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Abstract

While there are observed differences in input across socio-economic status (SES), it’s un-
clear how often these input differences are developmentally meaningful and so impact lan-
guage development. We describe a way to identify developmentally-meaningful input differ-
ences that harnesses developmental computational modeling, which allows us to link children’s
input to predicted language development outcomes. We then apply this approach to investigate
if there’s developmentally-meaningful input variation across SES with respect to the complex
syntactic knowledge called syntactic islands. Despite several measurable input differences for
syntactic island input across SES, our model predicts no differences in the syntactic island
knowledge that can be learned from that input. Interestingly, at least one key building block
for syntactic island knowledge comes from a different source in low-SES children’s input, but
is crucially still present. This highlights a qualitative input similarity across SES. We discuss
implications for linguistic development and adult syntactic knowledge variability across SES.

Key Words: socioeconomic status, linguistic development, child-directed speech, syntactic is-
land constraints, computational cognitive modeling, quantitative approaches, input quantity, input
quality, developmentally meaningful

1 Introduction

1.1 Input differences that are developmentally meaningful
There’s a lot of naturally-occurring variation in children’s input, including how long children are
talked to every day, which people talk to them (e.g., adults, other children), what environments
they experience language interaction in (e.g., home, daycare, school), and what people talk to
them about, among many other types of variation. Importantly, not all this input variation is de-
velopmentally meaningful – that is, not all input variation impacts language development in a way
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that deviates significantly from a typically-developing child’s trajectory. That is, while input dif-
ferences may appear, the quality of the input isn’t different when it comes to supporting language
acquisition. However, some input variation does indeed impact language development – this varia-
tion is then developmentally meaningful; in particular, developmentally-meaningful input deficits
lead to language development delays, and so indicate significant input quality differences.

Yet, how do we know if any particular observed input difference is developmentally mean-
ingful? We know that some aspects of language development remain constant despite contextual
variability that surfaces as measurable input differences (Hoff, 2006); measurable input differ-
ences in these cases don’t seem to be developmentally meaningful. In contrast, when aspects of
language development change in the face of measurable input differences, this suggests that those
measurable input differences might be developmentally meaningful.

1.2 How do we know if a difference is developmentally meaningful?
A standard way to determine if a measurable input difference is developmentally meaningful is
to observe some input difference, observe language development outcomes, and then see if the
observed input difference is correlated with any observed outcome difference. If so, the language
input difference might cause the language development outcome difference. In this case, targeting
the input difference for intervention may lead to improved language development outcomes (e.g.,
input-based interventions allowing low-SES students to improve their language comprehension:
Huttenlocher et al. 2002). If input-based intervention is indeed effective, this is more support that
the language input difference caused the observed language outcome difference, and was therefore
developmentally meaningful.

However, a complementary way to investigate if any observed input difference is developmen-
tally meaningful uses developmental computational modeling (see Pearl (ress) for an overview of
this technique applied to language acquisition more generally). A developmental computational
model describes a specific learning mechanism that mediates between the input and a predicted
language development outcome. In particular, the model implements a specific learning theory
about how children use their input to acquire particular linguistic knowledge; children then use
that linguistic knowledge to generate observable outcomes (e.g., determining if a question is well-
formed). In this way, the developmental computational model allows us to test explicit hypotheses
about the language knowledge that could be derived from the information available in children’s
experience (Hoff, 2006).

Because the developmental computational model concretely links children’s input to a pre-
dicted language development outcome, the model will pinpoint what aspect of children’s input is
relevant, and predict the expected language development outcome on the basis of that relevant input
(e.g., if children will believe a question is well-formed). That is, a developmental computational
model identifies if any observed input difference is predicted to be developmentally meaningful.

In this way, a developmental computational model, as a concrete implementation of a theory of
learning, allows us to generate testable predictions about the relationship between observed input
differences and language development outcomes. These predictions can then be evaluated with
targeted behavioral work that assesses the predicted development outcomes. If language outcome
differences are predicted and they do indeed appear, then we have strong support that the input
aspect highlighted by the developmental computational model is developmentally meaningful. In
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this way, developmental computational modeling connects theories of language development, em-
pirical data on children’s input, and child behavioral experiments.

Developmentally-meaningful input differences can then be targeted for intervention, with the
strong possibility of positively impacting language development outcomes. Importantly, because
a developmental computational model describes exactly how the input causes the predicted devel-
opmental outcome, the model can also determine if an observed input difference is predicted not
to be developmentally meaningful (because the predicted outcome isn’t qualitatively different).
That is, the model can identify contextual variation surfacing in children’s input that’s predicted
not to impact language development (Hoff, 2006). In this case, we would expect an input-based
intervention to be ineffective at improving children’s language development.

1.3 Language development across socio-economic status
Language development delays appear across socio-economic status (SES), with lower-SES chil-
dren behind their higher-SES peers for different aspects of language development (e.g., vocabu-
lary development: Hart and Risley 1995; Hoff 2003, language processing: Fernald et al. 2013;
Weisleder and Fernald 2013). Yet, there are also aspects of language development that don’t ap-
pear to be delayed (e.g., complex syntactic knowledge: de Villiers et al. 2008), and there are many
aspects where we simply don’t know. It’s often unclear which input differences matter for the de-
velopment of different types of linguistic knowledge. Certainly, there are observed input quantity
and input quality differences across SES (though also within SES).

For instance, when it comes to input quantity at the word-level, some studies have found that
lower-SES children may encounter 30 million fewer words of caretaker speech than their higher-
SES peers (Hart and Risley, 1995; Schwab and Lew-Williams, 2016); other studies have found
greater differences in input quantity within SES rather than across SES (Blum, 2015; Sperry et al.,
2018). At the clause-level however, there appear to be fewer observed input quantity differences
across SES; for instance, caretakers across SES produce approximately the same number of multi-
clause utterances (e.g., [He gave the book to the girl [who lived down the street]] = 2 clauses) in
their child-directed speech (Huttenlocher et al., 2002).

For input quality, differences across SES have been observed at the lexical and foundational
syntactic levels (Huttenlocher et al., 2010; Rowe, 2012; Rowe et al., 2017). These differences
include the relative frequency of word types, word tokens, and rare words; the diversity of syntactic
constructions; and the relative frequency of decontexualized utterances like explanations (Oh, we
can’t put them in the bus because the bus is full of blocks), pretend (I’ll save you from the wicked
sister), and narrations (He is going to look in your nose and your throat and your ears).

Again, what’s often unclear is whether a specific measurable input difference matters for devel-
oping a specific type of linguistic knowledge. Developmental computational modeling, by imple-
menting a learning theory that links input to the development of language knowledge, can identify
when a measurable input difference is predicted to matter – that is, when a difference is develop-
mentally meaningful.
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1.4 Using developmental computational modeling to predict whether syn-
tactic input differences across SES are developmentally meaningful

Here, we harness developmental computational modeling to do precisely this: identify if input
differences across SES for certain aspects of complex syntax are predicted to impact development
of that knowledge and so be developmentally meaningful. We focus on a certain type of complex
syntactic knowledge known as syntactic islands that concerns wh-questions (e.g., the grammatical
Who did Lily think the pretty kitty was for? vs. the ungrammatical Who did Lily think the kitty
for was pretty?). More specifically, syntactic islands are constraints on the permitted forms of wh-
questions (among other linguistic forms). Knowledge of syntactic islands thus allows children to
know which wh-questions are well-formed and which aren’t; so, even if children have never heard
a particular wh-question before, they can tell if it’s acceptable or not. This means that children
who have knowledge of syntactic islands know something quite sophisticated about the syntax of
wh-questions – not simply how to understand wh-questions that occur in their language, but also
which ones aren’t going to occur at all because those wh-questions are ill-formed.

We first briefly review what’s currently known about the development of complex syntactic
knowledge across SES, focusing on knowledge related to wh-questions in general and syntac-
tic islands in particular. We then discuss the complex syntactic knowledge that syntactic islands
involve, and describe the particular syntactic islands we focus on; we selected these due to the
available empirical data on the behavior that signals successful acquisition of this knowledge.

We then review a developmental computational model for learning syntactic islands that con-
nects children’s input to language development (Pearl and Sprouse, 2013); this model implements a
specific learning theory for how children use their input to acquire knowledge of syntactic islands.
The learning theory pinpoints that the relevant aspect of children’s input for learning syntactic
islands involves wh-dependencies, which rely on “wh-words” like what and who (among others).

We then investigate input variation for learning syntactic islands, looking at the distributions
of wh-dependencies in American English child-directed speech (CDS) between high-SES popula-
tions and low-SES populations. In particular, we provide both a descriptive corpus analysis and a
quantitative analysis comparing high-SES to low-SES input. We then assess input quantity differ-
ences, and derive realistic estimates of the quantity of wh-dependencies that high-SES vs. low-SES
children would hear by age four, when one of the syntactic islands we investigate has been acquired
(de Villiers et al., 2008). With realistic estimates of the input data to high-SES and low-SES chil-
dren, we then provide a developmental computational modeling analysis of the input quality; in
particular, the model predicts the syntactic island knowledge that high-SES and low-SES children
would be able to acquire on the basis of their wh-dependency input.

We find that the low-SES input, in terms of wh-dependency distribution and the syntactic build-
ing blocks needed for syntactic islands, is similar in several key respects to the high-SES CDS
distribution. More specifically, our modeling results predict that low-SES input can support acqui-
sition of all the investigated syntactic islands by age four as well as high-SES input does. Thus,
our results predict that input quality for syntactic islands is the same across SES – there are no
developmentally-meaningful differences across SES coming from children’s input, with respect
to acquiring this complex syntactic knowledge. This result accords with known developmental
trajectory evidence for one type of syntactic island knowledge, and predicts additional trajectory
similarities for the other types we investigate here.

