
Constraint cumulativity in phonotactics: evidence from

Artificial Grammar Learning studies?

Canaan Breiss

University of California, Los Angeles

Abstract

An ongoing debate in phonology concerns the treatment of cumulative
constraint interactions, or “gang effects”, which in turn bears on the ques-
tion of which phonological frameworks are suitable models of the grammar.
This paper uses a series of Artificial Grammar Learning experiments to ex-
amine the inferences that learners draw about such cumulative constraint vi-
olations in phonotactics using a poverty-of-the-stimulus design. I show that
learners consistently infer linear counting and ganging cumulativity between
a range of phonotactic violations. I evaluate three phonological frameworks
— Multiple Grammars (based on the classical Recursive Constraint Demo-
tion algorithm (Tesar and Smolensky, 2000)), Stochastic OT (Boersma and
Hayes, 2001) and Maximum Entropy HG (Smolensky, 1986; Goldwater and
Johnson, 2003) — on their ability to model such cumulativity when exposed
to the same training data as the experimental subjects. I find that while all
three frameworks are able to capture the ganging cumulativity participants
displayed, the Maximum Entropy model best captures both counting and
ganging cumulativity. This follows directly from MaxEnt’s use of weighted,
rather than ranked, constraints.
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1. Introduction

The treatment of cumulative constraint interactions is a subject of ongo-
ing debate in phonology. Cumulativity is often discussed in contexts where
the grammar seems to reference continuous values along a scale, or else
“counts” phonological structures. For example, in Kaska (Athabaskan; Li-
onnet (2016)), /E/ lowers to [a] only when its syllable ends with [h] and
immediately precedes a nuclear [a], but not when each of those conditions
are met independently:

/sE=hta:n/ → [sahta:n] “(s)he put (long object) there” *Eh, *EC0a

/sE=ta:n/ → [sEta:n] “(long object) is there” *EC0a

/sE−h=ts0:ts/ → [sEhts0:ts] “(s)he put (fabric) there” *Eh

Cumulative effects are also attested in acceptability judgements: Pizzo
(2015) found that nonce words that violate English syllable-margin phono-
tactics once, ex. plavb or tlag, were judged less well-formed than those which
did not violate — plag — and crucially more well-formed than those which
violated twice, ex. tlavb.

In this paper I take on the question of cumulative constraint interactions
in phonotactics. I focus on the phonotactic domain because it allows for
a direct interrogation of the relationship between cumulative constraint vi-
olations and acceptability. This method is inspired by work in the field of
experimental syntax (Featherston, 2005, 2019), where syntactic violations are
manipulated in a crossed experimental design to tease apart the independent
contribution of each violation, and gain insight into how multiple violations
are combined in the grammar. In the first part of the paper, I combine Feath-
erston’s independent manipulation of violations with an Artificial Grammar
Learning (AGL) paradigm which imposes a poverty-of-the-stimulus learning
environment. By doing so I ensure that whatever generalizations participants
form about the (non)interaction of independent phonotactic violations can
be taken to reflect properties of the structure of the grammar, rather than
artefacts of language-specific distributional factors.
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In the second part of the paper, I use the experimental results to evaluate
three phonological frameworks — Multiple Grammars (based on the Recur-
sive Constraint Demotion algorithmTesar and Smolensky (2000)), Stochas-
tic OT (Boersma and Hayes, 2001) and Maximum Entropy HG (Smolensky,
1986; Goldwater and Johnson, 2003) — on their ability to model the observed
cumulativity.

2. Constraint cumulativity in phonological theory

Constraint-based phonological frameworks diverge on whether they can
model cumulative constraint interactions. Optimality Theory (“OT”; Prince
and Smolensky (1993), et seq.) holds that speakers are informationally-frugal
when computing phonological well-formedness: constraints on well-formed
structures are strictly ranked, and the choice between possible outcomes
is determined by the highest-ranking constraint that distinguishes between
them. By contrast, Harmonic Grammar (“HG”; Legendre et al. (1990), et
seq.) holds that speakers take an informationally-holistic approach, consider-
ing all constraint violations when choosing optimal outcome. The difference
can be observed in the schematic tableaux below. In OT, candidate B wins
out at the expense of candidate A, because candidate A violates the higher-
ranked Constraint 1, while candidate B does not. Because Constraint 1 is
ranked above Constraint 2, candidate A’s single violation of Constraint 1
is more important than candidate B’s two violations of Constraint 2. This
removes candidate A from contention, and candidate B is deemed optimal.

Constraint 1 Constraint 2

Candidate A *!
+Candidate B **

Table 1: Schematic example of an OT tableau.

In HG the optimal outcome is the one which has the lowest harmony
penalty (H ) when considering all violations. Each candidate’s harmony is
equal to the number of times it violates each constraint, multiplied by the
weight of the constraint violated. Using this method, the same violations
result in candidate A being optimal because it has a lower harmony than
candidate B. This is because the two violations of Constraint 2, though tol-
erated individually, together outweigh the penalty associated with the single
violation of Constraint 1.
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Figure 1: Schematic example of a HG tableau.

HG and OT predict different outcomes from the same same schematic exam-
ple because candidates’ violations are cumulative in HG but not in OT.

There are two possible types of constraint cumulativity (Jäger and Rosen-
bach, 2006): counting cumulativity and ganging cumulativity. Counting cu-
mulativity, illustrated above, occurs when one violation of a lower-weighted
constraint leads to a lower penalty than one violation of another, higher-
weighted constraint, but two or more violations of the first constraint are
together more penalizing than the single violation of the second. Ganging
cumulativity occurs when independent violations of low-weighted constraints
are less penalizing than a single violation of a higher-weighted constraint, but
when they occur together these lower-weighted violations “gang up” together
to yield a more severe penalty.

3. Constraint cumulativity in phonological typology

3.1. Constraint cumulativity in alternations

Evidence for constraint cumulativity is often takes the form of condi-
tions on the relationship between phonological inputs and outputs (Gold-
water and Johnson, 2003; Coetzee and Pater, 2006; Pater, 2009; Zuraw and
Hayes, 2017, i. a.). For instance, the additive combination of factors influ-
encing the likelihood of -t/-d deletion in corpus data was noted by Guy and
Boberg as early as 1994, and the difficulty the phenomenon presented for OT
was pointed out not long after (Guy, 1997). More recently, Rose and King
(2007) used a speech-error elicitation task to examine the effect of simultane-
ously violating several consonant co-occurrence restrictions in two Ethiopian
Semitic languages, Chaha and Amharic. They found that participants pro-
duced more errors when stimuli violated several constraints at once than
when stimuli violated each constraint independently. Pater (2009) analyzes
data from Japanese loan words (originally from Nishimura (2003)) to argue
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that a static phonotactic restriction known as “Lyman’s Law” which pro-
hibits multiple voiced obstruents within a word can be construed as a case
of constraint cumulativity. Pater finds that while speakers tolerate voiced
obstruents and geminate consonants unrepaired when adapting loan words,
they preferentially repair words which contain voiced geminates by devoicing
them, enforcing the upper limit on voiced obstruents. Kawahara (2011a,b,
2013) follows this formal analysis up with a series of acceptability judgment
studies, finding robust support for Pater’s conclusions. Kawahara also finds
that Lyman’s Law violations can block a process of inter-morphemic obstru-
ent voicing known as rendaku (Kawahara, 2012) in a further case of appar-
ent cumulativity. Recent studies by Kawahara (ms) also indicate that the
relationship between form and meaning characteristic of sound-symbolism
displays cumulative effects.

3.2. Phonotactics as a testing ground for theories of cumulativity

Constraint cumulativity has also been demonstrated in phonotactics, gen-
erally taking the form of additive effects of multiple markedness violations on
the likelihood of lexical attestation or experimentally-assessed acceptability.
Evidence comes from the study by Pizzo (2015), mentioned above, as well
as that of Albright (2009), which contains similar findings. Taken at face
value, these studies seem to constitute strong evidence for the cumulativity
of markedness constraints — multiple simultaneously-violated constraints to-
gether have an effect on speakers’ judgments which is greater than that of
each constraint alone.

3.3. The lexicon as a confound in the study of the phonotactic grammar

While suggestive of cumulative behavior, however, such findings have an
alternative explanation. This is because in each of these cases experimentally-
determined well-formedness is highly correlated with how frequent these
structures are in the lexicon. Even setting aside models which explicitly
use the number of similar words in the lexicon to estimate acceptability (ex.,
the Generalized Neighborhood Model of Bailey and Hahn (2001)), the promi-
nent role of lexical statistics in influencing well-formedness judgments is well
established in generative phonology (Frisch et al. (2000); Shademan (2007);
Daland et al. (2011); Jarosz and Rysling (2017), among many others). Pio-
neering work by Coleman and Pierrehumbert (1997) highlighted the connec-
tions between the lexicon and phonotactic well-formedness in their predictive
model of nonword judgments. Albright (2012); Fukazawa et al. (2015) and
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Kawahara and Sano (2016) also find evidence for a complex interaction of
lexical statistics and phonological acceptability: under-attestation of words
in the lexicon which contain two marginal structures results in a dramatic
decrease in the acceptability of novel structures of this type relative to those
containing only one of the structures.

