntactic trigrams. Figure [6] shows the results of the JSDiv analysis for syntactic trigrams, cal-
culated over the distribution of the 14 trigrams shown in Table[A5| (see Table[A2]in Appendix
for the full list of trigrams) that these four corpora had in common across all wh-dependencies.
These trigrams accounted for 99.5-99.8% of the total trigrams in these corpora. As with the anal-
ysis of the wh-dependencies, we see the same pattern emerge: (i) lower-SES CDS is more similar
to higher-SES CDS (JSDiv: 0.00850) than any other input type, and (ii) all speech is more similar
to other types of speech than to text (speech vs. speech: JSDiv=0.00850-0.02836; speech vs. text:
JSDiv=0.07183-0.16279).

Table AS: The 14 syntactic trigrams shared across all four corpora that are used in the JSDiv
analysis, and the percentage of the corpora the syntactic trigram comprises.

Syntactic trigrams Syntactic trigram percentage

CP,,..i-1P-VP 0.1% - 0.7%
CP,-1P-end <0.1% - 0.3%
IP-VP-CP, i1 0.3% - 0.7%
IP-VP-CP,p01 <0.1%
IP-VP-IP 0.9% - 4.0%
IP-VP-NP <0.1% - 0.1%
IP-VP-PP 0.8% -2.5%
IP-VP-end 38.5% - 39.9%
VP-CP,,.;-1P 0.3-0.7%
VP-CPyj,ui-IP <0.1%
VP-IP-VP 0.9% - 4.0%
VP-PP-end 0.8% -2.3%
start-IP-VP 38.6% - 41.7%
start-1P-end 4.7% - 19.0%

Figure 6: JSDiv analyses for lower-SES CDS (L-CDS) trigrams, higher-SES CDS (H-CDS) tri-
grams, higher-SES adult-directed speech (H-ADS) trigrams, and higher-SES adult-directed text
(H-ADT) trigrams. Line thickness corresponds to similarity, with thicker lines indicating more

similar distributions.
L-CDS H-ADT
0.07183

0.00SSOt

H-CDS

0.16279

0.11298

0.02836

0.01825
> H-ADS

Distributional analysis summary. Our JSDiv analyses suggest that the input children encounter
for learning about syntactic islands is very similar across SES. In particular, both the wh-distributions
and the syntactic trigram distributions appear quite similar, despite some individual wh-dependency
and trigram differences.
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C Predicted acceptability judgments

To aid comparison of predicted acceptability judgments across SES, Table shows the resulting
log probability averages and standard deviations from 1000 model runs for each wh-dependency
type from the stimuli. Log probability averages and standard deviations (rather than plain prob-
ability averages and standard deviations) are reported for each wh-dependency type because the
probabilities are very small numbers, due to the multiplication of syntactic trigram probabilitiesE]

Table A6: Log probability averages (with standard deviations in parentheses) from 1000
model runs, representing predicted judgments, for different syntactic paths characterizing wh-
dependencies in the stimuli from |Sprouse et al. (2012)). Log probabilities are generated by modeled
learners learning from estimates of higher-SES CDS (Higher-SES) and lower-SES CDS (Lower-
SES) heard through age four. Results are shown for quantity ranges of estimated input: 2 standard
deviations below the average (-2 sd), 1 standard deviation below the average (-1 sd), the average
(avg), 1 standard deviation above the average (+1 sd), and 2 standard deviations above the average
(+2 sd). Wh-dependencies that are judged as more acceptable by higher-SES adults are on the top,
while island-spanning dependencies (indicated with *) that are judged as far less acceptable are on
the bottom.

