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Abstract

An ongoing debate in phonology concerns the treatment of cumulative
constraint interactions, or “gang effects”, which in turn bears on the ques-
tion of which phonological frameworks are suitable models of the grammar.
This paper uses a series of Artificial Grammar Learning experiments to exam-
ine the inferences learners draw about such cumulative constraint violations
in phonotactics using a poverty-of-the-stimulus design. I show that learn-
ers consistently infer linear counting and ganging cumulativity between a
range of phonotactic violations. I evaluate three phonological frameworks —
the classical Recursive Constraint Demotion algorithm (Tesar and Smolen-
sky, 2000), Stochastic Optimality Theory (Boersma and Hayes, 2001) and
Maximum Entropy Harmonic Grammar (Smolensky, 1986; Goldwater and
Johnson, 2003) — on their ability to model such cumulativity when exposed
to the same training data as the experimental subjects. I find that while
the Stochastic Optimality Theory and Maximum Entropy frameworks are
able to capture the ganging cumulativity participants displayed, only the
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Maximum Entropy model captures both counting and ganging cumulativity.
This follows directly from MaxEnt’s use of weighted, rather than ranked,
constraints.

Keywords: phonotactics, cumulative constraint interaction, gang effects,
poverty of the stimulus, artificial grammar, counting cumulativity, ganging
cumulativity

1. Introduction

.
The treatment of cumulative constraint interactions is the subject of on-

going debate in phonology. In this paper I take on the topic of cumulative
constraint interactions in phonotactics. I focus on the phonotactic domain
because it allows for a direct interrogation of the relationship between cu-
mulative constraint violations and acceptability. This method is inspired
by work in the field of experimental syntax (Featherston, 2005, 2019), where
syntactic violations are manipulated in a crossed experimental design to tease
apart the independent contribution of each violation, and gain insight into
how multiple violations are combined in the grammar. In the first part
of the paper, I combine this independent manipulation of violations with
an Artificial Grammar Learning (AGL) paradigm which imposes a poverty-
of-the-stimulus learning environment. By doing so I ensure that whatever
generalizations participants form about the (non)interaction of independent
phonotactic violations can be taken to reflect properties of the structure of
the grammar, rather than artefacts of language-specific distributional factors.

In the second part of the paper, I use the experimental results to eval-
uate three phonological frameworks — the Recursive Constraint Demotion
algorithmTesar and Smolensky (2000), Stochastic OT (Boersma and Hayes,
2001) and Maximum Entropy HG (Smolensky, 1986; Goldwater and Johnson,
2003) — on their ability to model the observed cumulativity.

2. Constraint cumulativity in phonological theory

Constraint-based phonological frameworks diverge on whether they can
model cumulative constraint interactions. Classical Optimality Theory (“OT”;
Prince and Smolensky (1993), et seq.) holds that speakers are informationally-
frugal when computing phonological well-formedness: constraints on well-
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formed structures are strictly ranked, and the choice between possible out-
comes is determined by the highest-ranking constraint that distinguishes be-
tween them. By contrast, Harmonic Grammar (“HG”; Legendre et al. (1990),
et seq.) holds that speakers take an informationally-holistic approach, con-
sidering all constraint violations when choosing the optimal outcome. The
difference can be observed in the schematic tableaux below. In OT, candidate
B wins out at the expense of candidate A, because candidate A violates the
higher-ranked Constraint 1, while candidate B does not. Because Constraint
1 is ranked above Constraint 2, candidate A’s single violation of Constraint
1 is more important than candidate B’s two violations of Constraint 2. This
removes candidate A from contention, and candidate B is deemed optimal.

Constraint 1 Constraint 2

Candidate A *!
+Candidate B **

Table 1: Schematic example of an OT tableau.

In HG the optimal outcome is the one which has the lowest harmony
penalty (H ) when considering all violations. Each candidate’s harmony is
equal to the number of times it violates each constraint, multiplied by the
weight of the constraint violated. Using this method, the same violations
result in candidate A being optimal because it has a lower harmony than
candidate B.1 This is because the two violations of Constraint 2, though
tolerated individually, together outweigh the penalty associated with the
single violation of Constraint 1.

Figure 1: Schematic example of a HG tableau.

1Of course, this only holds when the specific weights of the constraints involved permit
it; the weights are chosen in this schematic example to mirror dominance relations in OT
for the sake of demonstration.
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HG and OT predict different outcomes from the same same schematic exam-
ple because candidates’ violations are cumulative in HG but not in OT.2

There are two possible types of constraint cumulativity (Jäger and Rosen-
bach, 2006): counting cumulativity and ganging cumulativity. Counting cu-
mulativity, illustrated above, occurs when one violation of a lower-weighted
constraint leads to a lower penalty than one violation of another, higher-
weighted constraint, but two or more violations of the first constraint are
together more penalizing than the single violation of the second. Ganging
cumulativity occurs when independent violations of low-weighted constraints
are less penalizing than a single violation of a higher-weighted constraint, but
when they occur together these lower-weighted violations “gang up” together
to yield a more severe penalty.

3. Constraint cumulativity in phonological typology

3.1. Constraint cumulativity in alternations

Evidence for constraint cumulativity is often discussed in the context
of conditions on the relationship between phonological inputs and outputs
(Goldwater and Johnson, 2003; Coetzee and Pater, 2006; Pater, 2009; Zu-
raw and Hayes, 2017, i. a.). Within cumulativity, the majority of cases are
of ganging cumulativity, where two (or more) distinct factors interact. For
instance, the cumulative combination of factors influencing the likelihood of
-t/-d deletion in corpus data was noted by Guy and Boberg as early as 1994,
and the difficulty the phenomenon presented for OT was pointed out not
long after (Guy, 1997). More recently, Rose and King (2007) used a speech-
error elicitation task to examine the effect of simultaneously violating sev-
eral consonant co-occurrence restrictions in two Ethiopian Semitic languages,
Chaha and Amharic. They found that participants produced more errors
when stimuli violated several constraints at once than when stimuli violated
each constraint independently. Pater (2009) analyzes data from Japanese
loan words (originally from Nishimura (2003)) to argue that a static phono-
tactic restriction known as “Lyman’s Law” which prohibits multiple voiced
obstruents within a word can be construed as a case of constraint cumulativ-

2Technically, in OT markedness violations can be compared numerically when two
candidates tie on all higher-ranked constraints; these cases are not typically considered
among discussions of cumulative constraint interaction, however.
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ity.3 Pater finds that while speakers tolerate voiced obstruents and geminate
consonants unrepaired when adapting loan words, they preferentially repair
words which contain voiced geminates by devoicing them, enforcing the up-
per limit on voiced obstruents. Kawahara (2011a,b, 2013) follows this formal
analysis up with a series of acceptability judgment studies, finding robust
support for Pater’s conclusions. Kawahara also finds experimental evidence
that Lyman’s Law violations can block a process of inter-morphemic obstru-
ent voicing known as rendaku (Kawahara, 2012) in a further case of apparent
cumulativity, supporting the observations made in Itô and Mester (1986).
Recent studies by Kawahara (submitted); Kawahara and Breiss (submitted)
also indicate that the relationship between form and meaning characteristic
of sound-symbolism displays cumulative effects. On the counting cumulativ-
ity front there is less work, though recent findings by Kim (2019); Kumagai
(2017) demonstrate that only two nasals (but not one) blocks rendaku appli-
cation in Japanese compounds.

3.2. Phonotactics as a testing ground for theories of cumulativity

Constraint cumulativity has also been demonstrated in phonotactics, gen-
erally taking the form of additive effects of multiple markedness violations on
the likelihood of lexical attestation or experimentally-assessed acceptability.
Evidence comes from the study by Pizzo (2015), mentioned above, as well
as that of Albright (2009), which contains similar findings. Taken at face
value, these studies seem to constitute strong evidence for the cumulativity
of markedness constraints — multiple simultaneously-violated constraints to-
gether have an effect on speakers’ judgments which is greater than that of
each constraint alone.