Further, there is evidence that the relationship between lexicon and phonol-
ogy is diachronically bidirectional: Martin (2007, 2011) found that, assum-
ing speakers prefer to reuse novel coinages which are phonotactically well-
formed, the lexicon can come to underrepresent phonotactically ill-formed
words over time. This sets the stage for a possible feedback loop between
synchronic phonotactic judgments which are sensitive to lexical statistics, and
lexical statistics which are shaped by a synchronic preference for phonotactic
well-formedness. Thus in natural languages the question of directionality —
whether words are judged to be ill-formed because they are improbable in the
context of the lexicon, or whether skewed lexical statistics are the product
of the phonological grammar — cannot be satisfactorily resolved.

4. Experimental design

To deconfound phonotactic acceptability and lexical frequency, I used an
AGL paradigm to create a “sandbox environment” where these factors could
be carefully controlled. This allows me to interpret participants’ inferences
about such (non)cumulativity, made in the absence of disambiguating evi-
dence, to be revealing of the nature of phonotactic grammar, and not simply
a case of “frequency-matching” (cf. Ernestus and Baayen (2003)) in accept-
ability judgments.

Turning to the specific phonotactics involved, all experiments in this pa-
per paired varieties of consonant and vowel harmony. These phenomena have
traditionally constituted core objects of generative phonological analysis (see
Hansson (2010) and Walker (2011) for overviews of consonant and vowel har-
mony patterns respectively), and both have been successfully learned in other
AGL experiments (ex., Finley (2015); Lai (2015)). Because the experiments
focused on simultaneous acquisition of two separate phonotactic patterns, it
was crucial that the aspects of the artificial language governed by each of
the phonotactics not overlap: consonant harmony regulated all and only a
word’s consonants, and vowel harmony regulated the vowels, allowing a word
to conform to or violate each phonotactic independently. In Experiments 1,
3a-b, and 4 I used consonant nasality harmony (hereafter nasal harmony): a
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word’s consonants agree in nasality, being either drawn from the set of nasal
stops {/m, n/} or voiceless oral stops {/p, t/}; for a survey of parallels in
natural languages, see Hansson (2010, p. 111 et seq.). In Experiment 2 I used
consonant sibilancy harmony (sibilant harmony): consonants in a word agree
in anteriority, being drawn from {/s, z/} or {/S, Z/} (see Hansson (2010, p.
55 et seq.) for a typological survey). All experiments used vowel backness
harmony (backness harmony): all vowels in a word agreed in backness, be-
ing drawn from the set of {/i, e/} or {/u, o/} (for an overview, see Walker
(2011)).

To ensure an accurate assessment of participants’ well-formedness judg-
ments, I elicited acceptability judgments from participants using two different
tasks. First, participants completed a lexical decision task in which they were
asked to judge whether a novel word could belong to the language that they
learned at the start of the experiment (possible answers yes or no). They
then completed a ratings task where they were asked to assign each of those
same words a numerical rating (scale from 0 (very bad) to 100 (very good))
based on how that word sounded as an example of the language they had
learned. Robust support of either outcome should be the result of converging
evidence from both dependent variables.

5. Experiment 1: Ganging cumulativity, nasal and backness har-
monies

In Experiment 1, I tested whether learners inferred a cumulative effect
between violations of two different phonotactics — ganging cumulativity.

5.1. Methods

5.1.1. Participants

45 undergraduate students at a North American university were recruited
to participate in this experiment through the Psychology Subject Pool, and
were compensated with course credit. Participants who had not spoken En-
glish consistently since birth were excluded (n = 2), as were those who did
not meet the criterion for learning assessed during the verification phase (n =
10, on which more below), leaving 33 participants whose data were included
in the final analysis.
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5.1.2. Stimuli

In exposure phase, subjects heard 32 initially-stressed "CVCV nonwords
which conformed to the nasal harmony and backness harmony phonotactics.
Individual consonant and vowel identity was balanced in frequency and dis-
tribution over word positions. This procedure yielded a language containing
words such as potu, meni, nuno, tepi, teti, mumo, etc.

For the verification phase I created two sets of items, each set consisting
of 16 pairs of minimally-differing nonwords. One member of each pair was
a fully-conforming word from the exposure phase, and the other was cre-
ated by reversing the featural specification for nasality or backness of one
of the consonants or vowels in the fully-conforming word. Thus the pair of
words differed only in a single instance of that feature. In each set, 8 pairs
differed in a violation of nasal harmony, and 8 differed in a violation of back-
ness harmony, with differences between pair-members balanced for segmental
placement and identity. For example, the familiar word potu was modified by
altering the nasality specification of its second consonant, yielding the pair
potu vs. ponu.

In piloting, participants showed a strong preference for forms with identi-
cal consonants or vowels despite no numerical advantage for these forms in the
training data. Therefore, the verification trials were balanced so that pairs
whose fully-conforming word had identical consonants (ex. totu) differed only
in their violation of backness harmony (ex., totu vs. toti). On trials whose
conforming word contained identical vowels, the two words differed only in a
violation of nasal harmony. Crucially, there were no doubly-violating words
in the verification phase: the purpose was simply to ensure that subjects had
learned each of the two phonotactic constraints independently.

In the test phase, subjects were presented with a set of 48 novel non-
words which varied in conformity both phonotactics. 24 conformed to both
phonotactics (ex. pite), eight violated only the nasal-harmony phonotactic
(mite), eight violated only the backness-harmony phonotactic (pito), and
eight violated both the nasal-harmony and backness-harmony phonotactics
(mito).

All words were recorded by a phonetically-trained female native English
speaker using PCQuirer. They were digitized at 44,100 HZ and normalized
for amplitude to 70 db.
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5.1.3. Design

The experiment consisted of an exposure phase followed by a verification
phase, after the successful completion of which participants moved on to two
successive generalization tasks in the test phase: the lexical decision task
and then the ratings task. The exposure phase consisted of two blocks of
32 pseudo-randomized self-paced trials. During the exposure phase, similar-
sounding items were presented together in blocks of eight, with each subject
assigned at random to one of four counter-balancing orders of the four blocks.
For example, in one counterbalancing group, participants first heard eight
words with front vowels and voiceless stops (ex. peti, tipi, tepe, piti . . . )
followed by eight words with back vowels and nasal stops (monu, nunu,
mumo, numo. . . ), followed by eight words with back vowels and voiceless
stops (topu, pupo, topo, putu. . . ) followed by eight words with front vowels
and nasal stops (nini, meni, nemi, mene. . . ).

After the exposure phase, participants completed 16 self-paced two-alternative
forced choice verification trials, which were not accompanied by feedback
about accuracy. On each trial, participants were asked to choose which of
the two words belonged to the language they had learned in training; if par-
ticipants scored above 80% (13 or more correct answers out of 16 trials) in
the verification phase they moved on to the test phase. Otherwise they re-
ceived another block of 32 pseudo-randomized trials in the exposure phase,
after which they completed a second verification phase. The two sets of 16
verification-phase pairs alternated in successive verification phases to lower
the likelihood of participants passing verification via trial and error alone.
If participants did not meet criteria within three additional exposure blocks
they were simply asked to complete the demographic questionnaire, and did
not complete the test phase.

If subjects met criteria on the verification phase, they advanced to the
test phase which consisted of the lexical decision task and the ratings task.
Both tasks used the same set of novel words. In the lexical decision task,
participants were presented with two repetitions of 48 novel words in a ran-
dom order and were asked to choose whether they thought each word could
belong to the language they had learned. In the ratings task, participants
were asked to rate each of the same words on a scale from 0 (very bad) to 100
(very good) based on how they sounded as an example of the language they
had learned. At the end of the experiment, demographic information was col-
lected. The full experiment lasted approximately 15-20 minutes, depending

9



on the number of exposure blocks the subject required.

5.1.4. Procedure

The experiment was conducted in a sound-attenuated room using a mod-
ified version of the Experigen platform (Becker and Levine (2010)). After
giving their informed consent to participate in the study, the experiment be-
gan with participants being told that they would be learning a new language,
after which they would be tested on their knowledge. Participants were en-
couraged to repeat back each word they encountered in the experiment to
help them get a better sense of the language: both hearing and speaking
the words was intended to make the phonotactic patterns more salient and
help participants stay focused on the task. Participants were instructed to
base their decisions on what they knew about how the language sounded and
what their gut told them was right, and to not over-think their choices.