Interestingly, a syntactic building block involving complementizer that (e.g., that in Who do
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you think that Lily likes?) is predicted to be crucial for successful knowledge development and
comes from a different wh-dependency type in low-SES CDS, compared with high-SES CDS;
this difference highlights that surface input quality differences may mask deeper input quality
similarities. More generally, our results suggest that the quality of the input for learning about
syntactic islands doesn’t fundamentally differ across SES. We discuss implications for linguistic
development across SES and potential adult syntactic knowledge variation.

2 The development of wh-dependency knowledge across SES
Currently, less is known about the development of complex syntactic knowledge across SES (es-
pecially with respect to wh-dependencies) than about the development of lexical and foundational
syntactic knowledge. Still, we do know about the development of some wh-dependency knowledge
across SES and a little about the wh-dependency input.

In terms of wh-dependency knowledge, high-SES English-learning children at 20 months seem
to represent the full structure of wh-dependencies in wh-questions (e.g., Which cat did the dog
bump?) and relative clauses (e.g., Show me the dog [who the cat bumped]), rather than relying
on vocabulary-based heuristics to understand these wh-dependencies (Seidl et al., 2003; Gagliardi
et al., 2016; Perkins and Lidz, 2020). High-SES children are also able to correctly repeat back
well-formed wh-questions like Who can Falkor save? and generate new well-formed wh-questions
by two and a half to three years old (Valian and Casey, 2003).

By age four, we see similar knowledge across SES about several aspects of wh-dependencies
(see de Villiers et al. (2008) for empirical data across SES, as well as a review of prior empirical
data from high-SES children). This knowledge includes sensitivity to allowed interpretations of
wh-dependencies – that is, constraints on which interpretations are allowed because those interpre-
tations depend on which wh-dependencies are allowed.

For instance, four-year-olds (like adults) can interpret wh-dependencies like “How did the boy
say he hurt himself?” with how modifying the embedded clause verb hurt; so, the wh-question
can be interpreted as asking about how the boy hurt himself. Children as young as four are also
sensitive to the difference between the possible interpretations of “How did the mom learn what to
bake?” The allowed interpretation has how modifying the main clause verb learn (e.g., a possible
answer is “from a recipe book”); the disallowed interpretation has how modifying the embedded
clause verb bake (e.g., a possible answer would be “in a glass dish”).

As another example, four-year-olds across SES are sensitive to the difference between the pos-
sible interpretations of “What is Jane drawing a monkey that is drinking milk with?”; the allowed
interpretation has what linked to a position outside the relative clause (“What is Jane drawing [a
monkey that is drinking milk] with what?”), with a possible answer of what Jane is drawing with
(e.g., “a pencil”); the disallowed interpretation has what linked to a position inside the relative
clause (“What is Jane drawing [a monkey that is drinking milk with what]?”), with a possible
answer of what the monkey is drinking with (e.g., “a straw”).

So, there appear to significant similarities in the developmental outcomes by age four across
SES with respect to allowing and disallowing possible interpretations for wh-questions; these in-
terpretations rest on children being sensitive to several constraints on allowed wh-dependencies.
These developmental outcome similarities suggest that input differences across SES for these types
of wh-dependency knowledge shouldn’t be developmentally meaningful. Yet, we know much less
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about any input differences there might be for wh-dependencies, let alone how children’s input
leads to the development of wh-dependency knowledge despite any input variation that might be
present. We do know that the use of wh-questions in input to low-SES two-year-olds helps build
their vocabulary and reasoning skills more generally (Rowe et al., 2017). However, it’s unclear
how the wh-questions in the input impact the development of complex wh-dependency knowledge
(such as constraints on wh-dependencies). More generally, much remains unknown about the in-
put variation present across SES for learning about constraints on wh-dependencies, how the input
scaffolds the development of this complex syntactic knowledge, and whether any input variation
present is developmentally meaningful for other types of constraints on wh-dependencies that have
yet to be assessed in children across SES.

3 Syntactic islands
A key component of human syntactic knowledge is the ability to have long-distance dependencies,
where there’s a relationship between two words that aren’t adjacent to each other. Long-distance
dependencies, such as the dependencies between the wh-word what and eat in (1), can be arbitrarily
long (Chomsky, 1965; Ross, 1967; Chomsky, 1973). In (1), we can see that this dependency can
stretch across one, two, three, or four clauses. In each case, what is understood as the thing Falkor
ate, despite what not being adjacent to eat.

(1) a. What did Falkor eat what?
b. What did Atreyu see Falkor eat what?
c. What did the Childlike Empress say Atreyu saw Falkor eat what?
d. What did Bastian hear the Childlike Empress say Atreyu saw Falkor eat what?

However, there are constraints on the wh-dependencies that are allowed. These constraints have
been discussed as specific syntactic structures that long-distance dependencies can’t cross, called
syntactic islands (Chomsky, 1965; Ross, 1967; Chomsky, 1973). Four examples of syntactic is-
lands are in (2), with * indicating ungrammaticality and [...] highlighting the proposed island
structure that a wh-dependency can’t cross in English.

(2) a. Complex NP island
*What did Falkor make [the claim [that Atreyu fought what]]?

b. Subject island
*What did Falkor think [[the joke about what] was hilarious]?

c. Whether island
*What did Falkor wonder [whether Atreyu bought what]?

d. Adjunct island
*What did Falkor worry [if Atreyu buys what]?

During language development, children must infer and internalize the constraints on long-distance
wh-dependencies (i.e., syntactic island constraints) that allow them to recognize that the questions
in (2) are not allowed, while the questions in (1) are fine. We note that this recognition is the
measurable behavior of children’s internalized knowledge – that is, distinguishing grammatical
questions like (1) from ungrammatical questions like (2) is one way to indicate knowledge of the
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relevant syntactic island constraints (whatever form that knowledge may take).

4 Assessing knowledge of syntactic islands
Previous work assessing children’s knowledge has focused on the interpretations of wh-dependencies
that are allowed, rather than the grammaticality of the wh-dependencies directly (Otsu, 1981;
De Villiers et al., 1990; Roeper and Seymour, 1994; de Villiers and Roeper, 1995; McDaniel
et al., 1995; Vainikka and Roeper, 1995; De Villiers and Pyers, 2002; Coles-White et al., 2004;
de Villiers et al., 2008). The idea was that it’s easier to ask children if they can allow a particular
interpretation that relies on a certain wh-dependency (something more similar to naturalistic com-
munication) rather than asking children directly if that wh-dependency is grammatical (something
more meta-linguistic that requires reasoning about language forms). If children don’t allow a cer-
tain interpretation (e.g., “What is Jane drawing a monkey that is drinking milk with?” with what
interpreted as “the straw”), this can be interpreted as children not allowing the wh-dependency
that the interpretation relies on (e.g., “What is Jane drawing [a monkey that is drinking milk with

what]?”); so, this behavior can then be interpreted as children knowing the syntactic island that
disallows that wh-dependency (e.g., a Complex NP island, since “a monkey that is...” is an NP
with a relative clause, which is a type of complex NP). In this way, children disallowing a particu-
lar interpretation indirectly indicates their knowledge of a particular syntactic island – specifically,
the syntactic island that disallows the wh-dependency that the disallowed interpretation relies on.

A more direct way to assess syntactic island knowledge is with the less-natural task of di-
rectly judging how acceptable a wh-dependency is (e.g., Sprouse et al. 2012). When the stimuli
are carefully designed (as discussed below), relative differences in judged acceptability can be
used to infer whether a particular dependency is allowed (i.e., grammatical). In particular, island-
crossing wh-dependencies can be compared against wh-dependencies that don’t cross islands, yet
are similar in other important ways to the island-crossing ones. When the island-crossing wh-
dependencies are still judged as far more unacceptable, this signals knowledge of the relevant
constraint on wh-dependencies captured by syntactic islands. We follow Pearl and Sprouse (2013),
and use acceptability judgment data to indicate knowledge of syntactic islands. In particular, the
developmental models we implement will attempt to replicate the appropriate acceptability judg-
ment pattern found by Sprouse et al. (2012) that indicates syntactic island knowledge, as this is the
target knowledge for development.

Sprouse et al. (2012) investigated the four islands from (2); a sample set for each island type
is shown in (3)-(6), where island structures are indicated with [...]. These stimuli were designed
using a 2x2 factorial design, involving two factors deemed important for judging acceptability: wh-
dependency length (matrix vs. embedded) and presence of an island structure in the utterance (non-
island vs. island). Each island stimuli set therefore had four wh-dependency types: matrix+non-
island, embedded+non-island, matrix+island, and embedded+island. The embedded+island stim-
ulus in each case involved an island-crossing wh-dependency, and so was ungrammatical.

(3) Sample Complex NP island stimuli
a. matrix+non-island

Who who claimed that Atreyu fought the goblin?
b. embedded+non-island
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Who did Falkor claim that Atreyu fought who?
c. matrix+island:

Who who made [the claim that Atreyu fought the goblin]?
d. embedded+island:

*Who did Falkor make [the claim that Atreyu fought who]?

(4) Sample Subject island stimuli
a. matrix+non-island:

Who who thinks the joke is hilarious?
b. embedded+non-island:

What does Falkor think what is hilarious?
c. matrix+island:

Who who thinks the joke about Atreyu is hilarious?
d. embedded+island:

*Who did Falkor think [[the joke about who] was hilarious]?

(5) Sample Whether island stimuli
a. matrix+non-island:

Who who thinks Atreyu bought the medallion?
b. embedded+non-island:

What does Falkor think Atreyu bought what?
c. matrix+island:

Who who wonders if Atreyu bought the medallion?
d. embedded+island:

*What did Falkor wonder [whether Atreyu bought what]?