3.3. The lexicon as a confound in the study of the phonotactic grammar

While suggestive of cumulative behavior, however, such findings have an
alternative explanation. This is because in each of these cases, experimentally-
determined well-formedness is highly correlated with the frequency of such
structures are in the lexicon. Even setting aside models which explicitly
use the number of similar words in the lexicon to estimate acceptability
(ex., the Generalized Neighborhood Model of Bailey and Hahn (2001)), the

3A reviewer notes that, depending on one’s theoretical orientation, loanword adaptation
might be construed as a phonotactic repair, rather than a phonological alternation.
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prominent role of lexical statistics in influencing well-formedness judgments
is well established in generative phonology. Pioneering work by Coleman
and Pierrehumbert (1997) highlighted the connections between the lexicon
and phonotactic well-formedness in their predictive model of nonword judg-
ments, inspiring much further work by Frisch et al. (2000); Shademan (2007);
Daland et al. (2011); Jarosz and Rysling (2017), among many others. Al-
bright (2012); Fukazawa et al. (2015) and Kawahara and Sano (2016) also
find evidence for a complex interaction of lexical statistics and phonologi-
cal acceptability: under-attestation of words in the lexicon which contain
two marginal structures results in a dramatic decrease in the acceptability
of novel structures of this type relative to those containing only one of the
structures.

Further, there is evidence that the relationship between lexicon and phonol-
ogy is diachronically bidirectional: Martin (2007, 2011) found that, assum-
ing speakers prefer to reuse novel coinages which are phonotactically well-
formed, the lexicon can come to underrepresent phonotactically ill-formed
words over time. This sets the stage for a possible feedback loop between
synchronic phonotactic judgments which are sensitive to lexical statistics, and
lexical statistics which are shaped by a synchronic preference for phonotactic
well-formedness. Thus in natural languages the question of directionality —
whether words are judged to be ill-formed because they are improbable in
the context of the lexicon, or whether skewed lexical statistics are the prod-
uct of the phonological grammar — cannot be satisfactorily resolved. This
prevents us from taking evidence of phonotactic cumulativity in natural lan-
guages such as Albright (2012); Pizzo (2015) as evidence of the nature of the
grammar which is unbiased by lexical statistics.

4. Experimental design

To deconfound phonotactic acceptability and lexical frequency, I used
an AGL paradigm to create a “sandbox environment” where these factors
could be carefully controlled. This allows me to interpret participants’ infer-
ences about such (non)cumulativity, made in the absence of disambiguating
evidence and distributional asymmetries of the lexicon, to be revealing of
the nature of phonotactic grammar, and not simply a case of “frequency-
matching” (cf. Ernestus and Baayen (2003)) in acceptability judgments.

Turning to the specific phonotactics involved, all experiments in this pa-
per paired varieties of consonant and vowel harmony. These phenomena have
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traditionally constituted core objects of generative phonological analysis (see
Hansson (2010) and Walker (2011) for overviews of consonant and vowel har-
mony patterns respectively), and both have been successfully learned in other
AGL experiments (ex., Finley (2015); Lai (2015)). Because the experiments
focused on simultaneous acquisition of two separate phonotactic patterns, it
was crucial that the aspects of the artificial language governed by each of
the phonotactics not overlap: consonant harmony regulated all and only a
word’s consonants, and vowel harmony regulated the vowels, allowing a word
to conform to or violate each phonotactic independently.4 In Experiments 1,
3a-b, and 4 I used consonant nasality harmony (hereafter nasal harmony): a
word’s consonants agree in nasality, being either drawn from the set of nasal
stops {/m, n/} or voiceless oral stops {/p, t/}; for a survey of parallels in
natural languages, see Hansson (2010, p. 111 et seq.). In Experiment 2 I
used sibilant harmony : sibilant consonants in a word agree in anteriority,
being drawn from {/s, z/} or {/S, Z/} (see Hansson (2010, p. 55 et seq.)
for a typological survey). All experiments used vowel backness (as well as
rounding) harmony — referred to hereafter as simply backness harmony : all
vowels in a word agreed in backness, being drawn from the set of {/i, e/} or
{/u, o/} (for an overview, see Walker (2011)).

To ensure an accurate assessment of participants’ well-formedness judg-
ments, I elicited acceptability judgments from participants using two different
tasks. First, participants rendered binary discrimination judgements in what
I term the lexical decision task, in which they were asked to judge whether
a novel word could belong to the language that they learned at the start of
the experiment (possible answers yes or no). They then completed a ratings
task where they were asked to assign each of those same words a numerical
rating (scale from 0 (very bad) to 100 (very good)) based on how that word
sounded as an example of the language they had learned. Robust support
of either outcome — whether speakers display cumulativity or not — should
be the result of converging evidence from both dependent variables.5

4An overlap in domain of the phonotactics could lead to potentially complex interac-
tions between the two in learning. For example, if one phonotactic regulated labiality of
consonants and vowels and another regulated height harmony among vowels, the overlap of
these harmonies could lead participants to draw spurious conclusions about the height and
rounding features of vowels specifically, subject to the inter-tier bias discussed in Moreton
(2008), in addition to or instead of one of the intended phonotactic patterns.

5A reviewer raises the possibility that participants could simply be judging the well-
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5. Experiment 1: Ganging cumulativity, nasal and backness har-
monies

In Experiment 1, I tested whether learners inferred a cumulative effect
between violations of two different phonotactics — ganging cumulativity.

5.1. Methods

5.1.1. Participants

45 undergraduate students at a North American university were recruited
to participate in this experiment through the Psychology Subject Pool, and
were compensated with course credit. Participants who had not spoken En-
glish consistently since birth were excluded (n = 2), as were those who did
not meet the criterion for learning assessed during the verification phase (n =
10, on which more below), leaving 33 participants whose data were included
in the final analysis.

5.1.2. Stimuli

In exposure phase, subjects heard 32 initially-stressed "CVCV nonwords
which conformed to the nasal harmony and backness harmony phonotactics.
Individual consonant and vowel identity was balanced in frequency and dis-
tribution over word positions. This procedure yielded a language containing
words such as potu, meni, nuno, tepi, teti, mumo, etc.

For the verification phase I created two sets of items, each set consisting
of 16 pairs of minimally-differing nonwords. One member of each pair was
a fully-conforming word from the exposure phase, and the other was created

formedness of novel items based on some non-phonological measure of similarity (such as
n-gram probabilities of the string) based on the items seen in training phase, and thus
not be inducing markedness constraints at all. While this is theoretically possible, since
all phoneme bigrams in the generalization items appeared in the exposure items, such a
generalization would come down to either tracking tier-based n-grams, or else tracking
counts over trigram windows of the string. The degree to which these generalizations
are “non-linguistic” is debatable, however, and a topic of ongoing investigation (cf., e.g.,
Wilson and Gallagher (2018)). Here I proceed on the assumption that whatever types of
generalizations participants are forming are at least linguistically-informed and thus are in
the domain of the two generative theories I test here, but leave open the exact structure of
these generalizations underpsecified for the present paper (though see Durvasula and Liter
(2020) for recent work focusing on at exactly what level of representational granularity
learners form generalizations in AGL experiments). Interested readers can access the raw
data in the supplementary materials.
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by changing one of the consonants or vowels in the fully-conforming word.
Thus the pair of words differed only in a single instance of that segment.
In each set, 8 pairs differed in a violation of nasal harmony, and 8 differed
in a violation of backness harmony, with differences between pair-members
balanced for segmental placement and identity. For example, the familiar
word potu was modified by altering the nasality specification of its second
consonant, yielding the pair potu vs. ponu.

In piloting, participants showed a strong preference for forms with iden-
tical consonants or vowels despite no numerical advantage for these forms
in the training data (in line with the general findings of Gallagher (2014)).
Therefore, the verification trials were balanced so that pairs whose fully-
conforming word had identical consonants (ex. totu) differed only in their
violation of backness harmony (ex., totu vs. toti). On trials whose conform-
ing word contained identical vowels, the two words differed only in a violation
of nasal harmony. Crucially, there were no doubly-violating words in the ver-
ification phase: the purpose was simply to ensure that subjects had learned
each of the two phonotactic constraints independently.

