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Abstract Questions with a quantificational subject have readings that seemingly involve quantifi-
cation into questions (called ‘QiQ’ for short). In particular, in single-wh questions with a universal
quantifier, QiQ-readings call for pair-list answers, similar to pair-list readings of multiple-wh ques-
tions. This paper unifies the derivation of QiQ-readings and distinguishesQiQ-readings frompair-list
readings of multiple-wh questions. I propose that pair-list multiple-wh questions and QiQ-questions
both involve a wh-dependency, namely, that the wh-/quantificational subject stands in a functional
dependency with the trace of the wh-object. In particular, in a pair-list multiple-wh question, the
wh-subject binds into the trace of the wh-object across an identity operator; in a QiQ-question, the
quantificational subject binds into the trace of the wh-object across a predication operator. These
operations give rise to distinct definedness requirements, which vary with the quantificational force
of the wh-/quantificational subject. The proposed analysis explains a contrast in domain exhaustivity
between the pair-list readings of multiple-wh questions and questions with a universal quantifier,
while also doing justice to the intuitive similarities between these two types of questions. I further
propose that the observed QiQ-effect in a QiQ-question is derived by extracting one of the minimal
proposition sets that satisfy the aforementioned quantificational predication condition. The values
of these sets determine whether the QiQ-reading is available and whether a QiQ-question admits
pair-list answers and/or has a choice flavor.

Keywords Questions, quantifiers, multiple-wh, pair-list, functionality, uniqueness, domain ex-
haustivity, quantificational variability, categorial approaches, compositionality

1. Introduction

Pair-list readings of questions arise from two different interrogative structures: (a) multiple-wh
questions, and (b) single-wh questions with a universal quantifier (called ‘∀-questions’ henceforth).
For example, both (1a) and (1b) can be addressed by specifying a list of boy-movie pairs.

(1) a. Which boy watched which movie?
Andy watched Ironman, Billy watched Spiderman, Clark watched Hulk.

b. Which movie did every/each boy watch?
Andy watched Ironman, Billy watched Spiderman, Clark watched Hulk.

Both interrogative structures admit multiple readings. In particular, multiple-wh questions are
ambiguous between single-pair readings and pair-list readings. For example, in (2) these two readings
call for answers that specify a unique boy-movie pair and a list of boy-movie pairs, respectively.

(2) Which boy watched which movie?
a. ‘Which unique boy-movie pair 〈x, y〉 is s.t. x watched y?’ (Single-pair)

‘Andy watched Spiderman.’
b. ‘Which boy-movie pairs 〈x, y〉 are s.t. y is the unique movie that x watched?’ (Pair-list)

‘Andy watched Ironman, Billy watched Spiderman, Clark watched Hulk.’
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In contrast, ∀-questions are ambiguous between individual readings, functional readings, and pair-
list readings (Engdahl 1980, 1986). In example (3), the three readings call for answers that name an
atomic movie, a Skolem function to atomic movies, and a list of boy-movie pairs, respectively.

(3) Which movie did every/each boy watch?
a. ‘Which movie y is s.t. every boy watched y?’ ‘Spiderman.’ (Individual)
b. ‘Which function f to atomic movies is s.t. every boy xj watched f (xj)?’ (Functional)

‘Hisi favorite superhero movie.’
c. ‘For every boy x, [you tell me] which movie did x watch?’ (Pair-list)

‘Andy watched Ironman, Billy watched Spiderman, Clark watched Hulk.’

There are two directions one can take in analyzing pair-list readings. One direction is to give
a joint analysis for pair-list readings, regardless of their origins. Accounts adopting this line of
thinking either use the same LF schema to compose questions with pair-list readings, ignoring
their syntactic distinctions (Engdahl 1980, 1986; Dayal 1996, 2016b), or analyze these questions with
different structures that nevertheless yield the same root denotation (Fox 2012a,b). However, as I will
argue below based on previously unrecognized data, it is empirically problematic to pursue a joint
analysis of pair-list readings: pair-list readings of ∀-questions and multiple-wh questions contrast in
domain exhaustivity, which shows that these two types of questions have different meanings and
should be given different structures.

The other direction to take is to assume that pair-list readings of ∀-questions involve ‘quantification
into questions (QiQ)’ (Groenendijk and Stokhof 1984; Chierchia 1993; a.o.), which only arises in
questions with a quantificational subject. An informal paraphrase for QiQ-readings is given in (4),
where ‘Det’ stands for a determiner.

(4) Which movie did Det-boy(s) watch? (QiQ-reading)
≈ ‘For Det-boy(s), [you tell me]/[I ask you] which movie did he/they watch?’

As suggested by the way (4) is expressed, QiQ-reading are not limited to ∀-questions. In particular,
they can also be observed in questions with an existential quantifier (called ‘∃-questions’). For
example, (5) exhibits a similar ambiguity between an individual reading and a QiQ-reading.1 In
contrast to the ∀-question in (3), here the QiQ-reading has a ‘choice’ flavor (Groenendijk and Stokhof
1984) and doesn’t call for a pair-list answer. As paraphrased in (5b), the QiQ-/choice reading asks
the addressee to choose one/two of the boys and specify the unique movie he/they watched.

(5) Which movie did one/two of the boys watch?
a. ‘Which movie y is s.t. one/two of the boys watched y?’ ‘Ironman.’ (Individual)
b. ‘For one/two of the boys, [you tell me] which movie did he/they watch?’ (Choice)

‘Andy watched Ironman.’/ ‘Billy and Clark watched Spiderman.’

However, many quantifiers cannot participate in QiQ-readings. For example, in (6) the wh-question
with a negative quantifier (called ‘no-question’) cannot be responded to by silence.

1In ∃-questions, functional readings are only marginally acceptable. For example, the fragment functional answer (i-a) is
under-informative; the identity of the boy who watched a movie has to be specified, as in (i-b). I leave this puzzle open.

(i) (Context: Among the relevant boys, only Andy watched a movie, which was his favorite superhero movie Ironman.)
Which movie did one of the boys watch?
a. ?? His favorite superhero movie.
b. Andy watched his favorite superhero movie.

2



(6) Which movie did {no boy, none of the boys} watch?
a. ‘Which movie y is s.t. no boy watched y?’ ‘Revengers.’ (Individual)
b. ‘Which function f to atomic movies is s.t. no boy xj watched f (xj)?’ (Functional)

‘The movie recommended by theirj grandfather.’
c. # ‘For no boy, [you tell me] which movie did they watch?’ [Silence] (7QiQ)

In sum, it remains controversial whether we should treat questions with pair-list readings (abbre-
viated as ‘pair-list questions’) uniformly or, instead, treat questions with QiQ-readings (abbreviated
as ‘QiQ-questions’) uniformly. This paper argues in favor of the latter option, but does justice to
the intuitive attractions of the former. The presented proposal delivers a synthesis that manages
to give a distinctive analysis to pair-list readings across origins, while at the same time deriving
certain newly discovered subtle semantic differences w.r.t. domain exhaustivity within the descriptive
umbrella category ’pair-list’ from differences in structural origin. This proposal also accounts for the
distributional constraints and variations of QiQ-readings.

I propose that pair-list multiple-wh questions and QiQ-questions both involve a ‘wh-dependency’,
namely, that the wh-/quantificational subject stands in a dependency with the trace of the wh-object.
The core analysis is sketched in (7). The complex object trace tj

i carries a functional index i bound by
thewh-object, as well as an argument index j bound by thewh-/quantificational subject (à la Chierchia
1993). In the multiple-wh question (7a), the wh-subject binds into the trace of the wh-object across an
identity (ident) operation; in the QiQ-question (7b), the quantificational subject binds into the trace
of the wh-object across a predication (pred) operation. These quantificational binding operations give
rise to definedness conditions that vary with the quantificational force of the wh-/quantificational
subject, which explains the distribution of domain exhaustivity in these two types of questions.

(7) Composition schema for complex questions:
a. Which boy watched which movie? (Pair-list reading)

... [ which-moviei ... which-boyj [ ... ident ... [ tj watched tj
i ]]]

b. Which movie did Det-boy(s) watch? (QiQ-reading)
... [ which-moviei ... Det-boy(s)j [ ... pred ... [ tj watched tj

i ]]]

The rest of this paper is organized as follows. Section 2 presents evidence against the strategy of
treating the two types of pair-list questions (i.e., multiple-wh questions and ∀-questions) uniformly,
as well as evidence that supports the view of treating QiQ-questions uniformly. Section 3 lays out
the technical challenges and relevant facts that this paper aims to account for. Section 4 reviews two
influential approaches to composing pair-list questions, namely, the functionality approach of Dayal
(1996, 2016b) and the family-of-questions approach of Fox (2012a,b). My analysis take ingredients
from both of these two approaches while overcoming their problems. Section 5 introduces a GB-
style categorial approach to composing questions. Section 6 puts forward my central analysis
for the composition of pair-list multiple-wh questions and QiQ-questions. Section 7 accounts for
the quantificational variability effects in embeddings of pair-list questions. Section 8 concludes.
Appendices A and B review two additional existing accounts of QiQ-question composition.

2. Arguments for unifying the derivation of QiQ-readings

This section argues that pair-list ∀-questions should be composed uniformly like other QiQ-questions,
not like their multiple-wh counterparts. First, when ∀-questions have pair-list readings, they are
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subject to domain exhaustivity, whereas their multiple-wh counterparts are not (Sect. 2.1). This
contrast shows that these two types of questions should be interpreted and composed differently.
Secondly, QiQ-questions exhibit the same subject–object/adjunct asymmetry. What’s more, the
distributional pattern of QiQ-readings is preserved in questions where the subject is a coordination
of quantifiers (Sect. 2.2). These facts argue that QiQ-questions have a uniform syntax.

2.1. A contrast in domain exhaustivity

It is commonly claimed that pair-list readings of multiple-wh questions and ∀-questions both exhibit
‘domain exhaustivity’ (Dayal 1996, 2002; a.o.). For a question with a wh/∀-subject and a wh-object,
the domain exhaustivity condition says that every member of the set quantified over by the wh/∀-
subject is paired with a member of the set quantified over by the wh-object. For instance, in (3) and
(2), repeated as (8a,b), domain exhaustivity requires that every boy watched a (possibly different)
movie. Moreover, since the wh-object is singular (i.e., the wh-complement movie is singular), the two
questions are also subject to ‘point-wise uniqueness’, which says that each boy watched at most one
movie.

(8) a. Which movie did every/each boy watch?
b. Which boy watched which movie?

The point-wise uniqueness effect is easy to attest, but the domain exhaustivity effect is not so
obvious. In the multiple-wh question (8b), for example, it is unclear which set of boys is quantified
over by thewh-subject; domain exhaustivity would be trivial if the domain of quantification consisted
of only the boys who did watch a movie. To remove this confound, Fox (2012a) uses the pair of
examples in (9), where the quantification domain of each wh-phrase is explicitly specified.2 Fox
claims that (9b) rejects a pair-list reading (in contrast to (9a)), since interpreting this question with a
pair-list reading would give rise to a domain exhaustivity condition that is contextually infelicitous —
pairing four kids with three chairs implies that there will be multiple kids sitting on the same chair.

(9) a. Guess which one of the three kids will sit on which one of the four chairs.
b. Guess which one of the four kids will sit on which one of the three chairs.

Contrary to this widely adopted view, I argue that pair-list multiple-wh questions are not subject
to domain exhaustivity. First, multiple-wh questions can be felicitously uttered in pair-list contexts
where domain exhaustivity is violated. In (10), the sentence repeated from (9b) is felicitous and must
be interpreted with a pair-list reading.

(10) (Context: Four kids are playing Musical Chairs and are competing for three chairs.)
Guess which one of the four kids will sit on which one of the three chairs.
6 ‘Each of the four kids will sit on one of the three chairs.’

2One might wonder whether specifying the domain of quantification explicitly can sufficiently remove the confound with
domain exhaustivity — could there be additional covert domain restrictions with the wh-phrases? In (9) and (10), for example,
the confound would remain if the quantification domain of which one of the four kidswere covertly restricted to a subset of
the four kids, excluding the kid who will not sit on a chair. I argue that such covert restrictions are not possible once the
quantification domain of a wh-phrase has been specified explicitly. As seen in (i), uniqueness is assessed relative to a domain
containing all four contextually relevant kids, as in (i-a); if the phrase which one of the four kids could range over a subset of the
four kids, the uniqueness inference would be as weak as (i-b), contrary to fact.

(i) Which one of the four kids cried?
a.  ‘Among the four kids, only one cried.’
b. 6 ‘Among a certain subset of the four kids, only one cried.’
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The game rules of Musical Chairs yield two conditions: (i) one of the four kids will not sit on any
of the three chairs, and (ii) the remaining three kids will each sit on a different chair. Condition (ii)
ensures that the embedded multiple-wh question has a pair-list reading, not a single-pair reading.
Condition (i) contradicts the domain exhaustivity inference that each of the kids will sit on one of
the chairs. If pair-list readings of multiple-wh questions were subject to domain exhaustivity, (10)
would suffer a presupposition failure, contrary to fact.

Second, unlike their multiple-wh counterparts, pair-list ∀-questions cannot be felicitously used in
contexts where domain exhaustivity is violated. In the context in (11), the quantification domain of
the wh-/quantificational subject is greatly larger than that of the wh-object. The multiple-wh question
(11a) is fully acceptable in this context, but the ∀-question (11b) is not: (11b) presupposes that each
candidate will get one of the jobs, contrary to the context.

(11) (Context: 100 candidates are competing for three job openings.)
a. 3 Guess which candidate will get which job.
b. # Guess which job every candidate will get.

Likewise, in theMusical Chairs scenario, themultiple-wh question is felicitous, but the corresponding
∀-question is not.

(12) (Context: Four kids are playing Musical Chairs and are competing for three chairs.)
a. Guess which one of the four kids will sit on which one of the three chairs. = (10)
b. # Guess which one of the three chairs each of the four kids will sit on.

One might argue that the domain exhaustivity condition of a pair-list multiple-wh question can
be associated with any of the wh-phrases, including the wh-object. For example, in (10) and (11), it
could be the case that domain exhaustivity requires every chair and every job to be taken by a kid
and a candidate, respectively. This possibility is ruled out as follows: a multiple-wh question can be
uttered in a pair-list context where neither type of domain exhaustivity is satisfied. For example,
sentence (13) is felicitous, although it does not imply a domain exhaustivity inference relative to the
boys or to the girls.

(13) (Context: Four boys and four girls will form four boy-girl pairs to perform in a dance
competition, but only two of the pairs will get into the final round.)
Guess which one of the four boys will dance with which one of the four girls in the final
round.
6 ‘Each of the four boys will dance with one of the four girls in the final round.’
6 ‘Each of the four girls will dance with one of the four boys in the final round.’

In conclusion, pair-list ∀-questions are subject to domain exhaustivity, whereas pair-list multiple-
wh questions are not. This contrast argues that these two types of questions should be interpreted
differently and composed differently.

2.2. Uniform distribution of QiQ-readings

The distribution of QiQ-readings uniformly exhibits a subject–object/adjunct asymmetry (May 1985,
1988; Chierchia 1991, 1993). As seen in (14) and (15), pair-list readings and choice readings are
available if the non-wh quantifier serves as the subject while the wh-phrase serves as the object, but
not vice versa. In (14b), the uniqueness inference triggered by the singular wh-subject must take
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wide scope relative to the ∀-object. As for the ∃-questions in (15), although (15b) marginally admits
a choice reading, (15a) is preferable if the questioner seeks a choice answer.3 The subject–adjunct
asymmetry is analogous, as illustrated in (16). Hence, unless there is compelling evidence to suggest
otherwise, it is plausible to assume that QiQ-readings are derived uniformly.

(14) (Context: The five students enrolled in Semantics II were asked to present one book chapter
each. There were five chapters. They each chose a different chapter. The questioner wants
to know all of the student-chapter pairs.)
a. Which chapter will every student present? (3Pair-list)
b. # Which student will present every chapter? (7Pair-list)

 ‘Exactly one of the students will present every chapter.’
(15) (Context: Today ten students cast their votes for this year’s class speaker. There were four

candidates. Every student had exactly one vote. Some of the candidates got only one vote.
The questioner is only interested in knowing one of the student-candidate pairs.)
a. Which candidate did one of the students vote for? (3Choice)

Andy voted for the first candidate.
b. ? Which student voted for one of the candidates? (?Choice)

(16) (Context: The car race passed through our town. Every driver refueled exactly once at one
of our gas stations. Some of gas stations served only one driver.)
a. At which station did every driver refuel? (3Pair-list)
b. # Which driver refueled at every gas station? (7Pair-list)
c. At which station did one of the drivers refuel? (3Choice)
d. ? Which driver refueled at one of the stations? (?Choice)

The idea of unifying the derivation of QiQ-readings is further supported by the blocking effect of
negative quantifiers. In (17a), where the subject is a conjunction of a ∀-quantifier and an ∃-quantifier,
the pair-list reading associated with the ∀-quantifier and the choice reading associated with the ∃-
quantifier are both preserved. This question asks the addressee to specify all of the boy-watch-movie
pairs and one of the girl-watch-movie pairs. In contrast, in (17b,c), since negative quantifiers do not
participate in QiQ-readings (as seen in (6)), coordinating a ∀/∃-quantifier with a negative quantifier
blocks the QiQ-reading. For example, (17b) does not have the reading that requests the addressee to
list all the boy-watch-movie pairs and not to list any teacher-watch-movie pairs. (For an explanation
based on ‘LF efficiency’, see Sect. 6.4.4.)

