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Identifying if input differences are developmentally meaningful:
A look at complex syntactic input across socio-economic status

Research Highlights

• We describe a new way to identify developmentally-meaningful linguistic input differences,
applying it to a case study in complex syntactic knowledge development. We focus on how
children from different socio-economic status (SES) backgrounds use their input to learn
constraints on wh-dependencies, called syntactic islands.

• Descriptive corpora analyses and quantitative analyses suggest that the relevant input distri-
butions across SES are similar.

• Developmental computational modeling analyses suggest that the relevant input distributions
are predicted to lead to the same learning outcomes for syntactic island knowledge; this
result suggests any input differences across SES for this complex syntactic knowledge aren’t
developmentally meaningful.

• Our results also highlight how surface input differences may mask deeper input similari-
ties, because a crucial structural building block for learning syntactic island knowledge is
predicted to come from different parts of the input across SES.

Abstract

There’s much naturally-occurring variation in children’s input, but not all variation is developmen-
tally meaningful – that is, variation that qualitatively impacts language development. While there
are observed differences in input quantity and quality across socio-economic status (SES), it’s un-
clear how often these input differences are developmentally meaningful. We describe a new way
to identify developmentally-meaningful input differences that harnesses developmental computa-
tional modeling, which allows us to identify which aspects of the input are used by children to
learn specific linguistic knowledge. We then investigate if there’s developmentally-meaningful in-
put variation across SES with respect to the complex syntactic knowledge called syntactic islands,
which is used to form grammatical wh-questions.

Using quantitative analysis and cognitive modeling to assess low-SES child-directed speech
samples, we find that the relevant data for learning about syntactic islands in low-SES children’s
input are quantitatively and qualitatively similar to those of high-SES children. In particular, low-
SES children’s input is predicted to also allow successful acquisition of syntactic island knowledge.
Interestingly, at least one key building block for syntactic island knowledge comes from a differ-
ent source in low-SES children’s input, but is crucially still present. This highlights an important
qualitative input similarity across SES. Our results suggest that the linguistic evidence for more
complex syntactic knowledge like syntactic islands, in contrast with more foundational linguistic
knowledge, may not differ by SES. We discuss implications for linguistic development and adult
syntactic knowledge variability across SES.

Key Words: socioeconomic status, linguistic development, child-directed speech, syntactic is-
lands constraints, computational modeling, quantitative approaches, input quantity, input quality

1 Identifying developmentally-meaningful input differences across socio-economic status

There’s a lot of naturally-occurring variation in children’s input, including how long they’re talked
to every day, which people talk to them (e.g., adults, other children), what environments they ex-
perience language interaction in (e.g., home, daycare, school), and what people talk to them about,
among many other types of variation. Importantly, not all this input variation is developmentally
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meaningful – that is, not all input variation impacts language development in a way that devi-
ates significantly from a typically-developing child’s trajectory. However, some input variation
does indeed impact language development – this variation is then developmentally meaningful; in
particular, developmentally-meaningful input deficits lead to language development delays.

Language development delays appear across socio-economic status (SES), with lower-SES
children behind their higher-SES peers with respect to different aspects of language development
(e.g., vocabulary development (Hart & Risley 1995, Hoff 2003), language processing (Fernald
et al. 2013, Weisleder & Fernald 2013)). But are these input-based delays? Certainly, there are
observed input quantity and input quality differences across SES (though also within SES).

For instance, when it comes to input quantity at the word-level, some studies have found that
lower-SES children may encounter 30 million fewer words of caretaker speech than their higher-
SES peers (Hart & Risley 1995, Schwab & Lew-Williams 2016); other studies have found greater
differences in input quantity within SES rather than across SES (Blum 2015, Sperry et al. 2018).
At the clause-level, however, there appear to be fewer observed input quantity differences across
SES; for instance, caretakers across SES produce approximately the same number of multi-clause
utterances (e.g., [He gave the book to the girl [who lived down the street]] = 2 clauses) in their
child-directed speech (Huttenlocher et al. 2002).

For input quality, differences have been observed at the lexical and foundational syntactic levels
(Huttenlocher et al. 2010, Rowe 2012, Rowe et al. 2017), including the relative frequency of word
types, word tokens, rare words, the diversity of syntactic constructions, and the relative frequency
of decontexualized utterances like explanations (Oh, we can’t put them in the bus because the bus
is full of blocks), pretend (I’ll save you from the wicked sister), and narrations (He is going to look
in your nose and your throat and your ears).

Yet, how do we know if any observed input difference (whether about input quantity or input
quality) is developmentally meaningful? A standard way to determine this is to observe some input
difference, observe language development outcomes, and then see if the observed input difference
is correlated with any observed outcome difference. If so, the language input difference might
cause the language development outcome difference; so, targeting the input difference for inter-
vention may lead to improved language development outcomes (e.g., input-based interventions
allowing low-SES students to improve their language comprehension (Huttenlocher et al. 2002)).
If intervention is indeed effective, this is more support that the language input difference caused
the observed language outcome difference, and was therefore developmentally meaningful.

A new, complementary way to investigate if any observed input difference is developmentally
meaningful uses developmental computational modeling (see Pearl (in press) for an overview of
this technique applied to language acquisition more generally). A developmental computational
model implements a specific learning theory about how children use their input to acquire particular
linguistic knowledge; children then use that linguistic knowledge to generate observable outcomes
(e.g., correctly comprehending a word or determining if a question is well-formed). This means
that a developmental computational model will pinpoint what aspect of the child’s input is rele-
vant, and predict the expected language development outcome on the basis of that relevant input
(e.g., if they will comprehend a particular word or believe a question is well-formed). That is, a
developmental computational model identifies if any observed input difference is predicted to be
developmentally meaningful.

Simply put, if the input difference is predicted to lead to an observable outcome difference,
then the input difference is predicted to be developmentally meaningful. Any predicted language
development differences can then be evaluated through standard behavioral measures of assessing
children’s linguistic knowledge. If the predicted language outcome differences do indeed appear,
then we have strong support that the input aspect highlighted by the developmental computational
model is developmentally meaningful. Developmentally-meaningful input differences can then be
targeted for intervention, with the strong possibility of positively impacting language development
outcomes. We note that because a developmental computational model describes exactly how the
input causes the predicted developmental outcome, the model can also predict if an observed input
difference is not developmentally meaningful (because the predicted outcome isn’t qualitatively
different). In this case, we would expect an input-based intervention to be ineffective at improving
children’s language development.
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Here, we harness developmental computational modeling to identify input differences that are
developmentally meaningful. We use this approach to investigate input differences across SES
for a certain type of complex syntactic knowledge known as syntactic islands that concerns wh-
questions (e.g., the grammatical Who did Lily think the pretty kitty was for? vs. the ungrammatical
Who did Lily think the kitty for was pretty?). More specifically, syntactic islands are constraints
on the permitted forms of wh-questions (among other linguistic forms). Knowledge of syntactic
islands thus allows children to know which wh-questions are well-formed and which aren’t.

We first briefly review what is currently known about the development of complex syntac-
tic knowledge across SES, focusing on knowledge related to wh-questions. We then discuss the
complex syntactic knowledge that syntactic islands involve, and review a developmental compu-
tational model for learning syntactic islands; this model implements a specific learning theory for
how children use their input to yield syntactic island knowledge. The learning theory pinpoints
that the relevant aspect of children’s input for learning syntactic islands involves wh-dependencies,
which rely on “wh-words” like what and who (among others).

We then investigate input variation for learning syntactic islands, looking at the distributions
of wh-dependencies in American English child-directed speech (CDS) between high-SES popula-
tions and low-SES populations. In particular, we provide both a descriptive corpus analysis and
a quantitative analysis comparing high-SES to low-SES input. We then provide a developmental
computational modeling analysis of the input quality, where we predict the syntactic island knowl-
edge that low-SES children would be able to attain on the basis of their wh-dependency input.