In the test phase, subjects were presented with a set of 48 novel non-
words which varied in conformity both phonotactics. 24 conformed to both
phonotactics (ex. pite), eight violated only the nasal-harmony phonotactic
(mite), eight violated only the backness-harmony phonotactic (pito), and
eight violated both the nasal-harmony and backness-harmony phonotactics
(mito).

All words were recorded by a phonetically-trained female native English
speaker using PCQuirer. They were digitized at 44,100 HZ and normalized
for amplitude to 70 dB.

5.1.3. Design

The experiment consisted of an exposure phase followed by a verification
phase, after the successful completion of which participants moved on to two
successive generalization tasks in the test phase: the lexical decision task
and then the ratings task. The exposure phase consisted of two blocks of 32
pseudo-randomized self-paced trials in which words were presented auditorily
without feedback. During the exposure phase, similar-sounding items were
presented together in blocks of eight, with each subject assigned at random
to one of four counter-balancing orders of the four blocks. For example, in
one counterbalancing group, participants first heard eight words with front
vowels and voiceless stops (ex. peti, tipi, tepe, piti . . . ) followed by eight

9



words with back vowels and nasal stops (monu, nunu, mumo, numo. . . ),
followed by eight words with back vowels and voiceless stops (topu, pupo,
topo, putu. . . ) followed by eight words with front vowels and nasal stops
(nini, meni, nemi, mene. . . ).

After the exposure phase, participants completed 16 self-paced two-alternative
forced choice verification trials, which were not accompanied by feedback
about accuracy. On each trial, participants were asked to choose which of
the two words belonged to the language they had learned in training; if par-
ticipants scored above 80% (13 or more correct answers out of 16 trials) in
the verification phase they moved on to the test phase. Otherwise they re-
ceived another block of 32 pseudo-randomized trials in the exposure phase,
after which they completed a second verification phase. The two sets of 16
verification-phase pairs alternated in successive verification phases to lower
the likelihood of participants passing verification via trial and error alone.
If participants did not meet criteria within three additional exposure blocks
they were simply asked to complete the demographic questionnaire, and did
not complete the test phase.

If subjects met criteria on the verification phase, they advanced to the
test phase which consisted of the lexical decision task and the ratings task.
Both tasks used the same set of novel words. In the lexical decision task,
participants were presented with two repetitions of 48 novel words in a ran-
dom order and were asked to choose whether they thought each word could
belong to the language they had learned. In the ratings task, participants
were asked to rate each of the same words on a scale from 0 (very bad) to 100
(very good) based on how they sounded as an example of the language they
had learned. At the end of the experiment, demographic information was col-
lected. The full experiment lasted approximately 15-20 minutes, depending
on the number of exposure blocks the subject required.

5.1.4. Procedure

Participants were tested individually in a sound-attenuated room using a
modified version of the Experigen platform (Becker and Levine, 2010). After
giving their informed consent to participate in the study, the experiment be-
gan with participants being told that they would be learning a new language,
after which they would be tested on their knowledge. Participants were en-
couraged to repeat back each word they encountered in the experiment to
help them get a better sense of the language: both hearing and speaking
the words was intended to make the phonotactic patterns more salient and
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help participants stay focused on the task. Participants were instructed to
base their decisions on what they knew about how the language sounded and
what their gut told them was right, and to not over-think their choices.

The experiment had a fully self-paced design. On each trial of the ex-
posure phase participants were instructed to click a button on the screen
to hear a word of the language. When they did so, they heard one of the
32 fully-conforming words chosen for the exposure phase, sampled without
replacement, and were instructed (via on-screen text) to repeat the word out
loud. The verification phase had a similar structure, except each trial played
a pair of words in a random order, and participants were instructed to say
both words out loud before making their choice. The test phase also had
a similar structure, with each task consisting of a series of trials containing
one word which participants were instructed to repeat out loud before either
making the lexical decision or assigning it a rating.

5.2. Analysis

Data from the test phase was analyzed using mixed effects regression mod-
els in R (R Core Team, 2013) using the lme4 package (Bates et al., 2015). All
statistical analyses began by fitting a maximally-specified model (following
Barr et al. (2013)), which contained a random intercept for subject and item,
fixed effects of violation of backness harmony, violation of nasal harmony, and
their interaction, and random slopes for all fixed effects by subject. Dummy
coding was used for the two fixed effects. In cases of non-convergence, inter-
actions among random slopes were removed first, then the slopes themselves,
until the model converged. For the lexical decision task I modeled the log-
odds of endorsing an item using logistic regression, and for the ratings task I
modeled the raw numerical data using a linear model. Planned comparisons
were was used to test for a difference between the singly-violating levels and
the doubly violating level using the glht() function from the multcomp pack-
age (Hothorn et al., 2016); this is done to verify that the difference between
singly-violating and doubly-violating levels was significant, a more rigorous
check for cumulativity which complements a lack of observed significant in-
teraction. If the main effects of phonotactic violation are significant, and the
interaction of the two is not, we can conclude that participants learned a
penalty for violating each constraint independently, and we cannot conclude
they inferred anything other than linear cumulativity between the phonotac-
tics. Confirmation that both singly-violating forms were judged significantly
better than the doubly-violating forms confirms that the interaction was not
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sub-linear; a lack of significant difference on this score does not confirm a
lack of sub-linearity, but neither does it provide evidence in favor of it, since
the interaction between phonotactic violations was not significant. Note that
although I regressed on the raw ratings data, for the sake of legibility I plot
z -normalized ratings throughout the paper.

5.3. Results

5.3.1. Lexical decision task

Figure 2 shows the results of the lexical decision task in Experiment 1.

Figure 2: Results for the lexical decision task, Experiment 1. The vertical axis plots mean
endorsement rate — the likelihood of an individual item of a given profile being judged
as being able to be a part of the language in question — as a percentage with standard
error bars, and the horizontal axis divides the novel words according to their phonotactic
violation profile, together with an illustrative example of that profile type.

The final model contained a random intercept for subject and word. There
was a main effect of violating backness harmony (β = −0.813, std. err. =
0.201, z = −4.044, p < 0.001) and a main effect of violating nasal harmony
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(β = −1.748, std. err. = 0.202, z = −8.646, p < 0.001). The interac-
tion between the two was not significant (β = 0.020, std. err. = 0.321, z
= 0.061, p = 0.951) . This means that forms violating backness harmony
were less likely to be endorsed than forms that did not, and forms that vio-
lated nasal harmony were less likely to be endorsed than those that did not.
Further, there is no evidence to think that doubly-violating forms were not
endorsed at a rate proportional to the summed penalty for each of their vio-
lations. The post-hoc comparisons indicated that forms violating only nasal
harmony trended towards a significant difference in log-odds of endorsement
from doubly-violating forms (β = 0.833, std. err. = 0.474, z = 1.758, p =
0.079) , and that forms violating only backness harmony differed significantly
from doubly-violating forms (β = 1.768, std. err. = 0.475, z = 3.723, p <
0.001).6

5.3.2. Ratings task

Results of the ratings task are presented in Figure 3. The model for
the ratings task had the same random effect structure as that of the lexical
decision task. There was a main effect of violating backness harmony (β =
−7.1, std. err. = 2.918, t = −2.433, p = 0.020), which yielded a decrease
in ratings. There was also a main effect of violating nasal harmony (β =
−23.676, std. err. = 2.918, t = −8.115, p < 0.001); their interaction was
not significant (β = −2.025, std. err. = 4.614, t = −0.439, p = 0.663).
Post-hoc comparisons indicated that forms violating only nasal harmony did
not significantly differ in rating from those violating both backness and nasal
harmony (β = 5.075, std. err. = 6.843, z = 0.742, p < 0.458), but forms
violating only backness harmony did differ from doubly-violating forms (β =
21.651, std. err. = 6.843, z = 3.164, p = 0.002).