(17) a. Which movie did [each of the boys and one of the girls] watch? (3QiQ)
b. Which movie did [each of the boys and none of the teachers] watch? (7QiQ)
c. Which movie did [one of the girls and none of the teachers] watch? (7QiQ)

3. Challenges and goals

Section 2 has laid out two goals of this paper: (i) to compose QiQ-questions uniformly, and (ii) to
compose pair-list multiple-wh questions and pair-list ∀-questions in parallel to account for their simi-
larities in meaning and form while at the same time explaining their contrast in domain exhaustivity.

3The reason why (15b) and (16d) marginally admit choice readings might be that ∃-quantifiers have more ways to take
wide scope than ∀-quantifiers, such as through globally bound choice functions.
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It is not easy to achieve both goals: a proper solution needs to overcome several technical challenges
and account for a number of semantic effects.4

First, for most frameworks of question semantics, the structure in (18) is ill-formed though the
question itself is perfectly acceptable. The generalized quantifier ‘Det-boy’ takes arguments of type
〈e, t〉; thus it can only quantify into a t-type expression. However, the contained question which movie
did x watch is not of type t; it is typically treated as a set of propositions as in Hamblin-Karttunen
semantics, or as a one-place predicate/property as in categorial approaches.

(18) Which movie did Det-boy(s) watch?
* [ Det-boy(s) λxe [ which movie did x watch ]]

There are two general strategies to solve this type-mismatch problem. One is to extract the domain of
quantification of the subject via a type-shifting operation (Groenendijk and Stokhof 1984; Chierchia
1993; Dayal 1996, 2016b; a.o.). For example, Dayal extracts the quantification domain of a ∀-quantifier
via the operation of shifting a quantifier into the unique minimal witness set of this quantifier. This
strategy is feasible in principle but a bit ad hoc (see Sect. 4.1.2 and footnote 15).

The other strategy is to create a t-type constituent in the LF that the quantifier can quantify into
directly. For example, in partition semantics (Groenendijk and Stokhof 1984), which defines the
root denotation of a question as a partition of possible worlds, the formation of a partition involves
a t-type node expressing the equivalence of two extensions. Alternatively, Karttunen (1977) and
Krifka (2001) recast quantifying into questions as quantifying into question-embeddings. The two
analyses based on partitions and question embeddings respectively overcome the type-mismatch
problem but bring other problems (reviewed in Appendices A and B). In contrast, my proposal will
follow Fox (2012b) in assuming that the root of a QiQ-question contains a t-type node that expresses
a predication condition (Sects. 4.2 and 6.4).5

Second, pair-list readings have a limited distribution in matrix QiQ-questions: only each/every-
phrases license pair-list readings for matrix questions. For example, in a choice reading, the ∃2-
question in (19) calls for cumulative answers like (19a); the pair-list answer (19b), which distributes
over the two chosen students, is over-informative (Moltmann and Szabolcsi 1994; Szabolcsi 1997b).
Questions with a definite plural like (20) pattern analogously (Srivastav 1991; Krifka 1991; for a
different view from Johnston 2019, see Sect. 6.4.6).

(19) Who did two of the students vote for?
a. Andy and Billy voted for Mary and Jill.
b. Andy voted for Mary, and Billy voted for Jill.

(20) Who did the students vote for?

The confound from cumulative answers can be removed by replacing who with a singular wh-
phrase, which triggers a uniqueness presupposition. In the following matrix questions, distributivity
taking scope over uniqueness is possible only in (21a,b), where the quantifier in the subject is lexically
distributive. In contrast, for example the ∃2-question (21d) presupposes that two of the students
voted for the same candidate and only this candidate, which contradicts the context. (In (21d–f), ‘each’

4This paper does not attempt to explain effects that are more likely to be related to syntax in nature, such as constraints on
extractions/movements. See Kotek 2014, 2019 and the references therein for detailed discussions.

5Besides these two general strategies, inquisitive semantics also avoids this type-mismatch problem because it defines
declaratives and interrogatives uniformly as sets of classical propositions (of type 〈st, t〉) and generalized quantifiers as
functions of type 〈〈e, stt〉, stt〉. For a recent account using inquisitive semantics, see Qing and Roelofsen 2021.
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means that the reading doesn’t involve covert distributivity between the subject and the uniqueness
inference triggered by the singular wh-object.)

(21) I know that every student voted for a different candidate. Which candidate did ...
a. ... every student vote for? (every� ι)
b. ... each student/ each of the students vote for? (each� ι)
c. # ... all/most of the students vote for? (all/most� each� ι)
d. # ... two of the students vote for? (∃2� each� ι)
e. # ... the students vote for? (the-NPpl � each� ι)
f. # ... two or more students vote for? (∃2+� each� ι)

To account for the limited distribution of pair-list readings, many works on question composition
propose to derive pair-list readings in a way that crashes whenever the quantificational subject of
the question is not universal (e.g., Dayal 1996 and Fox 2012b; for details, see Sect. 4). This strategy,
however, comes at the cost of failing to account for the choice readings of ∃-questions. In contrast, I
argue that a non-interrogative DP robustly licenses pair-list readings only if it is lexically distributive
and can productively scope out of its surface position. In my analysis, the above distributional
constraints of pair-list readings follow from independently observed contrasts in lexical distributivity
and scoping between every/each-phrases and other quantifiers, as well as an independent syntactic
constraint with covert distributivity (for details, see Sects. 6.4.2 and 6.4.5).

Third, there are several semantic effects robustly observed in QiQ-questions and pair-list multiple-
wh questions. Section 2.1 has discussed two effects, namely, the uniqueness effect triggered by the
singularwh-object, as seen in (22a–c), and the domain exhaustivity effect observed only in ∀-questions,
as seen in (22a). These effects were not extensively considered until Srivastav 1991/Dayal 1996.

(22) a. Which movie did every/each boy watch?
 ‘For every boy x, x watched exactly one movie.’

b. Which boy watched which movie?
 ‘For every boy x s.t. x watched a movie, x watched exactly one movie.’

c. Which movie did one/two of the boys watch?
 ‘For some x s.t. x is one/two of the boys, x watched exactly one movie.’

Moreover, embeddings of pair-list questions exhibit ‘quantificational (Q-)variability’. As first ob-
served by Berman (1991), question-embeddings modified by a quantificational adverbial (e.g., mostly,
partly, for the most part, in part) have a Q-variability inference. As illustrated in (23) and (24), in the
paraphrase of this inference, the quantification domain of the matrix quantity adverbial mostly can
be thought of as (a) a set of propositions (Lahiri 1991, 2002; Cremers 2016), (b) a set of sub-questions
(Beck and Sharvit 2002), or (c) a set of individuals or pairs (Xiang 2016, 2019, 2020; Cremers 2018).

(23) Jill mostly knows [which students left].
a.  ‘Most p: p is a true proposition of the form pstudent-x leftq, Jill knows p.’
b.  ‘Most Q: Q is a question of the form pwhether student-x leftq, Jill knows Q.’
c.  ‘Most x: x is an atomic student and x left, Jill knows that x left.’

(24) Jill mostly knows [pair-list

{
which movie every boy watched
which boy watched which movie

}
].

a.  ‘Most p: p is a true proposition of the form pboy-x watched movie-yq, Jill knows p.’
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b.  ‘Most Q: Q is a question of the form pwhich movie boy-x watchedq, Jill knows Q.’
c.  ‘Most 〈x, y〉: 〈x, y〉 is a boy-movie pair and x watched y, Jill knows that x watched y.’

It is commonly claimed that family-of-questions approaches are advantageous in accounting for the
Q-variability inference of (24): if one conceives of the embedded pair-list question as a family of
sub-questions, the Q-variability inference can be defined as in (24b). In contrast, I assume a categorial
approach to defining and composing questions and therefore argue that this inference can be derived
as in (24c), which is compatible with a simple functionality approach (for details, see Sect. 7).

4. Two general approaches to composing complex questions

There is a rich literature on the composition of pair-list multiple-wh questions and questions with
a quantifier. This section reviews the two main types of approaches that have tackled both types
of questions: ‘functionality approaches’, which assume that these complex questions involve a wh-
dependency, and ‘family-of-questions approaches’, which define each such question as a family of
sub-questions.6

I will focus on two influential analyses byDayal (1996, 2016b) and Fox (2012a,b), which successfully
account for the domain exhaustivity and point-wise uniqueness effects in ∀-questions with singular
wh. My own analysis will take ingredients from both these accounts. For extensive literature reviews,
see the appendices of this paper, as well as Xiang 2016: Chaps. 5 and 6, Dayal 2016b: Chap. 4, and
Ciardelli and Roelofsen 2018.

4.1. Functionality approaches

Wh-questions with a functional reading (called ‘functional questions’) express a dependency between
the non-wh-subject and the wh-object/adjunct. In (25), the fragment answer contains a pronoun
interpreted as being bound by the quantificational subject in the question.

(25) Which movie did every-boyi watch?
Hisi favorite superhero movie.

As for pair-list questions, functionality approaches assume that pair-list readings also involve a
dependency between the ∀/wh-subject and the wh-object. For example, the pair-list answer (26a) is
thought of as the specification of the ‘graph’ of the function (26b): it pairs elements of the set that
the ∀/wh-subject ranges over with elements of the set that the wh-object ranges over.7

(26) Which movie did every boy watch?/ Which boy watched which movie?

6The core assumptions of these two approaches are compatible with each other. For example, Chierchia (1993) assumes a
wh-dependency while defining a QiQ-question as a family of questions. For more details, see footnote 15.

7One might wonder why we chose to treat pair-list readings as special functional readings, not vice versa. The reason
is that pair-list readings are subject to more constraints than functional readings. As seen in (i), multiple-wh questions are
congruent with fragment answers that are lists of pairs, but not with intensional functional answers (Kang 2012; Sharvit and
Kang 2017). If pair-list readings were more general than functional readings, we wouldn’t expect such a gap.

(i) Which boy watched which movie?
a. # His favorite superhero movie.
b. Andy, Ironman, Billy, Spiderman, Clark, Hulk.

Sharvit and Kang (2017) provide an explanation as to why pair-list questions do not admit intensional functional answers.
However, the syntax of multiple-wh questions assumed by Sharvit and Kang is quite different from mine. This paper leaves
this issue open.
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a.
Andy watched Ironman,
Billy watched Spiderman,
Clark watched Hulk.

b. f =

 a → i
b → s
c → h


Functionality approaches were originally proposed for ∀-questions only (Engdahl 1980, 1986;

Chierchia 1993). The primary goal of assuming functionalitywas to account for the subject–object/adjunct
asymmetry uniformly observed in functional readings and pair-list readings of ∀-questions, as illus-
trated in the following:

(27) Which woman did every boy invite? (3Individual, 3Functional, 3Pair-list)
a. Anna.
b. His mother. (Intended: ‘Every-boyi invited hisi mother.’)
c. Andy invited Mary, Billy invited Susi, Clark invited Jill.

(28) Which woman invited every boy? (3Individual, 7Functional, 7Pair-list)
a. Anna.
b. # His mother. (Intended: ‘Every-boyi was invited by hisi mother.’)
c. # Mary invited Andy, Susi invited Billy, Jill invited Clark.

Assuming functionality, one can explain this asymmetry in terms of constraints on dependencies/
binding (Chierchia 1993; Williams 1994; Shan and Barker 2006; a.o.). For example, Chierchia (1993)
argues that weak crossover arises if the object/adjunct binds into the trace of the wh-subject.8 See
also Jacobson 1994 and Sharvit 1997, 1999 for functionality approaches to functional readings and
pair-list readings of relative clauses with quantifiers.

Further, Dayal (1996, 2016b) extends the functionality approach to pair-list multiple-wh questions.
She observes that the corresponding relation expressed by a pair-list answer is a function: the
correspondence can be one-to-one or many-to-one, but not one-to-many, as witnessed in (29). See
also Caponigro and Fălăuş 2020 for an application to multiple-wh free relatives in Romanian.

(29) Which student talked to which professor? (Dayal 2016b: 96)
a. Alice talked to Professor Carl, and Bill talked to Professor Dan.
b. Alice and Bill both talked to Professor Carl.
c. # Alice talked to Professors Carl and Dan.

By assuming functionality, myproposal inherits the advantages of explaining the subject–object/adjunct
asymmetry and the unavailability of one-to-many relations in terms of constraints on functionality.9
Moreover, in Sect. 6, I will show that wh-dependencies are independently needed to account for the
contrast in domain exhaustivity between multiple-wh questions and ∀-questions.

8Chierchia (1993) assumes that the wh-trace carries two indices, namely, a functional index i bound by the wh-phrase
and an argument index j co-indexed with the non-interrogative quantifier. To bind the j-index carried by the wh-trace, the
non-interrogative quantifier has to be moved to a position that c-commands this wh-trace. Thus in (i-b), unlike (i-a), when the
quantifier every boy is moved from a position lower than the wh-trace, it inevitably moves across a co-indexed expression (viz.,
the wh-trace), causing weak crossover.

(i) a. Which movie did every boy watch?
[ which-moviei ... [ every-boyj ... [ tj watched tj

i ]]] (No crossover)
b. Which boy watched every movie?

*[ which-boyi ... [ every-moviej ... [ tj
i watched tj ]]] (Weak crossover)

In contrast, competing accounts by Safir (1984) andMay (1988) analyze the asymmetry and weak crossover in terms of separate
syntactic constraints.

9It might look appealing to analyze the subject–object/adjunct asymmetry in QiQ-questions and the superiority effects
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4.1.1. Wh-dependency in basic functional questions

In the current dominant analysis, wh-dependencies in functional questions are derived by assuming
a complex wh-trace (Groenendijk and Stokhof 1984; Chierchia 1993; a.o.).10 The tree diagram in (30)
illustrates the LF schema assumed to compose a functional ∀-question.11

(30) Which movie did every boy watch? (Functional reading)
CP

DP

wh-λw.moview

λi ...

IP
λw.∀x[boyw(x)→ watw(x, f i(w)(x))]

λw

DP

every boyw
λj VP

watw(xj, f i(w)(xj))

tj watchedw tj
i

In this LF, the wh-trace tj
i carries two indices, namely, an intensional functional index i (of type 〈s, ee〉)

bound by the fronted wh-object and an argument index j (of type e) co-indexed with the trace of
the quantificational subject. With such indexations, the VP denotes an open sentence expressing a
dependency between the two arguments of watched, and the IP denotes a universal inference over

in multiple-wh questions uniformly. For example, Hornstein (1995) extends Chierchia’s (1993) complex-trace analysis of
wh-dependencies to superiority effects. He assumes that the in-situ wh-phrase contains a covert pro co-indexed with the
fronted wh-phrase. Accordingly, in (i-b), moving the object what across the co-indexed pro causes weak crossover.

(i) a. Who bought what? (Superiority obeyed)
[ whoi [ ti bought proi-whatj ]] (No crossover)

b. ?? What did who buy? (Superiority violated)
*[ whati ... did [ proi-whoj buy ti ]]] (Weak crossover)

Relatedly, Shan and Barker (2006) argue that binding relations must be evaluated from left to right, and they use this single
constraint to rule out crossover and superiority violations.
In contrast, I argue that superiority effects in multiple-wh questions and the subject–object/adjunct asymmetry in QiQ-

questions have different origins: as seen in (ii), multiple-wh questions with which-phrases tolerate superiority violations and
admit pair-list readings (Pesetsky 1987, 2000; Kotek 2014, 2019).

(ii) Which movie did which boy watched?
Andy watched Ironman, Billy watched Spiderman, Clark watched Hulk.

The analysis presented in this paper makes no prediction on the overt syntax of multiple-wh questions. Whatever its
insufficiencies (see footnote 23 in Sect. 6.3), this analysis is exempt from the under-generation problem.

10In contrast to the complex-trace approach, Jacobson (1999, 2014) develops a variable-free approach to functionality which
does not make use of indices. In her analysis, functionality is derived by a type-shifting rule, called ‘the z-rule’, which closes
off the dependency between the arguments of a predicate. (For example, z(JwatchedKw) = λ f 〈e,e〉λxe.JwatchedKw(x, f (x)).)
This approach is especially advantageous in tackling cases where the wh-dependent is in situ or inside an island. For ease of
comparison with existing works on composing complex questions, this paper follows the complex-trace approach.

11Following Groenendijk and Stokhof (1984), I translate LF representations into the Two-sorted Type Theory (Ty2) of Gallin
(1975). Ty2 differs from Montague’s intensional logic in that it introduces s (the type of possible worlds) as a basic type (just
like e and t), and in that it uses variables and constants of type s which can be thought of as denoting possible worlds. For
example, the English common noun boy is translated into boyw in Ty2, where boy is a property of type 〈s, et〉 and w a world
variable of type s. With these assumptions, Ty2 can make direct reference to worlds and allows quantification and abstraction
over world variables.
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this dependency, read as ‘every boy x watched fi(x)’. Details of composition above IP are omitted
for now because they vary with the framework of question composition. I will add more details in
Sect. 5.

