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Abstract

A common view in the theoretical literature is that quantifier raising (QR) is a clausebounded
operation. But in a paper published in Glossa, Wurmbrand (2018) argues that (I) QR is not
clausebounded, and the apparent clauseboundedness of QR is due to the human parser’s dif
ficulty in processing extraclausal QR; and (II) the relative difficulty of extraclausal QR de
pends on the size of the embedded clause from which QR takes place. She then proposes a
theory of scope processing in which parsing LF movement is a costly operation for the human
parser, which in conjunction with independently motivated assumptions about A′movement
generates the desired results. In this paper, we accept Wurmbrand’s descriptive observations
and proposed syntax but argue against her theory of scope processing, as it does not capture
the relationship between LF and PF as seen in other scope processing phenomena. We offer
an alternative metric of scope processing difficulty in a formal framework, using Minimalist
Grammars (Stabler 1997) and their associated parsers. The new metric accounts for Wurm
brand’s observations as well as those cases that are problematic for her account, and points the
way toward an explanatory theory of scope processing.

1 Introduction

A basic question that often is (or should be) asked when presented with a sentence that seems
ungrammatical, or that seems to lack an otherwise expected reading, is whether this apparently
unavailable structure is prohibited by the grammar proper—that is, it is ruled out by the speaker’s
competence, in Chomsky’s (1965) sense—or whether it is a matter of performance, meaning that
it is allowed by the grammar, but excessively difficult for the human parser to process.

Perhaps the most famous case where the answer seems to be the latter is centerembedding
(Chomsky & Miller 1963). The rightembedding structure in (1a), while a bit lengthy, is still rela
tively easy to process for the average listener. However, if the relative clauses are switched from
passive to active voice, we end up with the centerembedding structure in (1b), which to the average
listener sounds like practical gibberish.

*Comments welcome and much appreciated. For a PDF of the formal appendices, please contact the first author.
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(1) a. The mouse that was eaten by the cat that was bitten by the dog that was owned by the
barber liked cheese.

b. The mouse that the cat that the dog that the barber owned bit ate liked cheese.

Nonetheless, for a variety of reasons the broad consensus is that (1b) is, in fact, a grammatical
sentence of English, but one that presents an overwhelming task for the human parser. In other
words, the apparent unacceptability of (1b) is a matter of performance, rather than competence.

A growing body of work has focused on asking the same competencevs.performance question
about another observation that has been made in the syntacticsemantic literature: namely, that
quantifier raising (QR) is an apparently clausebounded operation, so that a quantifier cannot take
scope outside of the clause in which it is merged.1 Consider the examples in (2), due to Fox (2000):

(2) Fox 2000, p. 62:
a. Someone said that every man is married to Sue.
b. Someone said that Sue is married to every man.

As Fox notes, it seems that each sentence in (2) only allows for a reading in which someone claims
that Sue is polygamous, and not one in which a variety of people have made differing claims about
who Sue is married to. The former reading is one in which someone scopes above every man (∃ >
∀), while the latter (absent) reading would be the result of every man scoping outside of its clause
and above someone (∀ > ∃). The apparent absence of this second reading suggests that every man
cannot undergo QR to a position outside of its embedded clause.

Notice that if QR is a form of A′movement, as is commonly thought to be the case, the putative
clauseboundedness of this operation is surprising, since this is not a general constraint on A′
movement. This is illustrated for whmovement, the prototypical case of A′movement, in (3):

(3) Who1 did someone say [CP t1 that Sue is married to t1]?

Thus, if cyclic QR is truly prohibited by the grammar, then either QR must not be a form of A′
movement (Hornstein 1994, but see Kennedy 1997 and Wilder 1997), or some alternative mecha
nism must be posited that traps quantificational DPs inside the clauses in which they are merged.2

But as will be discussed in greater detail in §2, in a paper published in Glossa, Wurmbrand
(2018) argues that (I) QR is in fact not clausebounded, and looks like any other form of A′
movement as far as the grammar proper is concerned; (II) the apparent clauseboundedness of QR
is a matter of performance rather than competence, as extraclausal QR is more difficult to process
than withinclause QR (cf. Syrett & Lidz 2011; Syrett 2015a,b); and (III) the relative difficulty of

1Note that this restriction excludes indefinites, which are wellknown to be able to scope (or “scope”) not only out
of embedded clauses, but also out of islands. However, this is generally thought to be due either to some alternative
mechanism of scopetaking for indefinites (see, e.g., Reinhart 1997), or to a distinct, referential use of the indefinite
that gives the appearance of wide scope (see, e.g., Fodor & Sag 1982, Kratzer 1998).

2As an example of the latter, Fox (2000) captures the apparent clauseboundedness of QR by means of his principle
of Scope Economy, which prohibits semantically vacuous covert movement. Fox argues that given certain basic move
ment constraints, cyclic QR would require at least one semantically vacuous iteration of QR, which Scope Economy
prohibits. (See Cecchetto 2004 for similar arguments.) Of course, if cyclic QR turns out to be possible then the tables
are turned, and Scope Economy must be revised in order to permit extraclausal QR. One possibility: independent of
the issue of cyclic QR, Anderson (2004) provides experimental evidence against a hardline competencebased view
of Scope Economy and in favor of a performancebased approach, in which case semantically vacuous QR may be
unproblematic as far as the grammar proper is concerned.
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processing extraclausal QR correlates with the size of the embedded clause from which QR takes
place. To account for (III), Wurmbrand proposes that movements that impact LF are costly to pro
cess, so that a greater cost is assigned to sentences where a quantificational DP is interpreted at
a greater distance—measured in terms of the number of iterations of movement—from its merge
position. This principle, paired with certain independently motivated assumptions about the nature
of clausal complementation and A′movement, derives the right predictions with respect to com
parative difficulty in the processing of extraclausal QR: put simply, scoping out of larger embedded
clauses requires more iterations of movement, and is therefore more difficult to process.

Wurmbrand’s proposal exhibits a variety of traits desirable for a metric of scope processing
difficulty: most notably, it makes specific, formally defined, and empirically testable claims, and is
built on theoretical principles that have been previously motivated on independent grounds. How
ever, towards the end of §2 we will discuss certain data that present difficulties for Wurmbrand’s
processing metric. In short, the problem is that she predicts scope processing difficulty to be de
termined only by LF, since all that matters is the distance between where a DP is interpreted and
where it is merged. But it seems that what the structure/derivation looks like on the PF side of things
also matters. For example, as Wurmbrand herself notes, it appears that overt cyclic whmovement
is significantly more easily processed than cyclic QR, in spite of the fact that both involve oper
ators being semantically interpreted at great distances from their merge positions. This contrast
between whmovement and QR indicates that LFaffecting movement is noticeably easier to parse
when it also impacts PF, i.e., that overt scopal movement is more readily processed than covert
movement. Second, experimental results from Lee (2009) suggest that when a quantificational DP
undergoes overt movement, it is more easily interpreted in its postmovement position than in its
premovement position, even though reconstruction would entail the DP being interpreted closer
to its merge position. It thus appears that the comparative difficulty of computing a given scope
configuration does not depend exclusively on the relative complexity of the LF side of the deriva
tion or representation, as in Wurmbrand’s analysis, but rather on the relationship between PF and
LF, so that movement is processed more easily when it affects both PF and LF than when it affects
only LF (QR) or PF (reconstruction).

Wurmbrand provides multiple suggestions for how a revised version of her metric might ac
count for some of these observations. However, her suggestions are only sketched rather than fully
formalized, meaning that they lack the strong predictive power of their prerevision predecessor.
Nonetheless, given the nature of the problematic evidence, one of Wurmbrand’s suggestions seems
especially promising: namely, that whether a given scope configuration for a given sentence is eas
ier or harder to process depends on the existence and severity of any mismatch between PF and LF
representations. In this paper we will offer a novel theory of scope processing difficulty that is very
much in the spirit of this insight, with sufficient predictive power to account for all of the data in
question. Moreover, in addition to our descriptive aim of characterizing which scope configurations
are more difficult to process than others, we will hopefully point the way toward an explanation of
why this should be the case, i.e., what it is about the nature of the human parser that makes such
configurations more difficult to process.

The theory of scope processing difficulty presented in this paper is built on a topdown parser
for Minimalist Grammars (MGs, Stabler 1997), formal grammars incorporating certain core fea
tures from Chomsky’s (1995) Minimalist Program. Since the pioneering work of Stabler (2013)
and Kobele et al. (2013), topdown MG parsers have been used to explain a variety of syntactic
processing phenomena attested in the psycholinguistic literature, including the greater processing
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difficulty of center vs. rightembedding (Kobele et al. 2013, Gerth 2015); the lesser processing
difficulty of Dutch serial verb constructions like (4), in contrast to German centerembedding as in
(5) (Kobele et al. 2013); crosslinguistic preferences in parsing subject vs. object relative clauses
(Graf et al. 2015, 2017); the human parser’s handling of stacked relative clauses in English and
Chinese (Zhang 2017); the comparative processing of sentences with and without Heavy NP Shift
(Liu 2018); dative DP attachment ambiguities in Korean (Lee 2019); and a variety of word order
and relative clause processing facts in Italian (De Santo 2019).
(4) Dutch serial verb construction (N1N2N3V1V2V3):

dat
that

Jan
Jan

Piet
Peter

Marie
Mary

zag
saw

laten
let

zwemmen
swim

‘that Jan saw Peter let Mary swim’ (Kobele et al. 2013, p. 35)
(5) German centerembedding (N1N2N3V3V2V1):

daß
that

Hans
Hans

Peter
Peter

Marie
Mary

schwimmen
swim

lassen
let

sah
saw

‘that Hans saw Peter let Mary swim’ (Kobele et al. 2013, p. 34)
Up to this point such work has focused on cases where the sentences being compared differed
in their overt structure. Thus, to our knowledge this paper is the first attempt to extend this pro
ductive research program to cases where the detectable differences lie only in the comparative
(un)availability of certain semantic interpretations.

We begin in §3 by introducingMGs, starting with a simpler variant in which only PF representa
tions can be built, and then extending it in a way that allows for the simultaneous generation of both
PF trees and LF trees in the style of Heim&Kratzer (1998).3 In §4we introduce a simplified version
of the topdown parser for our extended MGs. This gives us a formal grammar and parser that can
both produce and parse scope ambiguities using syntactic representations that largely accord with
assumptions in the theoretical literature. With the formal apparatus in place, in §5 we define our
principle of scope processing difficulty, which we refer to as the SLD Principle—a name that will
remain opaque until the principle is properly introduced. But in short, the idea is as follows. During
the course of a parse, the extended MG parser makes predictions about the existence and nature of
various syntactic constituents, as well as predictions about where in the tree those constituents sit,
both at PF and at LF. But when a constituent occupies distinct locations at PF and at LF—that is,
when QR or reconstruction has occurred—there will be a number of parse steps during which that
constituent has been predicted to exist, but its location at either PF or LF is not yet known. This
sort of situation is what the SLD Principle treats as costly, with parses being deemed more costly
if there are more such constituents, or if those constituents go longer (in terms of number of parse
steps) before they are assigned locations at both PF and LF. After introducing the SLD Principle,
we show in the rest of §5 that this principle derives all of the correct scope processing results as
discussed in §2. Finally, we offer some concluding remarks in §6.

3Ours is not the first version of MGs to include scopealtering LF movement operations—even the original formu
lation in Stabler 1997 allows for this possibility. However, our formulation differs from Stabler’s in several respects.
First, it allows for the possibility of PFonly movement—that is, reconstruction—which is required for many of the
examples discussed in this paper. Second, it generates two separate (PF and LF) trees, unlike Stabler’s, where phonetic
and semantic material occupy the same tree. And third, the LF trees we generate bear a closer resemblance to those
commonly seen in the semantic literature, including indexed traces and coindexed lambdaabstracting nodes appearing
below LF landing sites.
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2 Cyclic QR andWurmbrand’s (2018) analysis

In this section we discuss the currently available evidence in favor of the existence of extraclausal
QR, as well as the comparative difficulty of different types of extraclausal QR. We then go over
Wurmbrand’s (2018) proposal, including her theory of scope processing difficulty, according to
which processing is more difficult when quantifiers take scope at a greater distance from their merge
positions. We follow this up by discussing some cases in which overt movement seems to not only
facilitate but actively encourage a widerscope interpretation, an observation that is problematic
for Wurmbrand’s analysis. We then note an alternative way of looking at things in terms of PFLF
mismatch, which is only sketched and hinted at by Wurmbrand, but which we take to be a more
promising route. The formally fleshed out proposal in the rest of this paper can be thought of as an
analysis along precisely these lines.

2.1 Evidence for cyclic QR

The evidence put forth in the theoretical and experimental literature in favor of the existence and
comparative difficulty of extraclausal QR can be grouped into two broad categories. The first are
straightforward truth value judgments for sentences with quantificational DPs in embedded clauses.
The second are cases of antecedentcontained deletion (ACD) in which quantificational DPs must
scope out of embedded clauses. We will discuss these in turn.

2.1.1 Embedded quantificational DPs

Perhaps the clearest cases attesting to the existence of extraclausal QR are sentences in which DPs
that appear in embedded clauses can take scope over DPs that are merged in higher clauses. For
instance, Larson&May (1990) andKennedy (1997) note that quantifiers can scope out of nonfinite
clauses and over matrixclause quantifiers; Kennedy provides the examples in (6) (his (41–47)):

(6) Kennedy 1997, p. 674:
a. At least two American tour groups expect to visit every European country this year.
b. Some agency intends to send aid to every Bosnian city this year.
c. At least four recreational vehicles tried to stop at most AAA approved campsites this

year.
d. Some congressional aide asked to see every report.
e. More than two government officials are obliged to attend every state dinner.
f. A representative of each of the warring parties is required to sign every document.
g. At least one White House official is expected to attend most of the hearings.

Kennedy notes that (6a), for example, allows an interpretation in which the two (or more) tour
groups can vary from country to country, as would be expected if every European country takes
scope over at least two American tour groups. Parallel facts hold for the other examples as well.

While Larson & May (1990) and Kennedy (1997) provide evidence that QR can escape non
finite clauses, they (and others) nonethelessmaintain that quantifiers cannotQRout of finite clauses,
as evidenced by sentences like those in (2), repeated below:

(2) Fox 2000, p. 62:
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a. Someone said that every man is married to Sue.
b. Someone said that Sue is married to every man.

However, Farkas & Giannakidou (1996) argue that, at least for a limited range of embedding verbs
and syntactic/semantic configurations, quantifiers in finite embedded clauses can scope over quan
tifiers in matrix clauses. One such example can be seen in (7) (their (6)), where the helpful students
can covary with the invited speakers. This judgment can be somewhat sharpened by inserting dif
ferent between a and student.

(7) Farkas & Giannakidou 1996, p. 36:
A student made sure that every invited speaker had a ride.

The apparent takeaway from the theoretical literature is thus that extraclausal QR is in fact possible,
though obtaining inverse scope readings through extraclausal QR seems to be more difficult than in
monoclausal cases, and there are perhaps constructiondependent restrictions on extraclausal QR
from finite clauses.

On the experimental end of things, work in this area is limited, and is at this point more sug
gestive than it is conclusive. Moulton (2007), using experimental methods adopted from seminal
work by Anderson (2004), attempts to answer (I) whether inverse scope is easier within the same
clause (e.g., (8a)) than across (infinitival) clausal boundaries, and (II) whether infinitival comple
ments of restructuring verbs like try are more conducive to quantifier extraction than those of non
restructuring verbs like decide and plan ((8b) vs. (8c)):4

(8) a. A technician inspected every plane.
b. A technician tried to inspect every plane.
c. A technician decided to inspect every plane.

Restructuring is a phenomenon in which normally clausebounded operations can seemingly
escape out of certain infinitival clauses, but with particular restrictions on which clauses are trans
parent in this manner. Consider, for example, the wellknown case of the socalled “long passive”,
illustrated in (9). In (9a), the internal argument der Traktor (‘the tractor’) of the embedded verb
reparieren (‘repair’) appears with nominative case as the subject of the matrix clause, with the
matrix verb versuchen (‘try’) passivized. In other words, as far as the passivization operation is
concerned, versuchen and der Traktor are treated as if they are clausemates, with the passivization
of versuchen leading to the promotion to subject of the internal argument der Traktor. However,
while this is possible for restructuring verbs like versuchen, other verbs disallow the long passive,
as illustrated in (9b) with the nonrestructuring planen (‘plan’).