5.4. Local discussion

Experiment 1 provides evidence that in a poverty-of-the-stimulus environ-
ment — that is, in a context unbiased by lexical statistics — learners infer
ganging cumulativity between violations of two separate phonotactic con-
straints in their learning data. In the lexical decision task, doubly-violating

6An identical model with a random slope of presentation (first vs. second) by item
was also fit, to see whether each item being seen more than once affected the results; the
findings are qualitatively unchanged, and quantitatively extremely close to those of the
model reported here.
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Figure 3: Results for the ratings task, Experiment 1. For the remainder of the paper,
the central line in each boxplot indicates the median, with the colored portion of the
box extending from the 25th percentile to the 75th; whiskers extend a further 1.5 times
the inter-quartile range of the data. For readability, I plot z -normalized rating on the
vertical axis, and the horizontal axis divides the novel words according to their phonotactic
violation profile, together with an illustrative example of that profile type.

forms were endorsed in proportion to the likelihood of endorsement of forms
bearing each of their violations independently, while in the ratings task there
was a main effect of violating both phonotactics, but it is unclear whether the
cumulativity was linear or sub-linear (that is, whether only nasal harmony-
violating forms differed from doubly-violating forms). In either case, however,
the overall finding is that cumulativity obtains.

6. Experiment 2: Ganging cumulativity, sibilant and backness har-
monies

To establish the generality of the results of Experiment 1, Experiment 2
replicated Experiment 1 with a different consonant harmony phonotactic —
sibilant harmony.
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6.1. Methods

6.1.1. Participants

84 undergraduate students were recruited to participate in this experi-
ment, none of whom had participated in Experiment 1. Participants were
excluded for not having spoken English since birth (n = 15), and not consis-
tently learning both phonotactic constraints (n = 35), leaving 34 participants
whose data were included in the study. Note that although the structure of
verification structure for this experiment was identical to that of Experiment
1, this experiment had an extremely high attrition rate, about 50%; in sec-
tion 9 I consider what might have been the cause of this dramatic difference.7

Recruitment method, compensation, experimental setting, and software were
the same as for Experiment 1. New materials were created for Experiment
2 by replacing /p/ with /S/, /m/ with /Z/, /t/ with /s/, and /n/ with /z/.
Design, procedure, and analysis for Experiment 2 was identical to that of
Experiment 1, except that the lexical decision task contained only one pre-
sentation of each of the novel words, rather than two.

6.2. Results

6.2.1. Lexical decision task

Figure 4 shows the results of the lexical decision task in Experiment 2.
The final logistic regression model contained a random intercept for subject
and word. There was a main effect of violating backness harmony (β =
−1.223, std. err. = 0.177, z = −6.992, p < 0.001) and also a main effect of
violating sibilant harmony (β = −0.968, std. err. = 0.176, z = −5.497, p
< 0.001); the interaction of these factors was not significant (β = 0.283, std.
err. = 0.281, z = −1.007, p = 0.314). The post-hoc comparison between only
backness harmony-violating forms and doubly-violating forms was significant
(β = 1.506, std. err. = 0.415, z = 3.628, p < 0.001), as was the comparison
between only sibilant harmony-violating forms and doubly-violating forms
(β = 1.251, std. err. = 0.414, z = 3.018, p = 0.003).
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Figure 4: Results for the lexical decision task, Experiment 2.

6.2.2. Ratings task

Results of the ratings task are presented in Figure 5. The final regression
modeled raw ratings as a function of violation profile with random intercepts
for subject and word. Mirroring the results from the lexical decision task,
violation of backness harmony resulted in significantly lower ratings (β =
−14.429, std. err. = 2.337, z = −6.070, p < 0.001), as did violations
of sibilant harmony (β = −14.722, std. err. = 2.374, t = −6.200, p <
0.001); the interaction of these factors was not significant (β = −1.008, std.
err. = 3.756, z = −0.269, p = 0.79). Post-hoc comparisons revealed that
the difference in rating between only backness harmony-violating forms and

7A reviewer raises the possibility that the high attrition rate may have lead to the
results of the experiment being systematically biased based on the pool of participants
from whom data was collected. Although this is a theoretical possibility, I judge it unlikely
that a failure to learn individual phonotactics might impact the way these phonotactics
— when learned successfully — interact cumulatively in the grammar.

16



Figure 5: Results for the ratings task, Experiment 2.

doubly-violating forms was significant (β = 13.421, std. err. = 5.573, z =
2.408, p = 0.016), as was the difference between only sibilant-violating forms
and doubly-violating forms (β = 13.713, std. err. = 5.569, z = 2.462, p =
0.014).

6.3. Local discussion

The results of Experiment 2 establish the generality of the findings of
Experiment 1, confirming that speakers infer ganging cumulativity among
several different types of phonotactic constraints.

7. Experiment 3a-b: Passive learning of ganging cumulativity, nasal
and backness harmonies

Experiment 3a-b sought to replicate the results of Experiments 1 and 2
using a passive exposure training paradigm designed to more closely mimic
first language acquisition.
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Experiment 3a

7.1. Methods

7.1.1. Participants

76 new undergraduate students were recruited to participate in this exper-
iment. Participants were excluded for not having spoken English since birth
(n = 10), and not reliably learning both phonotactics (n = 0), leaving 66
participants whose data were included in final analysis. The sample size was
increased to compensate for the less controlled nature of the training phase,
described below, which left more room for variable strength of learning by
individual participants. Recruitment method, compensation, experimental
setting and software, and materials were the same as for Experiment 1.

7.1.2. Design

Design for Experiment 3a was the same as for Experiment 1 except as
follows. The exposure phase consisted of each of the 32 training words pre-
sented in a random order twenty times in a continuous speech stream. Since
the exposure was designed to be naturalistic, I did not impose an absolute
threshold for advancement to the test phase; instead participants were al-
lowed to advance to the test phase if they did not make significantly more
errors on verification trials which contrasted in vowel harmony violation only
compared to those those which contrasted in consonant harmony violation
only, and vice versa.8 The passive exposure training lead to performance on
the verification phase comparable to that achieved using the more interactive
training method (mean accuracy 81.3%), and no subjects were excluded for
not having learned both phonotactics to criterion.

Because of the longer exposure phase, the lexical decision task in the test
phase consisted of only one randomized presentation of each of the 48 novel
words, rather than two as in Experiment 1.

7.1.3. Procedure and analysis

Procedure for Experiment 3a was identical to that of Experiment 1, except
that during exposure participants were instructed that they should simply

8I used Fisher’s exact test (Fisher, 1934) to determine the level at which the proportion
of correct answers for each phonotactic significantly differed, across the range of possible
accuracies. The maximum difference between the number of errors participants could make
on each type of verification trial without being significantly different by this measure was
3.
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sit and listen to the speech stream. The exposure phase lasted around ten
minutes, and the entire experiment took approximately 20-30 minutes, de-
pending on the number of exposure blocks the subject required. Analysis
was identical to that of Experiment 1.

7.2. Results I: Do subjects infer ganging cumulativity?

7.2.1. Lexical decision task

Figure 6: Results for the lexical decision task, Experiment 3a.

Figure 6 shows the results of the lexical decision task in Experiment 3a.
The final logistic regression model contained a random intercept for subject
and word. Violating backness harmony was associated with a significant
decrease in log-odds of endorsement (β = −0.504, std. err. = 0.226, z =
−2.233, p = 0.0.026), as was was violating nasal harmony (β = −1.562, std.
err. = 2.227, z = −6.900, p < 0.001); the interaction between the two was
not significant (β = −0.486, std. err. = 0.363, z = −1.292, p = 0.196).
Post-hoc comparisons revealed that forms only violating backness harmony
were significantly more likely to be endorsed than doubly-violating forms (β
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= 1.094, std. err. = 0.533, z = 2.049, p = 0.041), while forms violating
only nasal harmony were not significantly more likely to be endorsed than
doubly-violating forms (β = 0.034, std. err. = 0.533, z = 0.065, p = 0.948).