(6) Sample Adjunct island stimuli
a. matrix+non-island:

Who who thinks Atreyu bought the medallion?
b. embedded+non-island:

What does Falkor think that Atreyu bought what?
c. matrix+island:

Who who worries if Atreyu bought the medallion?
d. embedded+island:

*What did Falkor worry [if Atreyu buys what]?

This design allows syntactic island knowledge to surface as a superadditive interaction of ac-
ceptability judgments; this superadditivity appears as non-parallel lines in an interaction plot, such
as those in Figure 1, which come from the judgments of high-SES adults tested by Sprouse et al.
(2012). In particular, if we consider the Complex NP plot in the top row, there are four acceptabil-
ity judgments, one for each of the stimuli in (3). The matrix+non-island dependency of (3a) has a
certain acceptability score – this is the top-lefthand point. There is a (slight) drop in acceptability
when the matrix+island dependency of (3c) is judged in comparison to (3a) – this is the lower-
lefthand point. We can interpret this as the unacceptability associated with simply having an island
structure in the utterance. There’s also a drop in acceptability when the embedded+non-island
dependency of (3b) is judged in comparison to (3a) – this is the upper-righthand point. We can
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interpret this as the unacceptability associated with simply having an embedded wh-dependency.
If the unacceptability of the embedded+island dependency of (3d) were simply the result of those
two unacceptabilities (having an island structure in the utterance and having an embedded wh-
dependency), the drop in unacceptability would be additive and the lower-righthand point would
be just below the upper-righthand point (and so look just like the points on the lefthand side).
But this isn’t what we see – instead, the acceptability of (3d) is much lower than this. This is
a superadditive effect for the embedded+island stimuli. So, the additional unacceptability of an
island-crossing-dependency like (3d) – i.e., implicit knowledge of syntactic islands – appears as
a superadditive interaction in these types of acceptability judgement plots. This superadditive ac-
ceptability judgment pattern appears for all four island types tested by Sprouse et al. (2012) from
(2): Complex NP, Subject, Whether, and Adjunct islands. A modeled learner who can success-
fully acquire knowledge of these syntactic islands from its input should be able to reproduce this
superadditive judgment pattern.

Figure 1: High-SES adult judgments demonstrating implicit knowledge of four syntactic islands
via a superadditive interaction.
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5 Linking children’s input to syntactic island development
Pearl and Sprouse (2013) constructed a developmental computational model for learning these
syntactic island constraints, linking children’s input to the knowledge about wh-dependencies that
children develop over time. In particular, this model implements a specific learning theory about
how children use the wh-dependency information in their input to update their internal represen-
tations for wh-dependencies; these internal representations allow children to judge a particular
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wh-dependency as grammatical (or not). The model’s learning theory assumes children can char-
acterize a long-distance dependency as a syntactic path from the head of the dependency (e.g.,
What in (7)) through a set of structures that contain the tail (e.g., what) of the dependency, as
shown in (7a)-(7b). These structures correspond to phrase types that make up wh-questions such
as Verb Phrases (VP), Inflectional Phrases (IP), and Complementizer Phrases (CP), among others.
Importantly, these are the structures that wh-dependencies could cross when forming wh-questions.
Under this view, children simply need to learn which wh-dependencies have licit syntactic paths
and which don’t.

The learning process itself is implemented as a probabilistic learning algorithm that tracks local
pieces of these syntactic paths. It breaks the syntactic path into a collection of syntactic trigrams
that can be combined to reproduce the original syntactic path, as shown in (7c).1 The modeled
learner then tracks the frequencies of these syntactic trigrams in the input, based on the input it
encounters, one data point at a time. The modeled learner later uses these learned frequencies to
calculate probabilities for all syntactic trigrams comprising a wh-dependency2 and so generate the
probability of any wh-dependency (as shown in (8)- (9)). More specifically, any wh-dependency’s
probability is the product of the individual trigram probabilities that comprise its syntactic path,
as shown in (10). Importantly, relying on the frequencies of syntactic trigrams (rather than the
frequencies of entire wh-dependencies) allows the modeled learner to generate probabilities for any
wh-dependency, including wh-dependencies that it’s never seen before in its input. So, grammatical
dependencies that are unattested can still have a higher probability than ungrammatical ones that
are unattested, depending on the syntactic trigrams that comprise the wh-dependency.

The probability generated by the modeled learner corresponds to whether that dependency is
allowed, with higher probabilities indicating grammatical dependencies and lower probabilities
indicating ungrammatical dependencies. So, the modeled learner can generate judgments of wh-
dependencies (e.g., grammatical vs. ungrammatical); if this learner can generate the same pattern
of judgments that adults do, we can interpret this as the learner internalizing some version of
the knowledge adults use to make those judgments. In this case, that means the modeled learner
has internalized knowledge (via the syntactic trigrams) that allow it to capture syntactic island
constraints. In this way, we can say that it’s learned those syntactic island constraints.

(7) What did Falkor claim that Atreyu fought what?
a. Syntactic structures containing the wh-dependency:

What did [IP Falkor [V P claim [CP that [IP Atreyu [V P fought what]]]]]?
b. Syntactic path of wh-dependency:

start-IP-VP-CPthat-IP-VP-end

1For discussion of the empirical motivation for the modeling choices, including using trigrams and the
aggregation of trigrams into a dependency, see Pearl and Sprouse (2013).

2It smooths these probabilities by adding 0.5 to all trigram counts. This allows the modeled learner
to accept dependencies composed of trigrams it’s never seen before, though it gives them a much lower
probability than dependencies composed of trigrams it has in fact seen before. See Pearl and Sprouse (2013,
2015) for further discussion of this point.

10



c. Syntactic trigrams T ∈ syntactic path:
= start-IP-VP

IP-VP-CPthat

VP-CPthat-IP

CPthat-IP-VP

IP-VP-end

(8) Smoothed probabilities of trigrams:
p(start-IP-VP) ≈ count(start−IP−V P )

total count of all trigrams

...
p(IP-VP-end) ≈ count(IP−V P−end)

total count of all trigrams

(9) Probability of new wh-dependency: What did Engywook tell Atreyu what?
Syntactic structures = What did [IP Engywook [V P tell Atreyu what?]]
Syntactic path = start-IP-VP-end
trigrams = start-IP-VP, IP-VP-end
Probability = p(start-IP-VP-end) = p(start-IP-VP)*p(IP-VP-end)

(10) General formula for generating a wh-dependency’s probability:∏
trigrams∈T p(trigram)

We note that this developmental learning model requires children to have certain (potentially
sophisticated) knowledge and abilities before they can utilize the learning strategy implemented by
this model. Core assumptions of the model require that the child be able to (i) parse sentences into
phrase structure trees, (ii) extract the syntactic paths for the dependencies, (iii) track the frequency
of the syntactic trigams, and (iv) calculate the probability for the complete syntactic path of the
dependency, based on its trigrams. It remains for future work to determine when these core pieces
are available in children – once they are, children would be able to harness the input the way this
learning model does.3

Still, with these prerequisities in place, Pearl and Sprouse (2013) found that a modeled learner
using high-SES child-directed speech as input could generate the superadditivity patterns for all
four islands in (2). So, the learning theory encoded by the modeled learner predicts development
of implicit syntactic island knowledge for these islands, given high-SES child input. In terms of
developmental outcomes, high-SES children do indeed seem to be sensitive to Complex NP islands
by age four (de Villiers et al., 2008)4. So, the predicted developmental outcome for Complex NP
islands aligns with the assessed outcome for high-SES children by age four, and therefore supports
the plausibility of the learning theory encoded by the model.

3We also note that we’re using this learning model as a novel way to assess input quality, on the basis of
prior work (Pearl and Sprouse, 2013) that applies it to high-SES children’s input. Because of this focus, we
won’t discuss the theoretical implications of this learning strategy for questions of innateness with respect
to the knowledge needed and assumed by the model; we instead refer interested readers to the discussion in
Pearl and Sprouse (2013).

4See Section 6.4 for more detailed discussion of this interpretation of children’s wh-dependency knowl-
edge, based on the stimuli used in de Villiers et al. (2008).
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6 Input analysis across SES
Here we assess input quality across SES, focusing on the information necessary for the develop-
ment of the syntactic island knowledge for the four islands in (2). We first want to identify any
quantitative differences between the high-SES and low-SES input samples we have in terms of the
wh-dependencies and resulting syntactic trigrams available; recall that these dependencies and tri-
grams are the foundation of the development of syntactic island constraints, based on the learning
theory in the model of Pearl and Sprouse (2013). We’ll identify any quantitative input differences
via quantitative analysis of the distribution of wh-dependencies and syntactic trigrams available, as
well as an estimation of the quantity of wh-dependency input available across SES by age four.

We then want to identify any differences between the high-SES and low-SES input in terms
of how well the available wh-dependencies and syntactic trigrams are predicted to scaffold the
development of syntactic island knowledge. That is, whether any significant quantitative differ-
ences exist or not, does low-SES input differ from high-SES input in how syntactic development
is predicted to occur by age four, based on that input? We’ll answer this question by applying
the same computational learning model from Pearl and Sprouse (2013) to realistic estimates of the
child-directed speech that high-SES and low-SES children encounter by age four, and comparing
the predicted developmental outcomes.

6.1 Input samples
High-SES. Our high-SES input samples are the data used by Pearl and Sprouse (2013), and
come from the structurally-annotated Brown-Adam (Brown, 1973), Brown-Eve (Brown, 1973),
Valian (Valian, 1991), and Suppes (Suppes, 1974) corpora from the CHILDES Treebank (Pearl
and Sprouse, 2013). These data are child interactions involving 24 children between the ages of
one and a half and four, containing 101,838 utterances with 20,923 wh-dependencies.