(9) a. dass
that

der
the

Traktor
tractor.NOM

zu
to

reparieren
repair

versucht
tried

wurde
was

‘that they tried to repair the tractor’5 (German, Wurmbrand 2001, p. 19)
b. * dass

that
der
the

Traktor
tractor.NOM

zu
to

reparieren
repair

geplannt
planned

wurde
was

‘that they planned to repair the tractor’ (German, Wurmbrand 2001, p. 57)
4As we will see in §2.2, adopting a binary distinction between “restructuring” and “nonrestructuring” verbs paints

a somewhat misleading picture. However, for the time being this is a harmless oversimplification.
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A common approach to the syntax of restructuring, dating back at least to the work of Rizzi
(1978), is to posit that at some point in the derivation, whatever boundary prevents operations
like the long passive in (9b) is absent in cases like (9a). One way of achieving this, following
the work of Wurmbrand (2001, 2014a, 2015), is to say that the relevant operational boundary is
absent from the getgo: verbs differ in the size of infinitival complements that they can take, with
the infinitival complements of restructuring verbs being smaller than those of nonrestructuring
verbs, i.e., lacking certain higher heads along the clausal spine. If the structural configuration whose
presence creates the relevant domain boundary is among those that appear only in the complements
of nonrestructuring verbs, then this will generate the observed differences.

While some of Kennedy’s (1997) examples in (6) suggest that inverse scope is possible with
nonrestructuring verbs, the informal observation underlying Moulton’s interest in question (II)
is that inverse scope seems easier with restructuring verbs. If true, this is an intriguing observa
tion given Wurmbrand’s clausesize theory of restructuring. As Moulton notes, a Wurmbrandstyle
analysis could lend itself to a compelling explanation for why such an observation should hold: the
embedded DP is extracted from a less complex structure, and thus moves a shorter distance, when
the infinitival clause it is moved from is the complement of a restructuring verb.

Turning to the results of Moulton’s experiment, he finds that in contexts biasing for an inverse
scope interpretation, there is a clear distinction in acceptability between withinclause and across
clause QR, with participants accepting withinclause inverse scope at a statistically significantly
higher rate than crossclausal inverse scope. With respect to a distinction in extraclausal QR be
tween restructuring and nonrestructuring complements, Moulton’s results fall just shy of statistical
significance, in spite of a notable numerical difference between the two, with restructuring verbs re
ceiving inverse scope interpretations 61% of the time, in contrast to only 49% for nonrestructuring
verbs. The relevant results for Moulton’s experiment can be seen in Figure 1.6

monoclausal restructuring nonrestructuring
.71 .61 .49

Figure 1: Inverse scope response rates in Experiment 1 of Moulton 2007 (n = 36)

We can therefore conclude that monoclausal inverse scope (e.g., (8a)) is easier to process
than inverse scope from infinitival clauses ((8b) and (8c)). We will also follow Wurmbrand in
concluding—tentatively, since the results are only suggestive rather than statistically significant—
that extraclausal QR from trytype infinitives is easier to process than from decidetype infinitives.

The other relevant study involving truth value/acceptability judgments with quantificational
DPs in embedded clauses comes from Tanaka (2015a,b). Tanaka’s main goal in her dissertation
(Tanaka 2015b) is to explore parallels between whmovement and QR in terms of processing diffi
culty from a variety of weak islands. While these results are interesting, of greater interest for our
purposes is a followup study of hers focusing specifically on QR from finite embedded clauses.

5In her examples, Wurmbrand uses embedded clauses with the complementizer dass (‘that’), rather than simple
matrix clauses, in order to avoid any interference from verbsecond effects in German.

6Moulton also tests whether there is a difference between “normal” restructuring verbs like try and implicative
restructuring verbs likemanage, but finds no significant difference between them: both are accepted 61%of the time. He
additionally discusses a second experiment of his attempting to further differentiate between infinitival complements;
none of the results there achieve significance, with only quite small numerical differences as well.
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Tanaka’s experiment uses a 2 × 2 design testing whether in contexts verifying only an inverse scope
reading, QR is more acceptable from embedded subjects vs. embedded objects, as well as whether
it is more acceptable from subjunctive vs. indicative clauses, based on a variety of claims made
in the theoretical literature. She additionally includes two types of control sentences. The first are
monoclausal cases akin to (8a), where acceptability rates are expected to be relatively high. The
second are cases involving veritable scope islands like scopefreezing environments and movement
islands like the complex NP in (10); acceptability rates for these are expected to be low.

(10) a. * What1 did a technician hear the rumor that Mary inspected t1?
b. A technician heard the rumor that Mary inspected every plane.

Turning to the results of her experiment, Tanaka finds a significant difference between sub
jects of subjunctive clauses and objects of indicative clauses, but otherwise finds no statistically
significant differences. But interestingly, significant differences were found between the test cases
and both types of controls: in all cases, QR from an embedded finite clause was found to be sig
nificantly less acceptable than QR within the same clause, and significantly more acceptable than
QR from scope islands. As Tanaka notes, this latter finding is unexpected if finite clauses are true
scope islands in the same way that scopefreezing environments and wh islands are; otherwise, we
would expect no difference in acceptability. Instead, it seems that QR from finite embedded clauses
is not entirely banned, but merely degraded, albeit significantly. There are two prima facie plausi
ble ways of accounting for this. First, one could adopt a view of graded grammaticality, with QR
from finite embedded clauses being of a low degree of grammaticality, but higher than QR from
true scope islands. Alternatively, one could adopt the view that QR from finite embedded clauses
is fully grammatical, but difficult to process, leading to lower acceptability rates. We will follow
Wurmbrand in adopting the latter view, especially in light of the results on antecedentcontained
deletion to which we now turn.

2.1.2 Antecedent-contained deletion

The second type of evidence favoring the existence of QR from finite and nonfinite embedded
clauses comes from cases of antecedentcontained deletion (ACD). On a traditional account of
ellipsis, in order for the elided VP in (11a) to be recovered, it must be copied from the matrix VP,
its antecedent (Hankamer & Sag 1976).7 However, doing this while the object DP remains in situ
would result in an infinite regress like (11b), since the elided VP is itself contained within the matrix
VP. But if the entire object DP undergoes QR outside of the verb phrase as in (11c), then the verb
and remaining trace can be harmlessly copied into the elided VP as in (11d) (cf. Sag 1976, May
1985). Such an LF leads to the correct reading that every book that Jesse read, Sam read too.

(11) a. Sam read every book that Jesse did.
b. Sam read every book that Jesse [VP read every book that Jesse [VP read every…]]
c. Sam [every1 book that Jesse ∆] read t1.

7There are at least two ways of formulating this condition. First, it may be that in the course of the derivation,
the elided VP starts off as in some sense null, and at LF this null VP is replaced with a copy of its antecedent (“LF
copying”). Alternatively, it may be that the elided and antecedent VPs start as identical during the derivation, with the
former being deleted under identity (“PF deletion”). While we frame things in the first way in the body of the paper,
the arguments pertaining to ACD and the nonclauseboundedness of QR in no way hinge on this assumption.
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d. Sam [every1 book that Jesse read t1] read t1.

But there is clear evidence from the theoretical and experimental literature that the QR re
quired for ACD is not clausebounded, in spite of previous claims to the contrary. For instance,
starting again with the theoretical literature, Larson & May (1990) and Kennedy (1997) provide
examples where ACDQR escapes from nonfinite embedded clauses, both restructuring and non
restructuring. (12) is an example with the restructuring verb try:

(12) Kennedy 1997, p. 673 (his (37)):
Marena usually tries to get a paper accepted at most of the conferences Ted does.

A clearly available reading of (12) is the one that can be paraphrased as in (13):8

(13) Marena usually tries to get a paper accepted at most of the conferences that Ted tries to get
a paper accepted at.

This reading can only be made available through the embedded object DP QRing above try; other
wise, the elided VP will still be contained within its antecedent matrix VP. That is, we need to end
up with a structure like (14a), which after copying the antecedent comes out to (14b).

(14) a. Marena usually [most1 of the conferences Ted ∆] tries to get a paper accepted at t1.
b. Marena usually [most1 of the conferences Ted tries to get a paper accepted at t1] tries

to get a paper accepted at t1.

This gets the correct reading: most of the conferences Ted applies to, Marena (usually) applies to.
Turning next to nonrestructuring verbs, Kennedy provides, among others, the example in (15),

with nonrestructuring infinitival ask:

(15) Kennedy 1997, p. 674 (his (40)):
The First Lady was asked to describe the same documents the President was.

As Kennedy notes, (15) forces a matrix clause interpretation of the ellipsis by means of the clever
use of auxiliary choice: an embedded interpretation of the ellipsis (where the antecedent is the VP
headed by describe) would require dosupport with did, instead of the auxiliary was. As a result,
the only paraphrase for (15) is the one in (16):

(16) The First Lady was asked to describe the same documents the President was asked to de
scribe.

Much like with (12), this requires the embedded object DP to QR past ask so that the elided VP is
outside of its antecedent. Thus, ACDQR must escape the complement of ask.

With respect to ACDQR out of finite clauses, the general consensus in the theoretical literature
seems to be that it is at best harder to get than with nonfinite clauses, and some (e.g., Kennedy)
maintain that it is not possible at all. Nonetheless, Wilder (1997) provides the example in (17),
which uses the same mismatched auxiliary technique used by Kennedy in (15):

(17) Wilder 1997, p. 435:
John said that you were on every committee that Bill did.

8Wilder (1997) notes that the matrix clause interpretation requires that the object DP be interpreted de re, as would
be expected on a QR approach to ACD (since the DP outscopes the intensional verb). The reader should bear this fact
in mind when looking at (13) and other paraphrases of matrix clause ACD interpretations.
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The dosupport in the elided VP precludes a lowscope reading, since VPelided copular clauses
do not trigger dosupport. This brings out the matrix reading, paraphrasable as (18):

(18) John said that you were on every committee that Bill said you were on.

As before, this reading is derived by means of the embedded object DP moving past the matrix verb
say, thereby enabling copying of the matrix VP into the ellipsis site. This therefore entails that the
object DP must be able to QR out of a finite embedded clause.

Moving on to the experimental literature, the only work that we are aware of that has directly ad
dressed the issue of adult processing of extraclausal ACDQR from the complements of embedding
verbs is that of Syrett & Lidz (2011) and Syrett (2015a,b).9 Syrett & Lidz (2011) perform two rele
vant experiments in this area, each of which tested both adults and children. However, for this and
the other paper discussing experiments with both adults and children (Syrett 2015b), we will report
only the results from adults, as we restrict our focus in this paper to adult parsing of extraclausal
QR. In the first of the two relevant experiments, Syrett & Lidz test for the possibility of ACDQR
from nonfinite embedded clauses. They use sentences that are (hypothetically) ambiguous—that
is, not disambiguated via auxiliaries like Kennedy and Wilder’s examples above—such as (19):

(19) Syrett & Lidz 2011, p. 315 (their (24b)):
Clifford asked Goofy to read every book that Scooby did.

The matrix reading of (19) results from long QR and copying of the matrix VP headed by ask,
while the embedded reading results from copying only the embedded VP (headed by read) into
the ellipsis site. Syrett & Lidz place sentences like (19) in contexts in which only one of these two
potential readings is true, with participants asked to indicate whether the sentence is true in the
context, as well as to provide justification for their answer.

In their second experiment, Syrett & Lidz perform essentially the same task, but replacing non
finite embedded clauses with finite ones, as in (20):

(20) Syrett & Lidz 2011, p. 321 (their (26)):
Clifford said that Goofy read every book that Scooby did.

Once again, participants were asked to provide truth value judgments and justifications for their
answers, in contexts that verified either the matrix or embedded reading (but not both).

The results of Syrett & Lidz’s first experiment show that adults were clearly able to obtain both
embedded and matrix readings for ACD in nonfinite clauses, but that matrix readings were harder
to obtain than embedded readings: adults responded “true” 68% of the time in contexts where only
the embedded reading was true, and 50% of the time in contexts where only the matrix reading was
true. These findings are further bolstered by participants’ justifications for their responses, which
reliably pointed to their answers being a reflection of their accessing a matrix or embedded reading.

9Hackl et al. (2012) also study ACDQR out of nonfinite clauses, but these clauses are the complements of adjec
tives rather than verbs, as in the following example:

(i) Hackl et al. 2012, p. 173 (from their (29)):
The doctor was reluctant to treat every patient that the recently hired nurse was.

We do not tackle clausal complements of adjectives in this paper, but it is worth noting that their findings fit well with
the general picture arrived at in this section: unambiguous widescope readings like the above example are harder to
process than unambiguous lowscope readings of the sort obtained by replacing was with did.

10



When turning to finite embedded clauses in the second experiment, designation of truth fell to 19%
in contexts verifying only the matrix reading, in contrast to 88% in contexts verifying only the
embedded reading. Thus, while some participants were able to access the matrix reading in finite
embedded clauses (with varying degrees of consistency), the second experiment suggests that at
best, adults found matrix readings for ACD in finite embedded clauses considerably harder to get
than in nonfinite clauses.10

Acknowledging that Syrett &Lidz’s (2011) evidence formatrix readings of finiteclauseembedded
ACD is relatively weak, Syrett (2015b) sets out to providemore definitive evidence that this reading
is available for both children and adults. She does so by making a variety of tweaks meant to make
obtaining a matrix reading easier for the participants. In addition to subtly revising the context, this
included several grammatical changes, such as removing the complementizer that—thematrix verb
was again say, with which that is optional—and using prosodic focus in a way that may be more
conducive to bringing out a matrix reading. Like in Syrett & Lidz’s (2011) study, these sentences
avoided any grammatical manipulations that would fully disambiguate them, and participants were
asked to provide truth value judgments and justifications for their answers, in contexts that exclu
sively made either the embedded or matrix reading true. Moreover, the adult participants’ answers
were filtered in a way that ensured that the tallied results reflected actual interpretations: answers
were only counted if they were paired with justifications that clearly pointed to their accessing the
reading coinciding with their answer.

The adults’ answers provided much more powerful evidence that they were indeed able to ac
cess matrix readings with finite embedded clauses, with 74.2% providing justified “true” answers
in contexts where only the matrix reading was true. Moreover, participants showed a preference
for matrix readings even in contexts where only the embedded reading was true: 64.9% provided
justified “false” answers in such contexts. This strongly supports the claim that DPs can QR from
within a finite clause to a position above the matrix verb. In fact, Syrett (2015a) ups the ante, using
a similar task to provide evidence that not only can the DP QR to a position above the matrix verb,
but it can QR even higher to a position that outscopes the subject of the matrix clause. That is, (21)
allows a reading where different speakers can make claims about different frogs:

(21) Syrett 2015a, p. 585 (her (14)):
Someonei said hei could jump over every frog that Jessie did.

However, this “extrawide” scope seems to come at a cost over and above that required to get a
matrix reading, as less than half of the responses indicated an inverse scope interpretation.

2.1.3 Wurmbrand’s conclusions

Given the above evidence, Wurmbrand reaches the following empirical conclusions. First, she con
cludes that as far as grammatical competence is concerned, QR is an unbounded operation, and a
quantificational DP can QR as high as it wants so long as it obeys the normal rules of A′movement.
Cases where DPs seem incapable of scoping out of embedded clauses really amount to situations
where computing the relevant (wellformed) syntactic representation is too costly for the human
parser to process.

10For critical discussion of Syrett & Lidz’s experiments, see Sugawara et al. 2013. However, the latter’s criticism
focuses mostly on the results from children, whose justifications for their responses were considerably less reliable
than those of the adults.
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Second, Wurmbrand concludes that while a variety of factors can ease the processing of inverse
scope, movement that impacts LF is nonetheless costly to process, as evidenced by the fact that
surface scope is in general easier to process than inverse scope. (For embedded DPs the higher cost
of inverse scope is made clear from the experimental studies cited above; in the case of within
clause inverse scope, see Kurtzman & MacDonald 1993, Tunstall 1998, Anderson 2004.)

Third, Wurmbrand concludes—appropriately tentatively—that inverse scope is easier from
within the same clause than it is across clausal boundaries, and that in the case of nonfinite clausal
complements QR from the complements of trytype verbs is easier than from the complements of
decidetype verbs. That is, inverse scope is easier for (8a) than for (8b), which is easier than for
(8c).

(8) a. A technician inspected every plane.
b. A technician tried to inspect every plane.
c. A technician decided to inspect every plane.

QR from finite clauses, much like their nonfinite counterparts, is significantly more difficult than
for monoclausal cases. However, Wurmbrand avoids a concrete analysis of the relative difficulty
of QR from finite clauses because there is little if any experimental work directly comparing QR
from finite and nonfinite embedded clauses. Moreover, there are additional factors that may come
into play with finite complements, such as mood (cf. Tanaka 2015b for discussion), or the presence
or absence of an overt complementizer (Syrett 2015a,b). While the discussion from the theoretical
literature seems to at least suggest that QR from finite clauses is harder than QR from any kind of
nonfinite clause, we will nonetheless follow Wurmbrand in being noncommittal on this front and
sticking to the cases in (8), in addition to further data to be introduced shortly.