By assessing the wh-dependency distributions in the CDS of high- and low-SES children this
way, we can determine whether the low-SES wh-dependency distribution supports the acquisition
of syntactic island knowledge as well as the high-SES distribution has been shown to do (Pearl &
Sprouse 2013a). That is, our developmental computational modeling approach allows us to predict
whether there are developmentally-meaningful differences across SES for the input that supports
the development of syntactic island knowledge.

We find that the low-SES input, in terms of wh-dependency distribution and the syntactic build-
ing blocks needed for syntactic islands, is both quantitatively and qualitatively similar to the high-
SES CDS distribution. More specifically, our modeling results predict that low-SES input can
support acquisition of syntactic islands as well as high-SES input does. Thus, our results sug-
gest that there are no developmentally-meaningful differences across SES coming from children’s
input, with respect to the development of this complex syntactic knowledge.

Interestingly, a syntactic building block involving complementizer that is predicted to be cru-
cial for successful knowledge development and comes from a different wh-dependency type in
low-SES CDS, compared with high-SES CDS; this difference highlights that surface input quality
differences may mask deeper input quality similarities. Taken together, our results suggest that
the nature of the input for learning about syntactic islands doesn’t fundamentally differ across
SES; this notably contrasts with input differences found for more foundational lexical and syntac-
tic knowledge. We discuss implications for linguistic development across SES and potential adult
syntactic knowledge variation.

2 The development of wh-dependency knowledge across SES

Currently, far less is known about the development of complex syntactic knowledge across SES
(especially with respect to wh-dependencies) than about the development of lexical and founda-
tional syntactic knowledge. Still, we do know about the development of some wh-dependency
knowledge across SES and a little about the wh-dependency input.

High-SES English-learning children are able to correctly repeat back well-formed wh-questions
like Who can Falkor save? and generate new well-formed wh-questions by two and a half to three
years old (Valian & Casey 2003). This suggests that these children have knowledge of core com-
ponents of English wh-questions like fronting the wh-word (e.g., who) and moving the auxiliary
(e.g., can) to the position before the subject (e.g., Falkor).

In addition, high-SES English-learning children appear to know a complex constraint on wh-
questions (called a relative clause island) by three to four years old (de Villiers & Roeper 1995).
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In particular, three- and four-year-olds can correctly interpret complex wh-questions like “What
is Jane drawing a monkey that is drinking milk with?”. The only viable interpretation for adults
is “What is Jane drawing [a monkey that is drinking milk] with?”, where with refers to what Jane
is using to draw (e.g., a pencil); this contrasts with an incorrect interpretation like “What is Jane
drawing [a monkey that is drinking milk with]?”, where with refers to what the monkey is using
to drink the milk (e.g., a straw). The high-SES children showed adult-like interpretations for these
complex wh-questions, correctly answering a pencil for this question and rarely answering a straw.

Interestingly, the evidence we have across SES indicates that learning outcomes for some wh-
dependency knowledge are similar. In particular, there’s suggestive evidence that by age four,
children from diverse SES and linguistic backgrounds (i.e., both low- to high-SES children across
dialects of American English) are capable of interpreting a variety of complex wh-questions, in-
cluding the ones tested by de Villiers & Roeper (1995), similarly to adult speakers (de Villiers et al.
2008, Rombough & Thornton 2018). That is, there doesn’t appear to be a difference in learning
outcomes at four years old with respect to comprehension of many complex wh-questions across
SES.

However, we know less about how children’s input leads to the development of wh-dependency
knowledge. We do know that the use of wh-questions in input to low-SES two-year-olds helps build
their vocabulary and reasoning skills more generally (Rowe et al. 2017). However, it’s unclear how
the wh-questions in the input impact the development of complex wh-dependency knowledge (such
as syntactic islands). More generally, much remains unknown about developmentally-meaningful
input variation with respect to the development of complex syntactic knowledge, including how to
form grammatical wh-questions.

3 Syntactic islands

A key component of human syntactic knowledge is the ability to have long-distance dependencies,
where there’s a relationship between two words that aren’t adjacent to each other. Long-distance
dependencies, such as the dependencies between the wh-word what and eat in (1), can be arbitrarily
long (Chomsky 1965, Ross 1967, Chomsky 1973). In (1), we can see that this dependency can
stretch across one, two, three, or four clauses. In each case, what is understood as the thing Falkor
ate, despite what not being adjacent to eat. This relationship is marked with what.

(1) a. What did Falkor eat what?
b. What did Atreyu see Falkor eat what?
c. What did the Childlike Empress say Atreyu saw Falkor eat what?
d. What did Bastian hear the Childlike Empress say Atreyu saw Falkor eat what?

However, there are specific syntactic structures that long-distance dependencies can’t cross: syn-
tactic islands (Chomsky 1965, Ross 1967, Chomsky 1973). Four examples of syntactic islands are
in (2), with * indicating ungrammaticality and [...] highlighting the proposed island structure that
a wh-dependency can’t cross in English.

(2) a. Complex NP island
*What did Falkor make [the claim [that Atreyu fought what]]?

b. Subject island
*What did Falkor think [[the joke about what] was hilarious]?

c. Whether island
*What did Falkor wonder [whether Atreyu bought what]?

d. Adjunct island
*What did Falkor worry [if Atreyu buys what]?

During language development, children must infer and internalize the constraints on long-distance
dependencies (i.e., syntactic island constraints) that allow them to recognize that the questions
in (2) are not allowed, while the questions in (1) are fine. We note that this recognition is the
measurable behavior of children’s internalized knowledge – that is, distinguishing grammatical
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questions like (1) from ungrammatical questions like (2) is one way to indicate knowledge of the
relevant syntactic island constraints (whatever form that knowledge may take).

4 Linking children’s input to syntactic island knowledge development

Pearl & Sprouse (2013a) constructed a developmental computational model for learning these
syntactic island constraints. This model relies on a specific learning theory that assumes children
can characterize a long-distance dependency as a syntactic path from the head of the dependency
(e.g., What in (3)) through a set of structures that contain the tail (e.g., what) of the dependency,
as shown in (3a)-(3b). These structures correspond to phrase types that make up wh-questions
such as Verb Phrases (VP), Inflectional Phrases (IP), and Complementizer Phrases (CP), among
others. Importantly, these are the structures that wh-dependencies could cross when forming wh-
questions. Under this view, children simply need to learn which long-distance dependencies have
licit syntactic paths and which don’t.

To developmentally model this learning process, Pearl & Sprouse (2013a) implemented their
learning theory as a probabilistic learning algorithm that tracks local pieces of these syntactic
paths. It breaks the syntactic path into a collection of syntactic trigrams that can be combined to
reproduce the original syntactic path, as shown in (3c).1

The learning model then tracks the frequencies of these syntactic trigrams in the input. It later
uses them to calculate probabilities for all syntactic trigrams comprising a wh-dependency2 and
so generate the probability of any wh-dependency (as shown in (4)- (5)). More specifically, any
wh-dependency’s probability is the product of the individual trigram probabilities that comprise its
syntactic path, as shown in (6).

The generated probability corresponds to whether that dependency is allowed, with higher
probabilities indicating grammatical dependencies and lower probabilities indicating ungrammat-
ical dependencies. So, the modeled learner can generate judgments of wh-questions (e.g., gram-
matical vs. ungrammatical); if this learner can generate the same pattern of judgments that adults
do, we can assume the learner has internalized some version of the knowledge adults use to make
those judgments. In this case, that means the modeled learner has internalized knowledge (via the
syntactic trigrams) that allow it to capture syntactic island constraints. In this way, we can say that
it’s learned those syntactic island constraints.

(3) What did Falkor claim that Atreyu fought what?
a. Syntactic structures containing the wh-dependency:

What did [IP Falkor [V P claim [CP that [IP Atreyu [V P fought what]]]]]?
b. Syntactic path of wh-dependency:

start-IP-VP-CPthat-IP-VP-end
c. Syntactic trigrams T ∈ syntactic path:

= start-IP-VP
IP-VP-CPthat

VP-CPthat-IP
CPthat-IP-VP

IP-VP-end

1For discussion of the empirical motivation for the modeling choices, including using trigrams and the
aggregation of trigrams into a dependency, please see Pearl & Sprouse (2013a).