Low-SES. Our low-SES CDS input samples come from a subpart of the HSLLD corpus (Dick-
inson and Tabors, 2001) in CHILDES (MacWhinney, 2000), and SES was defined according to
maternal education and annual income. Maternal education ranged from 6 years of schooling to
some post-high school education. Annual income didn’t have hard lower and upper bounds; in-
stead, 70% of the families reported an annual income of $20,000 or less, while 21% of the families
reported an income of over $25,000. The annual income of the remaining 9% was unreported. In
this dataset, we focused on the Elicited Report, Mealtime, and Toy Play sections, which represent
more naturalistic interactions. We also drew our samples from Home Visit 1, which recorded child
language interactions involving children between the ages of three and five. Our sample contained
31,875 utterances and 3,904 wh-dependencies directed at 78 children. We extracted and syntac-
tically annotated all wh-dependencies following the format of the CHILDES Treebank (Pearl and
Sprouse, 2013).

Wh-dependency coding. The structural annotations of the wh-dependencies in each sample in-
dicate the syntactic structure necessary to characterize the syntactic paths of wh-dependencies. We
coded the syntactic paths of the dependencies (as in (7b) and shown below with a different ex-
ample in (11)). Following Pearl and Sprouse (2013), the CP phrase structure nodes were further
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subcategorized by the lexical item serving as complementizer, such as CPthat, CPwhether, CPif , and
CPnull. This allows the modeled learner of Pearl and Sprouse (2013) to distinguish dependencies
judged by high-SES adults to be grammatical, like (11a), from those judged to be ungrammati-
cal, like (11b). With these syntactic paths characterizing wh-dependencies, we can then assess the
distribution of the wh-dependencies in each input sample.

(11) a. Who do you think who read the book?
syntactic path: start-IP-VP-CPnull-IP-end

b. *Who do you think that who read the book?
syntactic path: *start-IP-VP-CPthat-IP-end

6.2 Descriptive corpus analyses
Wh-dependencies. Our corpus analyses found 12 wh-dependencies in common between the
high-SES and low-SES child input samples (out of 26 total in the high-SES and 16 total in the
low-SES).5 So, the high-SES input contained 14 wh-dependency types not in the low-SES input,
and the low-SES input contained 4 wh-dependency types not in the high-SES input, shown in Table
1.

Interestingly, the last dependency type in Table 1 found only in the low-SES child input (e.g.,
What do you think that happens?) is an example of a “that-trace” violation judged ungrammatical
as by high-SES adults (Cowart, 1997). Because adults are producing these child-directed speech
samples, the presence of this dependency in low-SES child input represents a difference across
SES with respect to adult knowledge of specific wh-dependencies; in particular, low-SES adults
potentially believe this wh-dependency is grammatical, unless each instance was a speech error.

When we compare the rate of wh-dependencies across SES, we find that the wh-dependency
rate is considerably higher in high-SES child-directed speech (high-SES: 20.5%, low-SES: 12.2%).
Over time (as detailed in section 6.4), this rate difference can lead to a considerable difference in
the quantity of wh-dependencies encountered.

Still, there’s a striking similarity when we look at the most frequent wh-dependencies types
across SES: the two dependency types that account for the vast majority of the low-SES wh-
dependency input (85.8%) are the same two that account for the vast majority of the high-SES
input (89.5%), and they occur in about the same proportions (shown in (12)). This suggests a
high-level qualitative similarity in the wh-dependency input across SES, despite the individual
wh-dependency differences.

(12) Proportions of the two most frequent wh-dependency types across SES
a. 1st most frequent: start-IP-VP-end (e.g., What did Lily read what?)

75.5% low-SES, 76.7% high-SES
b. 2nd most frequent: start-IP-end (e.g., What what happened?)

10.3% low-SES, 12.8% high-SES
5A more detailed description of the wh-dependency distribution across SES is available in Appendix

A.1.
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Table 1: Wh-dependencies and syntactic trigrams unique to speech samples directed at high-SES
and low-SES children, respectively. Unique syntactic trigrams are on the same row as the unique
wh-dependencies they come from.

wh-dependencies syntactic trigrams
only high-SES

start-IP-VP-CPfor-IP-VP-PP-end IP-VP-CPfor,
(e.g., What did she put on for you to dance to what?) VP-CPfor-IP,

CPfor-IP-VP
start-IP-VP-CPnull-IP-VP-IP-VP-IP-VP-end
(e.g., What did he think she wanted to pretend to steal what?)
start-IP-VP-CPnull-IP-VP-IP-VP-PP-end
(e.g., Who did he think she wanted to steal from who?)
start-IP-VP-CPnull-IP-VP-NP-end
(e.g., What did he think she said what about it?)
start-IP-VP-CPnull-IP-VP-PP-PP-end
(e.g., What did he think she wanted out of what?)
start-IP-VP-CPthat-IP-VP-end CPthat-IP-VP
(e.g., What did he think that she stole what?)
start-IP-VP-IP-end VP-IP-end
(e.g., What did he want who to steal the necklace?)
start-IP-VP-IP-VP-IP-VP-PP-end
(e.g., Who did he want her to pretend to steal from who?)
start-IP-VP-IP-VP-NP-end
(e.g., What did he want to say what about it?)
start-IP-VP-IP-VP-NP-PP-end
(e.g., What did she want to steal more of what?)
start-IP-VP-NP-end VP-NP-end
(e.g., What did she say what about the necklace?)
start-IP-VP-PP-CPnull-IP-VP-end VP-PP-CPnull,
(e.g., What did she feel like he saw what?) PP-CPnull-IP
start-IP-VP-PP-NP-PP-end VP-PP-NP,
(e.g., What do you put it on top of what?) PP-NP-PP
start-IP-VP-PP-IP-VP-end
(e.g., What did he think about stealing what?)

only low-SES
start-IP-VP-CPnull-IP-VP-NP-PP-end
(e.g., What did he think it was a movie of what?)
start-IP-VP-IP-VP-IP-VP-PP-IP-VP-end
(e.g., What did you want to try to plan on doing what?)
start-IP-VP-PP-IP-VP-end
(e.g., What did she think about buying what?)
start-IP-VP-CPthat-IP-end CPthat-IP-end
(e.g., What do you think that what happens?)

Syntactic trigrams. For syntactic trigrams, which serve as the building blocks of wh-dependencies
under the Pearl & Sprouse learning strategy, our corpus analysis found 19 syntactic trigrams in
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common between the high-SES and low-SES child input samples (out of 29 total for the high-SES
and 20 total in the low-SES). So, the high-SES input contained 10 syntactic trigrams not in the
low-SES input, and the low-SES input contained 1 syntactic trigram not in the high-SES input,
shown in Table 1.6

Notably, just as with the wh-dependency analysis, the most frequent syntactic trigrams are very
similar across SES. The three trigram types that account for the majority of the trigrams (85.0%) in
the low-SES wh-dependency input are the same three that account for the majority of the trigrams
(87.9%) in the high-SES wh-dependency input, and they occur in about the same proportions
(shown in (13)). So, as with the wh-dependencies, this suggests a high-level qualitative similarity
in the syntactic trigram input across SES, despite the individual syntactic trigram differences.

(13) Proportions of the three most frequent trigram types across SES
a. 1st most frequent: start-IP-VP

41.4% low-SES, 41.8% high-SES
b. 2nd most frequent: IP-VP-end

38.9% low-SES, 40.0% high-SES
c. 3rd most frequent: start-IP-end

4.7% low-SES, 6.1% high-SES

6.3 Input distribution comparisons
To more precisely quantify how similar the input distributions are for both wh-dependencies and
syntactic trigrams across SES, we use the Jensen-Shannon divergence (JSDiv) (Endres and Schin-
delin, 2003). JSDiv values range from 0 to 1, with 0 indicating identical distributions. That is,
higher JSDiv values indicate greater divergence in the distributions, while values closer to 0 in-
dicate distributions that are more similar. In this way, JSDiv analysis provides a way to quantify
similarity between distributions; this makes it useful as a comparative measure, where different
distributions are assessed for their relative similarity to each other.

With this in mind, we additionally use JSDiv to assess child-directed speech in comparison to
adult-directed speech and text, in order to provide a comparison baseline for the similarity across
input samples of both wh-dependencies and syntactic trigrams. In particular, we assess how simi-
lar the low-SES and high-SES CDS wh-dependency and trigram distributions are to those in high-
SES adult-directed speech (ADS) and adult-directed text (ADT) samples from Pearl and Sprouse
(2013), based on the wh-dependencies and syntactic trigrams in common across these corpus sam-
ples. The adult-directed corpora are described in Table 2. This JSDiv analysis will reveal which
factors impact wh-dependency and syntactic trigram distributions more: SES, whether the speech
is directed at children or adults, or whether the input is speech-based vs. text-based.

Wh-dependencies. Figure 2 shows the results of the JSDiv analysis for wh-dependencies, calcu-
lated over the distribution of the 9 wh-dependencies (shown in Table 3) that these four corpora had
in common. We see that low-SES CDS and high-SES CDS are the most similar in wh-dependency
distribution (JS: 0.00445), and appear to be twice as similar as the next closest comparison, which

6A more detailed description of the syntactic trigram distribution across SES is available in Appendix
A.2.
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Table 2: Corpora statistics for low-SES CDS (L-CDS), high-SES CDS (H-CDS), high-SES adult-
directed speech (H-ADS), and high-SES adult-directed text (H-ADT) samples used for JSDiv anal-
ysis.

corpora # utterances # wh-dependencies # children ages
L-CDS 31,875 3,904 78 3 - 5
H-CDS 101,838 20,923 25 1 - 5
H-ADS 74,576 8,508 N/A N/A
H-ADT 24,243 4,230 N/A N/A

Table 3: The nine wh-dependencies shared across all four corpora that are used in the JSDiv
analysis.