2.2 Wurmbrand’s analysis

2.2.1 The different sizes of non-finite clausal complements

At the heart of Wurmbrand’s explanation for the relative processing difficulty of inverse scope
in the sentences in (8) is a theory of nonfinite clausal complementation, developed most notably
in Wurmbrand’s prior work (see, e.g., Wurmbrand 2001, 2014a,b, 2015), in which different verbs
have different possibilities for the size of complement clause that they take. More specifically, on
this view verbs taking infinitival complements are thought to fall into three classes, which can be
differentiated by their syntactic and semantic properties.

The verbs that take the largest nonfinite complements are verbs like believe and claim, whose
complements she argues are full propositiondenoting CPs, which include all the heads along the
clausal spine that one normally sees below C: namely, Tense/Aspect/Modality (TAM) and of course
the θassigning heads v and V:

(22) Becca claimed [CP to be in Boston].

The next largest nonfinite complements are those of “futureshifting” verbs like decide and expect.
The complements to these verbs lack a CP layer, but include at least one TAM head—the future
shifting WOLL—along with v and V. Out of a desire to remain neutral on what the label of these
complements is, we will simply refer to it as WOLLP:

(23) Becca decided [WOLLP to go to Boston].
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Finally, the verbs that take the smallest complements are trytype verbs, whose complements lack
both a CP layer and WOLLP. Thus, for these verbs, the complement is only a vP:11

(24) Becca tried [vP to go to Boston].
A diagram of the heads of the clausal spine posited to be present in the nonfinite complements of
these three types of verbs can be seen in (25):
(25) C TAM v V︸      ︷︷      ︸

trytype︸                         ︷︷                         ︸
decidetype︸                                      ︷︷                                      ︸

claimtype
In prior work, Wurmbrand has argued for such variation in the sizes of nonfinite complements

on both syntactic and semantic grounds.Wewill not go through her arguments, but just as a sampler,
the presence of WOLL with decidetype verbs but not trytype verbs helps explain differences in the
presence/absence of futureshifting in the complement, as evidenced by examples like (26):
(26) Yesterday, Becca {decided/#tried} to go to Boston tomorrow.
Moreover, the subset/superset relation with respect to heads along the embedded clausal spine is
used to account for an important implicational hierarchy. As discussed in detail by Wurmbrand
(2014a, 2015), extraclausal scrambling and clitic climbing—two generally accepted diagnostics for
restructuring environments—vary in their distribution crosslinguistically. More specifically, while
some languages disallow these operations entirely, some allow these operations only from trytype
infinitives, and some allow them from both decide and trytype infinitives, there appear to be no
languages that allow them from only decidetype infinitives. There also appear to be no languages
that allow these operations from claimtype complements, nor from finite clausal complements.12

As Wurmbrand shows, this implicational hierarchy gets a ready account if nonfinite comple
ments look as in (22–24). Say that there is some structural configuration Σ that blocks both clitic
climbing and scrambling, and say that in Language A, Σ resides inside the vP. Since the comple
ments of all three types of verbs contain at least a vP, in this language Σ will appear across the
board, meaning that clitic climbing and extraclausal scrambling will be nonexistent. Meanwhile,
if in Language B Σ appears in the TAM field above vP, it will be present in the complements of
decide and claimtype verbs, but not trytype verbs, meaning that the latter (and only the latter)
will be transparent to clitic climbing and scrambling. Finally, if in Language C Σ is above TAM
in the CP field, it will only be present in the complements of claimtype verbs, meaning that both
decide and trytype verbs will be transparent to clitic climbing and scrambling. The implicational
hierarchy falls out immediately, since there is no place that Σ can be located that would block clitic
climbing and scrambling from trytype complements without also blocking them from decidetype
complements.

11Wurmbrand leaves open the possibility that lower aspectual heads may exist between WOLL and v, and that these
may be present or absent with trytype infinitives. This is not important for her analysis, nor for ours.

12Wurmbrand (2014a) notes that crosslinguistically, the long passive (cf. (9)) seems to be available only with try
type complements, and its (im)permissibility in a given language seems to be orthogonal to the possibility and maximal
length of cliticclimbing and extraclausal scrambling. For this reason she argues that the long passive is an altogether
different type of restructuring, with an altogether different syntactic origin, but one whose basis still lies in varying
sizes of clausal complements.
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2.2.2 Processing difficulty andmovement-counting

Wurmbrand accounts for the difference in inverse scope processing difficulty for the sentences in
(8) by adopting the view of nonfinite clausal complementation detailed above, and simultaneously
positing that movement that affects the LF structure is costly for the human parser to process.
More specifically, she posits that each scopally relevant movement incurs a particular cost, with the
difficulty in scope processing for a given parse being proportional to the number of suchmovements
that take place.

To see how this—in conjunction with certain constraints on A′movement—generates the right
results with respect to the contrast between the sentences in (8), let us first consider the monoclausal
case (8a) (A technician inspected every plane). Assuming that the subject is merged in specvP, the
least LFmovementheavy way to generate inverse scope would be for the subject to scope in its
merge position, with the object taking scope just above it at the edge of vP. This is illustrated in
(27); heads above the (matrix) vP are excluded for readability:

(27) [vP [every plane]1 λx1 a technician inspect t1]

As indicated by the single emphasized trace, inverse scope for (8a) requires one LFimpacting
movement.

As for (8b) (A technician tried to inspect every plane), recall that for Wurmbrand the comple
ment of try is a vP. It is commonly thought that vP constitutes a domain for movement: in order for
a constituent to move out of vP, it must first move to the edge of vP, and then move from there to
its destination (or to the edge of the nexthighest domain). Thus, as seen in (28), in order for every
plane to scope above a technician, it must undergo QR twice: first to the edge of the embedded vP,
then to the edge of the matrix vP:

(28) [vP [every plane]1 λx1 a technician try [vP t1 v inspect t1]]

Finally, there is (8c) (A technician decided to inspect every plane). To account for this case,
Wurmbrand proposes that in the same way that vP is a domain for movement, WOLLP is also a
domain for movement, at least in the syntactic configuration seen in (8c).13 Thus, in order for every
plane to outscope a technician, it must QR three times: first to the edge of the embedded vP, then
to the edge of the embedded WOLLP, and then to the edge of the matrix vP, as in (29):

(29) [vP [every plane]1 λx1 a technician decide [WOLLP t1 WOLL [vP t1 v inspect t1]]]

Therefore, given Wurmbrand’s theory of nonfinite clause sizes, in conjunction with reasonable
assumptions about the nature of A′movement from embedded clauses, her principle of scope pro
cessing difficulty generates the right predictions with respect to the sentences in (8), i.e., inverse
scope for (8a) is easier than for (8b), which is easier than for (8c).

Before discussing problems with Wurmbrand’s theory of scope processing difficulty, one ad
vantage to her theory is worth emphasizing: its strong predictive power. A great deal of work in
quantifier scope processing has focused on a fairly narrow question: Given a scopally ambiguous
sentence S, what determines the preferred or default reading for S? Take, for example, Tunstall’s
(1998) Principle of Scope Interpretation (PSI):

13Wurmbrand does not provide direct empirical evidence for this claim, but for our purposes this is irrelevant: as
discussed in §5.4, our own analysis is compatible with, but does not require the assumption that WOLLP is a movement
domain.
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“The default relative scoping in amultiply quantified sentence is computed from the required
LFstructure of that sentence, where the required LF is determined by the required grammat
ical operations acting on the Sstructure. The default scoping is the preferred scoping unless
there is evidence to go beyond it.” (Tunstall 1998, p. 56)

The PSI offers an explanation for why each of the sentences in (8) is easier to process on a surface
scope reading than on an inverse scope reading. However, by virtue of the fact that it focuses on
comparing different readings for the same sentence, the PSI cannot explain why inverse scope is
harder for some sentences than for others. Meanwhile, Wurmbrand’s analysis allows for precise
comparative predictions not only for different readings of the same sentence, but also for different
readings of different sentences, such as those in (8); this is an admirable trait that ought to be
preserved in any explanatory theory of scope processing.

However, in spite of these positives, we will next argue that Wurmbrand’s theory of scope
processing difficulty runs into some trouble when looking beyond the particular cases she analyzes.

2.3 The problematic impact of overt movement

On Wurmbrand’s theory, processing cost is calculated by counting the number of movements that
affect LF structure: there is essentially a “tax” on LF traces, so that each such trace imposes a
processing cost on the human parser.14 Thus, the best evidence againstWurmbrand’s analysis would
come from cases where LFrelevant movement does not appear to be a particularly costly operation,
or even better, cases where a parse involving more LF traces is easier than a parse involving fewer.

One such apparent counterexample is noted by Wurmbrand herself: her analysis as it currently
stands has trouble when it comes to whmovement. Consider, for example, the sentences in (30):

(30) Wurmbrand 2018, p. 25 (based on her (29)):
a. What did a technician say that John inspected?
b. A technician said that John inspected every plane.

In (30a), what moves cyclically from the complement of inspect to some specifier in the left pe
riphery of the matrix clause; let us say it is the specifier of CP. Based on the received view that
wh phrases that overtly move to the left periphery also take scope there (Karttunen 1977 and much
work since), we can infer that each of these movement operations also leaves a trace at LF. Mean
while, as discussed above, in order for every plane to scope above a technician in (30b), it only has
to QR to the edge of the matrix vP. Thus, a wellformed interpretation for (30a) requires at least as
many iterations of scopetaking movement as an inversescope interpretation of (30b)—possibly
more, since what has to move from the edge of the matrix vP to specCP, a move we assume is
not required for the inverse scope of (30b). Thus, Wurmbrand predicts (30a) to be at least as diffi
cult to process, if not more so, than an inverse scope interpretation of (30b). But while we are not
aware of any experimental studies directly addressing this question, at least on an intuitive level
things appear to be quite the opposite: (30a) is noticeably easier to process than the inverse scope of
(30b). Of course, relying on intuitions to make judgments of processing difficulty is questionable

14In fact, Wurmbrand’s analysis could more accurately be referred to as “trace”counting rather than LFmovement
counting. She assumes a copy theory of movement (Chomsky 1995), using Fox’s (2002, 2003) trace conversion op
eration to convert lower copies into what can be semantically interpreted like traces. Processing cost is linked to the
number of iterations of trace conversion, i.e., to the number of “traces”. For arguments against trace conversion and a
compositional semantics within the copy theory of movement that obviates it, see Pasternak 2019.
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to say the least, but pending muchneeded experimental investigation comparing and contrasting
such cases, we maintain that a model that predicts (30a) to be easier than the inverse scope of (30b)
is prima facie more likely to be correct than one that predicts the opposite.

Another issue faced by Wurmbrand’s account—and one with much stronger experimental evi
dence to back it up—pertains to the relative scope of sentential negation and universal quantifiers,
as explored in detail by Lee (2009). Lee tests such scope preferences in both English and Korean,
for universal quantifiers in both subject and object positions.15 Some relevant examples in both
languages can be seen in (31) and (32):16

(31) Every in subject position
a. According to the story, every kid didn’t feed the doves in the park. (Lee 2009, p. 93)
b. hwancangsileyse

in the restroom
motun
every

haksayngi
studentNOM

sonul
handACC

an
NEG

ssisesstako
washPSTDECLCOMP

iyakiun
storyTOP

malhaycwunta
tell
‘The story tells that every student did not wash her hands in the restroom.’

(Korean, Lee 2009, p. 79)
(32) Every in object position

a. According to the story, Cindy didn’t light every candle last night. (Lee 2009, p. 124)
b. eey pamey

last night
Seheeka
SeheeNOM

motun
every

chospwulul
candleACC

an
NEG

khye(e)sstako
lightPSTDECLCOMP

iyakinun
storyTOP

malhaycwuntu
tell
‘The story tells that Sehee did not light every candle last night.’

(Korean, Lee 2009, p. 112)

English and Korean provide an intriguing point of comparison and contrast due to their distinct
word orders: while subjects in both languages linearly precede negation, direct objects occupy dif
ferent positions in the two languages, with Korean objects preceding negation and English objects
following it. These similarities and differences are reflected in the results of Lee’s experiments.
Lee finds that for both English and Korean speakers, there is a preference for subject everyDPs to
scope over negation, as indicated by both truth value judgments and reading times. Meanwhile, in
the case of direct objects, Korean and English diverge: Korean speakers preferred to parse every
over negation, while English speakers were more inclined to parse such sentences with a not >
every reading.17 In other words, scope preferences more or less reflect linear word order: English

15Lee also tests native Koreanspeaking L2 speakers of English. While these results are fascinating, we will not
account for them in this paper, as it is not sufficiently clear what a Korean L2 grammar (let alone parser) of English
looks like.

16As Lee discusses in detail, Korean has two forms of sentential negation: “long form” and “short form”. The ex
amples in (31b) and (32b) utilize the short form; Lee tests both forms, and finds similar results for each.

17One might reasonably be concerned about the results from English direct objects, since in such sentences the
“favored” reading (not > every) is weaker than the “disfavored” one (every > not). However, Lee notes that scalar
implicatures eliminate this entailment relation. For example, the surface scope reading of (32a) generates an implica
ture that Cindy lit at least some candles; not only is this implicature not entailed by the inverse scope reading, but it
contradicts it. Lee’s test items exploit these implicatures in a way that avoids concerns about inappropriate entailments.
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subjects and Korean subjects and objects precede negation and prefer to scope over it, while English
objects follow negation and prefer to scope beneath it.

Wurmbrand’s analysis could plausibly explain the case of English direct objects, since the pre
ferred reading is the one in which the direct object scopes closer to its merge position. However,
it fails to account for the behavior of English subject DPs, and at least on certain assumptions,
Korean subjects and direct objects as well. To see why, consider the case of English subjects. It is
generally thought that in English clauses with sentential negation, the subject is initially merged
below negation and subsequently undergoes overt movement past negation to specTP:

(33) [TP [every kid]1 not [vP t1 feed the doves in the park]]

The every > not reading is the result of every kid scoping in this position above negation, while the
not > every reading is likely the result of every kid reconstructing to its merge position.

So which of these does Wurmbrand predict to be easier? In the case of the surface scope in
terpretation, there is one LFrelevant movement (specvP to specTP). As for the inverse scope
interpretation, it depends on how one thinks reconstruction works. In the days when reconstruc
tion was achieved through an LF movement operation of Quantifier Lowering (May 1985), the
not > every interpretation would be generated via two movements: the (overt) movement above
negation, and the (covert) movement back down. In this case, Wurmbrand’s analysis would make
the right prediction, since surface scope would require one LFaffecting movement, while inverse
scope would require two. But the more common view nowadays is that every kid does not recon
struct below not by undergoing a downward LF movement operation, but instead does so by just
not moving above it in the first place: by some means or another, the movement of every kid above
negation impacts PF, but not LF. Given this analysis, the not > every reading is generated with zero
LFrelevant movement steps, meaning that Wurmbrand incorrectly predicts that English subjects
should prefer to scope under, rather than over negation.

Turning to the Korean facts, things are somewhat more complicated, as it depends on how one
wishes to generate the SO(Neg)V word order. However, a plausible view—especially if one ad
heres to an antisymmetric theory of syntax, in which linear order is determined by ccommand
(Kayne 1994)—is that the subject and object start below (and, linearly, to the right of) negation,
much like in English, and then both undergo overt movement past negation. This could be done
either via direct movement of both DPs to positions ccommanding negation, or via remnant move
ment, or some combination of the two. Either way, on the assumption that these DPs can scope in
their surface position above negation, and would scope under negation via reconstruction, Wurm
brand’s theory of scope processing difficulty fails to account for the processing facts for the same
reason as in the case of English subjects: reconstruction entails fewer LF traces than scoping at the
postmovement position, but nonetheless the latter is preferred.

While these two problematic cases—whmovement and negation—look quite different, both il
lustrate that scope processing difficulty cannot be determined based solely on LF structure. Instead,
whether a movement that affects LF also affects PF seems to have a crucial impact on processing
difficulty. In the case of whmovement, the fact that wh phrases move overtly significantly eases
processing. The cases with quantificational DPs and sentential negation paint an evenmore extreme
picture: overt scopetaking movement is not only easier to process than movement that affects only
LF (QR), but is also easier than movement that affects only PF (reconstruction). Thus, when En
glish subject DPs move past negation and also take scope above negation, the result is easier to
process than when they move past negation only at PF and stay below negation at LF.
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As a first gesture towards accounting for a potential difference between whmovement in (30a)
and QR in (30b), Wurmbrand observes the following:

Overt whmovement involves a fillergap dependency where upon encountering the filler
(the overt whphrase), the parser is instructed to look for a gap (the originating position).
In doubly quantified sentences, on the other hand, there is no overt cue within the sentence
for a longdistance dependency until the second QP [quantifier phrase] is reached. Thus, in
contrast to overt whmovement, QR involves a retrospective search in parsing, which could
be seen to be responsible for the higher processing cost for covert movement. (Wurmbrand
2018, p. 25)

But there are two problems with this proposal. The first is that in contrast to Wurmbrand’s original
account in terms of LFtraces, this processingbased proposal is not sufficiently worked out to make
strong, quantitatively grounded predictions. The second is that it is unclear how this analysis could
handle the case of English subjects scoping over negation. After all, when the parser runs into a DP
subject, it should know that there is a gap at the subject’s merge position (just like in the wh case),
and that the subject could take scope either where it is pronounced or at that merge position. There
should thus be no retrospective search problem, and not > every should be at least as accessible as
every > not when overt movement has taken place, contrary to fact.