2It smooths these probabilities by adding 0.5 to all trigram counts. This allows the model to accept
dependencies composed of trigrams it’s never seen before, though it gives them a much lower probability
than dependencies composed of trigrams it has in fact seen before. See Pearl & Sprouse (2013a, 2015) for
further discussion of this point.
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(4) Smoothed probabilities of trigrams:
p(start-IP-VP) ≈ count(start−IP−V P )

total count of all trigrams...
p(IP-VP-end) ≈ count(IP−V P−end)

total count of all trigrams

(5) Probability of new wh-dependency: What did Engywook tell Atreyu what?
Syntactic structures = What did [IP Engywook [V P tell Atreyu what?]]
Syntactic path = start-IP-VP-end
trigrams = start-IP-VP, IP-VP-end
Probability = p(start-IP-VP-end) = p(start-IP-VP)*p(IP-VP-end)

(6) General formula for generating a wh-dependency’s probability:∏
trigrams∈T p(trigram)

We note that this developmental learning model requires children to have certain (potentially
sophisticated) knowledge and abilities before they can utilize the learning strategy implemented by
this model. Core assumptions of the model require that the child be able to (i) parse sentences into
phrase structure trees, (ii) extract sequences of container nodes for the dependencies, (iii) track the
frequency of trigram container nodes, and (iv) calculate the probability for the complete container
node sequence of the dependency, based on its trigrams. It remains for future work to determine
when these core pieces are in place in children – once they are, children would be able to harness
the input the way this learning model does. 3

5 High-SES input quality for syntactic islands

To evaluate high-SES syntactic input quality, Pearl & Sprouse (2013a) modeled a learner us-
ing this strategy and let the modeled learner use as input a realistic sample of high-SES Amer-
ican English CDS. These high-SES input data came from the structurally-annotated Brown-Adam
(Brown 1973), Brown-Eve (Brown 1973), Valian (Valian 1991), and Suppes (Suppes 1974) cor-
pora from the CHILDES Treebank (Pearl & Sprouse 2013a), comprising 102K utterances with
21K wh-dependencies. The modeled learner encountered a quantity of CDS equivalent to the
quantity of data high-SES children typically encounter during the time when they’re learning about
syntactic island constraints (estimated to take three years), which was equivalent to ≈200K wh-
dependencies. With this input, the model estimated syntactic trigram probabilities and could then
generate probabilities for any desired wh-dependency.

The wh-dependencies that the model needed to generate probabilities for were those that Amer-
ican English adults had given acceptability judgments for in Sprouse et al. (2012), corresponding
to the four islands from (2); a sample set for each island type is shown in (7)-(10), where island
structures are indicated with [...]. These stimuli were designed using a 2x2 factorial design, involv-
ing dependency length (matrix vs. embedded) and presence of an island structure in the utterance
(non-island vs. island). Each island stimuli set therefore had four dependency types: matrix+non-
island, embedded+non-island, matrix+island, and embedded+island; the embedded+island stim-
ulus in each case involved a wh-dependency that crossed a syntactic island, and so was ungram-
matical. These experimental stimuli can be characterized by the syntactic paths shown in Table 1.
Note that many of the grammatical dependencies for each island type (e.g., matrix+non-island and
matrix+island) are characterized by the same syntactic path (e.g., start-IP-end).

3We also note that we’re using this learning model as a novel way to assess input quality, on the basis of
prior work (Pearl & Sprouse 2013a) that applies it to high-SES children’s input. Because of this focus, we
won’t discuss the theoretical implications of this learning strategy for questions of innateness with respect
to the knowledge needed and assumed by the model; we instead refer interested readers to the discussion in
Pearl & Sprouse (2013a).
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(7) Sample Complex NP island stimuli
a. matrix+non-island

Who who claimed that Atreyu fought the goblin?
b. embedded+non-island

Who did Falkor claim that Atreyu fought who?
c. matrix+island:

Who who made [the claim that Atreyu fought the goblin]?
d. embedded+island:

*Who did Falkor make [the claim that Atreyu fought who]?

(8) Sample Subject island stimuli
a. matrix+non-island:

Who who thinks the joke is hilarious?
b. embedded+non-island:

What does Falkor think what is hilarious?
c. matrix+island:

Who who thinks the joke about Atreyu is hilarious?
d. embedded+island:

*Who did Falkor think [[the joke about who] was hilarious]?

(9) Sample Whether island stimuli
a. matrix+non-island:

Who who thinks Atreyu bought the medallion?
b. embedded+non-island:

What does Falkor think Atreyu bought what?
c. matrix+island:

Who who wonders if Atreyu bought the medallion?
d. embedded+island:

*What did Falkor wonder [whether Atreyu bought what]?

(10) Sample Adjunct island stimuli
a. matrix+non-island:

Who who thinks Atreyu bought the medallion?
b. embedded+non-island:

What does Falkor think that Atreyu bought what?
c. matrix+island:

Who who worries if Atreyu bought the medallion?
d. embedded+island:

*What did Falkor worry [if Atreyu buys what]?

This design allows syntactic island knowledge to surface as a superadditive interaction of ac-
ceptability judgments; this superadditivity appears as non-parallel lines in an interaction plot, such
as those in Figure 1. In particular, if we consider the Complex NP plot in the top row, there are
four acceptability judgments, one for each of the stimuli in (7). The matrix+non-island depen-
dency of (7a) has a certain acceptability score – this is the top-lefthand point. There is a (slight)
drop in acceptability when the matrix+island dependency of (7c) is judged in comparison to (7a)
– this is the lower-lefthand point. We can interpret this as the unacceptability associated with
simply having an island structure in the utterance. There’s also a drop in acceptability when the
embedded+non-island dependency of (7b) is judged in comparison to (7a) – this is the upper-
righthand point. We can interpret this as the unacceptability associated with simply having an
embedded wh-dependency. If the unacceptability of the embedded+island dependency of (7d)
were simply the result of those two unacceptabilities (having an island structure in the utterance
and having an embedded wh-dependency), the drop in unacceptability would be additive and the
lower-righthand point would be just below the upper-righthand point (and so look just like the
points on the lefthand side). But this isn’t what we see – instead, the acceptability of (7d) is much
lower than this. This is a superadditive effect for the embedded+island stimuli. So, the additional
unacceptability of an island-crossing-dependency like (7d) – i.e., implicit knowledge of syntactic
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Table 1: Syntactic paths for experimental stimuli that acceptability judgments are generated for, in
a 2x2 factorial design varying dependency length (matrix vs. embedded) and presence of an island
structure (non-island vs. island). Ungrammatical island-spanning dependencies are indicated with
*.

Complex NP islands Subject islands
mat non start-IP-end start-IP-end
emb non start-IP-VP-CPthat-IP-VP-end start-IP-VP-CPnull-IP-end
mat island start-IP-end start-IP-end
emb island *start-IP-VP-NP-CPthat-IP-VP-end *start-IP-VP-CPnull-IP-NP-PP-end

Whether islands Adjunct islands
mat non start-IP-end start-IP-end
emb non start-IP-VP-CPthat-IP-VP-end start-IP-VP-CPthat-IP-VP-end
mat island start-IP-end start-IP-end
emb island *start-IP-VP-CPwhether-IP-VP-end *start-IP-VP-CPif -IP-VP-end

islands – appears as a superadditive interaction in these types of acceptability judgement plots.
The left column of Figure 1 shows the results of collecting acceptability judgments from high-

SES adult speakers using that design. The visible superadditive interactions demonstrate implicit
knowledge of the four syntactic islands in (2) in English high-SES adults. The right column of
Figure 1 shows the log probability for the same stimuli for each of the four islands, as predicted by
the developmental computational model in Pearl & Sprouse (2013a). Log probabilities are reported
for each dependency because the probabilities are very small numbers (due to the multiplication of
syntactic trigram probabilities).4 The visible superadditive interactions indicate that the high-SES
input was predicted to be sufficient to learn these syntactic island constraints.