The experiment had a fully self-paced design. On each trial of the ex-
posure phase participants were instructed to click a button on the screen
to hear a word of the language. When they did so, they heard one of the
32 fully-conforming words chosen for the exposure phase, sampled without
replacement, and were instructed (via on-screen text) to repeat the word out
loud. The verification phase had a similar structure, except each trial played
a pair of words in a random order, and participants were instructed to say
both words out loud before making their choice. The test phase also had
a similar structure, with each task consisting of a series of trials containing
one word which participants were instructed to repeat out loud before either
making the lexical decision or assigning it a rating.

5.2. Analysis

Data from the test phase was analyzed using mixed effects regression
models in R (?) using the lme4 package (Bates et al., 2015). All statistical
analyses began by fitting a maximally-specified model (following Barr et al.
(2013)), which contained a random intercept for subject and item, fixed
effects specific to the analysis, and random slopes for all fixed effects by
subject. In cases of non-convergence, interactions among random slopes were
removed first, then the slopes themselves, until the model converged. For the
lexical decision task I modeled the log-odds of endorsing an item using logistic
regression, and for the ratings task I modeled the raw numerical data using
a linear model. Note that although I regressed on the raw ratings data, for
the sake of legibility I plot z -normalized ratings throughout the paper.

10



5.3. Results I: Do subjects infer ganging cumulativity between phonotactic
violations?

The first question (regardless of dependent variable) is simply whether
doubly-violating forms are judged worse than singly-violating forms. For
this analysis, the status of the form in question (fully-conforming, violating
backness harmony, violating nasal harmony, or doubly-violating) was coded
as a four-level factor. Holding each factor level as the reference in turn,
I probed whether the log-odds of acceptance (in the lexical decision task)
or the numerical rating (in the ratings task) for singly-violating levels dif-
fered significantly from the fully-conforming level. Significant differences on
this metric are a prerequisite for analyzing the difference between singly-
and doubly-violating levels, as they indicate that subjects learned each of
the individual phonotactics in independent contexts. The critical compari-
son for determining whether learners infer ganging cumulativity is between
the singly-violating levels and the doubly-violating level, which was probed
in the same manner. A significant difference constitutes evidence for gang-
ing cumulativity between the independent phonotactic violations reflected
in assessed well-formedness. In contrast, if we find no significant differences
between these levels, this is not evidence that learners inferred a cumulative
effect from multiple simultaneous constraint violations.

5.3.1. Lexical decision task

Figure 2 shows the results of the lexical decision task in Experiment 1.
The final logistic regression model included a random intercept for subject
and word, and a four-level fixed effect for violation profile. The log-odds
of endorsement differed significantly between the fully-conforming forms and
the nasal harmony-violating forms (B= −1.748, p < 0.001), and the back-
ness harmony-violating forms (B= −0.813, p < 0.001). Participants en-
dorsed doubly-violating forms with a significantly lower likelihood than nasal
harmony-violating forms (B= −0.793, p = 0.002) and backness harmony-
violating forms (B= −1.728, p < 0.001).

5.3.2. Ratings task

Results of the ratings task are presented in Figure 3. The final model
included a four-level factor of violation profile, and a random intercept for
subject and word. Forms violating the backness harmony phonotactic were
rated significantly lower than fully-conforming forms (B= −7.100, p = 0.019)
and forms violating the nasal harmony phonotactic were rated significantly
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Figure 2: Results for the lexical decision task, Experiment 1. The vertical axis plots
mean endorsement rate as a percentage with standard error bars, and the horizontal axis
divides the novel words according to their phonotactic violation profile, together with an
illustrative example of that profile type.

lower than fully-conforming forms as well (B= −23.678, p < 0.001). Doubly-
violating forms were rated significantly lower than those violating just the
backness harmony phonotactic (B= −25.700, p < 0.001) and those which
violated just the nasal harmony phonotactic (B= −9.125, p = 0.014).

5.4. Results II: Is the cumulativity sub-linear, linear, or super-linear?

Since the previous analysis finds that participants inferred ganging cu-
mulativity between constraint violations, as predicted by HG, we can further
probe the nature of this effect. Is the effect of multiple simultaneous vi-
olations linearly additive (doubly-violating words are judged as marked in
proportion to the sum of their single violations), sub-linear (doubly-violating
words are less marked than the penalty associated with their isolated viola-
tions), or super-linear (doubly-violating words are more marked than the sum
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Figure 3: Results for the ratings task, Experiment 1. For readability, I plot z -normalized
rating on the vertical axis, and the horizontal axis divides the novel words according to
their phonotactic violation profile, together with an illustrative example of that profile
type.

of their violations)? Unlike the question of whether constraint cumulativity
exists in the general case, there is no clear consensus around the linearity of
such effects in the theoretical literature. Although the original formulation
of HG (Legendre et al., 1990) predicts only linearly-additive cumulativity,
other frameworks that use weighted constraints make different predictions
about the specific conditions under which linearity (or lack thereof) should
be observed (cf. Smith and Pater (2017)). Since this topic is the subject
of ongoing investigation, the linearity of any observed cumulativity will be
statistically assessed so it may contribute to this literature but will not form
the basis of any further theoretical claims.

To probe the linearity of the cumulativity, a second statistical analysis
was carried out on the same data sets using a mixed effects regression model
containing two fixed effects — whether a word violated the nasal-harmony
phonotactic (true, false), whether a word violated the backness-harmony
phonotactic (true, false) — and their interaction. Of interest here is the
interaction term: a significant interaction with a positive coefficient would
indicate that the cumulativity inferred was sub-linear — two coincident vi-
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olations were judged less severe than would follow from the combination of
their markedness when occurring in isolation. Alternatively, a significant
interaction with a negative coefficient would indicate that the cumulativ-
ity was super-linear — two coincident violations were judged more severe
than would follow from their independent status in the grammar. Finally,
a non-significant interaction would be consistent with linear cumulativity:
doubly-violating forms are judged ill-formed in proportion to the penalty
associated with their component violations.

5.4.1. Lexical decision task

The final logistic regression model had the two fixed effects and their inter-
action as described above, and random intercepts for subject and word. Both
main effects were significant (nasal harmony violation = true: B= −1.747,
p < 0.001, backness harmony violation = true: B= −0.812, p < 0.001) and
the interaction term was not significant (B= 0.020, p = 0.951).

5.4.2. Ratings task

The analysis was performed on the ratings task data using a linear model
with two fixed effects and their interaction as described above, and random
intercepts for subject and word. The model revealed that both main effects
were significant predictors of rating (nasal harmony violation = true: B=
−23.676, p < 0.001, backness harmony violation = true: B= −7.100, p =
0.019) and that the interaction was not (B= −2.025, p = 0.663).

5.5. Local discussion

Experiment 1 provides evidence that in a poverty-of-the-stimulus environ-
ment learners infer ganging cumulativity between violations of two separate
phonotactic constraints in their learning data. In the lexical decision task,
doubly-violating forms were endorsed in proportion to the likelihood of en-
dorsement of forms bearing each of their violations independently, and in
the ratings task words received a rating proportional to the summed penalty
of their independent violations, indicating that the cumulativity inferred is
linear.

6. Experiment 2: Ganging cumulativity, sibilant and backness har-
monies

To establish the generality of the results of Experiment 1, Experiment 2
replicated Experiment 1 with a different consonant harmony phonotactic —
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sibilant harmony.

6.1. Methods

6.1.1. Participants

84 undergraduate students were recruited to participate in this experi-
ment, none of whom had participated in Experiment 1. Participants were
excluded for not having spoken English since birth (n = 15), and not consis-
tently learning both phonotactic constraints (n = 35), leaving 34 participants
whose data were included in the study. Recruitment method, compensation,
experimental setting, and software were the same as for Experiment 1. New
materials were created for Experiment 2 by replacing /p/ with /S/, /m/ with
/Z/, /t/ with /s/, and /n/ with /z/. Design, procedure, and analysis for
Experiment 2 was identical to that of Experiment 1, except that the lexical
decision task contained only one presentation of each of the novel words,
rather than two.

6.2. Results I: Do subjects infer ganging cumulativity?

6.2.1. Lexical decision task

Figure 4 shows the results of the lexical decision task in Experiment 2.
The final logistic regression model contained a random intercept for subject
and word and a four-level fixed effect for violation profile. The log-odds
of endorsement for forms violating only sibilant harmony were significantly
lower than that of fully-conforming forms (B=−0.968, p < 0.001), as were the
log-odds of endorsement for backness harmony-violating forms (B= −1.223, p
< 0.001), paralleling the results from the lexical decision task in Experiment
1. Further, participants endorsed words violating both sibilant and backness
harmony at lower rates than those which violated only sibilant harmony (B=
−0.940 , p < 0.001) or only backness harmony (B= −0.685, p = 0.002).