More promising is an idea that Wurmbrand suggests in passing in a couple of footnotes (her fns.
20 and 25): namely, that there is an additional processing cost when there is a mismatch between
PF and LF. In fact, if we allow ourselves to talk about PFLF mismatches in scalar terms—that is,
in terms of greater or lesser mismatches between PF and LF—then this principle would on its own
be enough to account for the facts discussed. In the case of the sentences in (8), we rightly predict a
preference for surface scope over inverse scope for each sentence, since surface scope is the inter
pretation in which LF most closely aligns with PF. Moreover, if we define severity of mismatches
correctly, we can point to why inverse scope for (8a) is easier than for (8b), which is easier than
for (8c): in later examples, the object DP has to scope farther and farther away from where it is
pronounced, creating more severe PFLF mismatches, and thus imposing greater processing costs.
These costs are not incurred in the case of whmovement, since the wh phrase scopes at its left
periphery PF position. In the case of DPs and sentential negation, when a DP overtly moves past
negation, we expect an every > not reading to be easiest, and when the DP stays below negation
at PF, we expect a not > every reading to be easiest, expectations that accord with Lee’s (2009)
findings from English and Korean.

This, in a nutshell, is the approach we will adopt in the rest of this paper. Such an approach
carries with it two concomitant questions. First, how do we formally define a scalar notion of
PFLF mismatch with a sufficient degree of predictive power? And second, what is it about the
nature of the human parser that entails that this particular property of syntactic representations (or
derivations) should lead to processing difficulty? In order to bring us closer to an explanatory theory
of scope processing difficulty, we will approach these questions from a formal parsing perspective:
we will provide a formal grammar that generates both PF and LF representations, along with a
formal parser for that grammar, and we will show that scope processing difficulty correlates with
a particular type of information storage arising during the course of a successful parse. The formal
grammar utilized will be a version of Stabler’s (1997) Minimalist Grammars (MGs); as discussed
in the introduction, MG parsing has been used to account for a variety of syntactic processing
phenomena, and our theory serves as a significant extension of this already productive research
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program. §3 will introduce MGs, starting with a simpler PFonly version, then moving on to a
version that also generates LF structures. §4 will introduce a simplified version of our LFinclusive
MG parser; a completely formally fleshed out version can be found in the appendices.

3 A semi-formal introduction toMinimalist Grammars

In this section we will introduceMinimalist Grammars (MGs, Stabler 1997), starting with a simpler
PFonly variant, then moving on to a version that simultaneously generates both PF and LF outputs.
In §3.1 we will introduce the basics of the PFonly MG, and in particular its use of featuredriven
merge and move operations to build and manipulate syntactic structures. In §3.2 we will discuss
and illustrate an alternate way of performing these same operations in terms of chains. In short,
on a traditional approach to movement, a constituent first merges in some position, then moves
to another position and leaves a trace in its original spot. On a chainbased view of movement,
the first step is skipped: the trace of a “moved” constituent is simply merged in its place from the
getgo, with the moved constituent being held onto until it reaches its final landing spot, at which
point it is finally merged into the tree. The advantage of a chainbased approach for our purposes is
that the chains involved in a derivation will bear a strong resemblance to—and have a onetoone
correspondence with—the parse items involved in the corresponding parse. In §3.3 we will add LF
representations into the mix: MG derivations will simultaneously build a PF tree and an LF tree
along the lines of Heim&Kratzer 1998. We will again illustrate by means of an example: namely, a
derivation of the inversescope interpretation of (8a) (A technician inspected every plane). Finally,
in §3.4 we will introduce derivation trees, tree structures representing the course of a syntactic
derivation; these will be useful in representing both derivations and the parses of those derivations.

In discussing MGs, and especially in going over MG parsers in the next section, we will try
to keep things as informal as possible: the goal in the body of the paper is only to give enough
details for the reader to understand the scope processing metric in §5 and the predictions it makes.
A completely fleshedout formalism is left to the appendices.

3.1 PF-only MG: features and operations

In accordance with the Minimalist Program, MGs are highly lexicalized formal grammars: lexical
items come bundled with strings of features that must be checked over the course of a derivation.
More specifically, lexical items can be treated as ordered pairs (A, δ), where A is a phonetic form
(for which we will simply use English orthography) and δ is a string of features. We will sometimes
write this as A :: δ. Features come in four sorts:

• Category features (e.g., f) can roughly be thought of as indicating the type of phrase headed
by the lexical item (e.g., D for DP, T for TP, etc.).

• Selector features (=f or f=) indicate the type of phrase taken as a complement or specifier.
=f indicates that an fphrase merges to the right (i.e., as complement); f= indicates that it
merges to the left (specifier).18

18Standard MGs dating back to Stabler 1997 only include one type of selector feature, with linearization being
determined by order of merge: the first selectedfor phrase merges to the right (complement), and subsequent phrases
merge to the left (specifier). However, encoding leftselection and rightselection through separate selector features
does not affect generative capacity and leads to a simpler parser, so we adopt it for the sake of convenience.
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• Movement licensor features (+f) license movement of lower phrases to a specifier position.

• Correspondingmovement licensee features (-f) are includedwith the heads ofmoving phrases.

A feature is checked via deletion: if a head has a feature string ϕ1ϕ2ϕ3, then after checking ϕ1 the
head will have the feature string ϕ2ϕ3. Features are always checked from left to right; we will refer
to a given head’s leftmost feature as its active feature.

MGs allow for two types of operations, the execution of which is dependent on the active
features of relevant lexical items. The first ismerge, in which a phrase whose head’s active feature
is a selector feature combines with a phrase whose head’s active feature is a matching category
feature. As indicated above, whether the selectedfor phrase merges to the right (complement) or
left (specifier) depends on the choice of selector feature.

As a toy example, suppose we have the lexical items H :: =C S= H, C :: C, and S :: S. H’s active
(i.e., leftmost) feature is =C, while C’s active feature is C. Thus, the two can merge into the tree seen
in (34), where the nonterminal node < indicates that the head of the constituent is to the left. Notice
that since the merge operation checks the selector and category features, each feature is deleted in
the resulting tree. (Just for these initial examples, deleted features will be crossed out; in future
examples they will simply be removed from the feature string.)

(34) <

H ::��=C S= H C ::�C

Now C has no active features, and H’s active feature is the selector feature S=, which matches S’s
category feature S. Since the selector feature is S= and not =S, S will merge to the left of the tree
built so far, resulting in (35):

(35) >

S :: �S <

H ::��=C ��S= H C :: �C

The only remaining active feature is H’s category feature H. Since H is the head of this phrase, this
phrase can be selected as a complement or specifier of some other head with the feature =H or H=.

The second operation inMGs ismove, which takes place when the head of the currently derived
phrase has as its active feature a movement licensor feature +f, and the head of a subphrase has
as its active feature a movement licensee feature -f. In this case, the maximal subphrase having
the latter lexical item as its head moves up to a newlycreated specifier position, leaving behind a
phonologically empty and featureless node. Take, for example, the tree in (36):
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(36) <

M ::��=S +f M <

S ::��=H �S <

H ::��=C �H -f C ::�C

M, the head of this phrase, has as its active feature the licensor feature +f, and H has an active
licensee feature -f. As a result, themaximal phrase headed byHmoves to a newlycreated specifier,
leaving an empty node behind. (ε is the empty string.) Since the maximal phrase headed by H is
the phrase containing H and C (and not S), this looks like (37). Note once again that the licensor
and licensee features are deleted, meaning that the only active feature is the category feature M of
M, the head of the phrase as a whole.

(37) >

<

H ::��=C �H ��-f C ::�C

<

M ::��=S ��+f M <

S ::��=H �S ε :: ε

3.2 Chain notation

Up to this point we have assumed that if one phrase merges with another and then moves, this is
precisely what happens: the phrases combine, and then the moving phrase moves up to a specifier
and leaves behind an empty node. But there is a bit of redundancy in this. If phrases A and Bmerge,
and B will subsequently be moving, we already know at the time of merging that B will eventually
be moving, since its next active feature will be a movement licensee feature. As a result, we could
skip the middle man: rather than merging A and B, then eventually moving B and adding the empty
node in B’s original location, we could instead simply combine A with the empty node to begin
with, holding on to B until we reach B’s landing site, at which point B would be added. In cases
where B moves multiple times, we would continue to hold onto it until the very last movement is
done, with empty “traces” being inserted during the course of intermediate movement operations.

In order to accomplish this, we need to add a little more technical machinery, enough to define
this notion of “holding on” to a moving subtree. For this purpose we will use a “chain” notation sim
ilar to that used by Stabler & Keenan (2003). We define a featurespecified tree (FST) as an ordered
pair (τ, δ), where τ is a tree, and δ is a string of features; this string of features will be the remaining
unchecked features of the head of τ. A chain is an ordered tuple ⟨(τ1, δ1); (τ2, δ2) . . . (τn, δn)⟩ of
FSTs. The first member of this tuple will be the primary FST, which is the FST of the main tree that
we are building; the other FSTs in the tuple are the ones that are being held onto for later addition

21



into the tree, i.e., the movers. A lexical item is a unary chain, i.e., a chain with just one FST. The tree
in this FST will consist of one node that is the phonetic (in our case, orthographic) representation
of the word, while the feature string will be the features of this lexical item. (Onenode trees will
simply be written as the phonetic representation of the single node in that tree.)

To illustrate, let us go through a derivation for the simple sentenceKat kickedMatt. Before doing
so, one important fact is worth noting: to avoid unnecessary complexity, we will not be dealing with
any sort of head movement in this paper. MGs and their parsers are fully capable of handling head
movement, and there is little reason to believe that the modest extension to MGs offered in §3.3
should suddenly be incompatible with head movement. However, we believe that there is equally
little reason to think that including head movement would have any significant impact on the results
in this paper, so to keep complexity to a minimumwe exclude it. With this in mind, the enumeration
for our simple sentence can be seen in (38):

(38) a. ⟨(Matt, D)⟩
b. ⟨(kicked, =D V)⟩

c. ⟨(ε, =V D= v)⟩
d. ⟨(Kat, D -nom)⟩

e. ⟨(ε, =v +nom T)⟩
f. ⟨(ε, =T C)⟩

As should be clear, (38a), (38b), and (38d) are the lexical itemsMatt, kicked, and Kat, respectively.
(38c) is the lexical entry for v, (38e) the entry for T, and (38f) the entry for C. Note that for these
three, which are unpronounced, the phonetic representation is the empty string ε.

We can now start building our tree. First, we merge kicked andMatt.Matt’s feature string con
tains only the category feature D—Matt, being a proper name, is a oneword DP—and nomovement
licensee features, meaning that once it is merged it will not undergo any subsequent movement. We
thus do not need to “hold on” to it for future movement operations, which means that the unary
chains for kicked andMatt can be merged into another unary chain to form the VP kicked Matt, as
in (39). Here and throughout, the first argument of mergewill be the chain with the selector feature,
with the second being the chain with the category feature. For readability we rewrite merge(A,B)
as A merge B.

(39) (38b) merge (38a) = ⟨([< kicked Matt], V)⟩
Both the selector feature =D and the category feature D are deleted. The lone FST in the resulting
chain has as its only feature V, the category feature of the head kicked. Since the VPwill not undergo
subsequent movement after being merged with v—it lacks a movement licensee feature—it can be
directly merged with v, which has the appropriate selector feature =V, in the same manner:

(40) (38c) merge (39) = ⟨([< ε [< kicked Matt]], D= v)⟩
The next step is to merge the subject, Kat, in the specifier of vP. Notice that Kat, in addition to

its category feature D, also has the movement licensee feature -nom, meaning that it will undergo
movement after merging. Thus, as per the discussion above, rather than merging Kat into specvP
and subsequently moving it, we will simply put an empty node in specvP and add the FST in the
lexical entry for Kat at the end of our chain, giving our first nonunary chain. The category and
selector features D and D= are again deleted.

(41) (40) merge (38d) = ⟨([> ε [< ε [< kicked Matt]]], v); (Kat, -nom)⟩
Wenextmerge this chain with T, deleting the selector and category features =v and v and passing

the rest of T’s features up to the primary FST of the new chain. The second element of the vP’s
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chain, Kat, is passed along unchanged to the newlyformed chain, still waiting for its time to be
tacked onto the primary FST.

(42) (38e) merge (41) = ⟨([< ε [> ε [< ε [< kicked Matt]]]], +nom T); (Kat, -nom)⟩
Up to this point, the active feature of the primary FST has always been either a selector feature

or a category feature. This is why until now we have only performed merge operations, and no
move operations. But now, for the first time the active feature of the primary FST is a movement
licensor feature (+nom), meaning that movement will take place.Kat has the corresponding licensee
feature (-nom), meaning that it will move to specTP. This entails deleting the movement licensor
and licensee features—again, features are always checked by deletion—as well as placing Kat in
specTP and removing the second FST from the chain:

(43) move (42) = ⟨([> Kat [< ε [> ε [< ε [< kicked Matt]]]]], T)⟩
Two things are particularly worth noting about this step. The first is that we are back to a unary
chain: now thatKat has finished moving, we no longer have any movers awaiting their final landing
spot. The second is that whereas merge was a binary operation, taking two chains and combining
them into one, move is a unary operation, converting one chain into another. This makes sense
given the nature of merge andmove as tree operations:merge combines two trees into one, while
move transforms one tree into another.

The last step is that the complementizer C merges with the TP we have just built. Since the TP
does not undergo any subsequent movement operations, as indicated by the fact that its only feature
is the category feature T, the C and TP merge straightforwardly, as in (44):

(44) (38f) merge (43) = ⟨([< ε [> Kat [< ε [> ε [< ε [< kicked Matt]]]]]], C)⟩
Wewill say that given C’s status as the head of a (matrix) clause, the category feature C is privileged:
a derivation is complete when we have a unary chain whose single FST has C as its sole remaining
feature. We have thus successfully generated the sentence Kat kicked Matt.

3.3 Adding LF

We next move on to our revised MGs, in which PF and LF representations are derived simul
taneously. In order to accomplish this, we will expand our class of movement licensee features:
in addition to our “normal” movement licensee features (e.g., -f), we will also include PFonly
licensee features (-fP) and LFonly licensee features (-fL). Movements triggered by normal (here
after PF+LF) movement licensee features affect both PF and LF, making them overt scopal move
ments. Movements triggered by PFonly licensee features simulate reconstruction: since the move
ment does not impact LF, the constituent will scope at a position below its PF position. LFonly
movement corresponds to QR, resulting in that constituent scoping above its PF position. There
will remain only one type of movement licensor feature (+f), meaning that whether a constituent’s
movement affects PF, LF, or both will be determined strictly by the head’s licensee feature. This is
for convenience only: the analysis in this paper is equally compatible with a version in which it is
the licensor that determines at which levels of syntactic representation a constituent moves, or in
which the licensor and licensee work in tandem.

Since we are simultaneously building PF and LF trees, our FSTs will be replaced with feature
specified tree pairs (FST2s): triples consisting of a PF tree, an LF tree, and a string of features.
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Chains will be tuples of FST2s. We will continue with our convention of using English orthography
for PF representations; LF representations will use smallcaps English orthography or, for silent
heads, the name of the category of the head. However, these LF representations could just as well be
treated as bundles of semantic features, or as lexical denotations; for our purposes it doesn’t matter,
and so we stick to smallcaps orthography for ease of reading. Also as a matter of convenience, the
three elements in each FST2 will be separated by line breaks rather than commas, with PF trees
appearing on the top in red, and LF trees appearing in the middle in blue.

To see how our revised MGs work, we will go through a derivation of (8a) (A technician in
spected every plane) on its inverse scope interpretation, where different planes may be inspected
by different technicians. The lexical entries can be seen in (45):

(45) a.
〈 (

every
EVERY

=N D -scL

) 〉
b.

〈 (
plane
PLANE
N

) 〉
c.

〈 (
inspected
INSPECT
=D V

) 〉

d.
〈 (

ε
V

=V D= +sc v

) 〉
e.

〈 (
a
A

=N D -nomP

) 〉
f.