6 Low-SES input quality for syntactic islands

Here we assess low-SES input, focusing on the information necessary for the development of
the implicit syntactic island knowledge that was previously assessed by Pearl & Sprouse (2013a)
for high-SES input. We first want to identify if there are any quantitative differences between
the high-SES and low-SES input samples we have in terms of the wh-dependencies and resulting
syntactic trigrams available; recall that these dependencies and trigrams are the foundation of the
development of syntactic island constraints, based on the learning theory in the model of Pearl
& Sprouse (2013b). We’ll identify quantitative input differences via quantitative analysis of the
distribution of wh-dependencies and syntactic trigrams available.

We then want to identify differences between the high-SES and low-SES input in terms of how
well the wh-dependencies and syntactic trigrams available scaffold the development of syntactic
island constraints – these would be developmentally-meaningful differences. That is, whether any
quantitative differences exist or not, does low-SES input differ from high-SES input in how it
allows complex syntactic development to occur? We’ll answer this question by applying the same
computational learning model from Pearl & Sprouse (2013a) that allows successful acquisition of
this knowledge from high-SES input. In particular, the modeled learner will learn from the same
quantity of data a low-SES child would encounter, with the same input distributions, based on our
low-SES CDS samples. If successful acquisition of island constraints occurs when learning from
low-SES input, this would suggest low-SES input isn’t qualitatively different from high-SES input
in this respect; any input differences wouldn’t be predicted to be developmentally meaningful. In

4For log probabilities, less negative numbers are equivalent to higher probabilities. For example,
log(.001) = log(10−3) = -3, while log(.000001) = log(10−6) = -6.
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Figure 1: Left column: High-SES adult judgments demonstrating implicit knowledge of four syn-
tactic islands via a superadditive interaction. Right column: Modeled high-SES child judgments
demonstrating the same implicit knowledge via a superadditive interaction.
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contrast, if successful acquisition doesn’t occur when learning from low-SES input, this would
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indicate a qualitative difference for complex syntactic acquisition between low-SES and high-SES
input; so, any input differences would be predicted to be developmentally meaningful.

6.1 Low-SES CDS input samples

Our low-SES CDS input samples come from a subpart of the HSLLD corpus (Dickinson & Tabors
2001) in CHILDES (MacWhinney 2000), and SES was defined according to maternal education
and annual income. Maternal education ranged from 6 years of schooling to some post-high school
education. Annual income didn’t have hard lower and upper bounds; instead, 70% of the families
reported an annual income of $20,000 or less, while 21% of the families reported an income of
over $25,000. The annual income of the remaining 9% was unreported. In this dataset, we focused
on the Elicited Report, Mealtime, and Toy Play sections, which represent more naturalistic inter-
actions. We also drew our samples from Home Visit 1, which recorded child language interactions
involving children between the ages of three and five. Our sample contained 31,875 utterances and
3,904 wh-dependencies (12.2% of all utterances), directed at 78 children.

We extracted and syntactically annotated all wh-dependencies following the format of the
CHILDES Treebank (Pearl & Sprouse 2013b), which indicates the syntactic structure necessary
to characterize the syntactic paths of wh-dependencies. We then coded the syntactic paths of the
dependencies (as in (3b) and shown below with a different example in (11)). Following Pearl &
Sprouse (2013b), the CP phrase structure nodes were further subcategorized by the lexical item
serving as complementizer, such as CPthat, CPwhether, CPif , and CPnull. This allows the modeled
learner of Pearl & Sprouse (2013b) to distinguish dependencies judged by high-SES adults to be
grammatical, like (11a), from those judged to be ungrammatical, like (11b). With these syntactic
paths characterizing wh-dependencies, we can then assess the distribution of the wh-dependencies
in the low-SES input sample.

(11) a. Who do you think who read the book?
syntactic path: start-IP-VP-CPnull-IP-end

b. *Who do you think that who read the book?
syntactic path: *start-IP-VP-CPthat-IP-end

6.2 Descriptive corpus analysis

For wh-dependencies, our corpus analysis revealed 16 wh-dependency types in the low-SES input,
12 of which also appeared in the high-SES corpus analysis of Pearl & Sprouse (2013b).5 Addi-
tionally, the low-SES input contained 3 wh-dependency types not in the high-SES input:

• start-IP-VP-CPnull-IP-VP-NP-PP-end
(e.g., What did he think it was a movie of what?)

• start-IP-VP-IP-VP-IP-VP-PP-IP-VP-end
(e.g., What did you want to try to plan on doing what?)

• start-IP-VP-CPthat-IP-end
(e.g., What do you think that what happens?)

Interestingly, this last dependency type is an example of a “that-trace” violation and is judged
ungrammatical by high-SES adults (Cowart 1997). This represents a difference across SES, with
respect to adult knowledge of specific wh-dependencies. Additionally, when we compare the rate
(and therefore quantity) of wh-dependencies across SES, we find another difference. The wh-
dependency rate in the high-SES CDS sample of Pearl & Sprouse (2013b) was 20.5%, while the
wh-dependency rate in our low-SES CDS sample was 12.2% – a lower rate.

5A more detailed description of the wh-dependency distribution across SES is available in Appendix
A.1.

11



However, there’s a striking similarity when we look at the most frequent wh-dependencies
types across SES: the two dependency types that account for the vast majority of the low-SES
wh-dependency input (85.8%) are the same two that account for the vast majority of the high-
SES input (89.5%), and they occur in about the same proportions (shown in (12)). This suggests
a high-level qualitative similarity in the wh-dependency input across SES, despite the individual
wh-dependency differences.

(12) Proportions of the two most frequent wh-dependency types across SES
a. 1st most frequent: start-IP-VP-end (e.g., What did Lily read what?)

75.5% low-SES, 76.7% high-SES
b. 2nd most frequent: start-IP-end (e.g., What what happened?)

10.3% low-SES, 12.8% high-SES

For syntactic trigrams, which serve as the building blocks of wh-dependencies under the Pearl
& Sprouse learning strategy, our corpus analysis revealed 21 trigram types in the low-SES input,
14 of which also appeared in the high-SES corpora analyses of Pearl & Sprouse (2013b).6 Addi-
tionally, the low-SES input contained 1 syntactic trigram not found in the high-SES input, which
comes from one of the dependencies found only in the low-SES input:

• CPthat-IP-end
(from What do you think [that what)] happens?)

Notably, just as with the wh-dependency analysis, the most frequent syntactic trigrams are very
similar across SES. The three trigram types that account for the majority of the trigrams (85.0%) in
the low-SES wh-dependency input are the same three that account for the majority of the trigrams
(87.9%) in the high-SES wh-dependency input, and they occur in about the same proportions
(shown in (13)). So, as with the wh-dependencies, this suggests a high-level qualitative similarity
in the syntactic trigram input across SES, despite the individual syntactic trigram differences.

(13) Proportions of the three most frequent trigram types across SES
a. 1st most frequent: start-IP-VP

41.4% low-SES, 41.8% high-SES
b. 2nd most frequent: IP-VP-end

38.9% low-SES, 40.0% high-SES
c. 3rd most frequent: start-IP-end

4.7% low-SES, 6.1% high-SES

6.3 Quantitative analysis

To more precisely quantify how similar the input distributions are for both wh-dependencies and
syntactic trigrams across SES, we use the Jensen-Shannon divergence (JSDiv) (Endres & Schin-
delin 2003). JSDiv values range from 0 to 1, with 0 indicating identical distributions. That is,
higher JSDiv values indicate greater divergence in the distributions, while values closer to 0 in-
dicate distributions that are more similar. In this way, JSDiv analysis provides a way to quantify
similarity between distributions; this makes it useful as a comparative measure, where different
distributions are assessed for their relative similarity to each other.