7.2.2. Ratings task

Figure 7: Results for the ratings task, Experiment 3a.

Results of the ratings task are presented in Figure 7. The main effect of
violating nasal harmony was significant (β = −17.536, std. err. = 3.707,
z = −4.730, p < 0.001), but the main effect of violating backness harmony
was not (β = 0.706, std. err. = 3.706, z = 0.190, p = 0.850), nor was
the interaction between these factors (β = −8.666, std. err. = 5.861, z =
−1.478, p = 0.146). Since the model did not indicate that there was a main
effect of violating backness harmony, I did not conduct the post-hoc tests.

7.3. Local discussion

Experiment 3a provides some evidence for the robustness of inferred cu-
mulativity under more naturalistic passive exposure training: in the lexical
decision task, violations of both the nasal harmony and backness harmony
phonotactics contributed independently to likelihood of endorsement. In the
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ratings task, however, only violations of the nasal harmony phonotactic con-
tributed to lower ratings on average. Experiment 3b sought to replicate the
null effect observed in the ratings task.

Experiment 3b

In an attempt to replicate the null effect of cumulativity observed in the
ratings task in Experiment 3a, a shortened, ratings-only version of the same
experiment was carried out. If the results of the ratings task in Experiment
3a were simply the result of random fluctuation in the experimental outcome,
we expect to observe cumulativity in Experiment 3b. If, on the other hand,
this difference should be attributed to substantive differences between the
designs of Experiments 1-2 and 3a, we should expect to replicate the null
result .

7.4. Methods

78 new undergraduate students were recruited to participate in this ex-
periment. Participants were excluded for not having spoken English since
birth (n = 7), not completing the demographic survey (n = 1), and not con-
sistently learning both phonotactics (n = 0), leaving 70 participants whose
data were included in the study. Recruitment method, compensation, ex-
perimental setting, software, materials, and analysis were the same as for
Experiment 1, except that participants did not complete the lexical decision
task during the test phase.

7.5. Results I: Do subjects infer ganging cumulativity?

Results of the ratings task are presented in Figure 8. Mirroring results
of the lexical decision task from Experiment 3a, there was a main effect of
violating backness harmony (β = −10.136, std. err. = 3.875, z = −2.615,
p = 0.012), and a main effect of violating nasal harmony (β = −27.029,
std. err. = 3.875, z = −6.974, p < 0.001); the interaction between the two
was not significant (β = 0.304, std. err. = 6.129, z = −0.050, p = 0.961).
Post-hoc comparisons indicated that forms violating only backness harmony
significantly differed in rating from doubly-violating forms (β = 27.332, std.
err. = 9.089, z = −3.007, p = 0.003), and forms which violated only nasal
harmony did not differ significantly from doubly-violating forms (β = 10.439,
std. err. = 9.089, z = 1.149, p = 0.251).
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Figure 8: Results for the ratings task, Experiment 3b.

7.6. Local discussion

Experiment 3b fails to replicate the null effect observed in the ratings
task in Experiment 3a.

8. Experiment 4: Ganging and counting cumulativity

In Experiments 1, 2, and 3a-b, I examined how single violations of differ-
ent constraints interact in the grammar — testing for ganging cumulativity.
In Experiment 4, I examined the other type of constraint interaction pre-
dicted by HG and not by OT, counting cumulativity. Because HG takes into
account all violations of each constraint, predicts that a word violating the
a constraint n times will be less well-formed than a near-identical word vio-
lating the same constraint n−1 times. To test this prediction, participants
were tested on longer novel words which allowed for each word to host up to
two violations of each phonotactic constraint. This also allowed me to test
whether counting and ganging cumulativity obtained simultaneously, since I
examined a number of violations of each single phonotactic in the context of
each level of the other, yielding a fully-crossed design.
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8.1. Methods

8.1.1. Participants

71 new undergraduate students were recruited to participate in this exper-
iment. Participants were excluded for not having spoken English since birth
(n = 12), not completing the demographic survey (n = 1), and not con-
sistently learning both phonotactics (n = 0), leaving 58 participants whose
data were included in the study. Recruitment method, compensation, exper-
imental setting and software were the same as for Experiment 1.

8.1.2. Materials

Training and verification materials were identical to those of Experiment
1. 48 novel test words were created for this experiment, each four sylla-
bles long with "CVCVCVCV syllable structure and a left-aligned trochaic
stress pattern (ex., minemeni, putotupo, petipite, etc.). 24 of these words
conformed to both nasal harmony and backness harmony phonotactics, and
the remaining 24 were divided evenly among the two violation levels (one
locus of violation vs. two) of both phonotactics.9

8.1.3. Design and procedure

Design for Experiment 4 was identical to that of Experiments 1. Proce-
dure for Experiment 4 was identical to that of Experiment 2 (one run through
all 48 forms in generalization per task, rather than two), except that par-
ticipants were instructed before beginning the test phase that they would
be tested on longer words, and that even though the words they would be
hearing would be longer than the ones they had learned initially, their length
did not bear on whether they were likely to belong to the language or not.
This point was stressed via an analogy to English, which contains licit words
of many lengths.10

9I delay the formalization of these phonotactics until section 11.1.
10A reviewer expressed concern that this overt mention of word-length biased partici-

pants by encouraging them to treat the words in the generalization phase differently than
they might otherwise. Although technically a possibility, I did not judge this to be a likely
source of systematic bias in the experiment, since participants saw only four-syllable words
in the generalization phase. It is possible that without this direction participants would
have given the four-syllable words lower ratings, or endorsed them at a lower rate, across
the board. However, I judged this to not be a worrying possibility, because across-the-
board effects in acceptability should not impact any cumulativity that their judgements
displayed.
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8.2. Analysis

The analysis of Experiment 4 differed from that of previous experiments
because of its design, and because of the additional focus on determining
whether learners infer counting cumulativity between constraint violations.
Rather than run tests to determine whether each of the nine categories of
stimulus in the generalization phase were significantly different from one an-
other, I compared a model that contained a two binary fixed effects (whether
or not a form violated backness harmony (yes / no, whether or not a form
violated nasal harmony (yes / no) to a model which contained two corre-
sponding three-level factors denoting how many times a form violated each
phonotactic. Though a less rigorous statistical test, used here because of a
lack of experimental power, it directly corresponds to the question that is at
stake in linguistic theory: does a model which allows counting cumulativity
capture the data better than one which does not?

8.3. Results

8.3.1. Lexical decision task

Figure 9: Results for the lexical decision task, Experiment 4. The vertical axis plots
mean endorsement rate as a percentage, with standard error bars, and the horizontal axis
divides the novel words according to their level of vowel-harmony violations, grouping by
level of consonant violations. Note: C-Violations indicate violations of nasal harmony,
and V-Violations indicate violations of backness harmony.

24



Figure 9 shows the results of the lexical decision task in Experiment 4.
The logistic regression models contained a random intercept for subject and
word. Two versions of this model were fit, the alternative model, with a three-
level factor corresponding to violation level (0, 1, 2) of each phonotactic, and
a null model, with a binary factor (violating vs. non-violating), discussed
above. The alternative model fit the data significantly better than the null
model (χ 2 = 19.928, df(5), p = 0.001, assessed using the anova() function
in R).

8.3.2. Ratings task

Figure 10: Results for the ratings task, Experiment 4.

Figure 10 shows the results of the ratings task in Experiment 4. A null
and alternative model of the same structure as those described above were fit
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to the ratings data, with the alternative model yielding a significantly better
fit (χ 2 = 16.461, df(5), p = 0.006).

8.4. Local discussion

Experiment 4 found that learners reliably distinguish between multiple
levels of well-formedness (counting cumulativity, as in pitetipe (0 violations of
nasal harmony) vs. mitetipe (1 violation) vs. mitenipe (2 violations)). These
findings are in line with predictions of grammars which are capable of ex-
pressing cumulative relationships between constraint violations, and against
predictions made by strict-ranking theories such as classical Optimality The-
ory.