6.2.2. Ratings task

Results of the ratings task are presented in Figure 5. The final regression
modeled raw ratings as a function of violation profile with random intercepts
for subject and word. Mirroring the results from the lexical decision task,
forms violating only sibilant harmony were rated significantly lower than
fully-conforming forms (B= −14.722, p < 0.001), as were forms violating only
backness harmony (B= −14.429, p < 0.001). Doubly-violating forms received
lower ratings than those violating only sibilant harmony (B= −15.438, p <
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Figure 4: Results for the lexical decision task, Experiment 2.

0.001) and only backness harmony (B= −15.730, p < 0.001), confirming that
learners inferred ganging cumulativity between distinct constraint violations.

6.3. Results II: Is the cumulativity sub-linear, linear, or super-linear?

The ganging cumulativity speakers exhibited was linear for both lexical
decision (sibilant-harmony violation = true: B= −1.003, p < 0.001; backness-
harmony violation = true: B= −1.285, p < 0.001; interaction B= 0.241, p
= 0.427) and ratings tasks (sibilant harmony-violation = true: B= −14.722,
p < 0.001; backness harmony-violation = true: B= −14.429, p < 0.001;
interaction B= −1.008, p = 0.790).

6.4. Local discussion

The results of Experiment 2 establish the generality of the findings of
Experiment 1, confirming that speakers infer ganging cumulativity among
several different types of phonotactic constraints.
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Figure 5: Results for the ratings task, Experiment 2.

7. Experiment 3a-b: Passive learning of ganging cumulativity, nasal
and backness harmonies

Experiment 3a-b sought to replicate the results of Experiments 1 and 2
using a passive exposure training paradigm designed to more closely mimic
first language acquisition.

Experiment 3a

7.1. Methods

7.1.1. Participants

76 new undergraduate students were recruited to participate in this exper-
iment. Participants were excluded for not having spoken English since birth
(n = 10), and not reliably learning both phonotactics (n = 0), leaving 66
participants whose data were included in final analysis. The sample size was
increased to compensate for the less controlled nature of the training phase,
described below, which left more room for variable strength of learning by
individual participants. Recruitment method, compensation, experimental
setting and software, and materials were the same as for Experiment 1.
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7.1.2. Design

Design for Experiment 3a was the same as for Experiment 1 except as fol-
lows. The exposure phase consisted of each of the 32 training words presented
in a random order twenty times in a continuous speech stream. Since the
exposure was designed to be naturalistic, I did not impose an absolute thresh-
old for advancement to the test phase; instead participants were allowed to
advance to the test phase if they did not make significantly more errors on
verification phase items which contrasted in vowel harmony only than those
which contrasted in consonant harmony only.1 The passive exposure training
lead to performance on the verification phase comparable to that achieved
using the more interactive training method (mean accuracy 81.3%), and no
subjects were excluded for not having learned both phonotactics to criterion.

Because of the longer exposure phase, the lexical decision task in the test
phase consisted of only one randomized presentation of each of the 48 novel
words, rather than two as in Experiment 1.

7.1.3. Procedure and analysis

Procedure for Experiment 3a was identical to that of Experiment 1, except
that during exposure participants were instructed that they should simply
sit and listen to the speech stream. The exposure phase lasted around ten
minutes, and the entire experiment took approximately 20-30 minutes, de-
pending on the number of exposure blocks the subject required. Analysis
was identical to that of Experiment 1.

7.2. Results I: Do subjects infer ganging cumulativity?

7.2.1. Lexical decision task

Figure 6 shows the results of the lexical decision task in Experiment 3a.
The final logistic regression model contained a random intercept for subject
and word, and a four-level fixed effect of violation profile. Forms violat-
ing only backness harmony had significantly lower log-odds of endorsement
compared to fully-conforming forms (B= −0.504, p = 0.026), as did those
which violated only nasal harmony (B= −1.562, p < 0.001). Forms violating
both backness harmony and nasal harmony had significantly lower log-odds

1I used Fisher’s exact test (Fisher, 1934) to determine the level at which the proportion
of correct answers for each phonotactic significantly differed, across the range of possible
accuracies, with the result that participants’ number of errors for each type of verification
trial could differ by at most 3.
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Figure 6: Results for the lexical decision task, Experiment 3a.

of endorsement than those violating only backness harmony (B= −2.031, p
< 0.001) and those violating only nasal harmony (B= −0.973, p < 0.001).

7.2.2. Ratings task

Results of the ratings task are presented in Figure 7. Here, only nasal
harmony-violating forms were rated significantly lower than fully-conforming
word (B= −17.536, p < 0.001); backness harmony-violating forms did not dif-
fer significantly in their ratings from fully-conforming words (B= 0.706, p =
0.850). Further, doubly-violating words did not differ significantly from nasal
harmony-violating words (B= −7.960, p = 0.086), although they did differ
from backness harmony-violating words (B= −26.202, p < 0.001). Since the
first analysis did not reveal that learners reliably rated backness-violating
forms worse than fully-conforming forms — and thus did not exhibit con-
straint cumulativity — the test for linearity of ganging cumulativity was not
carried out on the ratings data.
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Figure 7: Results for the ratings task, Experiment 3a.

7.3. Results II: Is the cumulativity sub-linear, linear, or super-linear?

7.3.1. Lexical decision task

As before, I analyzed the log-odds of endorsing a test item in a logis-
tic regression model with a random intercept for subject and word, and
three fixed effects: nasal harmony violation (true, false), backness harmony-
violation (true, false) and their interaction. I found a significant main effect
of nasal harmony violation (B= −1.562, p < 0.001), and a significant main
effect of backness harmony violation (B= −0.504, p = 026); the interaction
term was not significant (B= −0.469, p = 0.196). This indicates that the
cumulativity inferred did not depart from what would be expected under the
linear addition of penalties for each violation.

7.4. Local discussion

Experiment 3a provides some evidence for the robustness of inferred cu-
mulativity under more naturalistic passive exposure training: in the lexical
decision task, violations of both the nasal harmony and backness harmony
phonotactics contributed independently and linearly to likelihood of endorse-
ment. In the ratings task, however, only violations of the nasal harmony
phonotactic contributed to lower ratings on average. What could be the
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cause of this apparent case of learners failing to infer cumulativity of con-
straint violations? I hypothesize that this effect is due to the change in
training paradigm, and concomitant adjustment of verification standards.
Passive exposure training may have resulted in more variable learning out-
comes, and reduced strength of learning overall, which could have contributed
to the quicker decay for the backness harmony phonotactic compared to the
nasal harmony phonotactic over the course of the two generalization tasks.
Anecdotal support for this hypothesis comes from the higher accuracy in the
verification phase on nasal harmony violating words (mean accuracy 86.7%)
compared to backness harmony violating words (mean accuracy 76.1%).

Experiment 3b

To test the post-hoc hypothesis that the lack of cumulativity in the rat-
ings task of Experiment 3a was a task effect, a shortened, ratings-only version
of the same experiment was carried out. If participants truly fail to infer con-
straint cumulativity under more naturalistic training conditions, the results
on the ratings task in Experiment 3b should mirror those of Experiment 3a.
However, if the results of the ratings task in Experiment 3a were simply due
to interference from intervening time and exposure to novel nonconforming
words, the results in Experiment 3b should mirror the results of ratings tasks
from Experiments 1 and 2.

7.5. Methods

78 new undergraduate students were recruited to participate in this ex-
periment. Participants were excluded for not having spoken English since
birth (n = 7), not completing the demographic survey (n = 1), and not con-
sistently learning both phonotactics (n = 0), leaving 70 participants whose
data were included in the study. Recruitment method, compensation, ex-
perimental setting, software, materials, and analysis were the same as for
Experiment 1, except that participants did not complete the lexical decision
task during the test phase.

7.6. Results I: Do subjects infer ganging cumulativity?

Results of the ratings task are presented in Figure 8. Mirroring results
of the lexical decision task from Experiment 3a, forms which violated only
backness harmony received lower ratings than fully-conforming forms (B=
−10.136, p = 0.012), as did forms which violated only nasal harmony (B=
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Figure 8: Results for the ratings task, Experiment 3b.

−27.029, p < 0.001). Further, doubly-violating forms received lower ratings
than those which violated backness harmony only (B= −26.725, p < 0.001),
as well as those which violated nasal harmony only (B= −9.832, p = 0.044),
confirming that learners inferred ganging cumulativity between constraint
violations.

7.7. Results II: Is the cumulativity sub-linear, linear, or super-linear?

I fit a linear mixed effects model to the ratings data, with to-level factors
of violating backness harmony, violating nasal harmony, and their interac-
tion, along with random intercepts for subject and word. It indicated that
violation of the backness harmony phonotactic (B= −27.029, p < 0.001) and
of the backness harmony phonotactic (B= −10.136, p = 0.012) was inde-
pendently associated with lower ratings, and the interaction between these
factors was not significant (B= 0.304, p = 0.961). This finding is in line with
the lexical decision task from Experiment 3a, as well as Experiment 1 and 2
more broadly.
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7.8. Local discussion

Experiment 3b confirms the hypothesis about the apparent lack of cu-
mulativity observed in the ratings task in Experiment 3a: participants likely
simply did not recall the language they had learned strongly enough to pro-
vide accurate well-formedness judgments in the ratings task.