With this in mind, we additionally use JSDiv to assess child-directed speech in comparison to
adult-directed speech and text, in order to provide a comparison baseline for the similarity across
input samples of both wh-dependencies and syntactic trigrams. In particular, we assess how similar
the low-SES and high-SES CDS wh-dependency and trigram distributions are to those in high-
SES adult-directed speech (ADS) and adult-directed text (ADT) samples from Pearl & Sprouse

6A more detailed description of the syntactic trigram distribution across SES is available in Appendix
A.2.
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(2013b). These adult-directed corpora are described in Table 2. This JSDiv analysis will reveal
which factors impact wh-dependency and syntactic trigram distributions more: SES, whether the
speech is directed at children or adults, or whether the input is speech-based vs. text-based.

Table 2: Corpora statistics for low-SES CDS (L-CDS), high-SES CDS (H-CDS), high-SES adult-
directed speech (H-ADS), and high-SES adult-directed text (H-ADT) samples.

corpora # utterances # wh-dependencies # children ages
L-CDS 31,875 3,904 78 3 - 5
H-CDS 101,838 20,923 25 1 - 5
H-ADS 74,576 8,508 N/A N/A
H-ADT 24,243 4,230 N/A N/A

Table 3: The nine wh-dependencies shared across all four corpora that are used in the JSDiv
analysis.

Shared dependencies Example utterance Corpora percentage
start-IP-end Who saw it? 10.3% - 33.0%
start-IP-VP-end Who did she see? 63.3% - 76.7%
start-IP-VP-CPnull-IP-end Who did he think stole it? 0.1% - 0.6%
start-IP-VP-CPnull-IP-VP-end What did he think she stole? 0.2% - 1.1%
start-IP-VP-CPnull-IP-VP-PP-end What did he think she wanted it for? <0.1% - 0.1%
start-IP-VP-IP-VP-end What did he want her to steal? 1.3% - 7.5%
start-IP-VP-IP-VP-IP-VP-end What did he want her to pretend to steal? <0.1%
start-IP-VP-IP-VP-PP-end What did she want to get out from under? <0.1% - 0.8%
start-IP-VP-PP-end Who did she steal from? 1.3% - 4.3%

Wh-dependencies. Figure 2 shows the results of the JSDiv analysis for wh-dependencies, calcu-
lated over the distribution of the 9 wh-dependencies (shown in Table 3) that these four corpora had
in common. We see that low-SES CDS and high-SES CDS are the most similar in wh-dependency
distribution (JS: 0.00445), and appear to be twice as similar as the next closest comparison, which
is high-SES CDS vs. high-SES ADS (JS: 0.00948). This affirms a quantitative similarity across
SES in child wh-dependency input, in terms of wh-dependency distribution. Moreover, these re-
sults highlight that CDS across SES is more similar than CDS vs. ADS within SES. That is,
whether the speech is directed at children or adults matters more than whether speech is coming
from a high-SES or low-SES population. We also note that these JSDivs accord with intuitions
that speech of any kind is more similar to other speech than it is to text: high-SES ADS diverges
more from high-SES ADT (JS: 0.03156) than it does from either high-SES CDS (JS: 0.00948) or
low-SES CDS (JS: 0.01576).

Syntactic trigrams. Figure 3 shows the results of the JSDiv analysis for syntactic trigrams, cal-
culated over the distribution of the 14 trigrams shown in Table 4 (see Table A2 in Appendix A.2
for the full list of trigrams) that these four corpora had in common across all wh-dependencies.
These trigrams accounted for 99.5-99.8% of the total trigrams in these corpora. As with the anal-
ysis of the wh-dependencies, we see the same pattern emerge: (i) low-SES CDS is more similar to
high-SES CDS (JSDiv: 0.00850) than any other input type, and (ii) all speech is more similar to
other types of speech than to text (speech vs. speech: JSDiv=0.00850-0.02836; speech vs. text:
JSDiv=0.07183-0.16279).
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Figure 2: JSDiv analyses for low-SES CDS (L-CDS), high-SES CDS (H-CDS), high-SES adult-
directed speech (H-ADS), and high-SES adult-directed text (H-ADT). Line thickness corresponds
to similarity, with thicker lines indicating more similar distributions.

L-CDS

H-CDS

H-ADT

H-ADS

0.00445
0.00948

0.05325

0.01576

0.07718

0.03156

Table 4: Distribution of the 14 syntactic trigrams across child-directed Low-SES (L-CDS) and High-SES
(H-CDS), as well as High-SES adult-directed speech (H-ADS) and text (H-ADT).

Syntactic trigrams Syntactic trigram percentage
CPnull-IP-VP 0.1% - 0.7%
CPnull-IP-end <0.1% - 0.3%
IP-VP-CPnull 0.3% - 0.7%
IP-VP-CPthat <0.1%
IP-VP-IP 0.9% - 4.0%
IP-VP-NP <0.1% - 0.1%
IP-VP-PP 0.8% - 2.5%
IP-VP-end 38.5% - 39.9%
VP-CPnull-IP 0.3 - 0.7%
VP-CPthat-IP <0.1%
VP-IP-VP 0.9% - 4.0%
VP-PP-end 0.8% - 2.3%
start-IP-VP 38.6% - 41.7%
start-IP-end 4.7% - 19.0%

Figure 3: JSDiv analyses for low-SES CDS (L-CDS) trigrams, high-SES CDS (H-CDS) trigrams,
high-SES adult-directed speech (H-ADS) trigrams, and high-SES adult-directed text (H-ADT) tri-
grams. Line thickness corresponds to similarity, with thicker lines indicating more similar distri-
butions.

L-CDS

H-CDS

H-ADT

H-ADS

0.00850
0.01825

0.11298

0.02836

0.16279

0.07183

Quantitative analysis summary. Our quantitative analyses suggest that the input children en-
counter for learning about syntactic islands is very similar across SES. In particular, both the
wh-distributions and the syntactic trigram distributions appear quite similar, despite some indi-
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vidual wh-dependency and trigram differences. However, it’s unclear if even these comparatively
small differences may lead to different qualitative outcomes. This is because even small input
differences could be developmentally meaningful. So, using the low-SES input distributions, do
we predict children’s acquisition of syntactic island knowledge will be the same as what high-SES
children are predicted to learn? To assess the qualitative similarity of high-SES and low-SES CDS
input with respect to predicted learning outcomes, we need to use the low-SES input distribution
to predict what low-SES children could learn about syntactic islands.

6.4 Developmental computational modeling: Predicting what low-SES children could learn
about syntactic islands

We use the same developmental computational learning model as Pearl & Sprouse (2013b); the
modeled learner learns from the low-SES CDS input, encountering the same amount (≈200K) in
the same distribution as low-SES children, and generates probabilities for the four sets of experi-
mental stimuli of Sprouse et al. (2012), which correspond to Complex NP, Subject, Whether, and
Adjunct islands. Recall that these experimental stimuli can be characterized by the syntactic paths
shown in Table 1, where many of the grammatical dependencies are characterized by the same
syntactic path (e.g., start-IP-end for both matrix+non-island and matrix+island); this is why Table
5, which shows the modeled learner’s generated log probabilities of the relevant wh-dependencies,
has only three grammatical dependency syntactic paths listed. Figure 4 shows the low-SES CDS
log probabilities plotted on interaction plots for each of the four island types. To aid comparison
of predicted learning outcomes across SES, Table 5 also shows the log probabilities generated by
learners learning from the high-SES CDS, as well as the high-SES ADS and ADT reported in Pearl
& Sprouse (2013b).

Table 5: Log probabilities of different wh-dependencies, representing acceptability judgments, for
modeled learners learning from low-SES child-directed speech (L-CDS), as well as prior results
from Pearl & Sprouse (2013) of modeled learners learning from high-SES child-directed speech
(H-CDS) and high-SES adult-directed speech and text (H-ADS+H-ADT).