Shared dependencies Example utterance Corpora percentage
start-IP-end Who saw it? 10.3% - 33.0%
start-IP-VP-end Who did she see? 63.3% - 76.7%
start-IP-VP-CPnull-IP-end Who did he think stole it? 0.1% - 0.6%
start-IP-VP-CPnull-IP-VP-end What did he think she stole? 0.2% - 1.1%
start-IP-VP-CPnull-IP-VP-PP-end What did he think she wanted it for? <0.1% - 0.1%
start-IP-VP-IP-VP-end What did he want her to steal? 1.3% - 7.5%
start-IP-VP-IP-VP-IP-VP-end What did he want her to pretend to steal? <0.1%
start-IP-VP-IP-VP-PP-end What did she want to get out from under? <0.1% - 0.8%
start-IP-VP-PP-end Who did she steal from? 1.3% - 4.3%

is high-SES CDS vs. high-SES ADS (JS: 0.00948). This affirms a quantitative similarity across
SES in child wh-dependency input, in terms of wh-dependency distribution. Moreover, these re-
sults highlight that CDS across SES is more similar than CDS vs. ADS within SES. That is,
whether the speech is directed at children or adults matters more than whether speech is coming
from a high-SES or low-SES population. We also note that these JSDiv results accord with in-
tuitions that speech of any kind is more similar to other speech than it is to text: high-SES ADS
diverges more from high-SES ADT (JS: 0.03156) than it does from either high-SES CDS (JS:
0.00948) or low-SES CDS (JS: 0.01576).

Figure 2: JSDiv analyses for low-SES CDS (L-CDS), high-SES CDS (H-CDS), high-SES adult-
directed speech (H-ADS), and high-SES adult-directed text (H-ADT). Line thickness corresponds
to similarity, with thicker lines indicating more similar distributions.
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Syntactic trigrams. Figure 3 shows the results of the JSDiv analysis for syntactic trigrams, cal-
culated over the distribution of the 14 trigrams shown in Table 4 (see Table A2 in Appendix A.2
for the full list of trigrams) that these four corpora had in common across all wh-dependencies.
These trigrams accounted for 99.5-99.8% of the total trigrams in these corpora. As with the anal-
ysis of the wh-dependencies, we see the same pattern emerge: (i) low-SES CDS is more similar to
high-SES CDS (JSDiv: 0.00850) than any other input type, and (ii) all speech is more similar to
other types of speech than to text (speech vs. speech: JSDiv=0.00850-0.02836; speech vs. text:
JSDiv=0.07183-0.16279).

Table 4: Distribution of the 14 syntactic trigrams across child-directed Low-SES (L-CDS) and High-SES
(H-CDS), as well as High-SES adult-directed speech (H-ADS) and text (H-ADT).

Syntactic trigrams Syntactic trigram percentage
CPnull-IP-VP 0.1% - 0.7%
CPnull-IP-end <0.1% - 0.3%
IP-VP-CPnull 0.3% - 0.7%
IP-VP-CPthat <0.1%
IP-VP-IP 0.9% - 4.0%
IP-VP-NP <0.1% - 0.1%
IP-VP-PP 0.8% - 2.5%
IP-VP-end 38.5% - 39.9%
VP-CPnull-IP 0.3 - 0.7%
VP-CPthat-IP <0.1%
VP-IP-VP 0.9% - 4.0%
VP-PP-end 0.8% - 2.3%
start-IP-VP 38.6% - 41.7%
start-IP-end 4.7% - 19.0%

Figure 3: JSDiv analyses for low-SES CDS (L-CDS) trigrams, high-SES CDS (H-CDS) trigrams,
high-SES adult-directed speech (H-ADS) trigrams, and high-SES adult-directed text (H-ADT) tri-
grams. Line thickness corresponds to similarity, with thicker lines indicating more similar distri-
butions.
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Distributional analysis summary. Our distributional analyses suggest that the input children
encounter for learning about syntactic islands is very similar across SES. In particular, both the
wh-distributions and the syntactic trigram distributions appear quite similar, despite some indi-
vidual wh-dependency and trigram differences. However, it’s unclear if even these comparatively
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small differences could lead to different predicted developmental outcomes (e.g., a predicted delay
at age four for certain syntactic islands). This is because even small input differences could be de-
velopmentally meaningful. So, using realistic estimates of high-SES and low-SES child-directed
speech input, does the learning model predict similar developmental outcomes, or not? To assess
this, we need to first determine what realistic estimates of high-SES and low-SES input are for
children learning about syntactic islands.

6.4 Realistic estimates derived from empirical data
Child behavioral evidence (Otsu, 1981; de Villiers and Roeper, 1995; de Villiers et al., 2008)
suggests that four-year-old children across SES know about a syntactic island constraint similar
to the Complex NP island constraint we investigate here. In particular, four-year-olds don’t allow
an interpretation corresponding to island-crossing wh-dependencies like the one in (14a). This
wh-dependency is similar to an island-crossing dependency we investigate here, shown in (14b);
importantly, both wh-dependencies cross a complex NP (i.e., “the cat that was...” and “the claim
that Atreyu...”), and so might be viewed as accessing similar knowledge about syntactic islands.

(14) Wh-dependencies crossing Complex NP islands
a. from Otsu (1981); de Villiers and Roeper (1995) and (de Villiers et al., 2008)

“What did the boy fix [the cat that was lying on the table with what]?”
b. from Sprouse et al. (2012)

“Who did Falkor make [the claim that Atreyu fought who]?

Given this, here we assume that age four, across SES, is the age by which children learn this
one type of syntactic island constraint (i.e., one relating to complex NPs) on the basis of their
input. With this age of acquisition, we can look to the amount of wh-dependency data children
hear by that age as the amount of data they encounter before acquiring this knowledge. That is, by
age four and before age five, children across SES have learned one of the four types of syntactic
island constraints we examine here.7 We can quantify that amount of data for both high-SES and
low-SES children, on the basis of the data samples we have here, coupled with knowledge about
the frequency of syntactic input more generally to children of different ages and from different
SES backgrounds. This provides us a detailed comparison of the relative quantities of relevant
input (i.e., the wh-dependencies) that children across SES would encounter before learning about
Complex NP islands. We can use this same age, and therefore the estimates of relevant data
quantities across SES, as a milestone at which to assess input quantity across SES for learning
syntactic island constraints.

When children’s learning period plausibly starts. To begin learning about constraints on wh-
dependencies, children must be able to process wh-dependency structure. Current research sug-
gests that children begin to represent the full structure of wh-dependencies (e.g., wh-questions and
relative clauses) at 20 months (Seidl et al., 2003; Gagliardi et al., 2016; Perkins and Lidz, 2020).
So, we take 20 months as the starting point of the learning period for syntactic island constraints.

7This means that a baseline check for the learning model is whether it predicts that Complex NP islands
can be learned from the input that both high-SES and low-SES children encounter by age four.
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How many hours awake during the learning period. Taking four years old as the end point
of the learning period for syntactic islands, the estimated learning period is then from 20 months
through the end of age four (59 months). We can estimate the number of hours awake by drawing
on Davis et al. (2004), who summarize the hours asleep for young children at different ages, as
shown in Table 5. In particular, one-year-olds sleep about 14 hours a day (awake for 10), two-year-
olds sleep about 13 hours a day (awake for 11), three-year-olds sleep about 12 hours a day (awake
for 12), and four-year-olds sleep about 11.5 hours a day (awake for 12.5). Based on this, we can
estimate the hours awake between age 20 months and age 59 months, and sum them to estimate
the total hours awake during this learning period. Our calculations in Table 5 yield about 14174
hours awake.

Table 5: Calculating the total hours awake for children between the ages of 20 and 59 months,
the estimated learning period for syntactic islands. These calculations are based on waking hours
per day (waking) and total waking hours. Cumulative hours awake are shown at age one (20-23
months), two (24-35 months), three (36-47 months), and four (48-59 months).

age age range waking total waking hours cumulative waking
one 20-23 months 10 11 hrs/day * 365 days/yr * 4/12 = 1216.67 1216.67
two 24-35 months 11 11 hrs/day * 365 days/yr = 4015 5231.67
three 36-47 months 12 12 hrs/day * 365 days/yr = 4380 9611.67
four 48-59 months 12.5 12.5 hrs/day * 365 days/yr = 4562.5 14174.17

How many wh-dependencies during the learning period. Based on the number of hours awake
during the learning period, we can then estimate the input quantity with respect to wh-dependencies
by drawing on estimates of the number of utterances children from different SES backgrounds hear
per hour and our own samples of the rate of wh-dependencies in children’s input. Hart and Risley
(1995) estimate that children whose parents are professional class (and so are high-SES) hear
about 487 utterances per hour; children whose parents are working class (and so are low-SES) hear
about 301 utterances per hour. Our corpus estimates of wh-dependency rate suggest that high-SES
children’s input consists of about 20.5% wh-dependencies (20,923 wh-dependencies of 101,838
utterances), while low-SES children’s input consists of about 12.2% wh-dependencies (3,904 wh-
dependencies of 31,857 utterances). Table 6 shows the resulting quantities of wh-dependencies
heard during the learning period across SES: 1,418,193 wh-dependencies for high-SES children
and 522,539 wh-dependencies for low-SES children.

Summary and implications. Our estimated quantities of wh-dependencies heard during the es-
timated learning period for syntactic islands are quite different across SES: high-SES children are
estimated to encounter nearly three times as many wh-dependencies as low-SES children. Yet, de-
velopmental trajectory data (Otsu, 1981; de Villiers and Roeper, 1995; de Villiers et al., 2008) sug-
gest that for Complex NP island knowledge, the lower quantity that low-SES children encounter
is sufficient; that is, despite the significant difference in the quantity of relevant input, low-SES
children aren’t delayed relative to high-SES children in their acquisition of Complex NP island
knowledge. So, we know that the input quantity difference that we found, even when coupled with
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Table 6: Calculating the total wh-dependencies (total wh-dep) that high-SES and low-SES chil-
dren encounter between the ages of 20 and 59 months, the estimated learning period for syntactic
islands. These calculations are based on about 14,174 waking hours between these ages, and es-
timated rates of utterances per hour (utt/hr) and wh-dependencies in the input (wh-dep/utt) across
SES.