Higher-SES log probability avg (sd) Lower-SES log probability avg (sd)
-2 sd -1sd avg +1 sd +2 sd -2 sd -1sd avg +1 sd +2 sd
start-1P-end
-1.21 -1.21 -1.21 -1.21 -1.21 -1.32 -1.32 -1.32 -1.32 -1.32

(.0011) (.00083) (.00072) (.00066) (.00060) | (.0020) (.0014) (.0012)  (.0010) (.00090)
start-1P-VP-CP,,,,;;-1P-end
-7.91 -7.91 -7.91 -7.91 -7.91 -8.00 -8.00 -8.00 -8.00 -8.00
(.014) (.011) (.0095)  (.0087)  (.0079) | (.023) (.016) (.014) (.012) (.011)
start-IP-VP-CP;,;-1P-VP-end
-13.80 -13.80 -13.80 -13.80 -13.80 | -14.36  -14.65 -14.81 -14.93 -15.03
(.12) (.096) (.084) (.070) (.064) (.057) (.039) (.033) (.029) (.026)

Complex NP: *start-IP-VP-NP-CPy;,,.-1P-VP-end
-21.40 -21.79 -22.06 -22.26 -22.43 -23.07  -23.92 -24.42 -24.79 -25.07
(.040) (.033) (.028) (.024) (.022) (.020) (.014) (.012) (.010) (.0089)
Subject: *start-IP-VP-CP,,,,;;-IP-NP-PP-end
-21.76 -22.15 -22.41 -22.62 -22.78 -20.73  -21.30 -21.63 -21.88 -22.07
(.018) (.015) (.012) (.011) (.0096) | (.023) (.017) (.014) (.013) (.011)
Whether/Adjunct: *start-IP-VP-CP ,jc1pc /i p-IP-VP-end
-20.98 -21.56 -21.96 -22.27 -22.52 | -19.75  -20.59 -21.09 -21.46 -21.75
(.00067) (.00054) (.00046) (.00042) (.00037) | (.0011) (.00082) (.00071) (.00057) (.00054)

We first observe that the standard deviations are always quite low, which reflects the consistency
with which the modeled learners converge on these predicted probabilities, despite the different in-
put sets that were learned from. We can also see that the total input quantity differences within SES
seem to matter less than the input wh-dependency distribution across SES. For instance, higher-

16For log probabilities, less negative numbers are equivalent to higher probabilities. For example,
log(.001) = log(10~3) = -3, while 1og(.000001) = log(10~%) = -6.
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SES results for the more acceptable wh-dependencies (top of Table are identical across the
entire range of total input quantities (from 2 standard deviations below the average to 2 standard
deviations above). Notably, these final log probabilities differ from the lower-SES results for the
same wh-dependencies, though the lower-SES results differ little from themselves across the range
of total input quantities.

We note also that the results for Whether and Adjunct island-spanning wh-dependencies are
identical for a given input quantity and SES class (e.g., the log probability for 2 standard deviations
below the input average for higher-SES = -20.98). This is because the syntactic paths for these wh-
dependency types are identical except for the complementizer used (CPperner Vs. CP ;5). Because
both these complementizers never appear in wh-dependencies in children’s input (either higher-
SES or lower-SES), the syntactic trigrams using those complementizer building blocks have the
same very low probability that is assigned to trigrams never observed in the input.

More generally, we can also observe that a core pattern emerges when learning from either
higher-SES or lower-SES CDS: all dependencies judged as more acceptable by higher-SES adults
have higher probabilities (equivalent to less negative log probabilities) than the island-spanning de-
pendencies. In particular, dependencies judged as more acceptable have log probabilities ranging
from -1.21 to -15.03, while island-spanning dependencies range from -19.75 to -25.07. So, even
the least acceptable dependency that does not span an island (with log probability -15.03: Lower-
SES, +2 sd, start-1P-VP-CPy;,,;-IP-VP-end) is predicted to be much more acceptable than the most
acceptable dependency spanning an island (with log probability -19.75: Lower-SES, -2 sd, start-

IP-VP-CP ,heiner/ip-IP-VP-end). (For this particular comparison, the more acceptable dependency

has a probability %%52, 481 times higher.) We note that because human acceptability judg-

ments likely rely on additional factors beyond wh-dependency probability, the exact “amount” of
relative acceptability may not map directly to human acceptability judgments. However, following
Pearl and Sprouse|(2013), we assume that the probability of a wh-dependency is a significant com-
ponent of its judged acceptability, and so we expect the relative patterns of acceptability to hold
(i.e., which wh-dependencies are judged more vs. less acceptable), as indicated by these predicted
probabilities.
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