L-CDS H-CDS
H-ADS

+ H-ADT
Grammatical dependencies
start-IP-end -0.48 -1.21 -0.93
start-IP-VP-CPnull-IP-end -8.11 -7.89 -7.67
start-IP-VP-CPthat-IP-VP-end -15.88 -13.84 -11.00
Island-spanning dependencies
start-IP-VP-NP-CPthat-IP-VP-end -22.13 -19.81 -18.93
start-IP-VP-CPnull-IP-NP-PP-end -20.12 -20.17 -20.36
start-IP-VP-CPwhether-IP-VP-end -19.25 -18.54 -18.46
start-IP-VP-CPif -IP-VP-end -19.25 -18.54 -18.46

We can see that a core pattern emerges when learning from low-SES CDS: all grammatical de-
pendencies have higher probabilities (equivalent to less negative log probabilities) than the island-
spanning dependencies. In particular, grammatical dependencies have log probabilities ranging
from -0.48 to -15.88, while island-spanning dependencies range from -19.25 to -22.13. So, even
the least acceptable grammatical dependency (with log probability -15.88) is predicted to be over
2000 times more acceptable than the most acceptable ungrammatical dependency (with log prob-
ability -19.25), because 10−15.88

10−19.25≈2344. This is the same pattern which was found when learn-
ing from either high-SES child-directed or adult-directed input (high-SES grammatical: -0.93 to

15



Figure 4: Judgments derived from a modeled learner using low-SES CDS, demonstrating implicit
knowledge of syntactic islands as indicated by superadditivity (which appears as non-parallel lines
in these interaction plots).

-13.84; high-SES island-spanning: -18.46 to -20.36). Importantly, in Figure 4, we see the super-
additivity that indicates implicit knowledge of syntactic island constraints. That is, just as with the
log probabilities generated from the high-SES data and the acceptability judgments from high-SES
adults, island-spanning dependencies are more unacceptable than would be predicted, given that
they’re embedded dependencies and they have an island structure in the utterance. This affirms
what the JSDiv analysis between the low-SES and high-SES CDS wh-dependencies suggested:
the input quality is the same across SES, with respect to the development of the complex syntactic
knowledge of syntactic island constraints.

Additionally, although quantitative differences exist across ADS/ADT and CDS, these quanti-
tative differences also don’t impact predicted qualitative learning outcomes (i.e., they’re not devel-
opmentally meaningful). For example, the low-SES CDS wh-dependency distribution is 17 times
more similar to the high-SES CDS wh-dependency distribution than it is to high-SES ADT wh-
dependency distribution, based on the JSDiv. Yet, all four wh-dependency distributions (low- and
high-SES CDS, high-SES ADS, and high-SES ADT) contain the necessary information for the
developmental computational model to learn syntactic island constraints. This indicates that even
larger JSDiv differences lead to the same predicted learning outcomes, which in turn suggests that
learning syntactic island knowledge may be fairly robust to input variation.
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7 Discussion

Our results suggest that the wh-dependency input, and in turn the syntactic trigram input, that low-
SES children receive is quantitatively and qualitatively similar to the input of high-SES children.
In particular, any input differences across SES aren’t predicted to be developmentally meaningful
with respect to learning syntactic island knowledge. That is, our developmental computational
modeling results serve as predictions of children’s learning behavior for syntactic islands, and
predict no learning outcome differences due to input differences across SES.

Interestingly, there’s a striking difference in the exact wh-dependency distribution across SES
that’s predicted to be crucial for acquisition success for two of the syntactic island types. This
difference involves a particular structural building block, which comes from dependencies that are
characterized with CPthat.

As noted in (11), the only distinction between certain dependencies judged grammatical and
certain dependencies judged ungrammatical by high-SES adults is the complementizer. Example
(11) showed this for a grammatical dependency with the null complementizer and an ungram-
matical dependency with complementizer that. Another key example is the difference between
grammatical dependencies with complementizer that (14a) and ungrammatical dependencies with
complementizers like whether (whether islands) or if (adjunct islands) (14b). Again, the only dif-
ference in the syntactic path of these dependencies is the CP building block, which is CPthat for
the dependency judged grammatical and CPwhether or CPif for the dependencies judged ungram-
matical.

(14) a. What do you think that Jack read what?
syntactic path: start-IP-VP-CPthat-IP-VP-end

b. *What do you wonder whether/if Jack read what?
syntactic path: *start-IP-VP-CPwhether/if -IP-VP-end

So, it’s important that the child encounter wh-dependencies in her input that involve complemen-
tizer that (and not ones that involve complementizers whether or if ). When this happens, the prob-
abilistic learning strategy we used here can leverage the CPthat building block to predict that (14a)
should be judged as better than (14b). However, dependencies involving CPthat are actually fairly
rare in naturalistic usage. Pearl & Sprouse (2013b) only found 2 of 20,923 (0.0096%) in high-SES
CDS (along with 7 of 8,508 (0.082%) in high-SES ADS and 2 of 4,230 (0.048%) in high-SES
ADT). For high-SES children, this would correspond to approximately one wh-dependency with
CPthat every two months.7

In the high-SES CDS sample, both dependencies involving CPthat are of the same type: start-
IP-VP-CPthat-IP-VP-end instances like (14a). However, in our low-SES CDS sample, there are
2 of 3,094 (0.051%) dependencies involving CPthat, and they are both of a different type, which
happens to be judged ungrammatical by high-SES adults: start-IP-VP-CPthat-IP-end instances
like (15). For low-SES children, this would correspond to approximately one wh-dependency with
CPthat every 0.35 months, or approximately 5-6 wh-dependencies with CPthat every two months
(notably more frequent than what high-SES children would encounter).8

(15) What do you think that what happens?
What do [IP you [V P think [CPthat

that [IP what [V P happens]]]]]?

7With an estimated learning period of 200K wh-dependencies over 3 years (36 months) from Pearl &
Sprouse (2013b), this can be calculated as 200K wh-dependencies * .000096 CPthat wh-dependency rate =
19.2 CPthat wh-dependencies over 3 years (36 months). 19.2

36 = 0.53 per month or 1 approximately every
two months.

8With the same learning period of 200K wh-dependencies over 3 years (36 months) from Pearl &
Sprouse (2013b), this can be calculated as 200K wh-dependencies * .00051 CPthat wh-dependency rate
= 102 CPthat wh-dependencies over 3 years (36 months). 102

36 = 2.83 per month or approximately 2-3 every
month (or 5-6 every two months ) or 1 every 0.35 months.
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syntactic path: start-IP-VP-CPthat-IP

So, the presence of this wh-dependency type, which is ungrammatical in the high-SES dialect,
is predicted to provide the crucial CPthat building block necessary for the acquisition of whether
and adjunct islands. That is, the key linguistic experience that would allow a child learning from
low-SES CDS to acquire the same syntactic knowledge as a high-SES child actually comes from
data that’s ungrammatical for a high-SES child. This underscores the power of learning strategies
that generate linguistic knowledge of larger structures from smaller building blocks; a child relying
on smaller building blocks may be able to find evidence for those building blocks in unexpected
places.

More generally, our results indicate that the input for the development of complex syntactic
knowledge may not be developmentally meaningful across SES, in contrast with lexical or more
foundational syntactic knowledge. That is, there may not be a “complex syntax gap” across SES.
For instance, a difference in input quantity across SES, as indicated by the relative rate of wh-
dependencies, doesn’t appear to be a meaningful one, as shown by our quantitative analyses using
JSDiv. Moreover, there doesn’t appear to be any difference with respect to input quality, based
on our developmental computational modeling results. So, while there may be some surface-level
quantitative differences in input across SES, there don’t appear to be qualitative differences. That
is, surface input differences mask deeper input similarities across SES for the development of this
syntactic island knowledge.