〈 (
technician
TECHNICIAN

N

) 〉

g.
〈 (

ε
T

=v +nom T

) 〉
h.

〈 (
ε
C

=T C

) 〉

As mentioned previously, the red text in each lexical entry is the part inserted in the PF tree, and the
blue text the part inserted in the LF tree. It should be clear from their phonetic representations which
lexical items (45a–c) and (45e–f) are. (45d) is v, (45g) is T, and (45h) is C. Two noteworthy features
of the entries in (45) are (I) that the movement licensee feature for the subject’s determiner a is PF
only, meaning that the subject will overtly move to the usual specTP position, while scoping at its
merge position in specvP; and (II) that the object’s determiner every has an LFonly licensee feature
-scL (for scope), with the corresponding licensor feature +sc appearing in the v head, meaning that
the object will be pronounced in its merge position and take scope at the edge of the vP.

Let us now move on to the derivation. First, every merges with plane, checking every’s =N
feature and plane’s N feature. This can be seen in (46):19

(46) (45a) merge (45b) =
〈 (

[every plane]
[EVERY PLANE]

D -scL

) 〉
Next, every planemerges in the complement of inspected. Since every plane has the LFonly move
ment feature -scL, it will be undergoing movement at LF, but not at PF. Now recall how move
ment was handled in the PFonly MG: rather than merging the phrase and then moving it, an empty
“trace” was inserted from the getgo and the moving constituent was added to the chain to be tacked
onto the tree later. But in this case, the PF portion of every plane will be merging with inspected
and staying put there, while the LF portion must be held onto for later in order to enable the LF
only movement. So the PF half of this merge will look like one that occurs with no subsequent
movement, and the LF half will look like amerge operation anticipating later movement.

19As in the original formulation of MGs in the previous section, the interior nodes of both PF and LF trees are <
or > depending on the direction of the head of the constituent. We exclude these for ease of reading, though they are
included in the derivation rules in Appendix A of the supplementary materials.
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There is an additional complication involved in this LF movement. On traditional semantic
analyses, traces denote free variables over individuals that saturate arguments at their merge po
sitions. These variables are then lambdaabstracted over when the mover reaches its landing site,
with the resulting predicate serving as an argument to the quantificational DP. But in order to do
this, traces cannot simply be treated as empty nodes like we have been doing for PF: it is crucial
that the traces have indices in order for lambda abstraction to successfully target the right free
variable. Moreover, we want this to be deterministic: we do not want to conflate free variables by
accidentally assigning distinct traces the same index.

The way this will be accomplished is as follows: we will posit a function “in”, which is a
bijective (onetoone) function from movement licensee features to some finite subset of the set of
natural numbers. When a phrase merges and will take scope via a feature -f (or -fL), the merge
position is filled with a trace whose index is in(-f) (or in(-fL)). Once the movement is complete,
a node λin(-f) (or λin(-fL)) is inserted below the mover’s landing site, lambda abstracting over the
free variable.20 This avoids a potential conflation of free variables due to an independent fact about
MGs: move cannot take place if there are multiple possible movers with the same active licensee
feature at the same time (the Shortest Move Constraint, Stabler 1997). Thus, if two movers utilize
the same movement licensee feature, it must be the case that the second movement starts after
the first movement is completed, at which point the latter’s free variable will have already been
lambdaabstracted over. There is therefore no risk of conflict.

With this in mind, the result of merging inspected with every plane can be seen in (47):

(47) (45c) merge (46) =
〈 (

[inspected [every plane]]
[INSPECT tin(-scL)]

V

)
;

(
ε

[EVERY PLANE]
-scL

) 〉
As promised, in the PF tree every plane merges with inspected and stays there. At LF, INSPECT
combines with the trace tin(-scL), since every plane’s new active feature is -scL. Since we need to
hold onto the LF representation EVERY PLANE, we now have a binary chain; the PF portion of the
nonprimary FST2 is a placeholder empty tree ε.

Next, v merges with the newlyconstructed VP, as in (48). Separately, a and technician merge
together in preparation for the DP’s merge into the specifier of vP. This can be seen in (49).

(48) (45d) merge (47) =
〈 (

[ε [inspected [every plane]]]
[V [INSPECT tin(-scL)]]

D= +sc v

)
;

(
ε

[EVERY PLANE]
-scL

) 〉
(49) (45e) merge (45f) =

〈 (
[a technician]
[A TECHNICIAN]

D -nomP

) 〉
We now have the inverse from the situation in (47): because of the subject’s PFonly licensee fea
ture -nomP, this time the DP a technician will be merging and staying put at LF, but undergoing
movement at PF. The result is similarly inverted: an empty “trace” is inserted at PF, and A TECH
NICIAN is merged at LF. The PF component is then added to our now ternary chain, with an empty
placeholder ε in the LF position:

20In cases where a single constituent undergoes multiple LF movements, lambda abstraction takes place after each
movement, with the entity argument of the ensuing predicate being saturated by the variable denoted by the trace left
by the next LF movement.
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(50) (48) merge (49) =〈 (
[ε [ε [inspected [every plane]]]]

[[A TECHNICIAN] [V [INSPECT tin(-scL)]]]
+sc v

)
;

(
ε

[EVERY PLANE]
-scL

)
;

(
[a technician]

ε
-nomP

) 〉
Now the primary FST2’s active feature is the movement licensor +sc, which matches every

plane’s LFonly -scL licensee feature. As a result, EVERY PLANE is inserted in specifier position,
with the lambda abstraction node λin(-scL) inserted below it.

(51) move (50) =〈 (
[ε [ε [inspected [every plane]]]]

[[EVERY PLANE] [λin(-scL) [[A TECHNICIAN] [V [INSPECT tin(-scL)]]]]]
v

)
;

(
[a technician]

ε
-nomP

) 〉
Notice that nothing happens to the PF structure in this movement, since LFonly movement has no
impact on the PF representation. The tense node T then merges with this completed vP, leading to
the chain in (52):

(52) (45g) merge (51) =〈 (
[ε [ε [ε [inspected [every plane]]]]]

[T [[EVERY PLANE] [λin(-scL) [[A TECHNICIAN] [V [INSPECT tin(-scL)]]]]]]
+nom T

)
;

(
[a technician]

ε
-nomP

) 〉
Since the primary FST2’s active feature is the licensor +nom, a technician’s PFonly movement

takes place by adding its PF component to specTP. The LF representation is unaffected by this
PFonly movement.

(53) move (52) =
〈 (

[[a technician] [ε [ε [ε [inspected [every plane]]]]]]
[T [[EVERY PLANE] [λin(-scL) [[A TECHNICIAN] [V [INSPECT tin(-scL)]]]]]]

T

) 〉
And lastly, the finalized TP is merged with C, leading to a completed CP with an LF representation
that leads to an inverse scope interpretation, as desired.

(54) (45h)merge (53) =
〈 (

[ε [[a technician] [ε [ε [ε [inspected [every plane]]]]]]]
[C [T [[EVERY PLANE] [λin(-scL) [[A TECHNICIAN] [V [INSPECT tin(-scL)]]]]]]]

C

) 〉
We have thus successfully derived (8a) (A technician inspected every plane) on its inverse scope
interpretation.

3.4 Derivation trees

Next we introduce derivation trees, which are a helpful way of visualizing syntactic derivations,
and which will prove useful when we turn our attention to the MG parser. In a derivation tree, the
leaf nodes (nodes without daughters) are lexical items—for our purposes represented as English or
thography for overt items and as category labels for silent heads, plus the string of features—while
the interior nodes are labeled merge and move. Since move is a unary operation (it takes a single
chain and returns a different chain), interior nodes labeledmove will be unary branching. By anal
ogy, interior nodes labeledmergewill be binarybranching, sincemerge is a binary operation. The
linear order of nodes is irrelevant, since all information is encoded through hierarchical structure;
however, we will order things in a way that maximally resembles overt word order.
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The derivation tree for our derivation of the inverse scope interpretation of (8a) (A technician
inspected every plane) can be seen in Figure 2. The derivation tree should be read “bottom up”:
first, every merges with plane, with the result merging with inspected, etc. Thus, the lower of the
twomove nodes represents the LFonly movement of every plane, since that happened first, while
the higher of the two represents the PFonly movement of a technician.

merge

C :: =T C move

merge

T :: =v +nom T move

merge

merge

a :: =N D -nomP technician :: N

merge

v :: =V D= +sc v merge

inspected :: =D V merge

every :: =N D -scL plane :: D

Figure 2: Derivation tree for inverse scope reading of A technician inspected every plane.

For the rest of this paper, we will make three modifications to our derivation trees in order to
facilitate reading. The first is that we will not show the string of features for each lexical item, and
will only provide the name of that lexical item. The second is that merge and move nodes will be
replaced with the traditional labels of the constituents created by means of those operations, e.g.,
the lowestmerge node will be replaced with DP, and the highestmove node will be replaced with
TP. The third is that movement arrows will be included, starting at the root of moved phrases and
going to the relevant movement node, roughly corresponding to the landing site.21 Red arrows will
indicate PFonly movement, blue arrows LFonly movement, and black arrows PF+LF movement.
A crucial difference between these movement arrows and traditional movement arrows will be that
for ours, the origin of the arrow will always be at the root of the moved constituent: if a constituent
moves twice, the arrow for the second movement will not be from the landing site of the first move
ment to the landing site of the second movement, but rather from the root of the moved constituent
to the landing site of the second movement. The simplified derivation tree for our inverse scope
derivation of A technician inspected every plane can be seen in Figure 3.

21The root of a (sub)tree is the single node in that (sub)tree that dominates all other nodes.
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CP

C TP

T′

T vP

vP

DP

a technician

v′

v VP

inspected DP

every plane

Figure 3: Simplified derivation tree for inverse scope reading of A technician inspected every plane.

Before moving on to the MG parser, one more thing is worth noting about derivation trees. In
introducing derivation trees, we said that the leaves represented lexical items, while the interior
nodes represented derivation steps (merge or move). But there is another, equally useful way of
looking at things: each node corresponds to a chain that we see during the course of the derivation.
For the leaf nodes, the chains are the lexical entries for the corresponding lexical items. For interior
nodes, the chain is the one that is built by the corresponding operation. Thus, themerge node that
immediately dominates every and plane (labeled DP in Figure 3) corresponds to the chain built
by the merge operation in (46), while the lower move node (labeled as the higher vP in Figure 3)
corresponds to the chain resulting from LFonly movement of every plane in (51). This observation
will prove especially useful when discussing the MG parser, to which we now turn.

4 A semi-formal introduction toMG parsing

We now turn to the topdown MG parser, which essentially does the syntactic derivation of a sen
tence in reverse, but in a way that is sensitive to lexical items’ linear order (at PF). This parser will
be used to define our metric for scope processing difficulty in §5. In this section in particular, we
will discuss things only in very informal terms; a complete formal definition of the parser can be
found in the appendices. We start in §4.1 with a cautionary note, aimed especially toward those
unfamiliar with work on formal parsing, about what the parser does and does not do. In §4.2 we
illustrate how the parser works by parsing our derivation for (8a) (A technician inspected every
plane) from the previous section. Finally, in §4.3 we will introduce annotated derivation trees,
which are a convenient way of using derivation trees in order to show the path the parser takes.
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4.1 Prelude to the parser: What’s in a parser?

In the next subsection, we will introduce the formal parser for MGs used in defining and testing our
scope processing difficulty metric. However, for the sake of those unfamiliar with work on formal
parsing, a note is warranted on what is, and more importantly what is not, included in the parser.

At its core, the job of any syntactic parser—including the human parser—is to take a string S
and determine a wellformed syntactic structure (or derivation) J such that the string yield for J is
S.22 An implementation of such a parser can be usefully thought of as consisting of two modules.
The first is a mechanism that allows one to make predictions about what the syntactic structure (or
derivation) looks like, to keep track of the precise ramifications of those predictions, and to scan the
input string to determine if those predictions are correct. The second is an algorithm that determines
the path of the parse by deciding what prediction and confirmation steps to actually take.

By way of illustration, consider the case of garden path sentences like the famous (55):

(55) The horse raced past the barn fell.

The human parser’s first inclination is to parse raced as the past tense of race, but this leads to a
crash: The horse raced past the barn is a complete sentence, and there is no place to fit fell. Instead,
one can only successfully parse (55) by treating raced past the barn as a reduced relative clause,
so that the structure of (55) is similar to that of the much more easily processed (56).

(56) The horse that was raced past the barn fell.

The garden path phenomenon can plausibly be traced in large part to the second module mentioned
above: when parsing (55), the human parser is highly prone to making the wrong guesses, and has
difficulty determining what guesses are the right ones to make. As a result, once one is “let in on
the joke” and informed of the correct parse—perhaps by means of a paraphrase like (56)—there is
often little difficulty in determining the structure of the original string.

In contrast, consider again the case of centerembedding in (1b), repeated below:

(1b) The mouse that the cat that the dog that the barber owned bit ate liked cheese.

The difficulty involved in processing (1b) seems to be of an altogether different sort from that
involved in processing (55). Even upon being told that (1b) has suchandsuch structure and being
given a more easily parsed paraphrase like (1a), actually navigating the structure of (1b) is still
exceedingly difficult without pen and paper. This suggests that the heart of the difficulty of (1b)
lies in the first module above: what makes (1b) hard to process is not (or not just) an inclination
to make the wrong guesses, but rather a problem of keeping track of all of the information that the
predictionmaking mechanism has to store, even when making all of the right guesses.

We bring this up because the parser introduced in the next subsection and used throughout this
paper includes the first module and excludes the second: it is a mechanism for predictionmaking
and confirming, devoid of any algorithm that tells us what predictions (not) to make for a given
parse. Thus, whenever we go stepbystep through a parse, this parse will be one in which only
correct predictions are made, thereby abstracting away from the issue of how the human parser
actually determines which predictions to make. In light of the discussion above, this is not a theory
neutral abstraction, but an empirically loaded one: it comes with the prediction that in terms of
processing difficulty, inverse scope looks qualitativelymore like centerembedding than like garden

22The string yield for a given syntactic structure is the string that is its output, i.e., the “pronounced” string.
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paths. We think that this is correct: Anderson (2004) provides ample evidence that inverse scope
is difficult to process even with an appropriately biasing context, and the backandforth in the
theoretical literature shows that long QR can be difficult to get even for those who know better
than most what such an interpretation would look like.

4.2 The parser

We now turn to the parser itself. Our derivation made use of chains, which were ordered tuples of
featurespecified tree pairs. By analogy, our parse will make use of parse items, which are ordered
tuples of doublyaddressed feature strings (AFS2s). There will be a onetoone correspondence be
tween parse items and chains, and between AFS2s and FST2s: each chain in a derivation will have a
corresponding parse item in a parse, and within a given chain, each FST2 will have a corresponding
AFS2 in the corresponding parse item.

We start by defining AFS2s. AnAFS2 can be thought of as a prediction about some substructure
of the PF and LF trees: roughly, it is a prediction that there is a subtree whose root occupies a
particular position at PF and a particular position at LF, and whose head has a particular string
of remaining features at the relevant point in the derivation. Much like how FST2s were ordered
triples consisting of a PF tree, an LF tree, and a string of features, AFS2s will be ordered triples
consisting of a PF address, an LF address, and a string of features. In the parser defined in the
appendices, these addresses are gorn addresses, which are formally defined objects that pinpoint a
particular node in a tree. However, for the informal purposes of understanding our scope processing
metric, we do not need such finegrained information; therefore, the “addresses” in our AFSs will
be replaced with check marks indicating that the parser has determined the relevant location.

Since parse items are to AFS2s what chains are to FST2s, parse items are naturally tuples of
AFS2s. The role of AFS2s in parse items is similar as well: the first, primary AFS2 provides infor
mation about themain part of the treewe are parsing, while nonprimaryAFS2s provide information
about moving constituents whose existence has been predicted.

Since a parse essentially performs the derivation in reverse, we start by predicting a completed
CP. Thus, the predicted PF and LF addresses for the root of our subtree will simply be the root of the
CP as a whole, while the feature string will consist only of the category feature C, since that is the
only feature remaining at the end of a derivation (cf. (54)). Thus, given that all relevant positional
information is known at this point in the derivation, our starting parse item will be ⟨(X, X, C)⟩;
note that we continue our colorcoding, with red indicating PF addresses and blue LF addresses.
We will also add further helpful notation: for each AFS2, we will include as a superscript the label
of the constituent being predicted. Thus, we will notate our starting parse item as ⟨(X, X, C)CP⟩.
Note that this superscript should be read not as a part of the actual parser, but rather as a guide.

Each step in the parse of a sentence is of one of three categories: unmerge, which “undoes”
a merge operation; unmove, which does the same for a move; and scan, which checks to see if
the next word in the input string meets the conditions predicted by the parse. (In the case of a
phonetically empty lexical item, the scan is always successful.) More generally, the parser can be
thought of as predicting that a certain sequence of operations has taken place, and then confirming
those predictions by scanning lexical items in their linear order.