8. Experiment 4: Ganging and counting cumulativity

In Experiments 1, 2, and 3a-b, I examined how single violations of differ-
ent constraints interact in the grammar — testing for ganging cumulativity.
In Experiment 4, I examined the other type of constraint interaction pre-
dicted by HG and not by OT, counting cumulativity. Because HG takes into
account all violations of each constraint, predicts that a word violating the a
constraint n times will be less well-formed than a near-identical word violat-
ing the same constraint n−1 times. To test this prediction, participants were
tested on longer novel words which allowed for each word to host up to two
violations of each phonotactic constraint. This allowed us to test whether
counting and ganging cumulativity obtained simultaneously, since we exam-
ined a number of violations of each single phonotactic in the context of each
level of the other, yielding a fully-crossed design.

8.1. Methods

8.1.1. Participants

71 new undergraduate students were recruited to participate in this exper-
iment. Participants were excluded for not having spoken English since birth
(n = 12), not completing the demographic survey (n = 1), and not con-
sistently learning both phonotactics (n = 0), leaving 58 participants whose
data were included in the study. Recruitment method, compensation, exper-
imental setting and software were the same as for Experiment 1.

8.1.2. Materials

Training and verification materials were the same as for Experiment 1.
48 novel test words were created for this experiment, each four syllables long
with "CVCV­CVCV syllable structure and a left-aligned trochaic stress pat-
tern (ex., minemeni, putotupo, petipite, etc.). 24 of these words conformed to
both nasal harmony and backness harmony phonotactics, and the remaining
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24 were divided evenly among the two violation levels (one locus of violation
vs. two) of both phonotactics.2

8.1.3. Design and procedure

Design for Experiment 4 was identical to that of Experiments 1. Pro-
cedure for Experiment 4 was identical to that of Experiment 2, except that
participants were instructed before beginning the test phase that they would
be tested on longer words, and that even though the words they would be
hearing would be longer than the ones they had learned initially, their length
did not bear on whether they were likely to belong to the language or not.
This point was stressed via an analogy to English, which contains licit words
of many lengths.

8.2. Analysis

The analysis of Experiment 4 differed from that of previous experiments
because of its design, and because of the additional focus on determining
whether learners infer counting cumulativity between constraint violations.
I assessed whether learners infer counting cumulativity by holding each level
of violation for each phonotactic as the reference level in turn, and noting
whether differences between levels of violation of the same phonotactic were
significantly different.

8.3. Results I: Did learners infer counting cumulativity?

8.3.1. Lexical decision task

Figure 9 shows the results of the lexical decision task in Experiment 4.
The final logistic regression model contained a random intercept for subject
and word and a three-level fixed effect of violation profile. The model indi-
cated that, holding the level of violations of nasal harmony constant at its
average value, a nonword which violated the backness harmony phonotactic
in one location was less likely to be endorsed than one which did not (B=
−1.77, p < 0.001), and a form that violated the backness harmony phono-
tactic in two locations was even less likely to be endorsed than one which
violated it only once (B= −0.548, p < 0.001). For nasal harmony the comple-
mentary was true: a single violation of nasal harmony decreased the log-odds
of endorsement significantly (B= −0.623, p < 0.001), and an increased level of

2I delay the formalization of these phonotactics until section 11.1.
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Figure 9: Results for the lexical decision task, Experiment 4. The vertical axis plots
mean endorsement rate as a percentage, with standard error bars, and the horizontal axis
divides the novel words according to their level of vowel-harmony violations, grouping by
level of consonant violations. Note: C-Violations indicate violations of nasal harmony,
and V-Violations indicate violations of backness harmony.

violation of the same type also significantly reduced the log-odds of endorse-
ment (B= −0.473, p = 0.002), with the level of violations of vowel-harmony
held at its average value.

8.3.2. Ratings task

Figure 10 shows the results of the ratings task in Experiment 4. The
final linear regression model contained a random intercept for subject and
word and two three-level fixed effect of violation level (zero, one, or two
loci of violation). For nasal harmony, holding the violation level of backness
harmony constant, a single locus of violation of nasal harmony resulted in a
significantly lower rating (B= −6.379, p < 0.001), and the further addition
of a second nasal harmony violation locus resulted in a significant decrease in
rating compared to words with only one nasal harmony violation (B= −4.693,
p = 0.002). The model also indicated that, holding nasal-violation level
constant, a novel word which violated the backness harmony phonotactic once
did not receive a significantly lower rating than one which did not (B=−0.505,
p = 0.696), but that a form that violated the backness harmony phonotactic
twice received significantly lower ratings than a word which violated it only
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Figure 10: Results for the ratings task, Experiment 4.

once (B= −4.439, p = 0.004).

8.4. Local discussion

Experiment 4 tested for two types of constraint cumulativity, and found
that learners reliably distinguish between multiple levels of well-formedness
(counting cumulativity), and do so on two phonotactic dimensions simul-
taneously (ganging cumulativity). These findings, the one non-significant
cumulative distinction in the ratings task notwithstanding, are in line with
predictions of grammars which are capable of expressing cumulative relation-
ships between constraint violations.
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9. Experimental discussion: Phonetic substance as a moderator of
phonological learning

An unexpected yet repeated experimental finding was that participants
exhibited an asymmetry in the strength of markedness associated with vio-
lating different phonotactics. In Experiments 1, 3a, 3b, and 4, violations of
backness harmony were judged to be less severe than violations of nasal har-
mony. However, when backness harmony was paired with sibilant harmony
in Experiment 2, no such disparity was observed. Why should this be?

One possible explanation is that fewer participants learned the backness
harmony constraint than learned the nasal harmony constraint; I judge this
hypothesis highly unlikely, because all participants had to demonstrate sta-
tistically equivalent knowledge of both phonotactics in the verification phase.
Another possibility is that the penalty for violating a given phonotactic is
influenced by how perceptually distinct that constraint’s conforming and
non-conforming instantiations are. For example, the perceptual difference
between a voiceless stop and a nasal stop sharing a place of articulation may
be greater than the difference between a front vowel and a back vowel, or
between a coronal sibilant and a post-alveolar sibilant with the same voic-
ing specification (formally, ∆ [t . . . n], [n . . . n] > ∆ [o . . . e], [e . . . e], ∆
[s . . . S], [S. . . S], where ∆ is a function that returns the perceptual distance
between two phones). The lower perceptual distinctness of sibilant harmony-
violations and backness harmony-violations relative to nasal-harmony viola-
tions could also be the cause of the large number of participants who were
excluded from Experiment 2 for not learning both phonotactics adequately:
35, in contrast to 10, 0, 0, and 0 in Experiments 1, 3a, 3b, and 4 respec-
tively. The best way to capture this notion of “perceptual distinctiveness”
— whether by counting distinctive features or by a more directly perceptual
measure — is beyond the scope of this paper. However, the proposed pho-
netic explanation is in line with theories of phonological acquisition which
hold that both input statistics and perceptual similarity play a role in shaping
the grammar (Steriade, 2001; Wilson, 2006; Zuraw, 2013, i. a.).
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10. Modeling the experimental data: setup and training

In this section, I use the lexical decision task results from Experiments 1
and 4 to evaluate a range of phonological models.3 Each of these models was
evaluated in the following way: first the model was exposed to the 32 two-
syllable fully-conforming training data which participants were trained on in
Experiments 1 and 4, and the two free parameters of the model (discussed in
section ??) were set to optimize fit to the participants’ generalization data
from Experiment 1. Then each model was used to predict a probability
of endorsement for the four-syllable stimuli from the generalization phase
of Experiment 4, scaled using a free temperature parameter (T) to allow for
comparison between predicted probabilities and experimental results. Models
were evaluated on their ability to mimic the participants’ generalization data
from Experiment 4, based on the learning data given to participants and the
best-fitting parameter values from Experiment 1. To preview the results,
all three models were able to qualitatively capture the ganging cumulativity
in the generalization data from Experiment 1; however, the MaxEnt model
generalized to the ganging- and counting-cumulativity seen in Experiment
4 substantially better, and with fewer linking hypotheses, than the other
models.

10.1. The data to be fit: Experiment 1 revisited

The results of the lexical decision task of Experiment 1 are reproduced
below in Table 2. The center column lists the raw percentage of endorsement,
while the right column provides the scaled percent endorse. Scaled percent
endorse was obtained by summing the raw percent endorse over all categories
of stimulus, and dividing each category’s rate by that sum. This rescaling is
necessary to yield a probability distribution over four outcomes which sum
to 1.

For modeling purposes, I adopt the simplifying assumption that the con-
straints FtBin McCarthy and Prince (1986); Prince (1980), Max, Dep, and
Id-[place] are undominated in all models throughout the learning process.