9. Experimental discussion: Phonetic substance as a moderator of
phonological learning

An unexpected yet repeated experimental finding was that participants
exhibited an asymmetry in the strength of markedness associated with vio-
lating different phonotactics. In Experiments 1, 3a, 3b, and 4, violations of
backness harmony were judged to be less severe than violations of nasal har-
mony. However, when backness harmony was paired with sibilant harmony
in Experiment 2, no such disparity was observed. Why should this be?

One possible explanation is that fewer participants learned the backness
harmony constraint than learned the nasal harmony constraint. I judge this
hypothesis highly unlikely, because all participants had to pass an equal
threshold for learning both phonotactics in the verification phase.

Another possibility is that the penalty for violating a phonotactic con-
straint is influenced by how perceptually distinct that constraint’s conforming
and non-conforming instantiations are. For example, the perceptual differ-
ence between a voiceless stop and a nasal stop sharing a place of articulation
may be greater than the difference between a front vowel and a back vowel, or
between a coronal sibilant and a post-alveolar sibilant with the same voicing
specification.

This perceptual hypothesis could also explain the large number of partici-
pants who were excluded from Experiment 2 for not learning both phonotac-
tics adequately: 35, in contrast to 10, 0, 0, and 0 in Experiments 1, 3a, 3b, and
4 respectively. Possibly, learning two perceptually-subtle phonotactics was
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more difficult than learning one perceptually-subtle and one perceptually-
salient phonotactics, leading to an overall reduction in accuracy in Experi-
ment 2. The best way to capture this notion of “perceptual distinctiveness”
— whether by counting distinctive features or by a more directly perceptual
measure — is beyond the scope of this paper. However, the proposed pho-
netic explanation is in line with phonological theories which hold that both
input statistics and perceptual similarity play a role in grammar (Steriade,
2001; Wilson, 2006; Zuraw, 2013; White, 2017, i. a.). Further research is
necessary to disentangle the role of perceptual distinctiveness in modulat-
ing the severity of penalty associated with violation from possible increases
in learning difficulty stemming from learning multiple perceptually-subtle
phonotactics at once. Such research could also engage with formal measures
of perceptual subtlety such as confusion matrices, though translating from
such representations into grammar-internal constructs is a non-trivial task
(for one approach, see White (2017)).

10. Modeling the experimental data: setup and training

In this section, I use the lexical decision task results from Experiments
1 and 4 to evaluate several phonological models: the Recursive Constraint
Demotion (RCD) algorithm of Tesar and Smolensky (2000), a Stochastic OT
model (Boersma and Hayes, 2001), and a Maximum Entropy model (Smolen-
sky, 1986; Goldwater and Johnson, 2003).11 Models were evaluated by finding
the optimal settings to capture the results of Experiment 1, and then using
these settings to predict endorsement rates for the stimuli in Experiment 4.
To preview the results, while RCD was unable to capture any cumulativity,
the Stochastic OT and MaxEnt models were able to qualitatively capture the
ganging cumulativity in the generalization data from Experiment 1. However,
the MaxEnt model generalized to the ganging- and counting-cumulativity
seen in Experiment 4 substantially better than Stochastic OT.

11I chose to model the lexical decision task results because the phonological models
considered here yield predictions about the likelihood of endorsement in a lexical decision
task. To model the results of the ratings task, the models would require an additional
linking hypothesis which treated numerical ratings as a probability of acceptance on a
lexical decision task. While not unreasonable (cf. Breiss & Albright (submitted)), I address
lexical decision data so as to minimize unnecessary assumptions.
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10.1. The data to be fit: Experiment 1 revisited

The results of the lexical decision task of Experiment 1 are reproduced
below in Table 2. The center column lists the raw percentage of endorsement,
while the right column provides the scaled percent endorse. Scaled percent
endorse was obtained by summing the raw percent endorse over all categories
of stimulus, and dividing each category’s rate by that sum. This rescaling
is necessary because the models pursued here yield predictions which differ
from the format of the results in Experiment 1: they assign each to yield a
probability distribution over four outcomes which sum to 1, rather than four
probabilities of endorsement which each range between 0 and 1.

Violation profile (example) Exp. 1 - unscaled Exp. 1 - scaled
Fully-conforming (mimi) 75% 39.0%
Backness-violating (mimu) 58% 30.2%
Nasal-violating (mipi) 37% 19.2%
Double-violating (mipu) 22% 11.4%

Table 2: Generalization data from Experiment 1’s lexical decision task, scaled and un-
scaled.

For modeling purposes, I adopt the simplifying assumption that the con-
straints FtBin (McCarthy and Prince, 1986; Prince, 1980), Max, Dep, and
Id-[place] are undominated in all models throughout the learning process.
Table 3 lists the exhaustive set of form types which was used in modeling;
for example, the form [mimi] stands in for the experimental items such as
[mimi], [mine], [nemi], [nene], etc..

10.2. Recursive Constraint Demotion

I first evaluated the Recursive Constraint Demotion algorithm (RCD;
Tesar and Smolensky (2000)).12 This algorithm takes as input a series of
mark-data pairs — a UR and a pair of candidates with a constraint that
distinguishes them — and returns (if one exists) a constraint hierarchy that
allows the optimal candidate to win. RCD constructs the ranking hierar-
chy by cancelling common violations among marked-data pairs, and then

12Variants on this approach, such as Biased Recursive Constraint Demotion (Prince
and Tesar, 2004), and Low Faithfulness Constraint Demotion (Hayes, 2004) were also
evaluated, and yielded the same result as classical RCD for the same analytic reasons.
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Phase presented Stimulus profile Stimulus
Training Fully-conforming [mimi]
... Fully-conforming [pipi]

Fully-conforming [mumu]
Fully-conforming [pupu]

Generalization Backness-violating [mimu]
... Backness-violating [pipu]

Backness-violating [mumi]
Backness-violating [pupi]
Nasal-violating [mipi]
Nasal-violating [pimi]
Nasal-violating [mupu]
Nasal-violating [pumu]
Doubly-violating [mipu]
Doubly-violating [pimu]
Doubly-violating [mupi]
Doubly-violating [pumi]

Table 3: Simplified data used in modeling Experiment 1.

installing all constraints which prefer only winning members of the mark-
data pair in the highest stratum. Then it removes those mark-data pairs
for which the winning item has no violations un-cancelled. Then the al-
gorithm repeats the ranking step, installing all unranked winner-preferring
constraints in the second-highest stratum, removing all mark-data pairs with
non-violating winners, and so on until there are no constraints left unranked.

The algorithm was provided with mark-data pairs consistent with the
32 fully-conforming stimuli from Experiment 1.13 Constraints ranked were
Agree([back]), Agree([nasal]), Id-[back], and Id-[nasal]; learning
simulations were carried out in OTSoft (Hayes et al., 2017). The algorithm
returned the following pairwise rankings: Agree([back]) >> Id([back]),
Agree([nasal]) >> Id-[nasal], which implies the stratification below:

Stratum 1: Agree([back]), Agree([nasal])

13Here, the UR was always the well-formed form, and competitor SRs were created by
altering the UR by one or two segments, so as to resemble items from the generalization
phase.
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Stratum 2: Id-[back], Id-[nasal]

As designed, the RCD does not yield a ranking which admits cumulativity.
It does not allow a distinction among phonotactically-imperfect forms; that
is, singly-violating mimu is not distinguished from doubly-violating mipu.
Therefore I discard this framework as a suitable model of the phonological
grammar as it is at work in the current experiments, and do not consider it
when testing generalization to data from Experiment 4.

10.3. The Stochastic OT model

Stochastic OT (Boersma et al., 1997) has been successfully employed
to model a range of variable phonological phenomena (for an overview see
Boersma (2003)), and is compatible with a range of phonological learning
algorithms (Boersma and Hayes, 2001; Jäger, 2007; Magri, 2014; Magri and
Storme, 2018, among others). A Stochastic OT grammar is learned incre-
mentally, using an error-driven update rule to adjust ranking values for each
constraint from their starting values until they minimize errors on the learn-
ing data. These ranking values then serve as the mean of a Gaussian distribu-
tion from which individual rankings are sampled when the grammar evaluates
novel forms. For more details on the time course of learning/acquisition us-
ing the Gradual Learning Algorithm, an update rule used in Stochastic OT
and the one employed in this model, see, for example, Escudero and Boersma
(2003); Pater et al. (2007).