Since the last step in our derivation was to merge C and TP, this is the first step we undo via
unmerge. In a derivation, merge combines two chains into a single chain, deleting selector and
category features; conversely, in a parse, unmerge splits a single parse item into two parse items,

30



adding selector and category features. Since we are predicting that C selected TP to its right via =T,
we immediately know where the roots of the two newly predicted subtrees are: we know that C is
the left daughter of the CP root at both PF and LF, and TP is its right daughter. The result of this
first step of unmerge can be seen in (57); note the analogy (including identity of feature strings)
between the newly introduced parse items and the chains fed intomerge in (54).23

(57) ⟨(X, X, C)CP⟩
unmerge24

⟨(X, X, =T C)C⟩ ⟨(X, X, T)TP⟩

We now have multiple parse items to play with. By rule, we can only operate on the first
listed remaining parse item, i.e., ⟨(X, X, =T C)C⟩. But what determines the order of parse items?
The answer is linear order within the PF tree: the firstlisted parse item is the one containing the
leftmost PF address, the secondlisted is the one containing the next leftmost PF address, etc. This
is because lexical items must be scanned in lefttoright order. Thus, the parser will always take the
fastest route that will allow it to scan from left to right. Since the input to the parser is a PF string,
and not an LF string, what matters is the lefttoright order of PF addresses, not LF addresses. (In
this case these happen not to conflict.) Since C is predicted to be to the left of TP at PF, this means
that the parse item for C is listed first.

The feature string =T C matches the feature string for the lexical item C as indicated in (45h).
Moreover, since the phonetic representation for C is the empty string ε, we can scan it “for free”:
scanning is automatically successful. We thus scan C, meaning that its parse item is deleted.

(58) ⟨(X, X, =T C)C⟩ ⟨(X, X, T)TP⟩
scan C⟨(X, X, T)TP⟩

Our remaining parse item is the predicted TP, the right daughter of CP at both PF and LF. As
seen in (53), the last derivation step in the building of this TP was move, which PFmoved the
subject to specTP. This operation took a single chain with multiple FSTs—one for the “main” tree,
one for the mover—and replaced it with a single chain with a single FST, the result of tacking the
mover onto the PF tree at specTP, simultaneously deleting T’s +nom feature and the determiner’s
-nomP feature. In undoing this move operation, we do more or less the same thing in reverse: we
take a single parse item with a single AFS2, and return a single parse item with two AFS2s, a
primary one for the main tree with +nom added as a feature, and a secondary one for the mover with
-nomP added as a feature. Because of how movement works—the mover always moves to a newly
created specifier—we know that at PF, the DP mover is the left daughter of TP, and the rest of the
tree is the right daughter of TP.

But what about at LF? The PFonly movement did not change anything about the LF structure.
Therefore, nothing has changed in the main (TP) LF tree, meaning we still know where its root
is. But as for the subject, all the parser currently knows about it is that it PFmoved to specTP by
means of a -nomP feature. While this is enough to tell us where the subject sits at PF, an LF address

23We operate within a “parsing as deduction” framework (Pereira &Warren 1983), which is commonly used in work
on syntactic parsing. For us, parses are deductions in which the sole axiom is the initial parse item, the inference rules
are the parse rules, and the goal for a successful deduction is the elimination of all parse items and the scanning of the
whole input string.

24Naming the parse rule unmerge is somewhat misleading because there are multiple unmerge parse rules (and
likewise for unmove), as shown in Appendix B. In the body of the paper we will continue to use the simplified names.
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cannot yet be determined: we do not yet know where the subject moved from. More generally,
we do not know where a constituent sits at LF until we have undone some LFrelevant operation,
whether that be merge, LFmove, or PF+LFmove. We will therefore use a question mark for the
subject’s LF address, indicating that we do not yet know where the subject sits at LF:

(59) ⟨(X, X, T)TP⟩ unmove
⟨(X, X, +nom T)T′; (X, ?, -nomP)DP⟩

Note once again the analogy between derivation chains and parse items. The input tomove in (53)—
that is, the chain built in (52)—was a single chain with two FST2s, the primary having the feature
string +nom T, and the secondary (mover) having the feature string -nomP. Meanwhile, the parse
item resulting from unmove also contains two AFS2s, with both the primary and secondary having
the same feature strings as their corresponding FST2s. While we will not continue to hammer on
this point, it is worth emphasizing that this correspondence between chains and parse items will
hold at every step of the parse; the distrusting reader is left to confirm this on their own.

Since we currently have a predicted T′, the next derivation step we undo is the merge of T
and vP that built this T′. As before, this unmerge takes our single parse item and returns two parse
items. Since the PF and LF addresses for T′ are known, the PF and LF addresses for T (left daughter)
and vP (right daughter) are also immediately recoverable from this parse operation, though the DP
mover’s LF address is still a mystery—in fact, the DP’s AFS2 goes unchanged since the DP was
uninvolved in this derivation operation. This unmerge step can be seen in (60):

(60) ⟨(X, X, +nom T)T′; (X, ?, -nomP)DP⟩ unmerge
⟨(X, X, v)vP; (X, ?, -nomP)DP⟩ ⟨(X, X, =v +nom T)T⟩

Two things are worth noting about this step. First, note that the DP’s AFS2 is now hitched to vP,
and not T. The reason for this is that movers’ AFS2s always ride with the AFS2s of the constituents
within which they were merged, in order to enable the ultimate unmerge of that mover. Since the
subject was merged vPinternally, its AFS2 thus rides with the vP. Second, notice that even though
T is to the left of vP at PF, the latter’s parse item is listed first, and not the former’s. This is because
of all of the known PF addresses, the leftmost is not T’s, but the subject’s, meaning that the parse
item containing the subject’s AFS2 is the one listed first.

The last derivation step in the building of the vP was the LFonly move of the object to the
edge of vP, meaning that this is what we next undo. Recall that when we undid the subject’s PF
only movement, its final PF position was immediately recoverable, but its LF position was not. The
inverse happens when we undo an LFonly movement. Because movement puts movers in specifier
positions, once we undo the LFonly movement of the object we immediately know that at LF the
object sits at the edge of vP. But since all the parser knows about the object at this point is that it
LFmoved to the edge of vP, the parser cannot yet determine the object’s PF location; this will not
be known until some PFrelevant operation is undone. The result can be seen in (61):

(61) ⟨(X, X, v)vP; (X, ?, -nomP)DP⟩ ⟨(X, X, =v +nom T)T⟩ unmove
⟨(X, X, +sc v)vP; (X, ?, -nomP)DP; (?, X, -scL)DP⟩ ⟨(X, X, =v +nom T)T⟩

As before, the unmove replaces a parse itemwith a single other parse item, introducing a newAFS2
for the newly predicted mover, and introducing a +sc feature for the predicted v and a -scL feature
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for the predicted mover. There are also now two unknown addresses: the subject’s LF address and
the object’s PF address.

The next step that we undo is the merging of the subject into specvP. As always, this splits
the firstlisted parse item into two parse items; this time, the subject’s AFS2 “breaks away” into its
own parse item, meaning we now have three parse items in play. In addition, this unmerge finally
gives the parser enough information to infer where the subject sits at LF: it was merged in specvP
and did not move from there. Thus, the LF “address” can be switched from ? to X. This can be seen
in (62); parse items are split onto two lines for readability:

(62) ⟨(X, X, +sc v)vP; (X, ?, -nomP)DP; (?, X, -scL)DP⟩ ⟨(X, X, =v +nom T)T⟩ unmerge
⟨(X, X, D -nomP)DP⟩ ⟨(X, X, =v +nom T)T⟩

⟨(X, X, D= +sc v)v′; (?, X, -scL)DP⟩

Notice that the parse items have also been reordered: since the subject has its own parse item with
the leftmost PF address (specTP), that is now listed first, followed by T, followed by v′. (Since the
object’s PF address is unknown, it does not contribute to determining the order of parse items.)

Since the subject DP is the firstlisted parse item, our next step in the parse is to undo the step
that built that DP: namely, themerge of a and technician. This is straightforward:

(63) ⟨(X, X, D -nomP)DP⟩ ⟨(X, X, =v +nom T)T⟩
⟨(X, X, D= +sc v)v′; (?, X, -scL)DP⟩ unmerge

⟨(X, X, =N D -nomP)D⟩ ⟨(X, X, N)NP⟩ ⟨(X, X, =v +nom T)T⟩
⟨(X, X, D= +sc v)v′; (?, X, -scL)DP⟩

Next, the parser can scan a because the next word is pronounced a, and the feature string of the
parse item matches that of the lexical entry for a. Then, technician can be scanned for the same
reason. Finally, since T is silent, it can also be scanned, since once again the feature string for T’s
parse item matches that of the lexical entry for T.

(64) ⟨(X, X, =N D -nomP)D⟩ ⟨(X, X, N)NP⟩ ⟨(X, X, =v +nom T)T⟩
⟨(X, X, D= +sc v)v′; (?, X, -scL)DP⟩ scan a
⟨(X, X, N)NP⟩ ⟨(X, X, =v +nom T)T⟩
⟨(X, X, D= +sc v)v′; (?, X, -scL)DP⟩

scan technician⟨(X, X, =v +nom T)T⟩ ⟨(X, X, D= +sc v)v′; (?, X, -scL)DP⟩
scan T

⟨(X, X, D= +sc v)v′; (?, X, -scL)DP⟩

This brings us back to a single parse item, which contains the AFS2s for the predicted v′ and
the object DP. Next we undo the step that built this v′, namely, themerge of v and VP. Notice that
the object’s AFS2 goes along with the VP’s, since the object was obviously merged inside the VP.
The silent v head can then be scanned:

(65) ⟨(X, X, D= +sc v)v′; (?, X, -scL)DP⟩ unmerge
⟨(X, X, =V D= +sc v)v⟩ ⟨(X, X, V)VP; (?, X, -scL)DP⟩ scan v

⟨(X, X, V)VP; (?, X, -scL)DP⟩
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Next, the step that built the VP—themerge of the verb and object DP—can be undone. As before,
this unmerge gives the object AFS2 its own parse item. Moreover, this unmerge finally gives
the parser enough information to determine where the object sits at PF: it was merged as the right
daughter of VP and did not move from there. Thus, the PF “address” is switched from ? to X. The
verb inspected can then be scanned. This is followed by the unmerging and scanning of every and
plane, which goes as expected. This is all shown in (66).

(66) ⟨(X, X, V)VP; (?, X, -scL)DP⟩ unmerge
⟨(X, X, =D V)V⟩ ⟨(X, X, D -scL)DP⟩ scan inspected

⟨(X, X, D -scL)DP⟩ unmerge
⟨(X, X, =N D -scL)D⟩ ⟨(X, X, N)NP⟩ scan every

⟨(X, X, N)NP⟩ scan plane
We have successfully completed the parse: the input string (A technician inspected every plane)
has been fully scanned, and there are no more parse items remaining.

4.3 Annotated derivation trees

In the previous section we introduced derivation trees, which are a way of representing syntac
tic derivations. We will now introduce annotated derivation trees, which are a convenient way of
representing both the derivation and the path the parser takes in parsing the derived structure. As
previously noted, there is a onetoone relationship between the chains that arise in a derivation
and the parse items arising in its corresponding parse. And as also noted, there is a onetoone
relationship between the nodes in the derivation tree and the chains in a derivation: leaf nodes cor
respond to lexical chains,merge nodes correspond to chains built bymerge operations, andmove
nodes correspond to chains built by move operations. Therefore, there is an additional onetoone
relationship between the nodes in a derivation tree and the parse items in the parse: the leaf nodes
correspond to those parse items that are discharged (removed) by scan operations, merge nodes
correspond to parse items that are discharged by unmerge operations, andmove nodes correspond
to parse items that are discharged by unmove operations.

With this in mind, we can illustrate the path of the parse by assigning each node in the derivation
tree an index, which indicates at what step in the derivation the corresponding parse item is intro
duced, and an outdex, indicating the step in the derivation at which that parse item is discharged.
The annotated derivation tree for our derivation/parse of the inverse scope of (8a) can be seen in
Figure 4; indices are on the top left, and outdices are on the bottom right.

Take, for example, the CP node, which is amerge node, as is recognizable from the fact that it
is binary branching. The CP node corresponds to the very first parse item, ⟨(X, X, C)CP⟩, which is
introduced in the very first step and immediately discharged via unmerge. This can be contrasted
with the node labeled T, which is the parse item that is eventually discharged when T is scanned; this
parse item is introduced in the fifth step (when T′ is unmerged, cf. (60)), and is not discharged via
scan until six steps later. More generally, a parse item’s tenure is the number of steps between when
it is introduced and when it is discharged, which can be gleaned from the annotated derivation tree
by subtracting its corresponding node’s index from its outdex. This notion of tenure has featured
prominently in work on the relation between processing and Minimalist parsing, as the tenure of
a parse item could reasonably be thought to correspond to how long a given prediction must be
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Figure 4: Annotated derivation tree for inverse scope reading of A technician inspected every plane.

retained in the human parser’s working memory.25 While our analysis of scope processing will not
be built specifically around tenure, it will similarly be defined based on the nature and duration of
information storage during the course of a syntactic parse. We are now in a position where we can
define this novel scope processing difficulty metric.

5 A newmetric for scope processing difficulty

It is now time to offer our analysis of scope processing difficulty. In short, the idea is this: de
pending on the operations that take place during a derivation, at various points in the parse there
may be constituents whose existence has been predicted, but whose location at PF or LF cannot
yet be determined. We will argue that processing difficulty is correlated with how many of these
constituents there are during the course of a parse, as well as how long (in terms of number of parse
steps) it takes until their location at both PF and LF is determined. We will see that this principle
generates the right predictions for all of the scope processing observations discussed in §2.

25Kobele et al. (2013) were the first to discuss and use tenure in MG parsing. For nonMG predecessors to tenure
based analyses of processing difficulty, see Joshi 1990, Rambow & Joshi 1994.
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5.1 The SLD Principle

5.1.1 Defining the SLD Principle

Recall that in our parse of the inversescope reading of (8a) (A technician inspected every plane),
there were a number of steps inwhich the PF “address” assigned to every planewas ?, indicating that
it could not yet be determined. Once every planewas unmerged, its PF location as the right daughter
of VP could be determined. We can summarize the reason for this as follows. With our expanded
class of movement operations, we now have four derivation operations in total: merge, PF+LF
move, PFmove, and LFmove. Naturally, only the first three of these are PFrelevant operations,
in the sense that they impact the PF representation of the sentence; as far as PF is concerned, all
LFonly movement does is check features. Moreover, it is always the case that the last PFrelevant
operation determines the final PF position of a constituent. Thus, in undoing the derivation during
the course of the parse, one does not know where a constituent sits at PF until the first undoing of
a PFrelevant operation, since this undoes the last PFrelevant derivation step. In the case of every
plane, this last PFrelevant derivation step was its merge with inspected. The result was that the
AFS2 for every plane had an unknown PF address for those parse steps between when it was first
predicted (after unmove) and when the unmerge was completed. The same was true of the LF
address for the subject a technician: since the first operation that was undone (the PFonly move
to specTP) was not LFrelevant, the position of a technician at LF could not be determined until
some LFrelevant operation—namely, its initial merge in specvP—was undone. As a result, a
technician’s LF address was unknown until this unmerge took place.

According to our scope processing difficulty metric, the difficulty of a parse is tied to how long
(in terms of number of parse steps) various moving constituents are predicted to exist, but with
information missing about their PF or LF locations. We therefore need a way to find this number
of steps for a given mover—what we will call its location differential. Luckily, this is easy when
looking at the parse: for a given mover, we count the number of tokens of ? throughout the parse.
Take, for example, a technician. The existence of this constituent is predicted in step 4 of the parse,
corresponding to the second line of (59). At this point, its PF location (specTP) is known, but its
location at LF is not. This continues to be the case until step 7, the second line of (62), at which point
the LF location of a technician is finally determined to be specvP. Thus, since there are 3 steps
during which a technician has been predicted to exist without a determined LF location, its location
differential is 3. Similarly, every plane has an unknown PF location from when it is introduced in
step 6 (second line of (61)) until it is unmerged in step 14 (second line of (66)), meaning its location
differential is 8.

In order to compare the relative scope processing difficulty of two parses, for each parse we
find the sum of the location differentials for all the movers involved—what we will call its summed
location differential (SLD)—and then we compare the sums for the two parses. We call this the
SLD Principle, defined in (67):

(67) SLD Principle:
Parse A incurs a greater processing cost than Parse B if A’s SLD is greater than B’s.