4.1.2. Dayal (1996, 2016b) on composing pair-list questions

Dayal (1996, 2016b) assumes that the two pair-list questions in (31) uniformly denote a set of conjunc-
tive propositions, and that each of these conjunctive propositions specifies an 〈e, e〉-type function f
from the quantification domain of the ∀/wh-subject (i.e., boy@) to the quantification domain of the
wh-object (i.e., mov@).12 This denotation yields domain exhaustivity since f is defined for every boy.

(31) Which movie did every boy watch?/ Which boy watched which movie?
(The discourse domain has two relevant boys b1,b2 and two relevant movies m1,m2.)
JQ∀K = JQmultiple-whK =

{⋂{λw.watw(x, f (x)) | boy@(x)} | f ∈ [boy@ → mov@]
}

=


λw.watw(b1, m1) ∧ watw(b2, m1)
λw.watw(b1, m1) ∧ watw(b2, m2)
λw.watw(b1, m2) ∧ watw(b2, m1)
λw.watw(b1, m2) ∧ watw(b2, m2)


Dayal assumes that the two pair-list questions in (31) are composed uniformly as in (32) below.

In this LF, the quantificational/wh- subject and the wh-object are moved to the specifier of a single
functional head C0

func, and they each are turned into a set of entities via a type-shifting (↑ts) operation.
The composition proceeds in three steps:

(i) The object trace carries an extensional functional index i (of type 〈e, e〉) as well as an argument
index j (of type e) that co-refers with the subject trace. Abstracting these two indices at IP yields
the property (33a), which maps an 〈e, e〉-type function and an individual to a dependency
proposition (i.e., an open proposition that expresses a dependency between the two arguments
of watched).

(ii) The functional head C0
func introduces the domain and range for the function f and creates a

‘graph’ for f . If q (of type 〈ee, est〉) is the denotation of IP, the resulting graph of f based on q is
the conjunction of the propositions of the form pq( f )(x)q, where x is in the domain of f .

(iii) The sets that the ∀/wh-phrases range over are extracted by type-shifting operations.13 These
sets saturate the range and domain arguments introduced by C0

func.

With this composition, the CP is interpreted as a set of conjunctive propositions, each of which
specifies an 〈e, e〉-type function that is defined for every member of the set that the ∀/wh-subject
ranges over.

12For simplicity, I assume that the extensions of wh-complements are evaluated relative to the actual world ‘@’.
13Dayal (2016b) considers two ways to obtain the quantification domain of a wh-phrase. One way is to define a wh-phrase

as an ∃-quantifier and extract out its quantification domain via the application of a Be-shifter (Partee 1986). The other way is
to define a wh-phrase as a set of entities and derive its quantificational meaning via an ∃-shifter.
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(32) CP :: 〈st, t〉

DP :: et
↑ts

wh-movie@

DP :: et
↑ts

every/wh-boy@

C′

C0
func IP :: 〈ee, est〉

λi
λj st

λw. tj watchedw tj
i

(33) a. JIPK = λ f 〈e,e〉λxeλw.watw(x, f (x))

b. JC0
funcK = λq〈ee,est〉λDλRλp.∃ f ∈ [D → R][p =

⋂
λp′.∃x ∈ D[p′ = q( f )(x)]]

= λq〈ee,est〉λDλR.{⋂{q( f )(x) | x ∈ D} | f ∈ [D → R]}
c. JC′K = λDλRλp.{⋂{λw.watw(x, f (x)) | x ∈ D} | f ∈ [D → R]}
d. JCPK = {⋂{λw.watw(x, f (x)) | x ∈ boy@} | f ∈ [boy@ → mov@]}

To account for the uniqueness effects of singular wh-phrases, Dayal defines the answerhood
(Ans-)operator as in (34). This definition presupposes the existence of the strongest true answer. The
strongest true answer to a question is the true proposition in the Hamblin set of this question that
entails all the true propositions in this Hamblin set.

(34) AnsDayal := λwλQ : ∃p[w ∈ p ∈ Q ∧ ∀q[w ∈ q ∈ Q→ p ⊆ q]].
ιp[w ∈ p ∈ Q ∧ ∀q[w ∈ q ∈ Q→ p ⊆ q]]

The following presents how the AnsDayal-operator accounts for the observed uniqueness effects. The
ontology of individuals assumes that a singular noun denotes a set of atomic entities, whereas a plural
noun ranges over both atomic and sum entities (Sharvy 1980; Link 1983). Adopting this ontology,
Dayal argues that the Hamblin set of the singular-wh question (35a) consists of only propositions
naming an atomic boy, and that the Hamblin set of the corresponding plural-wh question (35b)
includes also propositions naming a sum of boys. In a discourse where two boys Andy and Bill
both watched Hulk, the true answers to these two questions are as in (35a’) and (35b’), respectively.
Crucially, the answer set (35b’) has a strongest member λw.watw(a⊕ b, h), whereas (35a’) doesn’t;
thus employing AnsDayal(w) in (35a) yields a presupposition failure. Hence, question (35a) can
only be felicitously uttered in worlds where only one of the boys watched Hulk, which explains its
uniqueness effect.

(35) (Among the considered boys, only Andy and Billy watched Hulk in w.)
a. Which boy watched Hulk?
a′. {λw.watw(a, h), λw.watw(b, h)}
b. Which boys watched Hulk?
b′. {λw.watw(a, h), λw.watw(b, h), λw.watw(a⊕ b, h)}

In a pair-list question, if the wh-object is singular, the presupposition of AnsDayal yields point-wise
uniqueness. Take (31) for example: if in w1 the boy b1 watched only m1 but the boy b2 watched both
m1 and m2, then the top two propositions in the Hamblin set (31) are both true in w1. Since neither
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of the true propositions is stronger than the other, applying AnsDayal(w1) yields a presupposition
failure.

Dayal’s analysis also accounts for the domain exhaustivity and point-wise uniqueness effects in
pair-list ∀-questions with a singular wh-object: domain exhaustivity is hard-wired into the meaning
of C0

func; point-wise uniqueness comes from the conjunctive closure encoded within the meaning of
C0

func and the presuppositional AnsDayal-operator. This account also manages to keep the semantic
type of questions low (i.e., single/double-wh questions and ∀-questions are uniformly of type 〈st, t〉),
reserving more elaborate tools for tackling wh-constructions that are more complex than pair-list
questions (e.g., wh-triangles, multiple-wh echo questions).

However, this analysis faces a number of problems. On the conceptual side, the composition
involves several ad hoc or problematic assumptions. First, in the process, index abstractions are
isolated from the moved phrases. Since here the IP involves multiple abstractions, isolating these
abstractions from the moved phrases renders the binding relations ambiguous. Second, C0

func is
structure-specific and the meaning assumed for it is rather complex. It is unclear why a functional
head only appears in particular structures and why it has the complex lexical entry (33b). For these
reasons, Dayal is not fully satisfied with the use of the complex C0

func; she calls this account the
“crazy C0 approach”. Last, for the composition of ∀-questions, it is syntactically deviant to move a
non-interrogative phrase to the specifier of an interrogative CP (Heim 2012).

Dayal’s analysis also makes several problematic empirical predictions. (Note that these problems
are independent from the assumption of functionality.) First, by composing pair-list ∀-questions and
multiple-wh questions with the same LF, this account predicts that these questions are semantically
equivalent. However, as argued in Sect. 2.1, the two types of questions differ in domain exhaustivity.
As seen in (11), repeated below, only the multiple-wh question can be felicitously used in a pair-list
context that violates domain exhaustivity.

(36) (Context: 100 candidates are competing for three job openings.) = (11)
a. Guess which candidate will get which job.
b. # Guess which job every candidate will get.

To account for the contrast in domain exhaustivity, one might assume a twin C0
func that doesn’t

force domain exhaustivity. But even with this assumption, it would still remain puzzling why this
non-exhaustive C0

func cannot appear in pair-list ∀-questions.
Second, this account does not extend to ∃-questions with a choice reading. As seen in Sect. 3,

only every/each-phrases can license pair-list readings for matrix questions. To avoid over-generating
pair-list readings for matrix ∃-questions, Dayal stipulates that the quantification domain of a non-wh
quantifier must be obtained by extracting the ‘unique’ minimal witness set of this quantifier.14 As
illustrated in Table 1, among the listed quantifiers, only the ∀-quantifiers have a unique minimal
witness set which is not empty. In contrast, the ∃-quantifier has multiple minimal witness sets. The
negative quantifier has a unique minimal witness set, but this set is the empty set. Dayal’s stipulation
reins in pair-list readings as intended, but it also renders the LF schema (33) unavailable for questions
with a non-universal quantifier, which leaves choice readings of ∃-questions unexplained.

14Live-on sets and witness sets are defined as follows (Barwise and Cooper 1981): For any π of type 〈et, t〉, π lives on a set
B iff π(C)⇔ π(C ∩ B) for any set C; if π lives on B, then A is a witness set of π iff A ⊆ B and π(A).
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Generalized quantifier π Minimal witness set(s) of π

every/each boy {a, b, c}
one of the boys {a}, {b}, {c}

no boy ∅

Table 1: Illustration of minimal witness sets (with three relevant boys a,b,c)

Moreover, without further constraints, this analysis over-predicts pair-list readings for ∃-questions.
As re-illustrated in (37a,b), Dayal composes the two pair-list questions uniformly, except that she
uses two distinct type-shifting operations (marked as ‘ts1’ and ‘ts2’) to extract the set of boys from
which boy and every/each boy. In this analysis, nothing prevents the corresponding ∃-question from
being analyzed with the LF (37c), which gives rise to an unwanted pair-list reading. In syntax, if
(37b) is well-formed, (37c) should be well-formed as well. In semantics, since one of the boys and which
boy are semantically equivalent, type-shifting operations available for which boy should be equally
available for one of the boys; therefore, (37c) yields the same pair-list reading as in (37a). (For details
on why my own analysis is exempt from this problem, see Sect. 6.4.)

(37) All the following LFs yield a pair-list reading:
a. [ ts1(which-movie) [ ts1(which-boy) [ C0

func [ip ... ]]]] Multiple-wh question
b. [ ts1(which-movie) [ ts2(every/each-boy) [ C0

func [ip ... ]]]] ∀-question
c. [ ts1(which-movie) [ ts1(one-of-the-boys) [ C0

func [ip ... ]]]] ∃-question

Third, as pointed out by Lahiri (2002), since it defines a pair-list question as a set of conjunctive
propositions, this analysis has difficulties in accounting for the Q-variability effects in embeddings
of pair-list questions. For example, sentence (38) implies a quantificational inference, which can be
paraphrased as if the matrix adverbial mostly quantified over a set of atomic propositions. However,
these atomic propositions cannot be retrieved from the question denotation assumed in (31): we
cannot retrieve the atomic propositions directly from the conjunction of these propositions.

(38) Jill mostly knows [pair-list

{
which movie every boy watched
which boy watched which movie

}
].

 ‘Most p: p is a true proposition of the form pboy-x watched movie-yq, Jill knows p.’

To account for the Q-variability effects, in an unpublished work, Dayal (2016a) removes the
⋂
-closure

from the lexical entry of C0
func and defines the root of a pair-list question as a family of sets of

propositions. The revised account manages to keep the atomic propositions alive, but it sacrifices
the advantage of keeping the semantic type of questions low.

4.2. Family-of-questions approaches

Family-of-questions approaches regard a pair-list question as a set/family of sub-questions (Hagstrom
1998; Preuss 2001; Fox 2012a,b; Nicolae 2013; Kotek 2014; Xiang 2016: Chap. 5; Dayal 2016a; a.o.). As
exemplified in (39), if a simplex question denotes a set of propositions, a family of questions denotes
a set of sets of propositions.15

15The approaches by Groenendijk and Stokhof (1984) and Chierchia (1993) are also family-of-questions approaches. They
define a QiQ-question as a family of sub-questions ranging over a minimal witness set (mws) of the subject quantifier, as in (i).
(‘Pboy@ ’ stands for a generalized quantifier ranging over the set of atomic boys. ‘mws(Pboy@ , A)’ means that A is a minimal
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(39) (The discourse domain has two relevant boys b1,b2 and two relevant movies m1,m2.)
Which movie did every boy watch?/ Which boy watched which movie?
JQ∀K = JQmultiple-whK = {JWhich movie did x watch?K | x ∈ boy@}

= {{λw.watw(x, y) | y ∈ mov@} | x ∈ boy@}

=

{
{λw.watw(b1, m1), λw.watw(b1, m2)}
{λw.watw(b2, m1), λw.watw(b2, m2)}

}

The non-flat semantics assumed in (39) easily accounts for the Q-variability inferences of embed-
dings of pair-list questions. As in (40), such an inference can be defined as if the matrix adverbial
mostly quantified over a set of sub-questions of the embedded question.

(40) Jill mostly knows [pair-list

{
which movie every boy watched
which boy watched which movie

}
].

 ‘Most Q: Q is a question of the form pwhich movie boy-x watchedq, Jill knows Q.’

Fox (2012a,b) analyzes the two pair-list questions with different LFs that nevertheless yield the
same root denotation. The LF of a pair-list multiple-wh question is illustrated in (41). Sincewh-phrases
are treated as ∃-quantifiers (viz., JwhichK = JsomeK), this LF is read as ‘the set of Q s.t. for some boy x,
Q is identical to JWhich movie did x watch?K’, which is simply the set of questions of the form pWhich
movie did boy-x watch?q. The composition follows GB-style Karttunen semantics (Heim 1995), except
that it treats the identity (Id-)operator as type-flexible and allows this operator to be iterated.

(41) Which boy watched which movie? (Pair-list reading)
[cp2 λQ〈st,t〉 [ wh-boy@ λxe [c′2 Id(Q) [cp1 λpst [ wh-movie@ λye [c′1 Id(p) [ip x watched y ]]]]]]]

a. JIdK = λατλβτ .α = β (τ stands for an arbitrary type)
b. JIPK = λw.watw(x, y)

c. JC′1K = JIdK(p)(JIPK)
= [p = λw.watw(x, y)]

d. JCP1K = λpst.∃y[mov@(y) ∧ p = λw.watw(x, y)]
= {λw.watw(x, y) | mov@(y)}

e. JC′2K = JIdK(Q)(JCP1K)
= [Q = {λw.watw(x, y) | mov@(y)}]

witness set of Pboy@ .)

(i) JWhich movie did Pboy@ watch?KQiQ = {JWhich member of A watched which movie?K | mws(Pboy@ , A)}

However, the predictions made by these accounts are quite different from the predictions made by the non-flat semantics in
(39). For example, Chierchia (1993) defines a sub-question as a set of propositions of the form pboy-x watched movie- f (x)q, as
schematized in (ii). The related ∀/∃-questions are thus defined as in (iii).

(ii) JQP K =
{
{φ f

x | x ∈ A, f ∈ [A→ boy@]} | mws(Pboy@ , A)
}

(iii) (The discourse domain has two boys b1,b2 and two relevant movies m1,m2.)

a. JQ∀K =
{{

λw.watw(b1, m1), λw.watw(b2, m2)
λw.watw(b1, m2), λw.watw(b2, m2)

}}
b. JQ∃K =

{
{λw.watw(b1, m1), λw.watw(b1, m2)}, {λw.watw(b2, m1), λw.watw(b2, m2)}

}
Chierchia further assumes that answering a family of sub-questions means answering one of the sub-questions (in contrast to
Fox’s assumption that answering a family of sub-questions means answering all of the sub-questions). Accordingly, since one
of the boys has multiple minimal witness sets, the QiQ-reading of the ∃-question has a choice flavor. Although this account
naturally extends to ∃-questions, it cannot explain the semantic effects in pair-list ∀-questions, such as domain exhaustivity
and point-wise uniqueness.
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f. JCP2K = λQ〈st,t〉.∃x[boy@(x) ∧Q = {λw.watw(x, y) | mov@(y)}]
= {{λw.watw(x, y) | y ∈ mov@} | x ∈ boy@}

The LF of the corresponding pair-list ∀-question is as in (42), read as ‘the unique minimal set
K s.t. for every boy x, JWhich movie did x watch?K is a member of K’. The most important operations
involved in the formation of this LF are ‘quantifying into predication’ and ‘minimization’ (à la Pafel
1999 and Preuss 2001). First, the ∀-subject takes quantifier raising and quantifies into a predication
operation, which is yielded by applying a predicative variable K to the open questionWhich movie
did x watch?. This operation yields a universal predication condition, read as ‘For every boy x,
JWhich movie did x watch?K is a member of K’. Next, a (strong) minimization (minS-)operator binds
the K variable across the ∀-subject. It applies to the set of K sets that satisfy the universal predication
condition and returns the unique minimal K set. This minimal K set is simply the set consisting of
exactly all the sub-questions of the form pWhich movie did boy-x watch?q.