10.3.1. Setting up the Stochastic OT model

Stochastic OT is traditionally paired with a Markedness >> Faithfulness
approach to phonotactics, in which the phonological grammar acts as a fil-
ter excluding all possible underlying forms except those which are consistent
with the observed phonotactic distributions (Prince and Smolensky, 1993).
However, this approach proves inappropriate for modeling the current exper-
iment: when provided with categorical learning data of the form /mimi/ →
[mimi], the Markedness >> Faithfulness setup predicts that participants will
learn that only fully-conforming words are allowed (as the RCD model did)
— the model does too well, and the initial ranking values remain unchanged.
This is because the phonotactics-as-filter model never sees any informative
learning data, specifically cases where faithfulness must be promoted to ac-
commodate the attested forms.
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This problem can be remedied, however, by appealing to the traditional
notion of the Rich Base (Prince and Smolensky, 1993), with the role of the
learning algorithm being to promote the markedness constraints which are
responsible for the gaps in the learning data. Thus, the default ranking con-
dition is Faithfulness >> Markedness, and the informative data are cases
where faithfulness to the (disharmonic) UR is violated to produce the (har-
monic) SR.

In principle, the full input to such a model would be all possible CVCV
forms with C ∈ {/p, m/} and V ∈ {/i, u/} for each of the 32 training forms.
To render each UR → SR mapping deterministic, I invoke the notion of
initial-syllable faithfulness with the undominated constraint Idσ1 (cf. Becker
et al. (2011)), along with the assumptions in section 10.1. Thus, for each
of the resulting 16 tableaux, the winner was the fully-conforming candidate
(ex., for the UR /pimu/, the winner was the fully-conforming candidate [pipi],
beating out [pimu], [pimi], and [pipu]).

In this setup, the time-course of learning falls into three stages. Initially,
while Markedness constraints are low and have not begun to approach the
Faithfulness constraints on the ranking-value continuum, the algorithm mis-
takenly allows disharmonic URs such as /pimi/ to be realize without repair as
[pimi]. However, if the algorithm is allowed to run its course, it will promote
Markedness high enough so that there is no overlap in Gaussian distribu-
tions, and the model will only admit harmonic URs to be realized faithfully,
and repair all others. Between these extrema is a zone where the ranking
values of the Markedness constraints are close enough to those of the Faith-
fulness constraints that their associated Gaussian distributions overlap, and
the algorithm sometimes allows disharmonic URs to be realized faithfully,
and sometimes repairs them pursuant to the demands of the Markedness
constraints: /pimi/ → [pimi ∼ pipi]. It is in this zone where non-categorical
outcomes are permitted that the possibility for modeling cumulative con-
straint interaction lies.14

14A reviewer notes that the use of conjoined constraints (Smolensky, 1995) could also
allow the model to capture cumulative results more easily. This is true, but in this case
the failure would be one of explanation, rather than capacity — without justification for
why learners should infer conjoined constraints in the first place, the addition of these
constraints to the model is unmotivated.
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10.3.2. Fitting the Stochastic OT model

Rather than allowing the model to learn from the data, which would
lead to an inversion of the initial ranking values and an ultimate return to
the categorical Markedness >> Faithfulness regime as mentioned directly
above, I tested the model at a range of fixed ranking values which fell within
the intermediary zone of overlapping Gaussians discussed above. In order
to capture the fact that experimental participants penalized violations of
nasal harmony more than violations of backness harmony, I manipulated the
difference in ranking values between the constraints which, if violated less
often, would result in fewer attested violations of nasal harmony compared
to backness harmony, and thus to a distribution over forms which put less
probability mass on words which violate nasal harmony. Ranking values were
fit by hand-adjusting the constraint weights down to a tenth of a point of
ranking value to minimize the sum of the squared error between predicted
and observed data. Note that while with the appropriate initial ranking
values these values are passed through by the learner, I isolated them by hand
here to yield greater precision than the step-size of the learning rule allowed.
The ranking values which best fit the generalization data from Experiment 1
were Agree([nasal]) = 49.5, Agree([back]) = 48.5, Id-[nasal] = 50.5,
and Id-[back] = 51.5. The predictions of the best-fitting model for the
Experiment 1 data is presented in Table 4.

Violations Experiment 1 (scaled) Stochastic OT
None 0.39 0.39

Backness 0.30 0.29
Nasal 0.19 0.18

Backness & nasal 0.11 0.14

Table 4: Stochastic OT model numerical fit to scaled Experiment 1 data.

Unlike the RCD model, Stochastic OT is able to qualitatively distinguish
four rates of endorsement, and thus capture ganging cumulativity.

10.4. The Maximum Entropy (MaxEnt) model

Like Stochastic OT, MaxEnt has been successfully used to model variable
phonological phenomena. Unlike Stochastic OT, however, the MaxEnt model
needs no modification to capture the experimental data. MaxEnt is most of-
ten used in combination with the “markedness only” theory of phonotactics,
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which takes the job of the learner as being to weight markedness constraints
so as to maximize the likelihood of the attested distributions of data, rather
than of a set of UR-to-SR mappings (cf. Hayes and Wilson (2008); Wilson
and Gallagher (2018)). Adopting this theory allows for a straightforward
implementation of the training phase in Experiment 1, in which participants
were (implicitly) tasked with learning a grammar which maximized the like-
lihood of the fully-conforming data with which they were presented.

10.4.1. Setting up the MaxEnt model

I forced the model to match the non-categorical experimental results of
the participants by placing a Gaussian prior with mean (µ) = 0 and narrow
standard deviation (σ) on the weights of Agree([back]) and Agree([nasal]).
This encourages the model to prefer solutions which have lower constraint
weights in general, and thus causing it to depart from matching the categor-
ical training data and towards predicting a distribution over multiple forms.
Previous work using the MaxEnt framework has employed such priors to
mimic the effect of biased learning in experimental outcomes (cf. White
(2017); Wilson (2006)); here I use it to model the natural uncertainty about
the final grammar that results from limited learning data.15 To accommodate
the asymmetry in severity between backness harmony and nasal harmony vio-
lations, I used differing values of σ for the different markedness constraints: a
larger standard deviation imposes less penalty for higher constraint weights
and thus allows the model to give stronger penalties for violation of one
markedness constraint compared to another.

10.4.2. Fitting the MaxEnt model

The candidate set consisted of a simplified tableau with the four types
of stimulus used in training (fully-conforming, backness harmony-violating,
nasal harmony-violating, and doubly-violating), with the 32 fully-conforming
observations from the training phase. Values of σ which best fit the ex-
perimental data were σAgree([nasal]) = 0.22, and σAgree([back]) = 0.15

(obtained by hand-adjustment to minimize the sum of the squared error be-
tween predicted and observed data); model predictions for the Experiment 1
generalization phase data are shown in Table 5 below.

15If this model were provided more training data it would overcome this uncertainty
and learn a categorical grammar — it is hypothesized that the same would be true of the
experimental participants, given sufficient time.
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Violations Experiment 1 (scaled) MaxEnt
None 0.39 0.40
Backness 0.30 0.30
Nasal 0.19 0.17
Backness & nasal 0.11 0.13

Table 5: MaxEnt model numerical fit to scaled Experiment 1 data.

Model fit was qualitatively satisfactory, with the MaxEnt model predicting
four distinct acceptance levels for the four categories of generalization stimuli.

11. Generalization to tetrasyllables

To this point, I have demonstrated that Stochastic OT and MaxEnt can
qualitatively capture the ganging cumulativity observed in the generaliza-
tion phase of Experiment 1, while the RCD model cannot. I now turn to
evaluate Stochastic OT and MaxEnt on their ability to match human gener-
alization on the data from Experiment 4, using the optimal parameters set
from Experiment 1.