For syntactic islands, we would predict that once low-SES children are able to leverage the
wh-dependency information in their input, they should learn about these syntactic islands as well
as high-SES children do. That is, the target knowledge low-SES children eventually achieve for
these syntactic islands is predicted to be the same as that of high-SES children (and adults), even if
the low-SES target knowledge may differ for other syntactic knowledge like that-trace violations.
Current data on the development of other wh-dependency knowledge in children across SES sug-
gests that by age four, low-SES children do indeed appear to have similar knowledge to high-SES
children (de Villiers et al. 2008); however, the four syntactic islands we examined here have not
yet been tested.

Another step for evaluating the model’s predictions is to collect judgment data from low-SES
adults for these syntactic islands and for that-trace violations specifically. We would expect low-
SES adult judgments to be the same as high-SES adult judgments, except for the that-trace viola-
tion, which low-SES adults should find grammatical.

We note that the ability to leverage the wh-dependency and syntactic trigram information isn’t
trivial – there are known delays in language processing in low-SES children compared to their
high-SES counterparts (Fernald et al. 2013, Weisleder & Fernald 2013). These delays could lead
to low-SES children being less able to harness the complex syntactic information available in their
input, even if the information is in fact there. However, our results here suggest that once the devel-
opmental milestones are met which allow successful processing of the available wh-dependency
information in low-SES children’s input, no other gap remains in low-SES children’s input.

More concretely, the syntactic islands learning strategy applied here to the low-SES CDS data
requires several foundational knowledge components and processing abilities to be “good enough”
– that is, what the child must both know and be able to do in real time. First, the child must
know about syntactic phrase structure; she must be able to use that phrase structure knowledge to
extract the syntactic path of a wh-dependency in real time (including accurately identifying where
the wh-word is understood). Second, the child must know to break syntactic paths into smaller
trigram building blocks that can be used to generate a probability for any wh-dependency; she
must be able to identify these syntactic trigrams in real time. Third, the child must know to track
the relative frequency of the syntactic trigrams; she must be able to track these frequencies in real
time. Fourth, the child must know to combine these syntactic trigrams to generate the probability
for a new wh-dependency; she must be able to do so in real time. Any or all of these components
could be affected by processing deficits that arise from input quantity and quality differences in
low-SES CDS, and it remains an open question which ones are in fact adversely affected by low-
SES children’s prior linguistic experience. Still, our current work has demonstrated that once low-
SES children can use the wh-dependency information available to them, their input isn’t predicted
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to cause them to lag behind their high-SES counterparts when it comes to learning about complex
syntactic knowledge like syntactic islands.

8 Conclusion

We have aimed to provide a new way for identifying developmentally-meaningful input differ-
ences, harnessing developmental computational modeling. Developmental computational model-
ing can be used to assess input quality by predicting what children should be able to learn from their
input. If input variation is developmentally meaningful, then the model predicts learning outcome
differences; in contrast, the model predicts similar learning outcomes when the input variation
isn’t developmentally meaningful. To demonstrate this technique, we applied it to input variation
across SES concerning the development of syntactic island knowledge; our model predicted that
there were no developmentally-meaningful input differences. So, input quality for syntactic islands
is predicted to be the same across SES. This result broadens the body of research on linguistic in-
put variation across SES to include the nature of the input for more complex syntactic knowledge.
To our knowledge, this is the first comparison across SES for these syntactic islands. Our results
suggest that if we do see developmental differences in syntactic island knowledge across SES, it’s
not because of the information available in the input. Instead, children’s ability to harness that
information may differ. In short, the syntactic islands information is predicted to be there for chil-
dren to use, no matter their SES – a key developmental step is for them to figure out how to use
it.
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A Appendices

A.1 Wh-dependency distribution across SES

Table A1 shows the distribution of wh-dependencies across the different corpora, including the low-SES and
high-SES child-directed speech, as well as high-SES adult-directed speech and adult-directed text.

Table A1: Distribution of wh-dependencies in child-directed Low-SES (L-CDS) and High-SES (H-CDS),
as well as High-SES adult-directed speech (H-ADS) and text (H-ADT). Percentages are shown for syntactic
paths, based on the total wh-dependencies in each corpus, with the quantity observed in the corpus on the
line below. An example of each syntactic path is given below the path. Dependencies used in the Jensen-
Shannon divergence (JSDiv) analysis are in teal. The dependency in the Low-SES dialect that’s judged to
be ungrammatical in the High-SES dialect is in pink.

Distribution of wh-dependencies in the input
Syntactic path and example utterance L-CDS H-CDS H-ADS H-ADT
IP 10.3% 12.8% 17.2% 33.0%
Who saw it? 402 2680 1464 1396
IP-VP 75.5% 76.7% 73.0% 63.3%
What did she see? 2949 16039 6215 2677
IP-VP-AdjP-IP-VP 0.0% 0.0% <0.1% 0.1%
What are you willing to see? 0 0 1 5
IP-VP-AdjP-IP-VP-PP 0.0% 0.0% <0.1% 0.0%
What are you willing to go to? 0 0 1 0
IP-VP-AdjP-PP 0.0% 0.0% <0.1% <0.1%
What are they good for? 0 0 1 1
IP-VP-CPfor-IP-VP-PP 0.0% <0.1% 0.0% 0.0%
What did she put on for you to dance to? 0 1 0 0
IP-VP-CPnull-IP 0.1% 0.1% 0.6% 0.3%
Who did he think stole it? 5 24 52 12
IP-VP-CPnull-IP-VP 0.9% 1.1% 0.4% 0.2%
What did he think she stole? 39 236 30 8
IP-VP-CPnull-IP-VP-IP-VP <0.1% 0.1% <0.1% 0.0%
What did he think she wanted to steal? 3 28 3 0
IP-VP-CPnull-IP-VP-IP-VP-IP-VP 0.0% <0.1% 0.0% 0.0%
What did he think she wanted to pretend to steal? 0 2 0 0
IP-VP-CPnull-IP-VP-IP-VP-IP-VP-PP 0.0% 0.0% <0.1% 0.0%
Who did he think she wanted to pretend to steal from? 0 0 1 0
IP-VP-CPnull-IP-VP-IP-VP-PP 0.0% <0.1% 0.0% 0.0%
Who did he think she wanted to steal from? 0 1 0 0
IP-VP-CPnull-IP-VP-NP 0.0% <0.1% <0.1% <0.1%
What did he think she said about it? 0 1 5 1
IP-VP-CPnull-IP-VP-NP-PP <0.1% 0.0% 0.0% 0.0%
What did he think it was a movie of? 3 0 0 0
IP-VP-CPnull-IP-VP-PP 0.1% 0.1% <0.1% <0.1%
What did he think she wanted it for? 4 28 5 1
IP-VP-CPnull-IP-VP-PP-PP 0.0% <0.1% 0.0% 0.0%
What did he think she wanted out of? 0 1 0 0
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Distribution of wh-dependencies in the input
Syntactic path and example utterance L-CDS H-CDS H-ADS H-ADT
IP-VP-CPthat-IP <0.1% 0.0% 0.0% 0.0%
What do you think that happens? 2 0 0 0
IP-VP-CPthat-IP-VP 0.0% <0.1% <0.1% <0.1%
What did he think that she stole? 0 2 5 2
IP-VP-CPthat-IP-VP-IP-VP 0.0% 0.0% <0.1% 0.0%
What did he think that she wanted to steal? 0 0 1 0
IP-VP-CPthat-IP-VP-PP 0.0% 0.0% <0.1% 0.0%
Who did he think that she wanted to steal from? 0 0 1 0
IP-VP-IP 0.0% <0.1% <0.1% 0.0%
Who did he want to steal the necklace? 0 9 2 0
IP-VP-IP-VP 7.5% 5.6% 3.4% 1.3%
What did he want her to steal? 296 1167 287 57
IP-VP-IP-VP-IP-VP <0.1% <0.1% <0.1% <0.1%
What did he want her to pretend to steal? 2 11 6 1
IP-VP-IP-VP-IP-VP-PP 0.0% 0.2% <0.1% 0.0%
Who did he want her to pretend to steal from? 0 43 6 0
IP-VP-IP-VP-IP-VP-PP-IP-VP <0.1% 0.0% 0.0% 0.0%
What did you want to try to plan on doing? 1 0 0 0
IP-VP-IP-VP-NP 0.0% <0.1% 0.0% 0.0%
What did he want to say about it? 0 6 0 0
IP-VP-IP-VP-NP-IP-VP 0.0% 0.0% 0.0% <0.1%
What did he have to give her the opportunity to steal? 0 0 0 1
IP-VP-IP-VP-NP-PP 0.0% <0.1% <0.1% 0.0%
What did she want to steal more of? 0 1 1 0
IP-VP-IP-VP-PP 0.8% 0.4% 0.4% <0.1%
What did she want to steal from? 35 74 33 4
IP-VP-IP-VP-PP-PP 0.0% 0.0% 0.0% <0.1%
What did she want to get out from under? 0 0 0 1
IP-VP-NP 0.0% 0.2% 0.1% 0.1%
What did she say about the necklace? 0 52 10 5
IP-VP-NP-IP-VP 0.0% 0.0% <0.1% <0.1%
What did he give her the opportunity to steal? 0 0 1 2
IP-VP-NP-PP <0.1% <0.1% <0.1% 0.0%
What was she a member of? 1 7 6 0
IP-VP-PP 4.0% 2.5% 4.3% 1.3%
Who did she steal from? 159 524 369 57
IP-VP-PP-CPnull-IP 0.0% 0.0% <0.1% 0.0%
What did she feel like was a very good place? 0 0 1 0
IP-VP-PP-CPnull-IP-VP 0.0% <0.1% 0.0% 0.0%
What did she feel like he saw? 0 1 0 0
IP-VP-PP-IP-VP <0.1% 0.0% <0.1% 0.0%
What did she think about buying? 2 0 3 0
IP-VP-PP-NP 0.0% 0.0% <0.1% 0.0%
Where was she at in the building? 0 0 2 0
IP-VP-PP-NP-PP 0.0% <0.1% 0.0% 0.0%
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Distribution of wh-dependencies in the input
Syntactic path and example utterance L-CDS H-CDS H-ADS H-ADT
What do you put it on top of? 0 2 0 0
IP-VP-PP-NP-PP-IP-VP 0.0% 0.0% <0.1% 0.0%
What is she in the habit of doing? 0 0 1 0
IP-VP-PP-PP 0.5% 0.1% 0.0% 0.0%
What does he eat out of? 1 22 0 0
IP-VP-PP-IP-VP 0.0% <0.1% 0.0% 0.0%
What did he think about stealing? 0 1 0 0