(42) Which movie did every boy watch? (Pair-list reading)
[cp2 minS λK〈stt,t〉 [ every-boy@ λxe [K [cp1 λpst [ wh-movie@ λye [ Id(p) [ip x watched y ]]]]]]]

a. JCP1K = {λw.watw(x, y) | mov@(y)} (composition is the same as in (41a–d))
b. JCP2K = minS(λK〈stt,t〉.Jevery boy@K(λxe.K({λw.watw(x, y) | mov@(y)})))

= minS(λK〈stt,t〉.∀x[boy@(x)→ K({λw.watw(x, y) | mov@(y)})])
=
{
{λw.watw(x, y) | y ∈ mov@} | x ∈ boy@

}
(43) minS := λα〈σt,t〉 : ∃K〈σ,t〉[K ∈ α ∧ ∀K′ ∈ α[K ⊆ K′]].ιK〈σ,t〉[K ∈ α ∧ ∀K′ ∈ α[K ⊆ K′]]

(For any α that is a set of sets, minS(α) is the unique minimal set in α which is a subset of
every set in α, defined only if this minimal set exists.) (Pafel 1999)

As for the definition of answerhood, Fox (2012a,b) assumes that answering a family of sub-
questions amounts to answering all of these sub-questions; in other words, answerhood applies
point-wise and exhaustively. When a point-wise answerhood operator, defined recursively as in (44),
applies to a family of sub-questions, it imposes AnsDayal onto each sub-question and returns the
conjunction of propositions that are the strongest true answer to that sub-question, yielding domain
exhaustivity. When the wh-object is singular, the presupposition that each of the sub-questions has a
strongest true answer also gives rise to point-wise uniqueness.

(44) Point-wise answerhood operator (Fox 2012a)

Anspw := λwλQ.

 AnsDayal(w)(Q) if Q is of type 〈st, t〉⋂{Anspw(w)(α) | α ∈ Q} otherwise

Fox’s account has two advantages over Dayal’s. First, as discussed w.r.t. (40), by defining a pair-list
question as a family of sub-questions, this account can easily make sense of the Q-variability effects
in embeddings. Second, the composition is quite neat; it does not use any ad hoc type-shifters or any
complex operators. In the composition of a pair-list multiple-wh question, the wh-phrases function
as ∃-quantifiers that quantify into an identity condition. In the composition of a pair-list ∀-question,
the ∀-subject standardly composes with a one-place predicate.

However, Fox’s analysis has a few empirical problems similarly to Dayal’s. First, since he analyzes
pair-list ∀-questions and their multiple-wh counterparts as semantically equivalent, Fox as well
cannot explain the contrast in domain exhaustivity.16 Second, Fox’s account does not extend to

16One might propose to salvage the family-of-questions approach by arguing that pair-list multiple-wh questions, but not
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∃-questions either. In the composition of a question with a quantifier, Fox uses the minS-operator
to obtain the unique minimal K set that satisfies a quantificational predication condition, which is
unavailable if this predication condition is existential. For instance, for the ∃-question (45a), in a
discourse with two relevant boys b1 and b2, K satisfies the existential predication condition (45b) as
long as it is a superset of (45c) or (45d). Among these sets that K may refer to, there isn’t one that is a
subset of all the others.

(45) a. Which movie did one of the boys watch?
b. ∃x[boy@(x) ∧ JWhich movie did x watch?K ∈ K]

c. {JWhich movie did b1 watch?K}
d. {JWhich movie did b2 watch?K}

5. The formal theory

I assume a hybrid categorial approach to composing questions, developed in Xiang 2016, 2020.
This approach integrates traditional categorial approaches with GB-style compositional semantics.
Compared with frameworks that define questions as sets of propositions (e.g., Hamblin-Karttunen
semantics), categorial approaches define questions as predicates/properties, which allows us to de-
rive the Q-variability effects in embeddings of pair-list questions without defining pair-list questions
as families of questions (Sect. 7). However, the core analysis presented in Sect. 6 with regard to the
composition of the question nucleus is independent from this choice of framework.

This section lays out only the assumptions that are central to this paper, with some simplifications
and modifications. For more details and applications of this framework, see Xiang 2020.

5.1. Defining questions and answers

Wh-questions admit both short answers and full answers. In discourse, short answers are parts of
speech corresponding to the wh-term. Following categorial approaches, I define the root denotations
of matrix and embedded questions uniformly as functions that map entities (or 〈e, e〉-type functions)
denoted by possible short answers to propositions denoted by corresponding full answers. As
illustrated in (46),Which boy came? denotes a function that maps each atomic boy x to the proposition
that x came. After Chierchia and Caponigro (2013), I call such denotations ‘topical properties’.17

(46) ‘Which boy came?’ ‘John.’
a. JWhich boy came?K = λxe : boy@(x).[λw.camew(x)]

b. JWhich boy came?K(JJohnK) =

 λw.camew(j) if boy@(j)

undefined otherwise

Complete true answers to questions are obtained by the application of the answerhood operators
in (47). Compared with the AnsDayal-operator (34), the main difference is that the Hamblin set

pair-list ∀-questions, permit covert domain restriction. This possibility has been ruled out by the discussion in Sect. 2.1. First
of all, the contrast between the two types of pair-list questions in domain exhaustivity remains even if the domain has been
explicitly specified, as seen in (10) and (12). Moreover, as argued in footnote 2, if the quantification domain of a wh-phrase has
been explicitly specified, it does not take further covert restrictions.

17In this paper, functions with a domain condition restricting the values of the inputs are represented in the form of
λvτ : P(v).α, where τ is the semantic type of v, P(v) stands for the domain condition that restricts the value of v, and α stands
for the value description (Heim and Kratzer 1998). Functions without a domain condition are written in the form of λvτ .α or
λvτ [α], whichever is easier to read.
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Q is replaced with a topical property P, which can supply both short answers and propositional
answers.18 These answerhood operators account for uniqueness effects in the same way as AnsDayal.

(47) Answerhood-operators (modified from Xiang 2020; to be revised in (63))
a. For a complete true short answer:

AnsS := λwλP.∃α ∈ Dom(P)[w ∈ P(α) ∧ ∀β ∈ Dom(P)[w ∈ P(β)→ P(α) ⊆ P(β)]].
ια ∈ Dom(P)[w ∈ P(α) ∧ ∀β ∈ Dom(P)[w ∈ P(β)→ P(α) ⊆ P(β)]]

b. For a complete true propositional answer:
Ans := λwλP.P(AnsS(w)(P))

5.2. Composing simple wh-questions

I define wh-phrases as ∃-quantifiers ranging over a polymorphic set. In questions with an extensional
reading, the quantification domain of a wh-phrase of the form pwh-Awq contains not only elements
in the extension of the wh-complement JAKw, but also functions from a set of entities to JAKw, as
defined in (48a).19 The semantics of wh-phrases in questions with an intensional reading is defined
analogously, as schematized in (48b).

(48) a. Jwh-AwK = λP.∃α ∈ ⋃{ JAKw, { f〈e,e〉 | Ran( f ) = JAKw}
}
[P(α)]

b. Jwh-λw.AwK = λP.∃α ∈ ⋃
{
{r〈s,e〉 | ∀w[rw ∈ JAKw]},
{ f〈s,ee〉 | ∀w[Ran( fw) = JAKw]}

}
[P(α)]

c. For any function f and any set A, Ran( f ) = A iff ∀x ∈ Dom( f )[ f (x) ∈ A].

In the composition of a simplex wh-question, the fronted wh-phrase is converted into a function
domain restrictor via the BeDom-operator (abbreviated as ‘bd’ in this paper).20 As defined in (49), if
π is an ∃-quantifier, Be(π) is the set that π ranges over, and BeDom(π) is a function domain restrictor
which combines with a function θ and returns the function that is similar to θ but is undefined for
items that are not in Be(π).

(49) For any π of type 〈σt, t〉 where σ is an arbitrary type, we have:
a. Be(π) = λx.π(λy.y = x) (Partee 1986)

b. BeDom(π) = λθτ .ιPτ

[
[Dom(P) = Dom(θ) ∩ Be(π)]

∧ ∀α ∈ Dom(P)[P(α) = θ(α)]

]
(Xiang 2016, 2020)

As exemplified in (50), the fronted ‘bd(wh-boy@)’ applies to the simple ‘came’-function defined for
all entities and returns a more restrictive ‘came’-function only defined for atomic boys.

18Following Fox (2013), Xiang (2016, 2020) assumes a weaker definition for complete true answers: a true answer to a
question is complete as long as it is not asymmetrically entailed by any other true answer to this question. This answerhood is
assumed to account for mention-some readings of questions and free relatives. Since mention-some is not the focus of this
paper, for easier comparisons with competing theories of complex questions, I follow Dayal (1996, 2016b) here and define the
complete true answer as the unique strongest true answer. For recent accounts on solving the dilemma between uniqueness
and mention-some, see Fox 2018, 2020 and Xiang 2022. Also see Dotlacil and Roelofsen 2021 for an analysis using dynamic
inquisitive semantics to account for both uniqueness effects and mention-some readings.

19Instead of postulating a polymorphic restrictor, we can alternatively assume that wh-phrases are semantically ambiguous
between either ranging over JAKw or over a set of functions from individuals to JAKw. For example, Engdahl (1986) assumes a
type-shifter that applies to the wh-complement that has the effect of turning a set of entities into a set of 〈e, e〉-type functions.

20Crucially, BeDom(π) is type-flexible: it can combine with any function of a 〈σ, ...〉 type where σ is the type of an element
in Be(π). Type-flexibility makes it possible to compose a question regardless of whether the wh-phrase binds an individual or
functional variable, and regardless of how many wh-phrases there are in this question. This assumption overcomes difficulties
with traditional categorial approaches in composing multiple-wh questions with single-pair readings.
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(50) Which boy came?
[cp bd(wh-boy@) [γ λi [ip λw. ti camew ]]]
a. JγK = λxeλw.camew(x)
b. JCPK = λxe : boy@(x).[λw.camew(x)]

The following illustrates the derivations for individual and functional readings of wh-questions
with a quantifier. An individual reading arises if the wh-phrase binds an individual trace, as in (51a);
a functional reading arises if the wh-phrase binds an (intensional) functional trace, as in (51b).

(51) Which movie did every boy watch?
a. Individual reading:

‘Which movie y is s.t. every boy watched y?’
[cp bd(wh-movie@) [γ λi [ip λw. every-boyw watchedw ti ]]]
i. JγK = λyeλw.∀x[boyw(x)→ watw(x, y)]
ii. JCPK = λye : mov@(y).[λw.∀x[boyw(x)→ watw(x, y)]]

b. (Intensional) functional reading:
‘Which Skolem function f to atomic movies is s.t. for every boy x, x watched f (x)?’
[cp bd(wh-λw.moview) [γ λi [ip λw. every-boyw λj [vp tj watchedw tj

i ]]]]
i. JγK = λ f 〈s,ee〉λw.∀x[boyw(x)→ watw(x, f w(x))]
ii. JCPK = λ f 〈s,ee〉 : ∀w′[Ran( fw′) = movw′ ].[λw.∀x[boyw(x)→ watw(x, f w(x))]]

6. Proposal

In line with functionality approaches, I analyze pair-list readings of multiple-wh questions and
QiQ-readings of questions with a quantifier as extensional functional readings. For both types of
questions, I assume that the composition involves a quantificational binding-in operation applied
to what I refer to as a ‘dependency sentence’. A dependency sentence is an open sentence with the
logical form px P f (x)q, which expresses a functional dependency between the two arguments of
the two-place predicate P. In particular, in the composition of a pair-list multiple-wh question, the
wh-subject existentially quantifies into an identity operation (à la Karttunen semantics). In contrast, in
the composition of a QiQ-question, the quantificational subject quantifies into a predication operation
(à la Fox 2012b). The LF schema is as follows, repeated from (7):

(52) Composition schema for complex questions:
a. Which boy watched which movie? (Pair-list reading)

... [ which-moviei ... which-boyj [ ... ident ... [ tj watched tj
i ]]]

b. Which movie did Det-boy(s) watch? (QiQ-reading)
... [ which-moviei ... Det-boy(s)j [ ... pred ... [ tj watched tj

i ]]]

In both LFs, applying quantificational binding into a dependency sentence gives rise to a de-
finedness condition, namely, that fi (i.e., the value of the functional index i) is defined for some boy/
Det-boy(s). This condition varies with the quantificational force of the wh-/quantificational subject,
which explains the contrast in domain exhaustivity between pair-list multiple-wh questions and
∀-questions.

The LF schema for QiQ-questions automatically explains why ∀-questions and ∃-questions have
pair-list readings and choice readings, respectively, and why no-questions do not have QiQ-readings.
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What’s more, given the independently observed contrasts among non-interrogative quantifiers in
lexical distributivity and scoping, this analysis also explains why only every/each-phrases license
pair-list readings and why counting quantifiers do not participate in QiQ-readings.

In what follows, I will first provide the root denotation of each type of complex question (Sect.
6.1) and revisit the definition of answerhood (Sect. 6.2). Next, I will show how to derive each of these
root denotations compositionally (Sects. 6.3 and 6.4). Finally, a summary (Sect. 6.5) concludes the
presentation.

6.1. Question denotations

I assume that pair-list readings and QiQ-readings of complex wh-questions are extensional functional
readings. When a question has a pair-list/QiQ reading, it denotes a topical property that maps an
〈e, e〉-type function f to the conjunction of a proposition set that describes the graph of f . Illustrations
of such topical properties are given side by side in (53) and (54). The (a)-denotations and the direct
results of their being computed, in (a’), are represented in a way that is isomorphic to the order
of compositional steps (for details of composition, see Sects. 6.3 and 6.4). The (b)-denotations
are semantically equivalent to their (a)&(a’)-counterparts, but are represented in a way that is
more convenient for comparison. Here and henceforth, φ

f
x abbreviates the dependency proposition

λw.watw(x, f (x)).

(53) JWhich boy watched which movie?Kpair-list
⇔ λ f 〈e,e〉 : Ran( f ) = mov@.

⋂
(λpst.∃-boy@[λxe.JIdK(p)(Jx watched f (x)K)]) (a)

⇔ λ f 〈e,e〉 : Ran( f ) = mov@.
⋂
(λpst.∃-boy@[λxe.(p = φ

f
x) ∧ φ

f
x↓]) (a’)

⇔ λ f 〈e,e〉 : Ran( f ) = mov@ ∧ ∃-boy@(λxe.φ
f
x↓).

⋂{φ f
x | boy@(x) ∧ φ

f
x↓} (b)

(54) JWhich movie did Det-boy(s) watch?KQiQ
⇔ λ f 〈e,e〉 : Ran( f ) = mov@.

⋂
f min
ch (λK〈st,t〉.Det-boy@[λxe.JPredK(K)(Jx watched f (x)K)]) (a)

⇔ λ f 〈e,e〉 : Ran( f ) = mov@.
⋂

f min
ch (λK〈st,t〉.Det-boy@[λxe.K(φ

f
x) ∧ φ

f
x↓]) (a’)

⇔ λ f 〈e,e〉 : Ran( f ) = mov@ ∧Det-boy@(λxe.φ
f
x↓).⋂

f min
ch (λK〈st,t〉.Det-boy@[λxe.K(φ

f
x) ∧ φ

f
x↓]) (b)

The identify operator Id and the predication operator Pred are defined as follows:

(55) a. JIdK = λατλβτ .(α = β) ∧ β↓
b. JPredK = λK〈τ,t〉λβτ .K(β) ∧ β↓

For any Ty2 translation β, β↓ is a formula stating that β is defined, i.e., that β can receive a value
with the given interpretation parameters (after Feferman 1995). In the topical properties above, the
formula φ

f
x ↓ is read as “The proposition ‘x watched f (x)’ is defined”; this formula is true only if

x is in the domain of f . For the sake of discussion, this paper ignores other possible definedness
conditions of ‘x watched f (x)’.

The conjunction operator
⋂

carries an existential presupposition, i.e., that it cannot be applied to
an empty set:

(56) For any Q of type 〈st, t〉, ⋂Q = λw.∀p[p ∈ Q→ w ∈ p], defined only if |Q| ≥ 1.

The denotations in (54) introduce a new operator f min
ch . This operator combines a weak minimiza-

tion operator minW with a choice-function variable fch, which gets existentially bound at a global
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site. The minW-operator is weaker than Pafel-Fox’s minS-operator: for any set α, a member x of α

is a minimal member of α as long as no member of α is a proper subset/subpart of x — without
requiring that x be a subset/subpart of every member of α.21 The choice between minS and f min

ch
makes no difference in ∀-questions, but only the latter works for ∃-questions (Sect. 6.4.2).

(57) f min
ch := λα〈σ,t〉. fch(minW(α))

(58) a. minW := λα〈σ,t〉.{xσ | x ∈ α ∧ ¬∃y ∈ α[y < x]}
b. minS := λα〈σ,t〉 : ∃xσ[x ∈ α ∧ ∀y ∈ α[y ≥ x]].ιxσ[x ∈ α ∧ ∀y ∈ α[y ≥ x]]

(generalized from (43))
[‘<’ stands for the proper subset relation if α is a set of sets, and for the proper subpart
relation if α is a set of non-sets; ‘≥’ is analogous.]