11.1. The data to be modeled: Experiment 4 revisited

The unscaled generalization results from Experiment 4 are reproduced
below in the leftmost column of Table 6. I evaluate the models on their
ability to distinguish the nine violation profiles delimited by the three lev-
els of violation of the two Agree constraints in the generalization phase
of Experiment 4. I adopt a pairwise assessment of Agree violations (cf.
Bakovic (2000); Pulleyblank (2002); Lombardi (1999); Tesar (2007); Kawa-
hara (2011a)), and abstract away from the distinction between local and
non-local violations (this issue is taken up again towards the end of the next
section). For example, the novel word mitepuni incurred 3 violations of
Agree[back] ([i. . . . . . u, e. . . u, u. . . i]), and 4 violations of Agree[nasal]
([m. . . t, m. . . . . . p, p. . . n, t. . . . . . n]).16 This allows the modeling to remain
in line with the statistical analysis in section 8.

16Although there is robust evidence that locality-based distinctions are attested in
phonological alternations, for example in many harmony systems (cf. Suzuki (1998); Kim-
per (2011)), and have also been demonstrated in AGL experiments (cf. Finley (2017)
for an overview), the question has yet to be addressed experimentally in the domain of
phonotactics; I leave this as a question for future research.
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11.2. Evaluating the generalization of all models

I generated the predicted endorsement rates for Experiment 4’s gener-
alization stimuli using the settings obtained in section 10. To allow for a
direct comparison between the mean percent endorsement in the experimen-
tal data and the predicted percent endorsement given by the models, I scaled
the results of Experiment 4 to sum to 1. Table 6 shows the observed percent
endorse for the violation profiles beside the predicted percent endorse from
each of the models; these rates are plotted in Figure 11.

Figure 11: Stochastic OT (green) and MaxEnt (blue) model predictions for Experiment
4 lexical decision data (red). From left to right, the boxes are labeled with the Agree-
[back] violation number, and columns from left to right within each box are labeled with
the number of Agree-[nasal] violations at each level of Agree-[back] violation.

Model fits were evaluated by calculating the sum of squared errors for each
of the violation profiles in Experiment 4. Log-likelihood values were not
calculated because I am concerned with how closely each model approximates
a target distribution given categorical training data and fixed parameter
values, rather than using those parameter values to fit the model to a specific
set of experimental outcomes. Model fits are evaluated numerically in Table
7.

At a glance, we can see that the models vary in their ability to match hu-
man generalization to the novel data. While both models can capture gang-
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Violation profile Exp. 4 (scaled) Stochastic OT (scaled) MaxEnt
0C, 0V (pitetipe) 0.20 0.86 0.45
0C, 3V (putetipe) 0.16 0.03 0.18
0C, 4V (putetipo) 0.13 0.03 0.08
3C, 0V (mitetipe) 0.13 0.001 0.03
3C, 3V (mutetipe) 0.09 0.03 0.13
3C, 4V (mutetipo) 0.07 0.001 0.02
4C, 0V (mitenipe) 0.09 0.03 0.04
4C, 3V (mutenipe) 0.07 0.001 0.02
4C, 4V (mutenipo) 0.05 0.001 0.01

Table 6: Stochastic OT, and MaxEnt model numerical predictions for Experiment 4 lexical
decision data. In the leftmost column, C and V indicate the number of violations of the
consonant- and vowel-harmony phonotactics respectively, as in the parenthesized example
form.

Model Sum of squared error
Stochastic OT 0.498
MaxEnt 0.086

Table 7: Model comparison metrics using distance-agnostic Agree.

ing cumulativity qualitatively — they predict different endorsement levels
for each of the four categories distinguished by the binary violation status
of Agree([back]) and Agree([nasal]) — the same is not true of those
violation profiles distinguished only by counting cumulativity. Stochastic
OT predicts only four distinct levels of endorsement percentage across the
nine attested rates of percent endorse in the data. MaxEnt, on the other
hand, predicts nine unique rates. This difference follows directly from the
fact that MaxEnt uses weighted constraints while the grammars underpin-
ning the Stochastic OT models use strict-domination ranking. In ranked-
constraint frameworks, multiple violations of a given constraint are no worse
than a single violation (excluding cases of markedness ties), and therefore
the distinction between stimuli of the form pitetime and pinetime is invisible
to that grammar. MaxEnt distinguishes these forms because the harmony
of each candidate is informed by not only whether but also how often each
constraint is violated. Turning to the formal evaluation metrics MaxEnt per-
forms better than Stochastic OT. Although neither matches the experimental
data extremely closely, as would be expected if the models were allowed to
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adjust their parameters to fit the data, the goal of this evaluation task was
to see how the models generalized from two- to four-syllable words, using
the optimal parameter values learned from the data in the training phase,
mirroring the human participants in Experiment 4.

Although in section 11.1 I used a distance-agnostic version of Agree in
order to ensure that the categories of outcome used to evaluate the grammars
was supported by the statistical analysis of the experimental data, for the
sake of completeness I carried out a parallel evaluation of the three models
using a tier-local version of Agree. For example, under this scheme the
stimulus mitepuni incurred 2 violations of Agree[back]-local ([m. . . t,
p. . . n]) and 2 violations of Agree[nasal]-local ([e. . . u, u. . . i]), rather
than the 3 and 4 respectively it incurred using the distance-agnostic Agree.
The results are in line with those reported in Table reftable:evalstatstable,
and are presented below in Table 8.

Model Sum of squared error
Stochastic OT 0.040
MaxEnt 0.006

Table 8: Model comparison metrics using Agree-local.

12. General discussion

This study used a series of AGL experiments to investigate how learners
acquire multiple phonotactic generalizations simultaneously, and how these
generalizations interact in the grammar. Experiment 1 found that learners
infer ganging cumulativity among independent phonotactic violations: words
violating two different phonotactic constraints were less likely to be endorsed,
and received lower numerical ratings, than words which violated only one of
the two. Experiment 2 replicated these findings using a different combination
of phonotactics, sibilant-harmony and backness harmony, and Experiments
3a and 3b again replicated Experiment 1 using a training paradigm designed
to more closely mimic natural first language acquisition. Experiment 4 asked
participants to generalize their knowledge to longer words, and demonstrated
that participants infer counting cumulativity as well. These results are sig-
nificant first because they demonstrate cumulative effects on phonotactic
well-formedness that cannot be explained by lexical frequency asymmetries.
Further, they demonstrate that in the absence of evidence for or against
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constraint interaction, learners behave as expected if they have grammars in
which constraint cumulativity is the norm, and in ways which are explicitly
predicted to not be possible by grammars incapable of expressing cumulative
relationships.

In the modeling section, these results were assessed in light of three con-
temporary phonological theories. I first demonstrated that traditional ap-
proaches to phonotactic learning (e.g. unaugmented Classical OT, Recursive
Constraint Demotion (RCD) and its variants) were unable to capture even
the ganging cumulativity observed in Experiment 1, a bar which the later
two models were able to clear. Turning to these models, I compared the
ability of a Stochastic OT model and a MaxEnt model to match the gen-
eralization behavior of participants in Experiment 4. Fitting the models to
Experiment 1, where participants were asked to generalize from two-syllable
exposure data to two-syllable testing data, I evaluated the models’ fit to the
four-syllable generalization data from Experiment 4 with the same settings.
The results indicated that while both models were able to capture the gang-
ing cumulativity in Experiments 1 and 4, only the MaxEnt model was able to
capture both the counting and ganging cumulativity participants exhibited
in Experiment 4.

13. Conclusion

Taken together, the experimental data and the modeling thereof indicate
that both counting and ganging constraint cumulativity are structurally core
to the phonological grammar. I suggest, therefore, that in as far as the
purpose of phonological frameworks is to embody salient properties of the
grammars humans use to speak and learn, weighted-constraint frameworks
such as MaxEnt are to be preferred to other model types.
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