3I chose to model the lexical decision task results because the phonological models
considered here yield predictions about the likelihood of endorsement in a lexical decision
task. To model the results of the ratings task, the models would require an additional
linking hypothesis which treated numerical ratings as a probability of acceptance on a
lexical decision task. While not unreasonable (cf. Breiss & Albright (in preparation)), I
address lexical decision data so as to minimize unnecessary assumptions.
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Violation profile (example) Exp. 1 - unscaled Exp. 1 - scaled
Fully-conforming (mimi) 75% 39.0%
Backness-violating (mimu) 58% 30.2%
Nasal-violating (mipi) 37% 19.2%
Double-violating (mipu) 22% 11.4%

Table 2: Generalization data from Experiment 1’s lexical decision task, scaled and un-
scaled.

Table 3 lists the exhaustive set of form types which was used in modeling;
for example, the form [mimi] stands in for the experimental items such as
[mimi], [mime], [memi], [meme], etc.

Phase presented Stimulus profile Stimulus
Training Fully-conforming [mimi]
... Fully-conforming [pipi]

Fully-conforming [mumu]
Fully-conforming [pupu]

Generalization Backness-violating [mimu]
... Backness-violating [pipu]

Backness-violating [mumi]
Backness-violating [pupi]
Nasal-violating [mipi]
Nasal-violating [pimi]
Nasal-violating [mupu]
Nasal-violating [pumu]
Doubly-violating [mipu]
Doubly-violating [pimu]
Doubly-violating [mupi]
Doubly-violating [pumi]

Table 3: Simplified data used in modeling Experiment 1.

10.2. Free parameters for inaccurate learning and phonetic bias

??
The human results in Table 2 depart from optimal performance in two

ways: the first is that subjects learned the generalizations in their training
data inaccurately, such that they accept phonotactically violating forms at
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nonzero rates. Secondly, they exhibit an asymmetry in severity between
violations of backness harmony vs. violations of nasal harmony. To allow
for a closer fit to the experimental data, I equip each model with two “free
parameters”, one governing the accuracy with which the learned grammar
reflects the (categorical) distribution of training stimuli in its generalization,
and the other governing the role ofphonetic substance which I have argued
drives the persistent difference in severity between violations of nasal- and
backness-harmony. These free parameters are incorporated into each model
differently, and are optimized for each model to best fit the generalization
data from Experiment 1. This process can be thought of as “solving for”
the most probable learner-internal values of these parameters, conditioned
on the observed training data, the structure of the theory being evaluated,
and the attested generalization data. These optimal values are then used to
make predictions about generalization data from Experiment 4, which will
be used to evaluate the quality of each model.

10.3. Traditional approaches to phonotactic learning, and the Multiple Gram-
mars model

I first evaluated the Recursive Constraint Demotion algorithm (RCD;
Tesar and Smolensky (2000)).4 This algorithm takes as input a series of
mark-data pairs — a UR and a pair of candidates with a constraint that
distinguishes them — and returns (if one exists) a constraint hierarchy that
allows the optimal candidate to win. RCD constructs the ranking hierarchy
by first installing only winner-preferring constraints in the highest stratum
possible. Then, if there are no unranked constraints that prefer only winners,
RCD chooses a constraint to install in the next stratum at random, and
proceeds until there are no unranked constraints.

The algorithm was provided with mark-data pairs consistent with the
32 fully-conforming stimuli from Experiment 1. Constraints ranked were
Agree([back]), Agree([nasal]), Id-[back], and Id-[nasal]; learning
simulations were carried out in OTSoft (Hayes et al., 2003). The algorithm
returned the following pairwise rankings: Agree([back]) >> Id([back]),
Agree([nasal]) >> Id-[nasal], which implies the stratification below:

4Variants on this approach, such as Biased Recursive Constraint Demotion (Prince
and Tesar, 2004), and Low Faithfulness Constraint Demotion (Hayes, 2004) were also
evaluated, and yielded the same result as classical RCD for the same analytic reasons.
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Stratum 1: Agree([back]), Agree([nasal])
Stratum 2: Id-[back], Id-[nasal]

As designed, RCD learned a Markedness >> Faithfulness ranking which
is maximally restrictive (Tesar and Smolensky, 2000), and admits only fully-
conforming items when generalizing to new forms. Though the model per-
formed as intended, the algorithm was not designed with gradient phonotac-
tics in mind, and thus exhibited is no trace of the cumulative behavior that
human learners did: a singly-violating form such as mipi is not distinguished
from doubly-violating mipu. Further, violations of nasal harmony and viola-
tions of backness harmony are treated identically by the model. Thus, on its
own, the RCD algorithm is incapable of approaching testability against the
experimental data: a linking hypothesis is needed. I adopt one in which the
possibility of inaccurate perception of the learning data allows the learner
to consider a distribution over possible discrete RCD-based grammars: on
each trial there is a constant small probability of misperceiving a consonant
or vowel. From this noisy input the learner learns not a single probabilistic
grammar but a distribution over categorical grammars which are consistent
with the learning data, weighted by the likelihood of having perceived that
data supporting that grammar. I term this augmented model the Multiple
Grammars model.

10.3.1. Setting up the Multiple Grammars model

The core RCD-based algorithm is initialized with the constraints Agree([back]),
Agree([nasal]), Id-[back], and Id-[nasal]. Before exposure to training
data, the learner has a categorical Markedness >> Faithfulness ranking of
the four relevant constraints. On each of the 32 learning trials, the learner
updates that ranking probability based on the distribution over phonological
forms that trial provides evidence for. During generalization, a similar pro-
cess occurs: when presented with a form to be judged, the learner “perceives”
that form as a probability distribution over possible phonological forms. The
probability of acceptance for each novel stimulus is equal to the summed
probability of accepting each of the possible realizations of that stimulus,
multiplied by the probability of the grammar’s ranking being such that that
stimulus is accepted. Aggregate results for each stimulus type are obtained
by averaging over all items in that class.

This procedure is illustrated with the following example. Given that the
probability of mishearing a consonant = probability of mishearing a vowel
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= 10%, a waveform mimi is perceived as the distribution over SRs shown in
Table 4.
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mimi Fully-conforming [mimi] 0.9 × 0.9 × 0.9 × 0.9 = 0.6561 0.6724
Fully-conforming [pipi] 0.1 0.9 0.1 0.9 0.0081
Fully-conforming [mumu] 0.9 0.1 0.9 0.1 0.0081
Fully-conforming [pupu] 0.1 0.1 0.1 0.1 0.0001
Backness-violating [mimu] 0.9 0.9 0.9 0.1 0.0729 0.1476
Backness-violating [pipu] 0.1 0.9 0.1 0.1 0.0009
Backness-violating [mumi] 0.9 0.1 0.9 0.9 0.0729
Backness-violating [pupi] 0.1 0.1 0.1 0.9 0.0009
Nasal-violating [mipi] 0.9 0.9 0.1 0.9 0.0729 0.1476
Nasal-violating [pimi] 0.1 0.9 0.9 0.9 0.0729
Nasal-violating [mupu] 0.9 0.1 0.1 0.1 0.0009
Nasal-violating [pumu] 0.1 0.1 0.9 0.1 0.0009
Doubly-violating [mipu] 0.9 0.9 0.1 0.1 0.0081 0.0324
Doubly-violating [pimu] 0.1 0.9 0.9 0.1 0.0081
Doubly-violating [mupi] 0.9 0.1 0.1 0.9 0.0081
Doubly-violating [pumi] 0.1 0.1 0.9 0.9 0.0081

Table 4: A schematic example of the linking hypothesis in the Multiple Grammars model,
with the waveform mimi being perceived as a distribution over SRs.

The distribution over possible constraint rankings — and thus possible
grammars — is updated in accordance to the perceived distribution over
words. Since the total probability mass on possible words which violate
Agree([back]) is 0.0324 + 0.1470 = 0.18, the probability that this con-
straint is ranked above Id-[back] after exposure to mimi is (1-0.18) = 0.82;
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the same is true of Agree([nasal]) and Id-[nasal].
If, after exposure to just this one learning datum, the model were asked

to judge the novel waveform pupu, it would proceed in the following way.5

Via the same calculation as above, the probability that pupu is perceived as
violating Agree([back]) is 0.18, and of violating Agree([nasal]) is 0.18.
Since the probability of a grammar accepting a nasal-violating form is 0.18
and of accepting a backness-violating form is 0.18, the model predicts that
the novel form will be accepted 70.48% of the time ((1−(p(Agree([nasal])
>> Id-[nasal])) × p(violate Agree([nasal]))) + (1−(Agree([back])
>> Id-[back]) × p(violate Agree([back])))), and rejected (1− 0.7048) =
29.52% percent of the time.

10.3.2. Fitting the Multiple Grammars model

The values of the misperception parameters which best fit the results
of Experiment 1 were as follows: pmisperceiveC = 0.8%, pmisperceiveV = 1.4%.
Predictions for the experimental data from Experiment 1 is in Table 5.