The topical properties in (53b) and (54b) both involve a quantificational definedness condition,
read as: “For some boy x/ Det-boy(s) x, the proposition φ

f
x (which abbreviates ‘x watched f (x)’) is

defined.” In both types of questions, this condition arises as a definedness condition of question
nucleus, and it entails that f is defined for some boy/ Det-boy(s).

For a concrete illustration of (54), consider the QiQ-denotation of a ∀-question:

(59) JWhich movie did every/each boy watch?K
⇔ λ f 〈e,e〉 : Ran( f ) = mov@︸ ︷︷ ︸

from wh-obj

.
⋂

f min
ch (λK〈st,t〉.∀-boy@[λxe.K(φ

f
x) ∧ φ

f
x↓])︸ ︷︷ ︸

?: from question nucleus

(a)

⇔ λ f 〈e,e〉 : Ran( f ) = mov@ ∧ ∀x[boy@(x)→ φ
f
x↓]︸ ︷︷ ︸

definedness cond. of ?

.
⋂{φ f

x | boy@(x)} (b)

In (59a), inside the nucleus, a characteristic function maps a proposition set K to 1 if and only if
for every boy x the proposition ‘x watched f (x)’ is both a member of K and defined. The universal
definedness requirement is satisfied only if f is defined for every boy. When this requirement is
satisfied, the K set chosen by f min

ch is the set that consists of all and only the propositions of the form
pboy-x watched f (x)q, as in (59b). If f were undefined for any boy, no K would be mapped to 1; then
f min
ch would be applied to the empty set, which is clearly deviant.

As for the denotation of the pair-list multiple-wh question in (53a), the characteristic function
inside the nucleus maps a proposition p to 1 if and only if there is a boy x such that the proposition
‘x watched f (x)’ is both equivalent to p and defined. The existential definedness requirement only de-
mands f to be defined for at least one boy. When this requirement is satisfied, the set identified by the
characteristic function is simply the set of all defined propositions of the form pboy-x watched f (x)q,
as in (53b).

In short, the ∀-question (59) is semantically equivalent to its multiple-wh counterpart (53), except
that the ∀-question requires universal definedness, not just existential definedness. The universal
definedness requirement entails domain exhaustivity.

21The following illustrates the contrast between the f min
ch -operator and the minS-operator:

(i) Let a and b be two distinct entities, A = {∅, {a}, {b}}, and B = {{a}, {b}}. Then:
a. minS(A) = f min

ch (A) = ∅;
b. minS(B) is undefined, while f min

ch (B) has two possible values: {a} and {b}.

For readers who are familiar with Boolean semantics, the f min
ch -operator is roughly the same as the collectivity-raising operator

in Winter 2001.
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At this point, it will be clear why I pursue a functionality approach instead of a family-of-questions
approach: since I assume a wh-dependency, I can attribute the domain exhaustivity effect in a ∀-
question to a definedness condition arising from an operation applied inside the question root (viz.,
universal quantification into the definedness requirement of a dependency sentence). Inmy approach,
the contrast in domain exhaustivity between multiple-wh questions and ∀-questions can be explained
in terms of the differences between their roots, especially the syntactic and semantic differences
between wh-subjects and ∀-subjects. In family-of-questions approaches, domain exhaustivity is
instead attributed to an operation applied outside the question root (e.g., the point-wise answerhood
operator of Fox 2012a,b); such accounts cannot capture the semantic contrast between multiple-wh
questions and ∀-questions as a direct result of their intrinsic linguistic characteristics.

6.2. Redefining answerhood

As pointed out by Floris Roelofsen (pers. comm.), the answerhood operator assumed in (47a) over-
generates possible answers for pair-list questions. For example, the topical property of Which boy
watched which movie is defined for any 〈e, e〉-type functions that map entities to atomic movies, not
just those consisting of only boy-movie pairs. The assumed answerhood incorrectly predicts that it
accepts the answer (60b), which involves an irrelevant adult-movie pair.

(60) Which boy watched which movie?
a. Andy watched Hulk, Billy watched Spiderman.
b. # Andy watched Hulk, Billy watched Spiderman, Mr. White watched Ironman.

To solve this problem, I define the concept of answerhood for possible short answers as in (61a). The
added constraint on functional answers, namely, that every subset22 of α must yield a propositional
answer that is possibly true, rules out functions that allow inputs that are non-boys.

(61) Answerhood for possible answers
a. For short answers:

AS := λP.

 Dom(P) if P ∈ D〈e,τ〉

{α | α ∈ Dom(P) ∧ ∀β[β ⊆ α→ ∃w[w ∈ P(β)]]} if P ∈ D〈〈e,e〉,τ〉
b. For propositional answers:

A := λP.{P(α) | α ∈ AS(P)}

Next, let’s consider answerhood for complete true answers. For pair-list questions like (62) with a
number-neutral wh-subject and a semi-distributive predicate, the same pair-list propositional answer
can be derived based on distinct possible short answers, such as those listed in (62a–c).

(62) Which boy or boys watched which movie?
(Context: Boys b1,b2 both watched the movie m1, and boy b3 watched movie m2.)
a. [b1 → m1, b2 → m1, b3 → m2], [b1 ⊕ b2 → m1, b3 → m2]

b. [b1 → m1, b1 ⊕ b2 → m1, b3 → m2], [b2 → m1, b1 ⊕ b2 → m1, b3 → m2]

c. [b1 → m1, b2 → m1, b1 ⊕ b2 → m1, b3 → m2]

Just for convenience, I redefine answerhood for complete true short answers as follows, so that
there is a one-to-one mapping from complete true short answers to complete true propositional

22I use the subset symbol in β ⊆ α since a function can be viewed as a set of ordered pairs. In standard mathematical terms,
such β is called the restriction of α to a set X′ s.t. X′ ⊆ Dom(α), written as β = α |X′ .

23



answers: the complete true short answer is the maximal short answer that yields the strongest true
propositional answer. Formally:

(63) Answerhood for complete true answers (final, modified from (47))
a. For short answers:

AnsS := λwλP : ∃α[α ∈ X(w)(P)].max[X(w)(P)], where
i. X := λwλP.{α | α ∈ A(P) ∧ w ∈ P(α) ∧ ∀β ∈ A(P)[w ∈ P(β)→ P(α) ⊆ P(β)]}
ii. max := λα〈σ,t〉 : ∃xσ[x ∈ α ∧ ∀y ∈ α[y ≤ x]].ιxσ[x ∈ α ∧ ∀y ∈ α[y ≤ x]]

b. For propositional answers:
Ans := λwλP.P(AnsS(w)(P))

By this definition, the complete true short answer to (62) is (62c).

6.3. Composing pair-list multiple-wh questions

Figure 1 illustrates the composition of a pair-list multiple-wh question. Asmarked in the tree diagram,
this composition proceeds in four steps.

(i) Derive a functional dependency. The argument index carried by the complex functional trace
of the wh-object is co-indexed with the subject trace, yielding a dependency sentence which
expresses a dependency between the two arguments of watched.

(ii) Existential binding-in across an identity operator. I assume that the identity (Id-)operator enforces
not only an identity relation but also a definedness requirement. Employing Id yields an identity
relation between a covert propositional variable p and the dependency sentence generated at
IP, as well as the requirement that this dependency sentence be defined.
At node 1 , the wh-subject, interpreted as an ∃-quantifier, binds the argument index inside
the IP across the Id-operator, yielding an existential identity condition w.r.t. the dependency
sentence as well as the definedness requirement of this sentence.

(iii) Derive a function graph description. Abstracting p returns the set of all defined propositions
of the form pboy-x watched fi(x)q. Conjoining this set of propositions by

⋂
yields the graph

description of the function fi. Here the
⋂
-closure can be perceived as a ‘function graph creator’

in the sense of Dayal 2016b.
(iv) Create a topical property. Abstracting the functional index yields a property (of type 〈ee, st〉) that

maps each 〈e, e〉-type function to the graph description of this function. Further, the fronted
wh-object ‘bd(wh-movie@)’ restricts the domain of this property — it requests the range of each
input function to be a set of atomic movies.23

The definedness requirement encoded in the meaning of Id is needed to ensure that the proposi-
tions being conjoined in step (iii) are all defined. If any of these propositions were undefined, the
resulting conjunction would be undefined too. I assume that such a definedness requirement is
imposed by any function graph description.

23Eagle-eyed readers might notice that here the wh-object is moved over the fronted wh-subject, which violates the general-
ization of ‘tucking-in’ (Richards 1997). Although violations of tucking-in are sometimes permitted for D-linked wh-phrases, it
is certainly problematic to say that pair-list readings are only available in constructions that violate tucking-in. However, this
problem does not stem from the specific assumptions involved in the composing of pair-list multiple-wh questions; it is a
consequence of requiring covert/overt wh-fronting in question composition generally. This problem can be avoided if we
assume a framework of composition that allows wh-in-situ. For example, in variable-free semantics (Jacobson 1999, 2014),
abstractions can be passed up by type-shifting operations. Integrating my core proposal on composing pair-list questions into
such frameworks allows us to create the wanted topical property without fronting the object wh-phrase.
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The resulting topical property has an existentiality requirement with regard to the domain of the
input functions. This requirement originates from the existential binding-in operation in step (ii) and
is passed up by the definedness condition of the

⋂
-closure. Since the

⋂
-closure cannot be applied to

the empty set, the denotation given by step (iii) is defined only if at least one proposition of the form
pboy-x watched f (x)q is defined, which in turn requires that f is defined for at least one boy.

CP2 :: 〈ee, st〉
Topical property
λ f 〈e,e〉 : Ran( f ) = mov@ ∧ ∃x[boy@(x) ∧ φ

f
x↓].

⋂{φ f
x | boy@(x) ∧ φ

f
x↓}

DP

bd(wh-movie@)

〈ee, st〉

λi C′

2 :: st
Function graph description⋂{φ fi

x | boy@(x) ∧ φ
fi
x ↓}⋂

CP1 :: 〈st, t〉

λpst 1 :: t
Binding-in across identity
∃x[boy@(x) ∧ (p = φ

fi
x ) ∧ φ

fi
x ↓]

DP

wh-boy@

et

λj C′:: t

Id p IP :: st
Dependency
λw.watw(xj, fi(xj)) (abbr. φ

fi
xj )

λw. tj watchedw tj
i

Figure 1: Composition of the pair-list multiple-wh question Which boy watched which movie?

(64) Steps (i) & (ii): Bind into a dependency sentence across an identity operator
a. JIPK = λw.watw(xj, fi(xj)) (abbreviated as φ

fi
xj )

b. JIdK = λατλβτ .(α = β) ∧ β↓
c. JC′K = JIdK(p)(JIPK)

= [(p = φ
fi
xj) ∧ φ

fi
xj↓]

d. Jwh-boy@K = λP〈e,t〉.∃x[boy@(x) ∧ P(x)]

e. J 1 K = Jwh-boy@K(JC′K)
= ∃x[boy@(x) ∧ (p = φ

fi
x ) ∧ φ

fi
x ↓]

(65) Step (iii): Create a function graph description
a. JCP1K = λpst.∃x[boy@(x) ∧ (p = φ

fi
x ) ∧ φ

fi
x ↓]

= {φ fi
x | boy@(x) ∧ φ

fi
x ↓}

b. J 2 K =
⋂{φ fi

x | boy@(x) ∧ φ
fi
x ↓}, defined only if ∃x[boy@(x) ∧ φ

fi
x ↓]

(66) Step (iv): Create a topical property
JCP2K = λ f 〈e,e〉 : Ran( f ) = mov@ ∧ ∃x[boy@(x) ∧ φ

f
x↓].

⋂{φ f
x | boy@(x) ∧ φ

f
x↓}

= λ f 〈e,e〉 : Ran( f ) = mov@ ∧ ∃-boy@(Dom( f )).
⋂{φ f

x | boy@(x) ∧ x ∈ Dom( f )}
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6.4. Composing QiQ-questions

QiQ-questions of the formWhich movie did Det-boy(s) watch? are composed uniformly with the LF
schema in Figure 2. The composition steps are parallel to those for the pair-list multiple-wh question
Which boy watched which movie?. The following subsections will explain how this composition schema
works for each type of QiQ-questions.

CP :: 〈ee, st〉 Topical property

DP

bd(wh-movie@)
λi C′

2 :: st Function graph description
⋂

γ :: 〈st, t〉

f min
ch

λK〈st,t〉 1 :: t Binding-in across predication

DP

Det-boy(s)@

et

λj t

Pred K
IP :: st Dependency

λw. tj watchedw tj
i

Figure 2: Composition of the QiQ-question Which movie did Det-boy(s) watch?

In denotation (67b), the condition on the range of f (i.e., that f maps to atomic movies) comes
from the fronted wh-object. All other conditions, including the condition on the domain of f (i.e.,
that f is defined for Det-boy(s)) and the output proposition which describes the graph of the input
function, come from the question nucleus (viz., node 2 ).

(67) JWhich movie did Det-boy(s) watch?KQiQ (repeated from (54))
⇔ λ f 〈e,e〉 : Ran( f ) = mov@︸ ︷︷ ︸

from wh-object

.
⋂

f min
ch (λK〈st,t〉.Det-boy@[λxe.K(φ

f
x) ∧ φ

f
x↓])︸ ︷︷ ︸

?: from nucleus

(a)

⇔ λ f 〈e,e〉 : Ran( f ) = mov@ ∧

definedness cond. of ?︷ ︸︸ ︷
Det-boy@(λxe.φ

f
x↓) .⋂

f min
ch (λK〈st,t〉.Det-boy@[λxe.K(φ

f
x) ∧ φ

f
x↓]) (b)

Before we delve into the composition of each type of QiQ-question, let’s compare the composition
schema for QiQ-questions with the schemas for functional questions and pair-list multiple-wh
questions.

First, recall that wh-questions with a quantificational subject admit both functional readings and
QiQ-readings. In both readings, the question involves awh-dependency, derived by letting the subject
bind into the complex functional trace of the wh-object. However, the composition of QiQ-readings
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makes use of two additional operations, i.e., quantification into predication and minimization, which
are not involved in the composition of functional readings. These operations are similar to what Fox
(2012b) assumes for composing ∀-questions (see (42)), but they depart from Fox’s implementation
in two respects, yielding desirable consequences in explaining the contrast in domain exhaustivity
between ∀-questions and multiple-wh questions and in deriving the choice readings of ∃-questions.
First, in the presented analysis, the predication operation applies to a dependency sentence (not to a
question). It yields not only a predication relation but also a definedness requirement, which is crucial
for the derivation of domain exhaustivity in ∀-questions (Sect. 6.4.1). Second, the f min

ch -operator is
weaker than the minS-operator that Fox adopts from Pafel (1999): f min

ch doesn’t require the existence
of a unique minimal member (Sect. 6.1). Replacing minS with f min

ch makes it feasible for the analysis
to tackle choice ∃-questions (Sect. 6.4.2).

Next, recall that Dayal (1996) over-predicts pair-list readings for ∃-questions, because her analysis
cannot distinguish between multiple-wh questions and ∃-questions. In my analysis, by contrast, since
multiple-wh questions and QiQ-questions have distinct syntactic structures, the differences between
multiple-wh questions and ∃-questions can be accounted for in terms of different syntactic demands
of Id and Pred: the specifier of the interrogative C0 (viz., Id(p)) can only host a wh-phrase, whereas
the specifier of Pred(K) can only host a non-interrogative quantifier.

6.4.1. Questions with a universal quantifier

This subsection presents the composition of pair-list ∀-questions. Its primary goals are to derive the
pair-list readings and to account for the domain exhaustivity effects. The LF is given in Figure 3
below. In parallel to the composition of pair-list multiple-wh questions (Sect. 6.3), I divide the process
into four steps:

(i) Derive a functional dependency. The IP is a dependency sentence, composed in the same way as
the IP in the corresponding pair-list multiple-wh question.

(ii) Universal binding-in across a predication operator. A null predication operator Pred, together with
a predicative variable K, is applied to the IP, yielding a condition to the effect that the meaning
of the dependency sentence generated at the IP is both a member of K and defined. Next, the
subject every boy quantifies into this predication condition and binds the argument index j,
yielding a universal predication condition that requires universal definedness, as in (68c).

(iii) Create a function graph description. Abstracting the predicative variable K returns the characteris-
tic function over (69a). This function maps a proposition set K to 1 if and only if (a) K contains
all propositions of the form pboy-x watched fi(x)q, and (b) all these propositions are defined.
If the universal definedness requirement (b) is satisfied, applying the minimizer f min

ch returns a
minimal K set that satisfies the universal predication condition (a), as in (69b). Here there is
only one such minimal K set, namely, {φ fi

x | boy@(x)}. Conjoining this set returns the graph
description of fi, as in (69c). If universal definedness is not satisfied, no K can be mapped to 1;
then f min

ch applies to the empty set, which is clearly deviant.
(iv) Create a topical property. The fronted ‘bd(wh-movie@)’ binds the functional index i and restricts

the range of any input f to the set of atomic movies. The universal definedness requirement
arising from the nucleus now becomes a domain condition of the topical property. For the sake
of discussion, I assume that this universal definedness requirement is satisfied if and only if f
is defined for every boy, ignoring other factors. The possible inputs of this topical property are
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therefore functions that map each boy to an atomic movie, and the outputs are conjunctive
propositions that describe the graph of each input function.