SES hours * utt/hour * wh-dep/utt = total wh-dep
high-SES 14174 * 487 * 20932/101838 = 1,418,193
low-SES 14174 * 301 * 3904/31875 = 522,539

the small differences in wh-dependency and syntactic trigram distributions, isn’t developmentally
meaningful for learning about Complex NP island knowledge.

But, what about the other three island types (Subject, Whether, and Adjunct)? Is this difference
in input quantity predicted to delay their development, when coupled with the small differences we
found in wh-dependency and syntactic trigram distributions? We can answer this question by using
the developmental computational model from Pearl and Sprouse (2013) that implements a specific
learning theory linking children’s input to their predicted knowledge development. In particular,
when given a realistic quantity of children’s wh-dependency input (the amount encountered by age
four) comprised of wh-dependencies that are distributed the same as in our corpus samples, we can
see whether there are predicted differences in the knowledge acquired by age four across SES. If
the learning theory implemented by the model is plausible, it should find that the input data for
low-SES children support the acquisition of Complex NP island knowledge as well as the input
data for high-SES children. We can then see if the model predicts that the input data for low-SES
children support the acquisition of the other three island types we investigate as well as the input
data do for high-SES children – or not.

6.5 Developmental computational modeling analysis
To evaluate input quality for learning about these syntactic islands, we implemented a modeled
learner using the learning strategy described by Pearl and Sprouse (2013), which links input distri-
butions of wh-dependencies and the resulting syntactic trigrams to development of syntactic islands
knowledge. We then compared what this modeled learner would learn about these syntactic islands
by age four, when given the realistic estimates of high-SES and low-SES input described in the
previous section.

More specifically, for each input set, the modeled learner estimated syntactic trigram prob-
abilities and could then generate probabilities for any desired wh-dependency, whether seen or
unseen in its input. The wh-dependencies that the model needed to generate probabilities for were
those that American English adults had given acceptability judgments for in Sprouse et al. (2012),
corresponding to the four islands from (2). Recall that each island stimuli set therefore had four de-
pendency types: matrix+non-island, embedded+non-island, matrix+island, and embedded+island;
the embedded+island stimulus in each case involved a wh-dependency that crossed a syntactic is-
land, and so was ungrammatical. These experimental stimuli can be characterized by the syntactic
paths shown in Table 7.8

8Note that many of the grammatical dependencies for each island type (e.g., matrix+non-island and ma-

20



Table 7: Syntactic paths for experimental stimuli that acceptability judgments were generated
for, in a 2x2 factorial design varying dependency length (matrix vs. embedded) and presence
of an island structure (non-island vs. island). Ungrammatical island-spanning dependencies are
indicated with *.

Complex NP islands Subject islands
mat non start-IP-end start-IP-end
emb non start-IP-VP-CPthat-IP-VP-end start-IP-VP-CPnull-IP-end
mat island start-IP-end start-IP-end
emb island *start-IP-VP-NP-CPthat-IP-VP-end *start-IP-VP-CPnull-IP-NP-PP-end

Whether islands Adjunct islands
mat non start-IP-end start-IP-end
emb non start-IP-VP-CPthat-IP-VP-end start-IP-VP-CPthat-IP-VP-end
mat island start-IP-end start-IP-end
emb island *start-IP-VP-CPwhether-IP-VP-end *start-IP-VP-CPif -IP-VP-end

Predicted knowledge by age four. The modeled learner from Pearl and Sprouse (2013) learns
from the realistic input samples estimated in the previous section for high-SES and low-SES chil-
dren. This modeled learner can then generate probabilities for the four sets of experimental stimuli
of Sprouse et al. (2012), corresponding to Complex NP, Subject, Whether, and Adjunct islands.
To aid comparison of predicted learning outcomes across SES, the resulting log probabilities for
each wh-dependency type from the stimuli are shown in Table 8. Log probabilities are reported
for each dependency because the probabilities are very small numbers (due to the multiplication
of syntactic trigram probabilities).9 Figure 4 shows these log probabilities plotted on interaction
plots for each of the four island types.

Table 8: Log probabilities of different wh-dependencies, representing predicted judgments, for
modeled learners learning from estimates of low-SES child-directed speech (L-CDS) and high-
SES child-directed speech that children hear by age four.

L-CDS H-CDS
Grammatical dependencies
start-IP-end -1.32 -1.21
start-IP-VP-CPnull-IP-end -8.00 -7.92
start-IP-VP-CPthat-IP-VP-end -14.36 -13.81
Island-spanning dependencies
start-IP-VP-NP-CPthat-IP-VP-end -23.22 -21.49
start-IP-VP-CPnull-IP-NP-PP-end -20.84 -21.82
start-IP-VP-CPwhether-IP-VP-end -19.86 -21.10
start-IP-VP-CPif -IP-VP-end -19.86 -21.10

trix+island) are characterized by the same syntactic path (e.g., start-IP-end). This means that the generated
judgments from the modeled learner will be the same for those stimuli.

9For log probabilities, less negative numbers are equivalent to higher probabilities. For example,
log(.001) = log(10−3) = -3, while log(.000001) = log(10−6) = -6.
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Figure 4: Four-year-old child judgments predicted from a modeled learner learning from low-SES
(left column) and high-SES (right column) input data, demonstrating the same implicit knowledge
of four syntactic islands that appears as a superadditive interaction.
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We can see that a core pattern emerges when learning from either low-SES or high-SES CDS:
all grammatical dependencies have higher probabilities (equivalent to less negative log probabil-
ities) than the island-spanning dependencies. In particular, grammatical dependencies have log
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probabilities ranging from -1.21 to -14.36, while island-spanning dependencies range from -19.86
to -23.22. So, even the least acceptable grammatical dependency (with log probability -14.36) is
predicted to be over 300,000 times more acceptable than the most acceptable ungrammatical de-
pendency (with log probability -19.86), because 10−14.36

10−19.86≈316, 228. The predicted judgments for
these stimuli in Figure 4, represented by these log probabilities, show the superadditive interactions
that indicate implicit knowledge of the four islands.

The predicted judgments for Complex NP islands (Figure 4, first row) align with the empirical
data we have across SES that children are sensitive to this island type by age four (de Villiers et al.,
2008). So, the learning model correctly predicts observed developmental outcomes (in this case,
no difference) by age four for Complex NP islands. This correct prediction then supports the plau-
sibility of the learning theory implemented by the modeled learner, which assumes children pay
attention to a certain aspect of the input (all wh-dependencies), and use this information a partic-
ular way that involves specific prior knowledge and abilities being in place (recall the discussion
from section 5).

The learning model then predicts, on the basis of this same view of the relevant input and
how children use that input to learn, that there should be no developmental outcome difference by
age four across SES for the other three syntactic islands: Subject, Whether, and Adjunct. These
predictions can be tested experimentally in future child behavioral work. If they are indeed true,
and there’s no difference in syntactic island knowledge for all four of these islands by age four
across SES, then this would additionally support our basic finding: low-SES input is qualitatively
similar to high-SES input, when it comes to the development of this syntactic island knowledge.
Importantly, because of the learning theory implemented concretely by the modeled learner, we
understand why this is: any observable differences in the input don’t affect input quality for the
part of that input that scaffolds knowledge of these syntactic islands.

7 Discussion
Our results suggest that the wh-dependency input, and in turn the syntactic trigram input, that low-
SES children receive is similar in many respects to the input of high-SES children, despite the
large differences in quantity of wh-dependency input by age four. In particular, any input differ-
ences across SES aren’t predicted to be developmentally meaningful with respect to learning this
syntactic island knowledge. So, while there may be some surface-level quantitative differences in
input across SES, there don’t appear to be qualitative differences. That is, surface input differences
mask deeper input similarities across SES for the development of this syntactic island knowledge.

More specifically, our developmental computational modeling results serve as predictions of
children’s learning behavior for these four syntactic islands, and predict no learning outcome dif-
ferences due to input differences across SES. Prior child behavioral work (de Villiers et al., 2008) in
fact found no learning outcome differences by age four for one island type (Complex NP islands).
Importantly, this correct prediction provides empirical support to the learning theory implemented
by the learning model; so, the model’s predictions for other complex syntactic knowledge (such
as the other three syntactic islands) gain credibility. Moreover, because the learning model allows
us to understand how the input leads to the development of this syntactic knowledge, we can un-
derstand why the observable input differences aren’t predicted to be developmentally meaningful.
Below, we discuss some interesting input differences, other model predictions for complex syntac-
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tic knowledge, and the plausibility of the prior knowledge and abilities assumed by the learning
theory implemented in the learning model.

7.1 Interesting input differences
There’s a striking difference in the exact wh-dependency distribution across SES that’s predicted
to be crucial for acquisition success for two of the syntactic island types. This difference involves
a particular structural building block, which comes from dependencies that are characterized with
CPthat.

As noted before in (11), the only distinction between certain dependencies judged grammati-
cal and certain dependencies judged ungrammatical by high-SES adults is the complementizer. In
particular, high-SES adults judge the dependency as ungrammatical when it has complementizer
that (e.g., CPthat) but grammatical when it has the null complementizer (e.g., CPnull): Who do you
think (*that) who read the book? Another key example is the difference between grammatical
dependencies with complementizer that (15a) and ungrammatical dependencies with complemen-
tizers like whether (whether islands) or if (adjunct islands) (15b). Again, the only difference in the
syntactic path of these dependencies is the CP building block, which is CPthat for the dependency
judged grammatical and CPwhether or CPif for the dependencies judged ungrammatical.