Importantly, the SLD Principle only provides us with an ordinal scale for ranking parses in terms
of processing cost: it tells us which parses are costlier than others, but not how significant the
difference is in cost between two parses. Thus, while SLD assigns a number to a given parse, and
while the comparison of these numbers serves as our metric for processing difficulty, the relative
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size of the difference between two SLDs should not necessarily be construed as an indication of
the relative difference in processing difficulty of the two parses. Of course, there may indeed be a
correlation in this regard, but this is an empirical question over and above the one we are attempting
to address in this paper, and one that ought to be addressed via experimentation before a proper
computational account can be provided.

5.1.2 Derivation tree geometry as a shortcut to location differentials

In the rest of this paper, we will use a bit of a shortcut to find the location differentials of the movers
in a given parse, by using the parse’s annotated derivation tree. To see how this works, suppose that
there is some mover m whose final movement is an LFonly movement. Because this LFonly
movement will be the first to be undone in the parse, after this unmove happens the LF position of
m will be known, but the PF position will not, for the reasons stated above. The location differential
for m will therefore be the number of parse steps from when it is first predicted (unmoved) to when
it is assigned a PF position, and we will know the PF position for m after undoing some PFrelevant
operation form. Now because of another fact about our extendedMGs—namely, that no constituent
can undergo both LFonly and PFonlymovement in the same derivation (tantamount to undergoing
both QR and reconstruction)—we know that m’s PF position can only be determined by undoing a
merge or PF+LFmove of m. Similar logic entails that if m’s last movement is PFonly, its location
differential will be the number of steps between when it is first predicted and when a merge or
PF+LFmove of m is undone, since this is how long its LF position will be unknown. Finally, if
m’s last movement is a PF+LF movement, the location differential will be zero, since we will know
both the PF and LF locations of m as soon as m’s existence is predicted. (For instance, if m’s final
movement is a PF+LF movement to specTP, when we undo this movement we immediately know
that m is in specTP at both PF and LF.) Thus, no matter what, the following principle holds: for
a given mover m, m’s location differential is the number of steps from when it is first predicted to
when it is first either unmerged or PF+LFunmoved.

This can easily be spotted by looking at the annotated derivation tree. Recall that the interior
nodes of a derivation tree represent operations in the derivation, and the outdex of an interior node
represents the step in the parse when that operation is undone. Therefore, the existence of a mover is
first predicted at the step corresponding to the outdex of its final movement operation—that is, the
highest move with an arrow (of any color) from the mover. Meanwhile, the first step at which both
the PF and LF locations of a mover are known will be the outdex either of that mover’s immedi
ately dominatingmerge node—corresponding to when that mover is unmerged—or of the highest
PF+LFmove node for that constituent, if that constituent ever undergoes PF+LF movement.

Take, for example, the annotated derivation tree in Figure 4 above for our parse of (8a). The
existence of a technician is predicted at step 4, which is the oudex of its highestmove node (labeled
TP). Since a technician never undergoes PF+LF movement, its LF location is not known until it
is unmerged in step 7, which is the outdex of the DP’s immediately dominating merge node (the
lower vP). Thus, a technician’s location differential is 7− 4 = 3, as before. Similarly, the existence
of every plane is predicted at step 6, the outdex of its highestmove node (the higher vP), and again
since every plane never undergoes PF+LF movement its PF location is not known until step 14,
the outdex of the immediately dominating merge node (VP). every plane’s location differential is
therefore 14 − 6 = 8, again as before. We thus arrive at an SLD of 8 + 3 = 11 for this parse.

Now that the SLD Principle has been clearly defined, we will show how it garners the right
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results for all of the cases discussed in §2. We will only show those details about derivations and
parses that are necessary to illustrate how the SLD Principle derives the correct results; full details
on the derivations and parses used can be found in the appendices.

5.2 Example 1: Subject > Object

The first scope preference observation we will account for via the SLD Principle will be the prefer
ence for subjects to scope over direct objects in simple transitives (Kurtzman & MacDonald 1993,
Tunstall 1998, Anderson 2004). We have already seen what an inverse scope derivation and parse
for a simple transitive look like for A technician inspected every plane, but what about a surface
scope interpretation? We will assume, following Heim & Kratzer (1998) and others, that due to
a type mismatch quantified objects have to undergo LF movement regardless of scope configu
ration, meaning that the LFonly movement of every plane will remain (but see §5.4). The way
we will derive surface scope will be by replacing the PFonly movement of a technician with a
PF+LF movement, so that the subject takes scope in specTP, rather than in its merge position. This
is accomplished by swapping out the determiner a’s PFonly licensee -nomP feature for a PF+LF
licensee -nom feature. The derived PF tree is the same as before; the derived LF tree is as in (68),
leading to a surface scope reading:

(68) [ C [ [A TECHNICIAN] [ λin(-nom) [ T [ [EVERY PLANE] [ λin(-scL) [tin(-nom) [ V [ INSPECT tin(-scL)]]]]]]]]]

Since replacing PFonly movement with PF+LF movement has no effect on PF word order,
the path that the parser takes through our derivation tree will be the same as before, meaning that
the indices and outdices of the nodes will be the same as in Figure 4. In other words, as far as our
annotated derivation tree is concerned, the only result we see is that the red movement arrow of a
technician is replaced with a black one, indicating PF+LF movement. This can be seen in Figure 5.

Now that we have our two parses, it is time to compare SLDs. Recall that for the inverse scope
derivation in Figure 4, a technician had a location differential of 3, while every plane had a location
differential of 8. Thus, the SLD for that parse was 8 + 3 = 11. For the surface scope derivation in
Figure 5, the location differential of every plane is still 8: every plane is still predicted at step 6 (the
outdex of the higher vP node), and it is still not assigned a PF address until step 14 (the outdex of
the immediately dominating merge node). But things are different for the subject: since the only
movement is a PF+LF movement, the instant this operation is undone we know precisely where a
technicianwill sit at both PF and LF, namely specTP. Thus, a technician has a location differential
of 0 instead of 3, so the parse as a whole has an SLD of 8 instead of 11. Since the SLD Principle
states that whichever parse has the lowest SLD is the easiest to process, we correctly predict that
surface scope is less costly than inverse scope here.

Before moving on, note that there is another way we could have derived inverse scope: rather
than the subject scoping in its merge position with the object’s obligatory movement leapfrogging
it, the subject could have scoped in its landing site (specTP), with the object undergoing additional
QR to a position above this landing site. The same could be done for the cyclic QR cases discussed
in §5.4. For brevity’s sake we will not go over these possible derivations in this paper, but they are
included in the appendices; the resulting predictions are the same across the board.
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Figure 5: Annotated derivation tree for surface scope reading of A technician inspected every plane.

5.3 Example 2: Subject and Object vs. Negation

Next wewill discuss the relative scope configurations of subject and object universal quantifiers and
sentential negation, as tested by Lee (2009). We will only offer an explicit analysis of the English
case due to the aforementioned complexities involved in a full analysis of Korean. However, at the
end of this subsection we will hint at how the SLD Principle could cover the Korean case as well.

As discussed in §2, Lee (2009) provides evidence suggesting that in negated sentences with
every in subject position, as in (31a) (repeated below), there is a preference for surface scope, i.e.,
for every to scope above negation. That is, the preferred reading is that no kid fed the doves, rather
than the weaker reading that at least one kid withheld their food.
(31a) According to the story, every kid didn’t feed the doves in the park. (Lee 2009, p. 93)
We also saw that this was problematic for Wurmbrand’s theory of scope processing, as in this case
the preferred reading was one in which the subject was interpreted farther away from its merge
position, meaning that there was more movement at LF. In showing that the SLD Principle makes
the right predictions, we will use the simpler (69):
(69) Every student did not pass the test.
Consider Figure 6, which is the annotated derivation tree for the inverse scope interpretation of

(69). Here the subject’s movement is PFonly because the licensee feature for the subject’s move
ment to specTP is -nomP, rather than -nom. As a result, the derived PF is as expected, and the LF
representation is as in (70), generating the weak not > every interpretation.
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Figure 6: Annotated derivation tree for Every student did not pass the test (inverse scope)

(70) [ C [ T [ NEG [ [EVERY STUDENT] [ V [ PASS [THE TEST]]]]]]]

With respect to the SLD of this parse, there is only one mover here, so every student is the only
constituent with a defined location differential. The existence of every student is first predicted
when it is unmoved at step 4. At this point, every student is assigned a PF address (that of spec
TP), but not an LF address, since knowing that every student PFmoved to specTP does not tell us
where it takes scope. It only receives an LF address when it is unmerged at step 7 (the outdex of
the immediately dominating merge node, labeled vP), whereupon it is established that the subject
takes scope in specvP. Therefore, the location differential of every student—and hence the SLD of
the parse as a whole—is 7 − 4 = 3.

As for the surface scope interpretation of this sentence, we generate this by replacing the PF
only licensee feature -nomP with the PF+LF licensee feature -nom. Upon making this switch, the
final PF representation is exactly the same as it was in the inverse scope derivation, but at LF the
subject scopes in specTP, leaving us with the surfacescope structure in (71):

(71) [ C [[EVERY STUDENT] [ λin(-nom) [ T [ NEG [ tin(-nom) [ V [ PASS [THE TEST]]]]]]]]]

Since the PF structures of the surface and inversescope derivations are identical, the path the
parser takes through the derivation tree will be identical to that of the inversescope derivation,
meaning that as far as the annotated derivation tree is concerned, the only difference between sur
face scope and inverse scope is that the red PFonly movement arrow is replaced with a black
PF+LFmovement arrow. However, this single difference in the derivation leads to an important
parallel distinction in the parse and the SLD thereof. This time, when the subject is unmoved in step
4, rather than knowing only its PF position, we are now immediately aware of both the subject’s PF
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address and its LF address: namely, specTP. There are no steps at which every student is predicted
but missing a PF or LF address, meaning that the SLD for this parse is 0. Thus, according to the
SLD Principle, since the surface scope parse has a lesser SLD than the inverse scope parse, the
former is rightly predicted to be less costly than the latter.

Next we turn to the relative scope preferences for objects and negation. Recall that what Lee
(2009) found was that in English, there was a strong preference for universallyquantified direct
objects—such as every candle in (32a), repeated below—to scope under negation (not > every), in
contrast to subjects.

(32a) According to the story, Cindy didn’t light every candle last night. (Lee 2009, p. 124)

Much like we did with subjects, we will use the structurally simpler (72) as our test case:

(72) Mary did not feed every patient.

Starting with inverse scope (every > not), the annotated derivation tree for the parse of (72) on its
inverse scope reading can be seen in Figure 7. The PF tree arrived at by this derivation is as in (73a)
(with non“trace” ε replaced by relevant head names for readability’s sake), and the LF tree is as
in (73b) (broken up into two lines), with every patient outscoping negation.

1CP2

2C3
2TP4

4T′
5

5T11
(did)

5NegP6

6NegP7

7not12 7vP8

8vP9

9Mary10 9v′13

13v14
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15feed16 15DP17

17every18 17patient19

Figure 7: Annotated derivation tree forMary did not feed every patient (inverse scope)

(73) a. [ C [ Mary [ T(=did) [ not [ ε [ v [ feed [every patient]]]]]]]]
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b. [C [MARY [λin(-nom) [T [[EVERY PATIENT] [λin(-scL) [NEG
[tin(-scL) [λin(-scL) [tin(-nom) [V [FEED tin(-scL)]]]]]]]]]]]]

A few things are worth noting about the LF tree in (73b). The first is that while Mary takes
scope in specTP, because it is a proper name there is no semantic difference between it scoping
there and it scoping in its merge position of specvP (at least on most analyses of proper names). We
have opted for the former in order to obtain the lowest possible SLD for this parse, since we want
to compare the least costly parse for each of inverse and surface scope. The second observation is
that every patient undergoes QR twice: once to the edge of vP, and once above negation. The same
licensee feature (-scL) is used both times, meaning that every has two -scL features, one that is
checked by a +sc feature in the v head, and one that is checked by a +sc feature in the negation
head. After each move there is lambda abstraction (λin(-scL)). After first lambda abstracting over
the trace left by the first QR of every patient, this predicate is immediately saturated by the higher
trace left by the second QR of every patient, meaning that we are left with the same result as if
there had been no lambda abstraction at all. The second lambda abstraction (just above negation) is
the final one, creating the predicate fed to every patient. The semantic result is the same as if every
patient had moved above negation in one straight shot. Breaking the QR down into two steps is
adopted for syntactic reasons only, based on the assumption that vP is a movement domain (cf. the
discussion in §2); abandoning this assumption does not meaningfully alter the results.

Next, we compute the SLD for this parse. ForMary, the location differential is zero: because its
one movement is a PF+LF movement, once this movement is undoneMary’s PF and LF addresses
(both specTP) are immediately identifiable. As for every patient, its existence is first predicted
when its final LFonly movement is undone in step 6; at this point, its LF position (just above
negation) is known, but its PF location is not. When the other LFonly movement is undone at
step 8, every patient’s PF location is still unknown, since we still have not undone a PFrelevant
operation. Instead, every patient’s PF location is not known until it is unmerged from the VP in step
15. Thus, every patient’s location differential—and therefore the SLD of the parse as a whole—is
15 − 6 = 9.

Turning next to surface scope (not > every), this is obtained by getting rid of every’s second -scL
feature, as well as not’s +sc feature. When this is done, every patient’s typenecessitated LFonly
movement to specvP still takes place, but this time the DP stays there, remaining below negation.
Thus, while the PF representation of the sentence remains the same, the LF representation looks as
in (74):

(74) [ C [ MARY [ λin(-nom) [ T [ NEG [ [EVERY PATIENT] [ λin(-scL) [ tin(-nom) [ V [ FEED tin(-scL)]]]]]]]]]]

The annotated derivation tree for the parse can be seen in Figure 8. As before, the location
differential of Mary is 0, as its PF and LF addresses are both predicted when unmove takes place
at step 4. For every patient, the location differential is 7, since its existence is predicted at step 7
and it is assigned a PF address at step 14. The SLD Principle again derives the right prediction: the
SLD for the costlier inverse scope (9) is greater than the SLD for the less costly surface scope (7).

With respect to Korean, where speakers prefer for both subjects and objects to scope over nega
tion, as discussed in §2 any adequate syntactic analysis will have to account for the fact that in Ko
rean, subjects and direct objects linearly precede the verb and negation at PF. On an antisymmetric
view of syntax (Kayne 1994), this means that the two DPs (or constituents containing them) must
ccommand the verb and negation. But if the subject and direct object can each scope at their PF
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Figure 8: Annotated derivation tree forMary did not feed every patient (surface scope)

positions, then in both cases there is an every > not derivation in which there are no LFonly or PF
only movements, and any and all movements are PF+LF movements. In this case, the parse’s SLD
will be zero, since both PF and LF locations are known as soon as a PF+LF movement is undone.
Meanwhile, in order to derive a not > every reading, one of two things will have to happen: the
subject/object’s movement from below to above negation could be a PFonly movement—meaning
it would scope below its postmove position and below negation—or the negation (or some con
stituent containing it) could undergo some additional LFonly movement to a position higher than
the subject/object. But both of these possibilities result in a nonzero SLD, since each requires ei
ther a PFonly or LFonly movement. We would therefore predict inverse scope (not > every) to
incur a greater cost than surface scope (every > not) for both subjects and objects, as desired.

In summary, the SLD Principle successfully accounts for the English scope preferences for
subject over negation and negation over direct object, and there are promising signs that it could be
extended to account for preferences in Korean, though this will no doubt depend on one’s syntactic
analysis of Korean.

5.4 Example 3: Cyclic QR

Next, we will account for the cyclic QR observations analyzed by Wurmbrand (2018). There are
two types of observation that we wish to account for. The first are the withinsentence observations:
for each of the sentences in (8), surface scope is easier to process than inverse scope. The second are
the acrosssentence observations: an inversescope interpretation of (8a) is easier to process than
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an inversescope interpretation of (8b), which in turn is easier than an inversescope interpretation
of (8c).
(8) a. A technician inspected every plane.

b. A technician tried to inspect every plane.
c. A technician decided to inspect every plane.

Recall that Wurmbrand accounts for these facts by means of an analysis in which clausal comple
ments vary in their size, with trycomplements being vPs, and decidecomplements including an
additional futureshifting head WOLL. Because vP is a movement domain, every plane must un
dergo QR twice to generate inverse scope in (8b) (first above the embedded vP, then above the
matrix vP), while in (8c) a third iteration of QR is required, since every plane must also make a
stop in specWOLLP. Since only one iteration of QR is required for (8a), on Wurmbrand’s analysis
we generate the correct acrosssentence predictions, in addition to the withinsentence ones.