Step (ii) of this composition — apply universal binding-in across predication — is the heart of the
analysis. First, it carries forward the advantage of Fox’s analysis that the quantificational subject
can standardly combine with a one-place predicate of type 〈e, t〉. In contrast to earlier accounts (e.g.,
Groenendijk and Stokhof 1984; Chierchia 1993; Dayal 1996, 2016b), there is no need to assume a
type-shifting operation or make use of a minimal witness set. What’s more, when the ∀-subject
binds into the functional wh-trace, the resulting inference requires that all propositions of the form
pboy-x watched fi(x)q are defined. This universal definedness requirement is passed up by the
operations applied in step (iii), yielding a domain exhaustivity effect.

CP :: 〈ee, st〉
Topical property
λ f 〈e,e〉 : Ran( f ) = mov@ ∧ ∀x[boy@(x)→ φ

f
x↓].

⋂{φ f
x | boy@(x)}

DP

bd(wh-movie@)
λi 2 :: st

Function graph description⋂{φ fi
x | boy@(x)}, if ∀x[boy@(x)→ φ

f
x↓]; undefined otherwise⋂

γ :: 〈st, t〉

f min
ch

λK〈st,t〉 1 :: t
Binding-in across predication
∀x[boy@(x)→ K(φ

fi
x ) ∧ φ

fi
x ↓]

DP

every boy@

et

λj t

Pred K IP :: st
Dependency
λw.watw(xj, fi(xj)) (abbr.: φ

fi
xj )

λw. tj watchedw tj
i

Figure 3: Composition of the ∀-questionWhich movie did every boy watch?

(68) Steps (i) & (ii): Bind into a dependency sentence across a predication operator
a. JIPK = λw.watw(xj, fi(xj)) (= (64), abbreviated as φ

fi
xj )

b. JPredK = λK〈τ,t〉λβτ .K(β) ∧ β↓

c. J 1 K = Jevery boy@K(λxe.JPredK(K)(φ
fi
x ))

= ∀x[boy@(x)→ K(φ
fi
x ) ∧ φ

fi
x ↓]

(For every boy x, the proposition ‘x watched fi(x)’ is both a member of K and defined.)
(69) Step (iii): Create a function graph description

a. JλK〈st,t〉. 1 K = λK〈st,t〉.∀x[boy@(x)→ K(φ
fi
x ) ∧ φ

fi
x ↓]

= λK〈st,t〉.{φ
fi
x | boy@(x)} ⊆ K ∧ ∀x[boy@(x)→ φ

fi
x ↓]

b. JγK = f min
ch (JλK〈st,t〉. 1 K)

=

 {φ fi
x | boy@(x)} if ∀x[boy@(x)→ φ

fi
x ↓]

undefined otherwise
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c. J 2 K =


⋂{φ fi

x | boy@(x)} if ∀x[boy@(x)→ φ
fi
x ↓]

undefined otherwise
(70) Step (iv): Create a topical property

JCPK = λ f 〈e,e〉 : Ran( f ) = mov@ ∧ ∀x[boy@(x)→ φ
f
x↓].

⋂{φ f
x | boy@(x)}

= λ f 〈e,e〉 : Ran( f ) = mov@ ∧ ∀-boy@(Dom( f )).
⋂{φ f

x | boy@(x)}

The explanation of domain exhaustivity crucially relies on the presence of a ∀-quantifier: domain
exhaustivity comes from the definedness requirement of the binding relation between a ∀-quantifier
and the argument index of the functional wh-trace. As a welcome effect, this analysis does not
over-predict domain exhaustivity for a pair-list multiple-wh question: in a multiple-wh question, the
argument variable of the functional trace of the wh-object is ‘existentially’ bound by the wh-subject,
which only gives rise to an existential definedness requirement. By comparison, the family-of-
questions approach of Fox (2012a,b) attributes domain exhaustivity to an operation outside the
question root, namely, the point-wise answerhood operator. Since the selection of answerhood is
independent from the root structure/meaning of a question, the family-of-questions approach cannot
explain the contrast in domain exhaustivity between ∀-questions and multiple-wh questions.

In the remaining subsections, I will describe the characteristics of the QiQ-reading of each type
of question in terms of the following three parameters:

[±d-exh]: the reading is/isn’t subject to domain exhaustivity;
[±pl]: the reading is/isn’t a pair-list reading;
[±ch]: the reading does/doesn’t have a ‘choice’ flavor.

The QiQ-reading of a ∀-question is [+d-exh,+pl,−ch]. It presupposes domain exhaustivity because
the universal predication condition (from node 1 ) is defined only if the input function f is defined
for every member of the set that the subject quantifies over. It expects a pair-list answer because
the yielded eligible minimal proposition set K (from node γ) that satisfies the universal predication
condition is a non-singleton set ranging over multiple elements in the quantification domain of the
subject. It does not have a choice flavor because there is only one such eligible minimal K set.

6.4.2. Questions with a singular existential quantifier

Choice readings of ∃-questions are derived in the same way as pair-list readings of ∀-questions.
At node 1 , the ∃-subject binds into the complex functional trace of the wh-object across Pred(K).
The resulting existential condition requires that at least one dependency sentence of the form
pboy-x watched fi(x)q is both contained by K and defined. At node γ, applying the f min

ch -operator
returns one of the minimal K sets that satisfy the existential predication condition, defined only if
the dependency sentence in the chosen K set is defined. Crucially, unlike the case of the ∀-question,
here there are ‘multiple’ minimal K sets that satisfy the quantificational predication condition, each
of which is a singleton set consisting of a defined proposition of the form pboy-x watched fi(x)q. Each
such minimal K set supplies a possible topical property, which therefore gives rise to a choice flavor.

(71) Which movie did one of the boys watch?
[cpbd(wh-movie@) λi [ 2

⋂
[γ f min

ch λK [ 1 one-boy@ λj [ Pred(K) (λw.xj-watchw- f i(xj)) ]]]]]

a. J 1 K = ∃x ∈ boy@[K(φ
fi
x ) ∧ φ

fi
x ↓] (φ f

x abbreviates λw.watw(x, f (x)) )
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b. JγK = f min
ch (JλK〈st,t〉. 1 K)

= fch({{φ fi
x } | boy@(x) ∧ φ

fi
x ↓})

=

 {φ fi
x }, where x is the chosen boy if φ

fi
x ↓

undefined otherwise

c. J 2 K =

 φ
fi
x , where x is the chosen boy if φ

fi
x ↓

undefined otherwise

d. JCPK = λ f 〈e,e〉 : Ran( f ) = mov@ ∧ φ
f
x↓ .φ f

x , where x is the chosen boy
= λ f 〈e,e〉 : Ran( f ) = mov@ ∧ x ∈ Dom( f ).φ f

x , where x is the chosen boy

Note that this approach does not assume a choice-function analysis of ∃-quantifiers. In (71), the
f min
ch -operator, which contains a choice-function variable fch, applies to a family of singleton sets of
propositions, not to a set of boys. The subject one of the boys is treated standardly as an existential
generalized quantifier. Therefore, node γ should be more precisely read as ‘the chosen singleton set
of propositions of the form p{boy-x watched fi(x)}q’. I assume that the choice-function variable fch
is existentially bound at a global site. As in (72), the matrix question is embedded under two covert
intensional predicates, namely, want and you-make-me-know, and the existential closure of fch takes
scope between these two predicates.24

(72) [ I want [ ∃ fch [ you-make-me-know [LF in (71) ... f min
ch ... ]]]]

The full paraphrase of the LF in (72) is as follows:

(73) ‘What the questioner wants is that for some choice function fch, the addressee makes the
questioner know the 〈e, e〉-type function f to atomic movies s.t. the conjunction of the
singleton set {boy-x watched f (x)} chosen by fch is true.’

The QiQ-reading of an ∃-question yielded by the above analysis is [−d-exh,−pl,+ch]. This
reading is not subject to domain exhaustivity because the existential condition (71a) only requires
the input function f to be defined for at least one boy. This existential definedness requirement, after
the application of the f min

ch -operator, gets turned into a requirement specific to the designated boy in
the K set chosen by f min

ch . Possible answers to this question are single-pairs, not pair-lists, because
the minimal K sets satisfying the existential predication condition are all singleton sets, as seen in
(71b). The yielded QiQ-reading has a choice flavor, because there can be multiple minimal K sets
that satisfy the existential predication condition.

6.4.3. Questions with a plural existential quantifier

The above discussion covered the singular ∃-quantifier one of the boys (abbreviated as ‘∃1’). This
section considers plural ∃-quantifiers such as two of the boys (abbreviated as ‘∃2). Recall that pair-
list readings are not available in matrix ∃-questions; for example, the ∃2-question (74c) cannot be
interpreted with distributivity taking scope between quantification and uniqueness.

(74) I know that every student voted for a different candidate. Which candidate did ...
24I thank an anonymous reviewer of L&P for suggesting the LF in (72). I leave it open whether the answerhood operator

used for obtaining the complete true answer of the matrix question is syntactically presented right below the predicate
you-make-me-know or encoded within the lexicon of this predicate (see Xiang 2020: Sect. 4.2).
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a. ... every/each student vote for? (every/each� ι)
b. ... one of the students vote for? (∃1� ι)
c. # ... two of the students vote for? (∃2� each� ι)

In contrast to matrix ∃-questions, extensional embeddings of ∃-questions sometimes admit pair-list
readings (Szabolcsi 1997b; Beghelli 1997; Appendix B). For example, the embedding sentence (75) is
felicitous even if each boy watched a different movie.25

(75) Susi knows which movie two of the boys watched. (3∃2� each� ι)

To avoid over-generating pair-list readings for matrix questions, pioneering works derive these
readings in ways that would crash in questions with a non-universal quantifier. In Dayal’s analysis,
the derivation of pair-list readings crashes because ∃-quantifiers have multiple minimal witness sets.
In Fox’s analysis, the derivation crashes because we cannot find the unique minimal set among the
sets of sub-questions that satisfy an existential predication condition. Obviously, this strategy comes
at the cost of failing to account for the choice readings of ∃-questions.

In what follows, I will argue for three claims to account for the data in (74) and (75). First, a matrix
QiQ-question has a [+pl] reading if and only if it contains an overt distributive expression: either
its quantificational subject is lexically distributive, or it contains the adverbial each. ∃-quantifiers
do not participate in pair-list readings because they are not lexically distributive. Second, due to
an independent constraint on implicit binding, covert each cannot license pair-list interpretations
for matrix questions. Third, in certain embeddings of ∃-questions, pair-list interpretations can be
derived by interpreting the quantifier and applying covert each above the embedding predicate.

I assume that the determiner of the plural quantifier two of the boys is not ∃2 but rather the simple
∃; in other words, the numeral two is part of the restrictor of the determiner. With this assumption,
the quantifier two of the boys ranges over the set of entities that are pluralities of two boys; in other
words, it denotes a set of sets that contain at least one such plural entity, as schematized in (77).

(76) a. ∃2 := λP〈e,t〉λQ〈e,t〉.|P ∩Q| = 2

b. ∃ := λP〈e,t〉λQ〈e,t〉.P ∩Q 6= ∅
(77) Jtwo of the boys@K = λP〈e,t〉.∃x[|At(x)| = 2∧ boys@(x) ∧ P(x)]

This assumption is supported by the contrast between (78a) and (78b): unlike the distributive ∀-
quantifiers every/each boy, the plural ∃-quantifier two (of the) boys can grammatically combine with a
collective predicate such as formed a team. This contrast argues that two (of the) boys is not intrinsically
distributive; it cannot be analyzed as an existential distribution over two atomic boys.

(78) a. Every/Each boy joined/*formed a team.
b. Two (of the) boys joined/formed a team.

The following illustrates the derivation of the QiQ-reading of a matrix ∃2-question. Just like in
(71b), here the minimal K sets yielded by the application of the f min

ch -operator are all singleton sets.
Each of these sets consists of one single proposition of the form px watched fi(x)q, where x is the
plurality of two boys, as in (79b). Hence, the derived QiQ-reading is [−pl], just as in the ∃1-question.

25However, in an informal survey, I found significant individual differences among speaker judgments on whether (75) has
a pair-list reading. For details, see footnote 37.
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(79) Which movie did two of the boys watch? (QiQ-reading)
[cpbd(wh-movie@) λi [ 2

⋂
[γ f min

ch λK [ 1 two-boys@ λj [ Pred(K) (λw.xj-watchw- f i(xj)) ]]]]]

a. J 1 K = ∃x ∈ 2-boys@[K(φ
fi
x ) ∧ φ

fi
x ↓] (φ f

x abbreviates λw.watw(x, f (x)) )
(‘2-boys@’ abbreviates the set of entities that are pluralities of two boys in @.)

b. JγK =

 {φ fi
x }, where x is the chosen two boys if φ

fi
x ↓

undefined otherwise

c. JCPK = λ f 〈e,e〉 : Ran( f ) = mov@ ∧ φ
f
x↓ .φ f

x , where x is the chosen two boys

However, the analysis of ∃2-questions given above hasn’t ruled out the possibility of generating a
pair-list reading via covert distributivity: although two of the boys itself is non-distributive, it can be
associated with covert each.

(80) JeachK = λP〈e,t〉λxe.∀y ∈ At(x)[P(y)]

Both of the LFs below give rise to a pair-list reading. In (81), inserting each above K makes the
quantificational predication condition distributive, yielding minimal K sets consisting of two propo-
sitions. In (82), although the minimal K sets yielded are singletons, the propositions they contain are
distributive, read as: ‘For the two chosen boys X, each atomic boy x watched fi(x).’26

(81) a. * ... [γ f min
ch λK [ two-boys@ λj [ Xj each λn [ Pred(K) (λw.xn-watchw- f i(xn)) ]]]]

b. If defined, JγK = {λw.watw(x, fi(x)) | x ∈ At(X)}, where X is the chosen two boys
(82) a. * ... [γ f min

ch λK [ two-boys@ λj [ Pred(K) (λw. Xj each λn (xn-watchw- f i(xn))) ]]]]
b. If defined, JγK = {λw.∀x ∈ At(X)[watw(x, fi(x))]}, where X is the chosen two boys

How else then does my account avoid over-generating pair-list readings for ∃2-questions? I’d
like to argue that the LFs in (81) and (82) are syntactically ill-formed: in contrast to overt distributive
expressions like each boy and the adverbial each, the covert distributor each cannot bind a covert
variable. This constraint is independently proposed by Spector (2004) based on the data in (83): cats
vary by owners only in the presence of overt each. To explain this fact, Spector argues that the covert
domain restriction variable contained in the cat can be bound by overt each but not covert each. This
idea also applies to (84a,b), which contain the relational noun neighbor.27

(83) (Context: John and Peter live far from each other. There is a wild cat living in John’s
neighborhood, and another wild cat living in Peter’s neighborhood.)
a. John and Peter have each adopted the cat.

[ J-and-P each λn [ xn adopted [ the C(xn) cat ]]]
b. # John and Peter have adopted the cat.

26I thank an anonymous reviewer of L&P for pointing out a mistake in this analysis in an earlier version.
27Binding with covert each is also marked in implicit binding. In the examples below, the ‘each boy’ reading is easily

attested in (i) but quite unnatural in (ii). This contrast argues that the pronoun their cannot easily be bound by covert each.

(i) The boysi eachj watched theiri/j favorite movie. (3‘all boys’, 3‘each boy’)
a. ‘All boys’ reading: ‘The boys watched the favorite movie of them all on separate occasions.’
b. ‘Each boy’ reading: ‘Each of the boys watched his favorite movie.’

(ii) The boysi (eachj) watched theiri/? j favorite movie. (3‘all boys’, ? ‘each boy’)

32



* [ J-and-P each λn [ xn adopted [ the C(xn) cat ]]] (Spector 2004: ex. 34)
(84) (Context: Pierre and Jacques are neighbors, and both have a (different) cat.)

a. Pierre and Jacques have each met the neighbor’s cat.
[ P-and-J each λn [ xn have met [the neighbor of xn]’s cat ]]

b. # Pierre and Jacques have met the neighbor’s cat.
* [ P-and-J each λn [ xn have met [the neighbor of xn]’s cat ]] (Spector 2004: ex. 38)

In short, covert each cannot bind a covert variable. This constraint rules out the pair-list-generating
options in (81) and (82), which require the argument variable in the complex wh-trace to be bound
by covert each. This analysis is supported by the data in (85): pair-list readings are more readily
available in ∃2-questions when the distributor each is overtly present.28,29

(85) (Context: It is shared knowledge that the relevant boys each watched a different movie.)
a. ? Which movie did two of the boys each watch?
b. # Which movie did two of the boys watch?