Exp. 1 Multiple Grammars
Violations (scaled) (scaled)

None 0.39 0.45
Backness 0.30 0.27

Nasal 0.19 0.18
Backness & nasal 0.11 0.10

Table 5: Multiple Grammars numerical model fit to Experiment 1 data, scaled and un-
scaled.

It is clear that the model can qualitatively distinguish four different levels
of acceptance, which correspond to the four aggregate rates for the general-
ization data in Experiment 1.

10.4. The Stochastic OT model

Stochastic OT (Boersma et al., 1997) has been successfully employed
to model a range of variable phonological phenomena (for an overview see
Boersma (2003)), and comes equipped with a range of a range of phonological
learning algorithms (Boersma and Hayes, 2001; Jäger, 2007; Magri, 2014;

5Note that when modeling Experiment 1 this process was repeated a further 31 times,
omitted here for the sake of clarity.
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Magri and Storme, 2018, among others). It employs an error-driven update
rule to learn ranking values for each constraint, which serve as the mean of a
Gaussian distribution from which individual rankings are sampled when the
grammar evaluates novel forms.

10.4.1. Setting up the Stochastic OT model

Stochastic OT is traditionally paired with a Markedness >> Faithfulness
approach to phonotactics, in which the phonological grammar acts as a fil-
ter excluding all possible underlying forms except those which are consistent
with the observed phonotactic distributions (Prince and Smolensky, 1993).
However, this approach proves inappropriate for modeling the current ex-
periment: when provided with categorical learning data of the form /mimi/
→ [mimi], the Markedness >> Faithfulness setup predicts that participants
will learn that only fully-conforming words are allowed — the model does
too well, and the initial ranking values remain unchanged. This is because
the phonotactics-as-filter model never sees any informative learning data,
specifically cases where faithfulness must be promoted to accommodate the
attested forms.

This problem can be remedied, however, by appealing to the traditional
notion of the Rich Base (Prince and Smolensky, 1993), with the role of the
learning algorithm being to promote the markedness constraints which are
responsible for the gaps in the learning data. Thus, the default ranking con-
dition is Faithfulness >> Markedness, and the informative data are cases
where faithfulness to the (disharmonic) UR is violated to produce the (har-
monic) SR (for precedent see Hale and Reiss (1998)).

In principle, the full input to such a model would be all possible CVCV
forms with C ∈ {/p, m/} and V ∈ {/i, u/} for each of the 32 training forms.
To render each UR → SR mapping deterministic, I invoke the notion of
initial-syllable faithfulness with the undominated constraint Idσ1 (cf. Becker
et al. (2011)), along with the assumptions in section 10.1. Thus, for each
of the resulting 16 tableaux, the winner was the fully-conforming candidate
(ex., for the UR /pimu/, the winner was the fully-conforming candidate [pipi],
beating out [pimu], [pimi], and [pipu]).

In this setup, the time-course of learning falls into three stages. Initially,
while Markedness constraints have not begun to approach the Faithfulness
constraints on the ranking-value continuum, the algorithm mistakenly allows
disharmonic URs such as /pimi/ to realize without repair, as [pimi]. How-
ever, if the algorithm is allowed to run its course, it will promote Markedness
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enough so that there is no overlap in Gaussian distributions, and the model
will only admit harmonic URs to be realized faithfully, and repair all others.
Between these extrema is a zone where the ranking values of the Marked-
ness constraints are close enough to those of the Faithfulness constraints that
their associated Gaussian distributions begin to overlap, and the algorithm
sometimes allows disharmonic URs to be realized faithfully, and sometimes
repairs them pursuant to the demands of the Markedness constraints: /pimi/
→ [pimi ∼ pipi]. It is in this zone where non-categorical outcomes are per-
mitted that the possibility for modeling cumulative constraint interaction
lies.

10.4.2. Fitting the Stochastic OT model

The two Faithfulness constraints were initialized with ranking value 100,
and the Markedness constraints with ranking value 0. Rather than allowing
the model to learn from the data, which would lead to an inversion of the
initial ranking values and an ultimate return to the categorical Markedness
>> Faithfulness regime, I tested the model at a range of fixed ranking values
which fell within the intermediary zone of overlapping Gaussians discussed
above. The accuracy free parameter was implemented by manipulating the
difference in ranking values between Markedness and Faithfulness constraints,
since it is this difference which governs to what degree the constraints can
interact and potentially exhibit cumulative behavior. Similarly, the phonetic
substance free parameter was manipulated by varying the difference in rank-
ing values between the constraints which, if violated less often, would result
in fewer attested violations of nasal harmony compared to backness har-
mony, and thus to a distribution over forms which put less probability mass
on words which violate nasal harmony. Both these values were fit by hand-
adjusting the constraint weights down to a tenth of a point of ranking value,
and testing the fit to the experimental data. The ranking values which best
fit the generalization data from Experiment 1 were Agree([nasal]) = 49.5,
Agree([back]) = 48.5, Id-[nasal] = 50.5, and Id-[back] = 51.5. The
predictions of the best-fitting model for the Experiment 1 data is presented
in Table 6.
Like the Multiple Grammars model, Stochastic OT is able to qualitatively
distinguish four rates of endorsement, and thus capture ganging cumulativity.
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Violations Experiment 1 (scaled) Stochastic OT
None 0.39 0.39

Backness 0.30 0.29
Nasal 0.19 0.18

Backness & nasal 0.11 0.14

Table 6: Stochastic OT model numerical fit to scaled Experiment 1 data.

10.5. The Maximum Entropy (MaxEnt) model

Like Stochastic OT, MaxEnt has been successfully used to model variable
phonological phenomena. Unlike Stochastic OT, however, the MaxEnt model
needs no modification to capture the experimental data.

MaxEnt is most often used in combination with the “markedness only”
theory of phonotactics, which takes the job of the learner as being to weight
markedness constraints so as to maximize the likelihood of the attested dis-
tributions of data, rather than of a set of UR-to-SR mappings (cf. Hayes and
Wilson (2008); Wilson and Gallagher (2018)). Adopting this theory allows
for a straightforward implementation of the training phase in Experiment 1,
in which participants were (implicitly) tasked with learning a grammar which
maximized the likelihood of the fully-conforming data with which they were
presented.

10.5.1. Setting up the MaxEnt model

The accuracy free parameter was implemented by placing a Gaussian
prior with mean (µ) = 0 and narrow standard deviation (σ) on the weights
of Agree([back]) and Agree([nasal]). This encourages the model to pre-
fer solutions which have lower constraint weights in general, and thus forces
it to depart from matching the categorical training data and towards pre-
dicting a distribution over multiple forms. Previous work using the MaxEnt
framework has employed such priors to mimic the effect of biased learning
in experimental outcomes (cf. White (2017); Wilson (2006)); here I use it to
model the natural uncertainty about the final grammar that results from lim-
ited learning data. The phonetic substance parameter was instantiated with
differing values of σ for the different markedness constraints: a larger stan-
dard deviation imposes less penalty for higher constraint weights and thus
allows the model to give stronger penalties for violation of one markedness
constraint compared to another.
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10.5.2. Fitting the MaxEnt model

The candidate set consisted of a simplified tableau with the four types
of stimulus used in training (fully-conforming, backness harmony-violating,
nasal harmony-violating, and doubly-violating), with the 32 fully-conforming
observations from the training phase. Values of σ which best fit the experi-
mental data were σAgree([nasal]) = 0.22, and σAgree([back]) = 0.15; model
predictions for the Experiment 1 generalization phase data are shown in Ta-
ble 7 below.

Violations Experiment 1 (scaled) MaxEnt
None 0.39 0.40
Backness 0.30 0.30
Nasal 0.19 0.17
Backness & nasal 0.11 0.13

Table 7: MaxEnt model numerical fit to scaled Experiment 1 data.

Model fit was qualitatively satisfactory, with the MaxEnt model predicting
four distinct acceptance levels for the four categories of generalization stimuli.

11. Generalization to tetrasyllables

To this point, we have demonstrated that all three models can qualita-
tively capture the ganging cumulativity observed in the generalization phase
of Experiment 1. I now turn to evaluate the models on their ability to match
human generalization on the data from Experiment 4, using the optimal
parameters learned from Experiment 1.