(15) a. What do you think that Jack read what?
syntactic path: start-IP-VP-CPthat-IP-VP-end

b. *What do you wonder whether/if Jack read what?
syntactic path: *start-IP-VP-CPwhether/if -IP-VP-end

So, it’s important that the child encounter wh-dependencies in her input that involve complemen-
tizer that (and not ones that involve complementizers whether or if ). When this happens, the
probabilistic learning strategy we used here can leverage the CPthat building block to predict that
(15a) should be judged as better than (15b).

However, dependencies involving CPthat are actually fairly rare in naturalistic usage. Pearl
and Sprouse (2013) only found 2 of 20,923 (0.0096%) in high-SES CDS (along with 7 of 8,508
(0.082%) in high-SES ADS and 2 of 4,230 (0.048%) in high-SES ADT). For high-SES children,
this would correspond to approximately three to four wh-dependencies with CPthat every month.10

In our low-SES CDS sample, there are 2 of 3,094 (0.051%) dependencies involving CPthat, which
corresponds to approximately eight to nine wh-dependencies with CPthat every month.11 This
calculation highlights that low-SES children actually hear a crucial building block for certain syn-
tactic islands more often in their input than high-SES children do, despite low-SES children hearing
fewer wh-dependencies overall before age four.

Interestingly, the type of wh-dependency in children’s input that contains the crucial CPthat

building block also differs across SES. In the high-SES CDS sample, both dependencies involving
CPthat are of the same type: start-IP-VP-CPthat-IP-VP-end instances like (15a). However, in our
low-SES CDS sample, the CPthat building block comes from a different wh-dependency type,

10With an estimated high-SES quantity of 1,418,211 wh-dependencies between 1;8 and 4;11 (40 months),
this is 1,418,211

40 ≈35,455/month. 2 CPthat
20,923 *35,455=3.39 wh-dependencies with CPthat per month.

11With an estimated low-SES quantity of 522,914 wh-dependencies between 1;8 and 4;11 (40 months),
this is 522,914

40 ≈13,073/month. 2 CPthat
3,094 *13,073=8.45 wh-dependencies with CPthat per month.
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which happens to be a “that-trace violation” judged ungrammatical by high-SES adults: start-IP-
VP-CPthat-IP-end instances like (16).

(16) What do you think that what happens?
What do [IP you [V P think [CPthat

that [IP what [V P happens]]]]]?
syntactic path: start-IP-VP-CPthat-IP

So, the presence of this wh-dependency type, which is ungrammatical in the high-SES dialect, is
predicted to provide the crucial CPthat building block necessary for the acquisition of Whether and
Adjunct islands. That is, the key linguistic experience that would allow a child learning from low-
SES CDS to acquire the same syntactic knowledge as a high-SES child does actually comes from
data that’s ungrammatical for a high-SES child. This underscores the power of learning strategies
that generate the linguistic knowledge of larger structures from smaller building blocks, like the
learning theory implemented in the modeled learner here. In particular, children with different
input experiences who rely on smaller building blocks may be able to find evidence for the same
building blocks in different places.

7.2 Other model predictions
The developmental model has offered predictions for the knowledge that four-year-olds across
SES should have about Subject, Whether, and Adjunct islands. As noted above, the model al-
lows us to see that the predictions about knowledge of Whether and Adjunct islands rely on the
input wh-dependencies containing CPthat. For low-SES children, these wh-dependencies are ones
judged ungrammatical by high-SES speakers (i.e., that-trace violations); yet, if these are the wh-
dependencies providing crucial data for low-SES children, then low-SES adults should produce
these wh-dependencies. To produce these dependencies as something other than a speech error,
low-SES adults should therefore find these wh-dependencies grammatical, unlike high-SES adults.
This is a prediction that can be tested with future adult behavioral work.

More generally, because the learning model uses syntactic trigrams to generate a probability
for any wh-dependency, we can therefore generate predictions (in the form of relative probabilities)
for a child’s judgment about any wh-dependencies of interest across SES. This includes the other
wh-dependencies investigated by previous child behavioral work (de Villiers et al., 2008), as well
as ones yet to be investigated, such as that-trace violations. Any predictions can then be evaluated
against existing or future child behavioral work.

7.3 Learning prerequisites
Leveraging the wh-dependency and syntactic trigram information that the developmental model re-
lies on isn’t trivial. More concretely, several foundational knowledge components and processing
abilities must be “good enough” to scaffold acquisition of syntactic islands the way the develop-
mental model assumes. First, the child must know about syntactic phrase structure; she must be
able to use that phrase structure knowledge to extract the syntactic path of a wh-dependency in real
time (including accurately identifying where the wh-word is understood). As noted in section 6.4,
current research suggests children begin to represent the full structure of wh-dependencies at 20
months (Seidl et al., 2003; Gagliardi et al., 2016; Perkins and Lidz, 2020), which is why we took
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that age as the starting point for our modeled learner. Yet, it’s possible that that there’s variation
across SES on when this ability is good enough for the learning strategy implemented in the devel-
opmental model, as there are known delays in language processing in low-SES children compared
to their high-SES counterparts (Fernald et al., 2013; Weisleder and Fernald, 2013).

The child must also know to break syntactic paths into smaller trigram building blocks that
can be used to generate a probability for any wh-dependency; she must be able to identify these
syntactic trigrams in real time. As with extracting the syntactic path, it’s possible that a “good
enough” version of this ability could be delayed in low-SES children relative to their high-SES
counterparts because it involves language processing.

In addition, the child must know to track the relative frequency of the syntactic trigrams and
know to combine these syntactic trigrams to generate the probability for a new wh-dependency;
she must be able to do both of these in real time. These components rely on statistical learning
abilities, as they involve sensitivity to input frequencies and the ability to aggregate probabilistic
information. Recent work on statistical learning abilities across SES (Eghbalzad et al., 2016,
2021) found no differences by age 8. It’s therefore possible that younger children across SES
also wouldn’t differ in statistical learning abilities.

More generally, it’s possible that the components reviewed above that are related to language
processing are delayed in low-SES children, while the domain-general components related to sta-
tistical learning aren’t. Any delays could lead to low-SES children being less able to harness the
complex syntactic information available in their input, even if the necessary information is in fact
there (as our developmental computational model predicts). However, prior child behavioral work
suggests that any delays present are surmounted by the time children are four years old when
it comes to learning about Complex NP islands (de Villiers et al., 2008), as there are no delays
across SES. So, these behavioral results suggest that the necessary prerequisites for learning about
syntactic islands are good enough across SES for the developmental model predictions here to be
plausible.

8 Conclusion
We have aimed to provide a new way for identifying developmentally-meaningful input differ-
ences, harnessing developmental computational modeling. Developmental computational model-
ing can be used to assess input quality by predicting what children should be able to learn from their
input. If input variation is developmentally meaningful, then the model predicts learning outcome
differences; in contrast, the model predicts similar learning outcomes when the input variation isn’t
developmentally meaningful. To demonstrate this technique, we applied it to input variation across
SES related to the development of syntactic island knowledge; our model predicted that there were
no developmentally-meaningful input differences. So, input quality for syntactic islands is pre-
dicted to be the same across SES. One predicted developmental similarity is confirmed by prior
child behavioral work, and so lends plausibility to the remaining predictions of developmental sim-
ilarity. Perhaps more importantly, because the developmental learning model provides an explicit
link between the input and linguistic knowledge development, we know (i) why observable input
differences aren’t predicted to be developmentally meaningful, (ii) what parts of the input are pre-
dicted to be especially important, and (iii) where those important parts appear in different input
samples that reflect different linguistic input experiences.
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This result broadens the body of research on linguistic input variation across SES to include
the nature of the input for more complex syntactic knowledge. To our knowledge, this is the first
comparison across SES concerning the input for learning about these syntactic islands. Our results
suggest that if we do see developmental differences in syntactic island knowledge across SES,
it’s not because of the information available in the input. Instead, children’s ability to harness
that information may differ. In short, the syntactic islands information is predicted to be there for
children to use, no matter their SES – a key developmental step may instead be for them to figure
out how to use it.
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A Appendices

A.1 Wh-dependency distribution across SES
Table A1 shows the distribution of wh-dependencies across the different corpora, including the low-SES and
high-SES child-directed speech, as well as high-SES adult-directed speech and adult-directed text.

Table A1: Distribution of wh-dependencies in child-directed Low-SES (L-CDS) and High-SES (H-CDS),
as well as High-SES adult-directed speech (H-ADS) and text (H-ADT). Percentages are shown for syntactic
paths, based on the total wh-dependencies in each corpus, with the quantity observed in the corpus on the
line below. An example of each syntactic path is given below the path. Dependencies used in the Jensen-
Shannon divergence (JSDiv) analysis are in bold. The dependency in the Low-SES dialect that’s judged to
be ungrammatical in the High-SES dialect is in bold italics.