In contrast to matrix ∃2-questions, embeddings of ∃2-questions can obtain a pair-list reading via
covert distributivity. I assume that the embedding sentence (75), repeated below, has the LF in (86a)
and the meaning in (86b). In this LF, the ∃-quantifier moves over the embedding verb know. Its trace
in the matrix clause is associated with a covert distributor each, which yields the ‘each� ι’ reading.
Crucially, here the interrogative complement of know has an individual reading, which involves no
functional dependency; therefore, this case is independent of the syntactic constraint on covert each
in implicit binding.

(86) Susi knows which movie two of the boys watched. (∃2� each� ι)
a. [ two-boys@ λxe [ Susi λze [ x each λye [vp z knows wh-movie y watched ]]]]
b. ∃x[x ∈ 2-boys@ ∧ ∀y ∈ At(x)[JSusi knows which movie y watchedK]]

This analysis is supported by the contrast between (86) and (87): adding overt each to the embedded
question makes the pair-list reading unavailable or marginal.30 Overt each cannot be associated with
an atomic expression. If the matrix trace of the ∃-quantifier were associated with covert each, the
local trace y would be atomic and therefore could not be associated with overt each.31

(87) Susi knows which movie two of the boys each watched. (∃2� each� ι)
[ two-boys@ λxe [ Susi λze [ x each λye [vp z knows wh-movie y (#each) watched ]]]]

28 Recent experimental work by van Gessel and Cremers (2021) shows that the distribution of pair-list readings forms a
gradient, from ∀-questions with an every/each-phrase, which robustly allow for pair-list readings, to no-questions with a
negative quantifier, which clearly do not. In particular, for matrix ∃2-questions, pair-list readings were judged available in
roughly half the cases in their experiment. One possible explanation of this variation is that some language users allow covert
each to bind a covert variable.

29Some speakers find (85a) slightly odd, which is probably due to the markedness of associating eachwith a non-specific
indefinite.

30I thank an anonymous reviewer of L&P for bringing this data to my attention.
31As pointed out by a reviewer, it is syntactically permitted to interpret the ∃-quantifier within the embedded question and

let its plural trace be associated with overt each (cf. (81) and (82)). However, this option is semantically marked due to the
reason outlined in fn. 29.
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6.4.4. Questions with a negative quantifier

Negative quantifiers do not participate in QiQ-readings. For example, the no-question in (88) can be
responded to by specifying a single movie or a Skolem function to atomic movies, but not by silence.

(88) Which movie did no boy/ none of the boys watch? (3Individual, 3Functional, 7QiQ)
Hulk./ The movie that his grandpa recommended./ #[Silence]

The proposed analysis easily explains why QiQ-reading are not available in no-questions. The
minimal set that contains none of the propositions of the form pboy-x watched fi(x)q is the empty set,
whose conjunction is undefined. Hence, composing a no-question with the proposed LF schema for
QiQ-readings yields a deviant topical property, which maps any input to undefinedness.

(89) Which movie did none of the boys watch? (7QiQ-reading)
[bd(wh-movie@) λi [ 2

⋂
[γ f min

ch λK [ 1 no-boy@ λj [ Pred(K) (λw.xj-watchw- f i(xj)) ]]]]]

a. Jnone of the boys@K = λP〈e,t〉 .¬∃x[boys@(x) ∧ P(x)]

b. J 1 K = ¬∃x ∈ boys@[K(φ
fi
x ) ∧ φ

fi
x ↓] (φ f

x abbreviates λw.watw(x, f (x)) )
c. JγK = f min

ch (JλK. 1 K) = ∅
d. J 2 K is undefined

Relatedly, recall thatQiQ-readings are unavailable if the quantificational subject is aGQ-coordination
involving a negative conjunct, as seen in (90a,b). Such questions, if analyzed with the LF schema
for QiQ-questions, give rise to meanings equivalent to the QiQ-readings of the questions in (91a,b),
which do not contain a negative conjunct. For example, for (90a), the minimal set that contains every
proposition of the form pboy-x watched f (x)q and no proposition of the form pteacher-x watched f (x)q
is simply the set of propositions of the form pboy-x watched f (x)q.

(90) a. Which movie did [each of the boys and none of the teachers] watch? (7QiQ)
b. Which movie did [one of the girls and none of the teachers] watch? (7QiQ)

(91) a Which movie did [each of the boys] watch? (3QiQ)
b Which movie did [one of the girls] watch? (3QiQ)

Given the semantic equivalence between (90a,b) and (91a,b), I propose to explain the blocking effect
of negative quantifiers in terms of the Efficiency constraint (Meyer 2013). According to this constraint,
the QiQ-structures of (90a,b) are ill-formed because of the existence of the simplifications in (91a,b).32

(92) Efficiency (Meyer 2013)
a. LF α is ill-formed if there is an LF β s.t. β is a simplification of α.
b. β is a simplification of α iff (i) JαK = JβK, and (ii) β can be derived from α by replacing

nodes in α with their subconstituents.

6.4.5. Questions with a counting quantifier

Decreasing quantifiers (e.g., at most two boys, less than three boys) do not license QiQ-readings. In (93),
the boy(s)-movie-pair answer (93b) is not a choice answer; instead, it is an individual answer, where
uniqueness scopes above the quantifier.

32I thank an anonymous reviewer of L&P for pointing me in this direction for an explanation.
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(93) Which movie did at most two/ less than three boys watch?
# ‘For at most two/ less than three boys x, [tell me] which movie did x watch?’
a. Hulk. (Intended: ‘Hulk is the only movie watched by at most two/ less than three boys.

The other movies were watched by more boys.’)
b. Andy and Billy watched Hulk.

i. 3 Individual reading: ‘Hulk is the only movie watched by at most two/ less than
three boys, who are Andy and Billy. The other movies were watched by more
boys.’

ii. 7 Choice reading: ‘Andy and Billy are two boys who both watched only Hulk.’

It is quite appealing to extend the analysis proposed for negative quantifiers to these decreasing
quantifiers. Following Hackl (2000), Xiang 2019 decomposes a decreasing quantifier into a negative
determiner no and a set-denoting restrictor, as in (94). With this decompositional analysis, the
unavailability of QiQ-readings in (93) can be explained in the same way as in the no-question (89).

(94) a. Jat most two boys@K = λP〈e,t〉 .¬∃x[|At(x)| > 2∧ boys@(x) ∧ P(x)]
b. Jless than three boys@K = λP〈e,t〉 .¬∃x[|At(x)| ≥ 3∧ boys@(x) ∧ P(x)]

However, despite having a non-decreasing subject, sentence (95) below doesn’t admit a QiQ/choice-
reading either. As in (93), here the uniqueness inference triggered by the singular wh-object must
scope above the quantificational subject. This fact argues that the unavailability of QiQ-readings in
(93) and (95) has nothing to do with the monotonicity pattern of the quantificational subject.

(95) Which movie did at least/ exactly two boys watch? (3Individual, 3Functional, 7QiQ)
# ‘For at least/ exactly two boys x, [tell me] which movie did x watch?’

In contrast to Xiang 2019, this paper attributes the unavailability of QiQ-readings in (93) and (95)
to a syntactic constraint stating that counting quantifiers are scopally unproductive (Szabolcsi 1997a;
Beghelli and Stowell 1997). Beghelli and Stowell (1997) classify non-interrogative quantifiers into
the following categories and argue that they have different landing sites. In particular, counting
quantifiers have very local scope (take scope essentially in situ) and resist specific interpretations.

(96) Types of non-interrogative quantifiers (Beghelli and Stowell 1997)
a. Negative quantifiers: no-NP
b. Universal-distributive quantifiers: every/each-NP
c. Grouping quantifiers: indefinites like a/some/several-NP, bare-numeral quantifiers (e.g.,

one student, three students), and the-phrases
d. Counting quantifiers: decreasing quantifiers headed by determiners like few, fewer than

five, and at most six, and general cardinality expressions with a modified numeral (e.g.,
more than five, between six and nine)

To derive a QiQ-reading, the quantifier must escape IP and move across a null predication operator
K. Counting quantifiers cannot have such global scope and hence do not participate in QiQ-readings.

6.4.6. Questions with a non-quantificational subject

For questions with a non-quantificational subject, the difference between their individual reading and
the reading generated from the LF schema for QiQ-readings is trivial. For example, the QiQ-answer
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to (97), if available, is the conjunction of the minimal set containing the proposition ‘The boys watched
f (the-boys)’, which is simply this proposition itself. Although it is hard to tell whether QiQ-readings
are truly available in these questions, composing such questions with the proposed LF schema for
QiQ-readings does not over-generate any unwanted meanings.

(97) Which movie did the boys watch?
a. [cpbd(wh-movie@) λi [

⋂
[ f min

ch λK [ lift(the-boys@) λj [ Pred(K) (λw.xj-watchw- f i(xj)) ]]]]]
b. λ f 〈e,e〉 : Ran( f ) = mov@ ∧ the-boys@ ∈ Dom( f ).[λw.watw(the-boys@, f (the-boys@))]

LF (97a) generates a QiQ-reading that is [+d-exh,−pl,−ch].33 This reading is not pair-list, because
the non-quantificational subject the boys is not distributive in the lexicon. Moreover, just as with the
LF options in (81) and (82) for matrix ∃2-questions, the LF options in (98a,b) are ruled out because
covert each cannot bind the covert argument variable in the functional wh-trace. This analysis is
supported by (99): in the presence of overt each, the question becomes felicitous in a pair-list context.

(98) a. * ... [ lift(the-boys@) λj [ Xj each λn [ Pred(K) (λw.xn-watchw- f i(xn)) ]]]
b. * ... [ the-boys@ each λn [ Pred(K) (λw.xn-watchw- f i(xn)) ]]

(99) (Context: It is shared knowledge that the boys each watched a different movie.)
a. Which movie did the boys each watch?
b. # Which movie did the boys watch?

Strikingly, Johnston (2019, 2021) observes cases like (100a), where it appears that the definite plural
the players licenses a pair-list reading. In this example, a cumulative answer that does not specify
the player–number correspondence is too weak to address the question. Johnston further notices
that such pair-list readings exhibit a subject–object asymmetry, similar to what is observed in ∀-
questions.34 To account for these observations, Johnston (2021) assumes that the definite plural carries
a covert DP-internal each, which turns this definite plural into a universal distributive quantifier.

(100) (Context: In a basketball team, each of the five players got to choose a jersey, numbered
from 1 to 5.)
a. Which numbers did the players pick?

Ann picked 1, Ben picked 2, Chris picked 3, Dan picked 4, Emma picked 5.
b. Which players picked the numbers?

#Ann picked 1, Ben picked 2, Chris picked 3, Dan picked 4, Emma picked 5.

However, I would like to argue here that the seeming pair-list reading in (100a) is not a QiQ-
reading; instead, it is a (non-QiQ) functional reading involving ‘respective distributivity’. First of all,
to see why it is not a QiQ-reading, compare the following questions in the same pair-list context:

(101) (Context: In a basketball team, each of the five players got to choose a jersey, numbered
from 1 to 5.)
a. Which {#numbers, number} did each of the players pick?
b. Which {numbers, #number} did the players pick?

33Here domain exhaustivity is trivially satisfied. For example, the set that the Montagovian individual ‘lift(the-boys)’
ranges over is a singleton set containing only the plural entity denoted by the boys.

34I thank Bernhard Schwarz (pers. comm.) for bringing this issue to my attention.
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In the ∀-question (101a), the wh-object must be singular because each player picked only one number;
in (101b), the wh-object must be plural because multiple numbers were picked collectively. This
contrast argues that (101a) and (101b) have different question nuclei; if these questions had the same
nucleus, they would allow for the same wh-phrases in the given context.

Why does (100a) admit a pair-list answer? The discussion above has excluded the possibility of
applying a DP-internal each to the definite plural: if it were available, the players would function in
the same way as each of the players, which leaves the contrast in (101) unexplained. The licensing of
pair-list cannot be ascribed to a (covert) VP-each either, even if we put aside constraints related to
implicit binding: as seen in (102), when the wh-object is plural, adding overt each to the question
makes it infelicitous in the given context, since this addition gives rise to a false inference that each
player picked more than one number.

(102) (Context: In a basketball team, each of the five players got to choose a jersey, numbered
from 1 to 5.)
Which numbers did the players (??each) pick?

I argue that the seeming pair-list reading of (100a) is a functional reading with respective distribu-
tivity. The question–answer pair is paraphrased as follows:

(103) ‘Which numbers did the players pick, respectively?’
‘The players Ann,Ben,Chris,Dan,Emma picked the numbers 1-to-5, respectively.’

Formally, respective distributivity is derived via the application of a covert operator Respg (Gawron
and Kehler 2004; Chaves 2012; Law 2019): Respg combines with two pluralities (i.e., a plural predicate
P and a plural individual x), breaks them into parts, pairs the parts using a pragmatically available
sequencing function g, and performs a pair-wise evaluation facilitated by g.

(104) Respg := λPλx.∀n[1 ≤ n ≤ |g| → [g(P)(n)](g(x)(n))]
(The n-th part of the property P holds for the n-th part of the individual x.)

Question (100a) can thus be composed as follows. Just as with any functional reading, the subject the
players binds into the complex functional trace of the wh-object, yielding a wh-dependency. However,
unlike other functional readings, here aRespg-operator is applied between the predicate pickedw- f i(xj)

and the trace of the definite subject, yielding respective distributivity.

(105) Which numbers did the players pick?
[cp bd(wh-numbers@) λi [ip λw. the-players@ λj [vp xj Respg pickedw- f i(xj) ]]]

This analysis can account for the constraints observed in (100) and (101). First, since respective
distributivity involves a dependency between the two arguments of Respg, the subject–object asym-
metry seen in (100) can be explained in terms of constraints on dependencies. Second, this analysis
explains why in (101b) the wh-object must be plural: Respg requires the predicate pickedw- f i(xj) to be
plural, which in turn requires the range of fi to be a set of plurals.

What’s more, this analysis explains why such pair-list-like readings are only available in particular
contexts. In Johnston’s example, it is straightforward to arrange the numbers 1–5 and the players A–E
into two parallel sequences. When either the sequencing or the matching is pragmatically difficult,
respective distributivity is not available. For example, question (106b) doesn’t have a pair-list-like
reading — the reading elicited by (106a): it is pragmatically difficult to come up with a sequencing
function that matches a sequence of tables with a sequences of pluralities of workers. Interpreting
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(106b) with a cumulative reading instead yields infelicity, since the cumulative answer is part of the
shared knowledge.

(106) (Context: The department hired three workers to move ten tables. Each table was handled
by two workers. In the end, all tables were successfully moved.)
a. Which table or tables did which workers move?
b. # Which tables did the workers move?

6.5. Interim summary

To sum up the core analysis: I argued that pair-list readings of multiple-wh questions and QiQ-
readings of questions with a quantificational subject are extensional functional readings. As schema-
tized in (107) and described in (108), the composition of these questions proceeds in four steps.

(107) a. Which boy watched which movie? (Pair-list reading)
[d bd(wh-movie@) λi [c

⋂
λp〈s,t〉 [b wh-boy@ λj [ Id(p) [a λw.xj-watchw- fi(xj) ]]]]]

b. Which movie did Det-boy(s) watch? (QiQ-reading)
[d bd(wh-movie@) λi [c

⋂
f min
ch λK〈st,t〉 [b Det-boy(s)@ λj [ Pred(K) [a λw.xj-watchw- fi(xj) ]]]]]

(108) (a) Indexations with the two traces yield a wh-dependency.
(b) The wh-/quantificational subject binds into the dependency sentence across an Id/Pred-

operator which imposes a definedness requirement.
(c) Conjoining a set of propositions with the dependency form (a) yields a function graph

description.
(d) The fronted wh-object restricts the range of the input functions.

Table 2 compares the nuclear denotations of the multiple-wh question (107a) and four correspond-
ing QiQ-questions of the form (107b). (φ f

x abbreviates λw.watw(x, f (x)).) In all of these questions,
the nuclear denotation is the conjunction of a set of defined propositions representing the graph of
the input function f . Moreover, the denotation of (b) entails a definedness requirement restricting
the domain of f , which is passed up and becomes a definedness condition of the question nucleus.

Subject type Domain condition of f Graph description of f d-exh pl ch

which boy ∃x ∈ B@[x ∈ Dom( f )]
⋂{φ f

x | B@(x)} − + −
every/each boy ∀x ∈ B@[x ∈ Dom( f )]

⋂{φ f
x | B@(x)} + + −

n of the boys x ∈ Dom( f )
⋂{φ f

x} where x = the chosen n-Bs@ − − +

lift(the boys) x ∈ Dom( f )
⋂{φ f

x} where x = the-Bs@ + − −
none of the boys

⋂
∅

Table 2: Denotations of question nuclei

In questions with a quantificational subject, the QiQ-effect is derived by extracting one of the
minimal proposition sets that satisfy the quantificational predication condition yielded at (b). This
analysis explains the properties of ∀-questions and ∃-questions w.r.t. the following parameters:

• [±d-exh]: As in a ∀-question, the resulting QiQ-reading presupposes domain exhaustivity
if the definedness requirement entailed by the denotation of (b) demands that the input f is
defined for every element in the quantification domain of the subject.
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• [±pl]: As in a ∀-question, with other conditions being equal, the resulting QiQ-reading admits
pair-list answers only if there is a non-singleton set of propositions that minimally satisfies the
quantificational predication condition yielded at (b). To derive such a non-singleton minimal
set, the quantificational subject must be lexically distributive.
If the subject is plural, pair-list readings can also be made available by applying the distributive
adverbial each overtly. However, covert each can never license pair-list readings for matrix
questions, due to a separate constraint on implicit binding.
• [±ch]: As in an ∃-question, with other conditions being equal, the resulting QiQ-reading has a

choice flavor only if there are multiple minimal proposition sets that satisfy the quantificational
predication condition yielded at (b).