A.2 Syntactic trigram distribution across SES

Table A2 shows the distribution of the syntactic trigrams across the different corpora, including the low-SES
and high-SES child-directed speech, as well as high-SES adult-directed speech and adult-directed text. The
shared syntactic trigrams were used when calculating the Jensen-Shannon divergence (JSDiv) analyses.

Table A2: Distribution of the syntactic trigrams across child-directed Low-SES (L-CDS) and High-SES
(H-CDS), as well as High-SES adult-directed speech (H-ADS) and text (H-ADT). The 14 shared trigrams
used in the JSDiv analysis are in teal.

Distribution of trigrams in the input
Trigrams L-CDS H-CDS H-ADS H-ADT
AdjP-IP-VP 0.0% 0.0% <0.1% <0.1%

0 0 2 5
AdjP-PP-end 0.0% 0.0% <0.1% <0.1%

0 0 1 1
CPfor-IP-VP 0.0% <0.1% 0.0% 0.0%

0 1 0 0
CPnull-IP-VP 0.6% 0.7% 0.2% 0.1%

49 298 44 10
CPnull-IP-end <0.1% <0.1% 0.3% 0.2%

5 24 53 12
CPthat-IP-VP 0.0% <0.1% <0.1% <0.1%

0 2 7 2
CPthat-IP-end <0.1% 0.0% 0.0% 0.0%

2 0 0 0
IP-VP-AdjP 0.0% 0.0% <0.1% <0.1%

0 0 3 6
IP-VP-CPfor 0.0% <0.1% 0.0% 0.0%

0 1 0 0
IP-VP-CPnull 0.6% 0.7% 0.6% 0.3%

54 321 96 22
IP-VP-CPthat <0.1% <0.1% <0.1% <0.1%

2 2 7 2
IP-VP-IP 4.0% 3.2% 2.1% 0.9%

340 1398 353 65
IP-VP-NP <0.1% 0.1% 0.1% 0.1%
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Distribution of trigrams in the input
Trigrams L-CDS H-CDS H-ADS H-ADT

4 67 23 9
IP-VP-PP 2.4% 1.6% 2.5% 0.8%

202 698 423 63
IP-VP-end 38.9% 39.9% 38.5% 37.4%

3292 17487 6553 2753
NP-IP-VP 0.0% 0.0% <0.1% <0.1%

0 0 1 3
NP-PP-IP 0.0% 0.0% <0.1% 0.0%

0 0 1 0
NP-PP-end <0.1% <0.1% <0.1% 0.0%

4 10 7 0
PP-CPnull-IP 0.0% <0.1% <0.1% 0.0%

0 1 1 0
PP-IP-VP <0.1% <0.1% <0.1% 0.0%

3 1 4 0
PP-NP-PP 0.0% <0.1% <0.1% 0.0%

0 2 1 0
PP-NP-end 0.0% 0.0% <0.1% 0.0%

0 0 2 0
PP-PP-end <0.1% <0.1% 0.0% <0.1%

1 23 0 1
VP-AdjP-IP 0.0% 0.0% <0.1% <0.1%

0 0 2 5
VP-AdjP-PP 0.0% 0.0% <0.1% <0.1%

0 0 1 1
VP-CPfor-IP 0.0% <0.1% 0.0% 0.0%

0 1 0 0
VP-CPnull-IP 0.6% 0.7% 0.6% 0.3%

54 321 96 22
VP-CPthat-IP <0.1% <0.1 <0.1% <0.1

2 2 7 2
VP-IP-VP 4.0% 3.2% 2.1% 0.9%

340 1389 351 65
VP-IP-end 0.0% <0.1% <0.1% 0.0%

0 9 2 0
VP-NP-IP 0.0% 0.0% <0.1% <0.1%

0 0 1 3
VP-NP-PP <0.1 <0.1% <0.1 0.0%

4 8 7 0
VP-NP-end 0.0% 0.1% <0.1% <0.1%

0 59 15 6
VP-PP-CPnull 0.0% <0.1% <0.1% 0.0%

0 1 1 0
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Distribution of trigrams in the input
Trigrams L-CDS H-CDS H-ADS H-ADT
VP-PP-IP <0.1 <0.1% <0.1 0.0%

3 1 3 0
VP-PP-NP 0.0% <0.1% <0.1% 0.0%

0 2 3 0
VP-PP-PP <0.1 <0.1% 0.0% <0.1

1 23 0 1
VP-PP-end 2.3% 1.5% 2.4% 0.8%

198 671 416 62
start-IP-VP 41.4% 41.7% 41.5% 38.6%

3502 18283 7049 2835
start-IP-end 4.7% 6.1% 8.6% 19.0%

402 2680 1464 1396

25


	Identifying developmentally-meaningful input differences across socio-economic status 
	The development of wh-dependency knowledge across SES
	Syntactic islands
	Linking children's input to syntactic island knowledge development
	High-SES input quality for syntactic islands
	Low-SES input quality for syntactic islands
	Low-SES CDS input samples
	Descriptive corpus analysis
	Quantitative analysis
	Developmental computational modeling: Predicting what low-SES children could learn about syntactic islands

	Discussion
	Conclusion
	Appendices
	Wh-dependency distribution across SES
	Syntactic trigram distribution across SES