To illustrate the efficacy of the SLD Principle, we will adopt precisely the same syntactic anal
ysis as Wurmbrand, leading to the same predictions with respect to processing difficulty. However,
as will be discussed later, we do not need every feature of her syntactic analysis to capture the
scope processing facts: the SLD Principle is flexible enough that even with important changes to
the syntactic analysis, the correct results are still derived.

In order to determine whether the SLD principle garners the right results, we first need to find
the SLDs of the surface scope and inverse scope interpretations for each sentence in (8). In §5.2
we already did this for (8a); our results were SLDs of 8 for surface scope and 11 for inverse scope,
correctly predicting a preference for surface over inverse scope. Next we move on to (8b). As
per Wurmbrand’s theory, try takes a vP complement. Given our aforementioned assumption that all
objects must undergo QR because of a type mismatch, on a surface scope interpretation every plane
will QR above the embedded vP and just below try. As for a technician, whether it scopes in its
merge or final position does not matter, since either way it will scope above every plane. However,
we will have it scope in specTP in order to minimize the SLD—again, we evaluate each reading
on its least costly parse. The resulting annotated derivation tree can be seen in Figure 9; the ensuing
PF tree is as one would expect, and the LF tree is as in (75):26

(75) [ C [[A TECHNICIAN] [ λin(-nom) [ T [ tin(-nom) [ V [ TRY
[[EVERY PLANE] [ λin(-scL) [ PRO [ V [ INSPECT [tin(-scL)]]]]]]]]]]]]]

In calculating the SLD for this parse, we must look at the two movers: a technician and every
plane. For the former, the location differential is zero because the movement is PF+LF movement,
meaning the final resting spot at PF and LF can be determined as soon as this movement is undone
at step 4. As for every plane, this DP is assigned an LF location at step 15 when it is unmoved, but
is not assigned a PF address until step 20, when it is unmerged. Hence, the location differential for
every plane, and the SLD for the whole parse, is 20 − 15 = 5.

Next up is the inverse scope interpretation of (8b). In order to get this reading, just like for
Wurmbrand’s analysis every planemust undergo QR twice, once above the embedded vP and once
above the matrix vP. In addition, a technician’s movement to specTP must be PFonly, meaning
that it scopes in its merge position just below every plane. The annotated derivation tree can be
seen in Figure 10; the resulting PF tree is the same as before, and the LF tree is as in (76):

26We assume, contra Wurmbrand (2001), that the complements of trytype verbs include PRO. Eliminating this
assumption does not change our results.
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Figure 9: Annotated derivation tree, A technician tried to inspect every plane (surface scope)

(76) [ C [ T [[EVERY PLANE] [ λin(-scL) [[A TECHNICIAN] [ V [ TRY [ tin(-scL)
[ λin(-scL) [ PRO [ V [ INSPECT tin(-scL)]]]]]]]]]]]]

When calculating the SLD for this parse, we again have two movers to account for. This time,
the matrix subject has a nonzero location differential, since its existence is predicted when it is
unmoved in step 4, but it is not assigned an LF location until it is unmerged in step 7, leading to a
location differential of 7 − 4 = 3. As for every plane, its existence is first predicted at step 6, when
it is unmoved. At this point, it has a definite LF location, but its PF location is yet to be determined.
Undoing the other LFonly movement (above the embedded vP) does not change this fact, so every
plane is not assigned a PF address until it is unmerged from the complement of inspect at step 21.
Thus, every plane’s location differential is 21 − 6 = 15, leading to an SLD of 3 + 15 = 18. This
generates the right predictions both withinsentence—we predict surface scope to be easier than
inverse scope, since 5 < 18—and acrosssentence, since inverse scope for (8a) is predicted to be
easier than inverse scope for (8b) (11 < 18).

Finally, we have (8c), the example with decide + infinitive. We will not include the annotated
derivation tree for the surface scope parse in the body of this paper, as it looks minimally different
from the surface scope derivation tree for (8b): the only difference is the inclusion of WOLL (and
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Figure 10: Annotated derivation tree, A technician tried to inspect every plane (inverse scope)

WOLLP), which has no effect on the location differentials for either the subject or the embedded
object. As a result, we again get 5 as the SLD for the surface scope parse of (8c), since the subject
has a location differential of 0—it scopes where it sits—and the object has a location differential
of 5, due to the five steps between when it is unmoved and when it is assigned a PF address.

This leaves only the inverse scope interpretation of (8c). As per Wurmbrand’s theory, every
technician has to undergo three iterations of QR this time: once directly above the embedded vP,
once above WOLLP, and once above the matrix vP. The annotated derivation tree for this parse can
be seen in Figure 11; the derived LF structure is as in (77):

(77) [ C [ T [EVERY PLANE] [ λin(-scL) [[A TECHNICIAN] [ V [ DECIDE
[ tin(-scL) [ λin(-scL) [ WOLL [ tin(-scL) [ λin(-scL) [ PRO [ V [ INSPECT tin(-scL)]]]]]]]]]]]]]]

Finally, we must determine the SLD for this parse. As before, the subject has a location dif
ferential of 3: its existence is predicted in step 4, and it is not assigned an LF location until it is
unmerged in step 7. As for every plane, its existence is again predicted upon being unmoved at
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Figure 11: Annotated derivation tree, A technician decided to inspect every plane (inverse scope)
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step 6, at which point it has an LF address and no PF address. Moreover, neither of the other two
unmoves suffices to determine the PF address of every plane, so it is not assigned a PF address
until it is unmerged at step 24. Thus, every plane’s location differential is 24−6 = 18, leading to an
SLD of 3 + 18 = 21 for the parse. This again gives us the correct withinsentence prediction, since
surface scope is easier than inverse scope (5 < 21), as well as the right acrosssentence predictions,
since inverse scope for (8a) is easier than for (8b), which is easier than for (8c) (11 < 18 < 21).

We have thus derived all of the desirable within and acrosssentence predictions, just like
Wurmbrand (2018). A table with all of the SLDs for the three sentences on both surface and in
verse scope interpretations can be seen in Figure 12. But there is one blip in this table that is worth
discussing: we generate the seemingly odd prediction that surface scope for try and decide sen
tences is easier to process than for the monoclausal case (5 < 8). This strange prediction—which,
while to our knowledge is untested, nonetheless seems prima facie false—owes its existence to two
distinctions between the parses.

Surface Scope Inverse Scope
monoclausal 8 11
try + inf 5 18
decide + inf 5 21

Figure 12: SLDs for surface and inverse scope parses for the sentences in (8)

The first is that in the monoclausal case, the subject a technician is unmerged from vP and then
broken up and scanned after every plane is predicted but before it is assigned a PF address, meaning
that the subject adds four steps to the object’s location differential (unmerge from vP, unmerge
of the subject into D and N, and the scan of a and technician). Meanwhile, for try and decide,
on a surface scope interpretation the matrix subject a technician is fully taken care of before the
existence of every plane is predicted, meaning that it does not add to the latter’s location differential.
However, the embedded subject PRO does add some steps, since it is unmerged and scanned after
every plane is predicted and before it is assigned a PF address. But since PRO is a single lexical
item, rather than a phrase made up of multiple lexical items, the unmerging and scanning of PRO
takes only two steps, rather than the four that a technician takes in the monoclausal case. Thus, the
fact that PRO can be immediately scanned upon being unmerged subtracts two steps from every
plane’s location differential for the try and decide sentences.

The second distinction between the parses comes from the scanning of the (matrix) tense node.
Because lexical items are scanned in linear order from left to right, T must be scanned immediately
after the (matrix) subject, since it immediately follows it. Looking at the monoclausal case, we
know from the prior discussion that the subject is scanned after the object is predicted and before
it is assigned a PF address. Since the next step is the scanning of T, this scan operation similarly
intervenes, adding one to the location differential of every plane. Meanwhile, in the case of try and
decide, T is scanned before the existence of every plane is predicted, so it does not intervene. This
leads to a onestep reduction in every plane’s location differential, which in conjunction with the
two steps saved thanks to PRO leads to the observed threestep distinction.

Thus, if the SLD Principle is to be maintained, these two distinctions must be either eliminated
or neutralized in their impact. Fortunately, this can be done in one fell swoop, if we eliminate the
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sofaradopted assumption that object quantificational DPs must undergo QR for reasons of type
mismatch. After all, this type mismatch is an artifact of a particular compositional semantics, and
there are plenty of alternative theories of compositionality according to which quantificational DPs
can scope in their merge position just fine.27 If we eliminate this compositional stipulation, then
for all three sentences in (8) there exists a surfacescope interpretation whose parse has an SLD of
zero, since each quantifier scoping in its PF position leads to a surface scope interpretation. Note
that this will also not reverse any of our previous results, as it will merely increase the difference in
SLDs between inverse and surfacescope interpretations: surface scope interpretations will always
include derivations whose parses similarly have SLDs of zero.

Before moving on to the predicted difference between cyclic QR and cyclic whmovement, one
important thing is worth noting about the extent to which the success of the SLD Principle hinges on
the particulars of Wurmbrand’s syntactic analysis. Because of her emphasis on the number of QR
operations, for Wurmbrand it matters a great deal what—and more importantly, how many—QR
operations there are before a quantificational DP reaches its final LF landing site. For example, if it
turns out that WOLLP is not a movement domain, then decidetype infinitives can generate inverse
scope readings in essentially the same way as for trytype infinitives, with one movement to the
edge of the embedded vP, and one to the edge of the matrix vP. In this case, Wurmbrand would no
longer predict a difference in processing difficulty.

However, this is not the case for the SLD Principle. Consider the threestep difference in SLD
between (8b) and (8c) on their inverse scope interpretations. Given that most of the steps in these
two parses are the same, we can reasonably ask which parse steps in the parse of (8c) in Figure 11
are responsible for this threestep difference. Not surprisingly, these steps are the ones that involve
WOLL or WOLLP: (I) the undoing of every plane’s movement to specWOLLP in step 16, (II) the
unmerging of vP from WOLL in step 17, and (III) the scanning of WOLL in step 18. Now suppose
that we say that WOLLP is not a movement domain, and every plane can LFmove straight from the
lower vP to the higher vP. This would eliminate the need for the first of these parse steps (since there
would be no movement to specWOLLP that would need undoing), reducing the SLD for the parse
as a whole. However, this would have no impact on the other two parse steps, since WOLL still needs
to be unmerged and scanned. In other words, the difference in SLD between (8b) and (8c) would
shrink from three to two, but we would nonetheless predict the latter to be harder to process than the
former on an inverse scope interpretation. In fact, even if we were to remove all movement domains
whatsoever and suppose that in all cases, every plane moves straight from its merge position to
its final landing spot in one go, we would still predict a difference in processing difficulty, since
eliminating these extra movements would have no impact on the additional structure that has to be
unmerged and scanned when going from (8a) to (8b), and from (8b) to (8c). This illustrates another
advantage to the SLD Principle: it can survive a variety of small (and notsosmall) changes on the
syntactic end of things, as long as certain basic assumptions are maintained.

27While many theories allowing in situ DP interpretation eschew QR altogether, achieving scope reconfiguration by
other means, this is obviously not an inandofitself necessary condition on theories permitting in situ interpretation.
See for example Keenan’s (2005) use of “rich” (essentially, highly typeflexible) DP denotations, where all DPs can
be interpreted in situ, but scope rearrangements are still obtained via QR.
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5.5 Example 4:Wh-movement vs. Cyclic QR

Finally, let us look at the case of overt whmovement. As discussed in §2, this is problematic
for Wurmbrand’s analysis as it is originally proposed, since at least intuitively (overt) cyclic wh
movement is considerably easier than (covert) cyclic QR. Or, more concretely, (30a) seems easier
to process than an inverse scope interpretation of (30b):

(30) Wurmbrand 2018, p. 25 (based on her (29)):
a. What did a technician say that John inspected?
b. A technician said that John inspected every plane.

As a result, Wurmbrand is forced to seek modifications to her proposal that would account for this
apparent distinction, modifications that have their own, altogether different problems.

However, the SLD Principle gets the (prima facie) correct results here without any further stip
ulation, at least if we follow Karttunen (1977) in treating moved wh phrases as “scoping where
they sit” in specCP. To show that this is the case, we will use (78) as our test example:

(78) What did a technician try to inspect?

The annotated derivation tree for (78) can be seen in Figure 13. (We assume the subject a technician
scopes in specTP instead of its merge position, adopting the aforementioned principle that what
is relevant is the least costly parse for each interpretation.) Since all of the movements in this
derivation are PF+LF movements, and since as soon as a PF+LF movement is undone the PF and
LF addresses of the moved constituent are immediately known, the SLD for this parse is zero. We
therefore rightly predict that overt scopetaking operations are easier to process than their covert
counterparts.
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Figure 13: Annotated derivation tree,What did a technician try to inspect?

An interesting followup question—and one that wemust unfortunately leave for future work—
is what happens when we turn from overt whmovement to cases in which some or all wh phrases
stay in situ at PF. This includes languages like Japanese, where true overt whmovement does not
exist, as well as English, where only one wh phrase undergoes overt whmovement to the left edge
of a given clause, with the others appearing in situ:

(79) a. Which technician inspected which plane?
b. * Which technician [which plane]1 inspected t1?

There are two reasons why we cannot yet offer an account of these cases. The first is that to our
knowledge, the empirical facts on the processing of moved vs. (PF)in situ wh phrases have yet
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to be clearly established. The second is that there is also not a settled account in the theoretical
literature of what happens to PFin situ wh phrases at LF. According to the classic analysis of
Huang (1982), PFin situ wh phrases essentially do at LFwhatmovedwh phrases do at both PF and
LF: namely, they move to a clauseinitial position. In this case, for whin situ languages we would
expect a sentence like (78) to be at least as difficult to process as (8b)—modulo any intervening
principles that might ease processing—since the wh phrases would have to undergo QRlike LF
only movement. However, Kotek (2016) argues for a view in which PFin situ wh phrases needn’t
LFmove all the way to specCP, and only LFmove as far as is needed for interpretive reasons—
perhaps not at all in many cases.28 In this case, the SLD Principle would not predict the existence
of PFin situ wh phrases to have a significant impact on processing difficulty, except when LF
movement is required to prevent uninterpretability, e.g., in the case of intervention effects. Thus,
in order to determine whether the SLD Principle generates the right results with respect to the
processing of in situ wh phrases, more work needs to be done to establish what the actual results
are, as well as what the derived PF and LF structures for the relevant sentences are.

Finally, it is worth noting that the fact that cyclic whmovement adds nothing to the SLD of
a parse does not mean that we necessarily predict that all (grammatical) whmovement should be
an absolute breeze to process. Put simply, the SLD Principle is not the only factor that determines
processing difficulty for a given sentence, and other factors may make certain instantiations of wh
movement quite difficult to process. The important thing for our purposes is that whatever makes
such whmovements difficult to process is different from whatever makes inverse scope of (30b)
difficult to process, hence the apparent difference between (30b) and (30a).

6 Conclusion

In this paper we have discussed evidence, much of which was previously discussed in detail by
Wurmbrand (2018), suggesting that QR is not a clausebounded operation, contrary to prior ob
servations reported in the theoretical literature. Instead we have followed Wurmbrand in adopting
the view that extraclausal QR, though fully grammatical, is nonetheless difficult to process—often
prohibitively so. We have additionally followed Wurmbrand in postulating that the processing dif
ficulty of extraclausal QR depends on the size of the embedded clause, with the complements of
trytype verbs beingmore conducive to extraclausal QR than the complements of decidetype verbs.

While we have argued against the particular theory of scope processing difficulty that Wurm
brand offers to account for these observations, we have proposed an alternative metric that is in
keeping with a proposed revision that she suggests, in which processing difficulty is in part depen
dent on the severity of the mismatch between PF and LF representations. This theory was couched
in a topdown parser for Minimalist Grammars, thereby embedding it within a framework that has
already been used to successfully account for a variety of observations on syntactic processing from
the experimental literature. The metric was then shown to make the right predictions for all of the
data discussed by Wurmbrand, as well as those that were problematic for her original account.

By using a topdown MG parser to formulate our analysis of scope processing difficulty, we
have added to a growing body of work dedicated to using such parsers to account for a variety of
syntactic processing effects. However, the SLD Principle looks quite different from the processing
metrics that have been developed in the prior literature, such as those based on the notion of tenure

28For experimental evidence in favor of this view, see Kotek & Hackl 2013.
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discussed in §4. We leave for future work the issue of whether—and if so, how—to integrate these
processing metrics into a more cohesive and unified picture of syntacticsemantic processing.

Of more pressing and direct concern for the theory as it currently stands is the need for more
experimental work on scope processing. Any theory of scope processing difficulty is inherently
constrained by the set of empirical facts available to be accounted for. Our hope is that the intro
duction of a robust and thus far successful scope processing metric will encourage more empirical
work testing the predictions of the SLD Principle, so that it may be either further refined or replaced
with an equally predictive and more empirically adequate alternative.
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