I further demonstrated why QiQ-readings are unavailable in two particular types of questions,
despite the fact that these questions have a quantificational subject. In no-questions, QiQ-readings
are semantically deviant because the only minimal proposition set that satisfies a negative quan-
tificational predication condition is the empty set, as seen in Table 2. In questions with a counting
quantifier (e.g., exactly/ more than/ less than three boys), the LF schema for QiQ-readings is infeasible
because counting quantifiers are unproductive in scoping.

Lastly, I discussed another source of pair-list readings in questions with a plural definite subject:
although plural definites are not distributive lexically, pair-list readings might arise through a locally
applied respective distributor.

7. Quantificational variability effects

As seen in Sect. 4.1.2, because it defines pair-list questions as sets of conjunctive propositions, the
analysis of Dayal (1996, 2016b) cannot account for the Q-variability effects in the embeddings of pair-
list questions. Dayal defines simplex and pair-list questions uniformly as sets of propositions. For
embeddings of simplex questions, the most natural way for her to derive the Q-variability inference
is to let the matrix adverbial quantify over a set of atomic propositions, as exemplified in (109).

(109) Jill mostly knows [which students left].
 ‘Most p: p is a true proposition of the form pstudent-x leftq, Jill knows p.’

This proposition-based definition, however, is infeasible for embeddings of pair-list questions if a pair-
list question denotes a set of conjunctive propositions (Lahiri 2002). For example, in a scenario where
the three relevant boys b1,b2,b3 watched and only watched the movies m1,m2,m3, respectively, the
strongest true propositional answer to the embedded pair-list question in (110) is λw.watw(m1, b1) ∧
watw(m2, b2) ∧ watw(m3, b3), and the Q-variability inference is true if Jill knows at least two of the
three atomic conjuncts, as in (110a); however, these conjuncts cannot be semantically retrieved out of
their conjunction. In contrast, family-of-questions approaches such as Fox 2012a,b can derive this
inference by letting the matrix adverb quantify over a set of sub-questions, as paraphrased in (110b).

(110) Jill mostly knows [pair-list

{
which movie every boy watched
which boy watched which movie

}
].

a.  ‘Most p: p is a true proposition of the form pboy-x watched movie-yq, Jill knows p.’
b.  ‘Most Q: Q is a question of the form pwhich movie boy-x watchedq, Jill knows Q.’
c.  ‘Most 〈x, y〉: 〈x, y〉 is a boy-movie pair and x watched y, Jill knows that x watched y.’
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Although this paper does not pursue a family-of-questions approach, the assumed categorial
approach to question composition unlocks the option in (110c), where the quantification domain of
mostly is a set of atomic functions. In my proposal, a pair-list question denotes a topical property
that maps each input 〈e, e〉-type function to a conjunctive proposition. From this topical property,
we can extract the function that yields the strongest true answer to this question and define the
quantification domain of mostly as a set of atomic subparts of this function. For example in (112), the
strongest true answer is the function in (112a), and its atomic subparts are those in (112b).

(111) a. A function f is atomic iff
⊕

Dom( f ) is atomic.
b. At( f ) = { f ′ | f ′ ⊆ f and f ′ is atomic}

(112) Which boy watched which movie?/ Which movie did every boy watch?
(The discourse domain includes three boys b1,b2,b3 and three movies m1,m2,m3. In a world
w, b1 watched only m1, b2 watched only m2, and b3 watched only m3.)

a. AnsS(w)(JQK) =

 b1 → m1
b2 → m2
b3 → m3

 b. At(AnsS(w)(JQK)) =


[b1 → m1]

[b2 → m2]

[b3 → m3]


Xiang 2020 provides two ways to define a Q-variability inference based on short answers. Ignor-

ing the complications needed for accounting for mention-some readings, I schematize these two
definitions as in (113a,b).35 (For a compositional derivation, see Cremers 2018.) In both definitions,
the quantification domain of the matrix adverbial mostly is a set of atomic entities or a set of atomic
〈e, e〉-type functions.

(113) Q-variability inference of ‘Jill mostly knows Q’:
a. λw.Most x[x ∈ At(AnsS(w)(JQK))][knoww(j, JQK(x)]

(For most x s.t. x is an atomic subpart of the strongest true short answer to Q, Jill knows
the inference JQK(x).)

b. λw.Most x[x ∈ At(AnsS(w)(JQK))][knoww(j, λw′.x ≤ AnsS(w′)(JQK))]
(For most x s.t. x is an atomic subpart of the strongest true short answer to Q, Jill knows
that x is a subpart of the strongest true short answer to Q.)

In (113a), the scope of the adverbial mostly says that Jill knows an atomic proposition, which is
derived by applying the topical property of the embedded question to an entity or an 〈e, e〉-type
function x, where x is an atomic subpart of the strongest true answer to the embedded question. This
definition works for embeddings of multiple-wh questions, but not for embeddings of ∀-questions:
the topical property of the pair-list ∀-question which movie every boy watched is only defined for
〈e, e〉-type functions that are defined for every boy, not for atomic functions such as [b1 → m1].

Alternatively, in (113b), the scope of mostly says that Jill knows a sub-divisive inference, which is
semantically equivalent to the inference that Jill correctly identifies most of the boy-watched-movie
pairs. This definition works also for pair-list ∀-questions. In the context described in (112), this sub-
divisive inference is true iff in every world w′ s.t. w′ is compatible with Jill’s belief, the strongest true
short answer to the embedded ∀-question in w′ is among the seven functions in Figure 4. This figure
illustrates a partition of possible worlds based on which movie each of the three boys watched. The
world w described in (112) is located in the middle cell. In the other cells, correspondences conflicting

35Xiang 2020 also considers mention-some readings of questions, where a question can have multiple complete true answers.
Once mention-some readings enter the picture, AnsS(w)(JQK) needs to be defined as a set of entities/functions, not as a
single entity/function.
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with w are colored in light gray. It is straightforward to see that the union of the seven cells represents
the following proposition: ‘For most (or all) of the pairs 〈bn, mn〉 in {〈b1, m1〉, 〈b2, m2〉, 〈b3, m3〉}, mn
is the unique movie watched by bn.’ Knowing this proposition means correctly identifying most of
the three correspondences from a boy to the unique movie that this boy watched.b1 → m2

b2 → m2
b3 → m3

 b1 → m3
b2 → m2
b3 → m3


b1 → m1

b2 → m1
b3 → m3

 b1 → m1
b2 → m2
b3 → m3

 b1 → m1
b2 → m3
b3 → m3


b1 → m1

b2 → m2
b3 → m1

 b1 → m1
b2 → m2
b3 → m2


Figure 4: Illustration of the sub-divisive inference in the quantification scope of (113b)

8. Conclusions

This paper started with the novel observation that pair-list ∀-questions and their multiple-wh coun-
terparts are semantically different — only the ∀-questions are subject to domain exhaustivity. Given
this contrast, I argued that the composition structure of a pair-list ∀-question must be distinct from
that of its multiple-wh counterpart. Furthermore, drawing on the uniform syntactic constraints on
distributing QiQ-readings, I concluded that the QiQ-readings of matrix questions should be derived
uniformly.

Influential accounts such as Dayal 1996, 2016b and Fox 2012a,b do not reflect awareness of the
contrast in domain exhaustivity between ∀-questions and multiple-wh questions. These accounts
treat pair-list questions uniformly and compose these questions either with the same LF or with
different LFs that yield the same root denotation. In addition, to explain why only subject every/each-
phrases license pair-list readings, these accounts derive pair-list readings in a way that crashes in
questions with a non-universal quantifier. In consequence, they over-predict domain exhaustivity
effects for multiple-wh questions and fail to account for the choice readings of ∃-questions.

This paper presented a novel analysis of the composition of complex questions. The analysis has
three main ingredients. First, in line with functionality approaches, I proposed that pair-list multiple-
wh questions and QiQ-questions both involve wh-dependencies — the wh-/quantificational subject
binds the argument index of the functional trace of the wh-object. In particular, in a pair-list multiple-
wh question, the wh-subject quantifies into a sentence expressing this dependency across an identity
operator; in aQiQ-question, the quantificational subject binds into such a dependency sentence across
a predication operator. Although the nuclear denotations generated by these composition schemas are
uniformly ‘function graph descriptions’ (viz., conjunctions given by conjoining a set of propositions
that describes the wh-dependency), they are subject to different definedness requirements, which
vary with the quantificational force of the wh-/quantificational subject. This variation is responsible
for the distribution of domain exhaustivity in these questions. Second, for questions with a quantifier,
inspired by Fox (2012b), I assumed that the seeming QiQ-effect is derived by extracting one of the
minimal sets of propositions that satisfy the quantificational predication conditionw.r.t. a dependency
sentence. This analysis naturally predicts which quantifiers can participate in QiQ-readings; it also
predicts whether the QiQ-reading of a question admits pair-list answers and/or has a choice flavor.
I also discussed ways for single-wh questions with a non-distributive subject to obtain readings
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admitting pair-list answers, either by applying the distributor each overtly or by applying the respective
distributor covertly. Finally, by assuming a categorial approach, the presented analysis is able to
overcome the difficulty in accounting for the Q-variability effects encountered by Dayal (1996).

Appendix A. A partition-based approach

Section 3 mentioned that the following LF, repeated from (18), suffers type-mismatch in most
frameworks of question semantics:

(114) Which movie did Det-boy watch?
*[ Det-boy λxe [ Which movie did x watch ]]

Partition semantics is exempt from this type-mismatch problem. Groenendijk and Stokhof (1984:
Chap. 3) initially analyze the pair-list ∀-question (115) as a partition of possible worlds grouped in
terms of which boy watched which movie. In the derivation of this denotation, the quantifier every
boy quantifies into an identity operation (of type t), which says that x watched the same movies in w
and in w′.

(115) Which movie did every boy watch?
λwλw′.∀x[boy@(x)→ {y | mov@(y) ∧ watw(x, y)} = {y | mov@(y) ∧ watw′(x, y)}]
(w and w′ are in the same partition cell iff for every boy x, x watched the same movies in w
and in w′.)

However, Groenendijk and Stokhof themselves are not satisfied with this account since it does
not extend to questions with a non-universal quantifier. For example, the predicted meaning for the
corresponding ∃-question (116) is not a partition (see also Krifka 2001). Thus, they ultimately pursue
another family-of-questions approach using witness sets (footnote 15).

(116) Which movie did one of the boys watch?
λwλw′.∃x[boy@(x) ∧ {y | mov@(y) ∧ watw(x, y)} = {y | mov@(y) ∧ watw′(x, y)}]
(w and w′ are in the same partition cell iff for one of the boys x, x watched the same movies
in w and in w′.)

For a concrete illustration, consider a discourse with two boys a,b and two movies m1,m2. The
four worlds vary by which boy watched which movie. w1,w2,w3 are grouped in one shaded cell C1:
a watched the same movie in w1 and w2, and b watched the same movie in w1 and w3. Likewise,
w2,w3,w4 all belong to the shaded cell C2: b watched the same movie in w2 and w4, and a watched
the same movie in w3 and w4. In addition, C1 and C2 are distinct cells because neither boy watched
the same movie in w1 and w4. The world grouping in Figure 5 is clearly not a partition: C1 overlaps
with C2 — they both contain w2 and w3. Moreover, from this world grouping, we cannot identify
which movie any of the boys watched. For example, if w1 is the actual world, then C1 is the cell
which the actual world belongs to; however, based on C1, we cannot decide on whether a watched
m1 (as in w1 and w2) or he watched m2 (as in w3).

w1 : {〈a, m1〉, 〈b, m2〉}
C1: w2 : {〈a, m1〉, 〈b, m1〉}

w3 : {〈a, m2〉, 〈b, m2〉}
w4 : {〈a, m2〉, 〈b, m1〉}

w1 : {〈a, m1〉, 〈b, m2〉}
w2 : {〈a, m1〉, 〈b, m1〉}

C2 : w3 : {〈a, m2〉, 〈b, m2〉}
w4 : {〈a, m2〉, 〈b, m1〉}

......

Figure 5: World grouping yielded by (116)
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In addition, this analysis inherits the theory-internal problems with partition semantics. For
instance, since partition semantics cannot explain the uniqueness effects of singular-wh questions
(Xiang 2020), a partition-based account cannot explain the point-wise uniqueness effects in pair-list
∀-questions.

Appendix B. A question-embedding approach

Another intuitive and framework-independent way to solve the type-mismatch problem in quantify-
ing into questions is to analyze matrix questions as covertly embedded questions (Karttunen 1977;
Krifka 2001). The LF assumed by Karttunen (1977) is given in (117). Basically, whatever the overt
question denotes, it is embedded within a t-type expression which can be quantified into.

(117) Which movie did Det-boy(s) watch?
[ Det-boy(s) λxe [ I-ask-you [ Which movie did x watch ]]]

This analysis crucially requires the quantifier in the embedded question to scope over the intensional
embedding predicate ask. However, drawing on the limited distribution of pair-list readings in
matrix questions and intensional question-embeddings, I will now argue that this scoping pattern is
not available.36

As discussed in Sect. 3 and explained in Sect. 6.4, only every/each-phrases can license pair-list
readings for matrix questions. As for question-embeddings, Szabolcsi (1997b) observes a contrast
between intensional complements and extensional complements. In particular, in embeddings with
an extensional predicate (e.g., know, find out), plural ∃-quantifiers such as two of the boys may also
license a pair-list reading. For example, in a pair-list context where each boy watched a different
movie, (118b) can be uttered felicitously and interpreted with the following scopal pattern: ‘∃2�
each� V� ι’ where ‘V’ stands for the embedding predicate.37 As argued in Sect. 6.4.2, this reading
can be derived from the LF in (119) (see also (86)): the ∃-quantifier takes wide scope relative to the
embedding predicate, and its trace in the matrix clause is associated with covert each.38

(118) Susi knew that each boy watched a different movie. In addition, ...
a. Susi knew/ found out which movie each of the boys watched.

36Krifka (2001) assumes the structure in (i), where the quantifier scopes over a speech act operator quest. This analysis is
exempt from the over-generation problem since Krifka assumes that speech acts cannot be disjoined. However, it also leaves
the choice readings of ∃-questions unexplained.

(i) Which movie did every boy watch?
[ every-boy λxe [ quest [ Which movie did x watch ]]]

37Let me note, however, that in an informal survey, 7 out of 14 speakers judged (118b) as contradictory to the context. They
reported that the use of which movie gives rise to the inference that two of the boys watched the same movie. I see two possible
reasons for why some speakers found (118b) bad: (a) for these speakers, neither wonder-type nor find out-type embeddings
allow a quantifier inside the embedded question to scope over the embedding predicate, or (b) these speakers do not actively
use covert VP-each (for discussions on the distributional constraints of covert each, see Beghelli 1997). Regardless of the
reason, the judgment is consistent with my claim that quantifying into questions cannot be analyzed as quantification into
question-embeddings.

38Rather than assuming covert movement of the quantifier, Szabolcsi (1997b) derives the wide scope reading by type-lifting
the interrogative complements of extensional predicates. Combining the type-lifted question denotation (i) with an embedding
predicate P yields a wide scope reading of the generalized quantifier π relative to P. Further, Szabolcsi argues thatwonder-type
predicates cannot select for lifted questions, and hence that quantifiers in intensional complements cannot take wide scope.

(i) Denotation of questions embedded under find out-type predicates:
λP.π(λx.P(Jwh-movieK(λy.JwatchedK(x, y))))
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b. Susi knew/ found out which movie two of the boys watched.
(119) Susi V-ed which movie two of the boys watched.

[[ two-of-the-boys λx [ x each λy [ Susi V-ed which movie y watched ]]]

However, embeddingswith an intensional predicate (e.g., ask,wonder) behave likematrix questions
—only every/each-phrasesmay license pair-list readings in these embeddings. For example, in (120a,b)
the uniqueness inference triggered by which movie must be interpreted between the embedding
predicate and the quantifier: ask� ι� ∃2.

(120) Susi knew that every boy watched a different movie. ...
a. Susi wondered/ asked me which movie each of the boys watched.
b. # Susi wondered/ asked me which movie two of the boys watched.

The lack of pair-list readings shows that the LF (119) is not available for (120a,b). Szabolcsi (1997b)
argues that intensional predicates create weak islands, which prevent the quantifiers in the embedded
questions from taking wide scope. If this explanation is on the right track, the embedding structure
(117), which requires the quantifier in the embedded question to scope over ask, should be infeasible.
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