Distribution of wh-dependencies in the input
Syntactic path and example utterance L-CDS H-CDS H-ADS H-ADT
IP 10.3% 12.8% 17.2% 33.0%
Who saw it? 402 2680 1464 1396
IP-VP 75.5% 76.7% 73.0% 63.3%
What did she see? 2949 16039 6215 2677
IP-VP-AdjP-IP-VP 0.0% 0.0% <0.1% 0.1%
What are you willing to see? 0 0 1 5
IP-VP-AdjP-IP-VP-PP 0.0% 0.0% <0.1% 0.0%
What are you willing to go to? 0 0 1 0
IP-VP-AdjP-PP 0.0% 0.0% <0.1% <0.1%
What are they good for? 0 0 1 1
IP-VP-CPfor-IP-VP-PP 0.0% <0.1% 0.0% 0.0%
What did she put on for you to dance to? 0 1 0 0
IP-VP-CPnull-IP 0.1% 0.1% 0.6% 0.3%
Who did he think stole it? 5 24 52 12
IP-VP-CPnull-IP-VP 0.9% 1.1% 0.4% 0.2%
What did he think she stole? 39 236 30 8
IP-VP-CPnull-IP-VP-IP-VP <0.1% 0.1% <0.1% 0.0%
What did he think she wanted to steal? 3 28 3 0
IP-VP-CPnull-IP-VP-IP-VP-IP-VP 0.0% <0.1% 0.0% 0.0%
What did he think she wanted to pretend to steal? 0 2 0 0
IP-VP-CPnull-IP-VP-IP-VP-IP-VP-PP 0.0% 0.0% <0.1% 0.0%
Who did he think she wanted to pretend to steal from? 0 0 1 0
IP-VP-CPnull-IP-VP-IP-VP-PP 0.0% <0.1% 0.0% 0.0%
Who did he think she wanted to steal from? 0 1 0 0
IP-VP-CPnull-IP-VP-NP 0.0% <0.1% <0.1% <0.1%
What did he think she said about it? 0 1 5 1
IP-VP-CPnull-IP-VP-NP-PP <0.1% 0.0% 0.0% 0.0%
What did he think it was a movie of? 3 0 0 0
IP-VP-CPnull-IP-VP-PP 0.1% 0.1% <0.1% <0.1%
What did he think she wanted it for? 4 28 5 1
IP-VP-CPnull-IP-VP-PP-PP 0.0% <0.1% 0.0% 0.0%
What did he think she wanted out of? 0 1 0 0
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Distribution of wh-dependencies in the input
Syntactic path and example utterance L-CDS H-CDS H-ADS H-ADT
IP-VP-CPthat-IP <0.1% 0.0% 0.0% 0.0%
What do you think that happens? 2 0 0 0
IP-VP-CPthat-IP-VP 0.0% <0.1% <0.1% <0.1%
What did he think that she stole? 0 2 5 2
IP-VP-CPthat-IP-VP-IP-VP 0.0% 0.0% <0.1% 0.0%
What did he think that she wanted to steal? 0 0 1 0
IP-VP-CPthat-IP-VP-PP 0.0% 0.0% <0.1% 0.0%
Who did he think that she wanted to steal from? 0 0 1 0
IP-VP-IP 0.0% <0.1% <0.1% 0.0%
Who did he want to steal the necklace? 0 9 2 0
IP-VP-IP-VP 7.5% 5.6% 3.4% 1.3%
What did he want her to steal? 296 1167 287 57
IP-VP-IP-VP-IP-VP <0.1% <0.1% <0.1% <0.1%
What did he want her to pretend to steal? 2 11 6 1
IP-VP-IP-VP-IP-VP-PP 0.0% 0.2% <0.1% 0.0%
Who did he want her to pretend to steal from? 0 43 6 0
IP-VP-IP-VP-IP-VP-PP-IP-VP <0.1% 0.0% 0.0% 0.0%
What did you want to try to plan on doing? 1 0 0 0
IP-VP-IP-VP-NP 0.0% <0.1% 0.0% 0.0%
What did he want to say about it? 0 6 0 0
IP-VP-IP-VP-NP-IP-VP 0.0% 0.0% 0.0% <0.1%
What did he have to give her the opportunity to steal? 0 0 0 1
IP-VP-IP-VP-NP-PP 0.0% <0.1% <0.1% 0.0%
What did she want to steal more of? 0 1 1 0
IP-VP-IP-VP-PP 0.8% 0.4% 0.4% <0.1%
What did she want to steal from? 35 74 33 4
IP-VP-IP-VP-PP-PP 0.0% 0.0% 0.0% <0.1%
What did she want to get out from under? 0 0 0 1
IP-VP-NP 0.0% 0.2% 0.1% 0.1%
What did she say about the necklace? 0 52 10 5
IP-VP-NP-IP-VP 0.0% 0.0% <0.1% <0.1%
What did he give her the opportunity to steal? 0 0 1 2
IP-VP-NP-PP <0.1% <0.1% <0.1% 0.0%
What was she a member of? 1 7 6 0
IP-VP-PP 4.0% 2.5% 4.3% 1.3%
Who did she steal from? 159 524 369 57
IP-VP-PP-CPnull-IP 0.0% 0.0% <0.1% 0.0%
What did she feel like was a very good place? 0 0 1 0
IP-VP-PP-CPnull-IP-VP 0.0% <0.1% 0.0% 0.0%
What did she feel like he saw? 0 1 0 0
IP-VP-PP-IP-VP <0.1% 0.0% <0.1% 0.0%
What did she think about buying? 2 0 3 0
IP-VP-PP-NP 0.0% 0.0% <0.1% 0.0%
Where was she at in the building? 0 0 2 0
IP-VP-PP-NP-PP 0.0% <0.1% 0.0% 0.0%
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Distribution of wh-dependencies in the input
Syntactic path and example utterance L-CDS H-CDS H-ADS H-ADT
What do you put it on top of? 0 2 0 0
IP-VP-PP-NP-PP-IP-VP 0.0% 0.0% <0.1% 0.0%
What is she in the habit of doing? 0 0 1 0
IP-VP-PP-PP 0.5% 0.1% 0.0% 0.0%
What does he eat out of? 1 22 0 0
IP-VP-PP-IP-VP 0.0% <0.1% 0.0% 0.0%
What did he think about stealing? 0 1 0 0

A.2 Syntactic trigram distribution across SES
Table A2 shows the distribution of the syntactic trigrams across the different corpora, including the low-SES
and high-SES child-directed speech, as well as high-SES adult-directed speech and adult-directed text. The
shared syntactic trigrams were used when calculating the Jensen-Shannon divergence (JSDiv) analyses.

Table A2: Distribution of the syntactic trigrams across child-directed Low-SES (L-CDS) and High-SES
(H-CDS), as well as High-SES adult-directed speech (H-ADS) and text (H-ADT). The 14 shared trigrams
used in the JSDiv analysis are in bold.

Distribution of trigrams in the input
Trigrams L-CDS H-CDS H-ADS H-ADT
AdjP-IP-VP 0.0% 0.0% <0.1% <0.1%

0 0 2 5
AdjP-PP-end 0.0% 0.0% <0.1% <0.1%

0 0 1 1
CPfor-IP-VP 0.0% <0.1% 0.0% 0.0%

0 1 0 0
CPnull-IP-VP 0.6% 0.7% 0.2% 0.1%

49 298 44 10
CPnull-IP-end <0.1% <0.1% 0.3% 0.2%

5 24 53 12
CPthat-IP-VP 0.0% <0.1% <0.1% <0.1%

0 2 7 2
CPthat-IP-end <0.1% 0.0% 0.0% 0.0%

2 0 0 0
IP-VP-AdjP 0.0% 0.0% <0.1% <0.1%

0 0 3 6
IP-VP-CPfor 0.0% <0.1% 0.0% 0.0%

0 1 0 0
IP-VP-CPnull 0.6% 0.7% 0.6% 0.3%

54 321 96 22
IP-VP-CPthat <0.1% <0.1% <0.1% <0.1%

2 2 7 2
IP-VP-IP 4.0% 3.2% 2.1% 0.9%

340 1398 353 65
IP-VP-NP <0.1% 0.1% 0.1% 0.1%

32



Distribution of trigrams in the input
Trigrams L-CDS H-CDS H-ADS H-ADT

4 67 23 9
IP-VP-PP 2.4% 1.6% 2.5% 0.8%

202 698 423 63
IP-VP-end 38.9% 39.9% 38.5% 37.4%

3292 17487 6553 2753
NP-IP-VP 0.0% 0.0% <0.1% <0.1%

0 0 1 3
NP-PP-IP 0.0% 0.0% <0.1% 0.0%

0 0 1 0
NP-PP-end <0.1% <0.1% <0.1% 0.0%

4 10 7 0
PP-CPnull-IP 0.0% <0.1% <0.1% 0.0%

0 1 1 0
PP-IP-VP <0.1% <0.1% <0.1% 0.0%

3 1 4 0
PP-NP-PP 0.0% <0.1% <0.1% 0.0%

0 2 1 0
PP-NP-end 0.0% 0.0% <0.1% 0.0%

0 0 2 0
PP-PP-end <0.1% <0.1% 0.0% <0.1%

1 23 0 1
VP-AdjP-IP 0.0% 0.0% <0.1% <0.1%

0 0 2 5
VP-AdjP-PP 0.0% 0.0% <0.1% <0.1%

0 0 1 1
VP-CPfor-IP 0.0% <0.1% 0.0% 0.0%

0 1 0 0
VP-CPnull-IP 0.6% 0.7% 0.6% 0.3%

54 321 96 22
VP-CPthat-IP <0.1% <0.1 <0.1% <0.1

2 2 7 2
VP-IP-VP 4.0% 3.2% 2.1% 0.9%

340 1389 351 65
VP-IP-end 0.0% <0.1% <0.1% 0.0%

0 9 2 0
VP-NP-IP 0.0% 0.0% <0.1% <0.1%

0 0 1 3
VP-NP-PP <0.1 <0.1% <0.1 0.0%

4 8 7 0
VP-NP-end 0.0% 0.1% <0.1% <0.1%

0 59 15 6
VP-PP-CPnull 0.0% <0.1% <0.1% 0.0%

0 1 1 0
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Distribution of trigrams in the input
Trigrams L-CDS H-CDS H-ADS H-ADT
VP-PP-IP <0.1 <0.1% <0.1 0.0%

3 1 3 0
VP-PP-NP 0.0% <0.1% <0.1% 0.0%

0 2 3 0
VP-PP-PP <0.1 <0.1% 0.0% <0.1

1 23 0 1
VP-PP-end 2.3% 1.5% 2.4% 0.8%

198 671 416 62
start-IP-VP 41.4% 41.7% 41.5% 38.6%

3502 18283 7049 2835
start-IP-end 4.7% 6.1% 8.6% 19.0%

402 2680 1464 1396
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