11.1. The data to be modeled: Experiment 4 revisited

The unscaled generalization results from Experiment 4 are reproduced be-
low in Table 8. I evaluate the models on their ability to distinguish the nine
violation profiles delimited by the three levels of violation of the two Agree
constraints in the generalization phase of Experiment 4. I adopt a pairwise
assessment of Agree violations (cf. Bakovic (2000); Pulleyblank (2002);
Lombardi (1999); Tesar (2007); Kawahara (2011a)), and abstract away from
the distinction between local and non-local violations. For example, the
novel word mitepuni incurred 3 violations of Agree[back] ([i. . . . . . u, e. . . u,
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Violation profile Exp. 4
0C, 0V 0.74
0C, 3V 0.60
3C, 0V 0.47
3C, 3V 0.34
0C, 4V 0.48
3C, 4V 0.28
4C, 0V 0.34
4C, 3V 0.26
4C, 4V 0.17

Table 8: Lexical decision data from Experiment 4. Note that C and V in the leftmost
column denote the number of violations of the consonant-harmony and vowel-harmony
phonotactics for that candidate class respectively.

u. . . i]), and 4 violations of Agree[nasal] ([m. . . t, m. . . . . . p, p. . . n, t. . . . . . n]).6

This allows the modeling to remain in line with the statistical analysis in sec-
tion 8.

11.2. Evaluating the generalization of all models

I generated the predicted endorsement rates for Experiment 4’s general-
ization stimuli using the settings obtained in section 10. As noted earlier, to
allow for a direct comparison between the mean percent endorsement in the
experimental data and the predicted percent endorsement given by the mod-
els, model predictions are adjusted using a temperature term (T), following
Smolensky (1986); Hayes and Wilson (2008). T is a free parameter set on
a by-model basis to maximize the fit of the model’s predictions to the data,
and is used to generate adjusted model predictions in the following way: for
a given form with predicted percent endorse x given by a model, the adjusted
probability of endorsement for that form is x 1/T . It is this adjusted predicted
percent endorse (henceforth simply percent endorse) that is the metric of in-

6Although there is robust evidence that locality-based distinctions are attested in
phonological alternations, for example in many harmony systems (cf. Suzuki (1998); Kim-
per (2011)) and have been demonstrated in AGL experiments (cf. Finley (2017) for an
overview), the question has yet to be addressed experimentally in the domain of phono-
tactics; I leave this as a question for future research.
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terest for the remainder of the paper.7 Table 9 shows the observed percent
endorse for the violation profiles beside the predicted percent endorse from
each of the models; these rates are plotted in Figure 11.

Figure 11: Multiple Grammars, Stochastic OT, and MaxEnt model predictions for Exper-
iment 4 lexical decision data.

Model fits are evaluated by calculating the sum of squared errors for each
of the violation profiles in Experiment 4. Log-likelihood values were not
calculated because we are interested in how closely each model approximates
a target distribution given categorical training data and fixed parameter
values, rather than using those parameter values to fit the model to a specific
set of experimental outcomes. Model fits are evaluated numerically in Table
10.

7T was not used when fitting the models to data from Experiment 1 to minimize degrees
of freedom.
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Violation profile Exp. 4 Multiple Grammars Stochastic OT MaxEnt
0C, 0V 0.74 0.91 0.91 0.76
0C, 3V 0.60 0.58 0.47 0.55
3C, 0V 0.47 0.40 0.47 0.31
3C, 3V 0.34 0.23 0.25 0.50
0C, 4V 0.48 0.59 0.47 0.42
3C, 4V 0.28 0.23 0.25 0.28
4C, 0V 0.34 0.40 0.47 0.35
4C, 3V 0.26 0.23 0.25 0.26
4C, 4V 0.17 0.23 0.25 0.23

Table 9: Multiple Grammars, Stochastic OT, and MaxEnt model numerical predictions
for Experiment 4 lexical decision data. In the leftmost column, C and V indicate the
number of violations of the consonant- and vowel-harmony phonotactics respectively.

Model Sum of squared error
Multiple Grammars 0.069
Stochastic OT 0.138
MaxEnt 0.062

Table 10: Model comparison metrics using distance-agnostic Agree.

At a glance, we can see that the models vary in their ability to match
human generalization to the novel data. While all models can capture gang-
ing cumulativity qualitatively — they predict different endorsement levels
for each of the four categories distinguished by the binary violation status
of Agree([back]) and Agree([nasal]) — the same is not true of those
violation profiles distinguished only by counting cumulativity. Stochastic OT
predicts only four distinct levels of endorsement percentage across the nine
attested rates of percent endorse in the data, as does the Multiple Grammars
model, though the effect is obscured by the uncertainty introduced by the
possibility of inaccurately-perceived test items. MaxEnt, on the other hand,
predicts nine unique rates. This difference follows directly from the fact that
MaxEnt uses weighted constraints while the grammars underpinning the Mul-
tiple Grammars and Stochastic OT models use strict-domination ranking. In
ranked-constraint frameworks, multiple violations of a given constraint are
no worse than a single violation (excluding cases of markedness ties), and
therefore the distinction between stimuli of the form pitetime and pinetime
is “invisible” to that grammar. MaxEnt distinguishes these forms because
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the harmony of each candidate is informed by not only whether but also how
often each constraint is violated. Turning to the formal evaluation metrics
MaxEnt performs best; Stochastic OT predicts a poorly-fitting distribution
over output forms, while the Multiple Grammars model comes considerably
closer to the mark.

Although in section 11.1 I used a distance-agnostic version of Agree in
order to ensure that the categories of outcome used to evaluate the grammars
was supported by the statistical analysis of the experimental data, for the
sake of completeness I carried out a parallel evaluation of the three models
using a tier-local version of Agree. For example, under this scheme the
stimulus mitepuni incurred 2 violations of Agree[back]-local ([m. . . t,
p. . . n]) and 2 violations of Agree[nasal]-local ([e. . . u, u. . . i]), rather
than the 3 and 4 respectively it incurred using the distance-agnostic Agree.
The results are in line with those reported in Table reftable:evalstatstable,
and are presented below in Table 11.

Model Sum of squared error
Multiple Grammars 0.089
Stochastic OT 0.093
MaxEnt 0.085

Table 11: Model comparison metrics using Agree-local.

12. General discussion

This study used a series of AGL experiments to investigate how learners
acquire multiple phonotactic generalizations simultaneously, and how these
generalizations interact in the grammar. Experiment 1 found that learners
infer ganging cumulativity among independent phonotactic violations: words
violating two different phonotactic constraints were less likely to be endorsed,
and received lower numerical ratings, than words which violated only one
of the two. This effect was linearly additive: doubly-violating words were
judged ill-formed in proportion to the summed ill-formedness associated with
each of their phonotactic violations. Experiment 2 replicated these findings
using a different combination of phonotactics, sibilant-harmony and backness
harmony, and Experiments 3a and 3b again replicated Experiment 1 using a
training paradigm designed to more closely mimic natural first language ac-
quisition. Experiment 4 asked participants to generalize their knowledge to
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longer words, and demonstrated that participants infer counting cumulativ-
ity as well, alongside ganging cumulativity. These results are significant first
because they demonstrate cumulative effects on phonotactic well-formedness
that cannot be explained by lexical frequency asymmetries. Further, they
demonstrate that in the absence of evidence for or against constraint inter-
action, learners behave as expected if they have grammars in which constraint
cumulativity is the default, and in ways which are explicitly predicted to not
be possible by grammars incapable of expressing cumulative relationships.

In the modeling section, these results were assessed in light of several
contemporary phonological theories. I first demonstrated that traditional
approaches to phonotactic learning (e.g. unaugmented Classical OT, Recur-
sive Constraint Demotion (RCD) and its variants) were unable to capture
even the ganging cumulativity observed in Experiment 1, a bar which the
later three models were able to meet. Turning to these models, I compared
the ability of a Multiple Grammars model (a RCD-based algorithm equipped
with a rich perceptually-based linking hypothesis), a Stochastic OT model,
and a MaxEnt model to match the generalization behavior of participants in
Experiment 4. Fitting the models’ free parameters to data from Experiment
1, where participants were asked to generalize from two-syllable exposure
data to two-syllable testing data, I evaluated the models’ fit to the four-
syllable generalization data from Experiment 4. The results indicated that
while all models were able to capture the ganging cumulativity in Experi-
ments 1 and 4, the MaxEnt model was best able to capture both the counting
and ganging cumulativity participants exhibited in Experiment 4, and did so
without the additional linking hypothesis which was needed to support the
Multiple Grammars model.

13. Conclusion

Taken together, the experimental data and the modeling thereof indicate
that both counting and ganging constraint cumulativity are default in the
phonological grammar. I suggest, therefore, that in as far as the purpose
of phonological frameworks is to embody salient properties of the grammars
humans use to speak and learn, weighted-constraint frameworks such as Max-
Ent receive the most support from the present results.
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Hansson, G. Ó. (2010). Consonant harmony: Long-distance interactions in
phonology, volume 145. Univ of California Press.

Hayes, B. (2004). Phonological acquisition in optimality theory: the early
stages. Constraints in phonological acquisition, pages 158–203.

Hayes, B., Tesar, B., and Zuraw, K. (2003). Otsoft 2.1, software package.

Hayes, B. and Wilson, C. (2008). A maximum entropy model of phonotactics
and phonotactic learning. Linguistic inquiry, 39(3):379–440.
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