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Abstract Wh-questions with a quantificational subject have readings that seemingly involve
quantification-into questions (called QiQ for short). This paper argues to unify the derivation of QiQ-
readings and distinguish these readings from pair-list readings of multi-wh questions. I propose that
QiQ-questions and pair-list multi-wh questions both involve wh-dependencies, namely, that the trace
of the subject-quantifier/wh stands in an anaphoric relation with the trace of the object-wh. In partic-
ular, in a pair-list multi-wh question, the subject-wh quantifies into an identity condition with respect
to this dependency; in a QiQ-question, the subject-quantifier quantifies into a predication condition
with respect to this dependency. The subtle differences between the two quantifying-in operations
yield the contrast with respect to domain exhaustivity between multi-wh questions and questions
with a universal quantifier. I further argue that the seeming QiQ-effect in questions with a quantifi-
cational subject is derived by extracting a minimal proposition set that satisfies the aforementioned
quantificational predication condition. The possible values of this minimal set determine whether
the QiQ-reading is available andwhether a question admits a pair-list answer and/or a choice answer.

Keywords Questions, quantifiers, multi-wh, pair-list, functionality, uniqueness, domain exhaus-
tivity, quantificational variability, categorial approaches, compositionality

1. Introduction

Questions with a subject universal quantifier (called ∀-questions henceforth) are ambiguous between
individual readings, functional readings, and pair-list readings (Engdahl 1980, 1986). As exemplified
in (1), the three readings expect answers naming an atomic movie, a Skolem function to atomic
movies, and a list of boy-movie pairs, respectively.

(1) Which movie did every/each boy watch?
a. Individual reading

‘Which movie y is s.t. every boy watch y?’ ‘Spiderman.’
b. Functional reading

‘Which function f to atomic movies is s.t. every-boyi x watched f(x)?’
‘Hisi favorite superhero movie.’

c. Pair-list reading
‘For every boy x, [tell me] which movie did x watch?’
‘Andy watched Ironman, Billy watched Spiderman, Clark watched Hulk.’

There are two general ways to think about the nature of the pair-list reading (1c). One way regards
this reading as involving quantification-into questions (abbreviated as ‘QiQ’ henceforth) (Groenendijk
and Stokhof 1984; Chierchia 1993; among others). An informal paraphrase for QiQ-readings is given
in (2), where ‘Det’ stands for a determiner.

(2) Which movie did Det-boy(s) watch? (QiQ-reading)
≈ ‘For Det-boy(s), [you tell me]/[I ask you] which movie did they watch?’
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For questions with an existential indefinite (henceforth called ∃-questions), their QiQ-readings have
a choice flavor (Groenendijk and Stokhof 1984). For example, the choice reading (3b) asks to choose
one/two of the relevant boys and specify the unique movie he/they watched.1 In contrast, questions
with a negative quantifier (henceforth called no-questions) do not have QiQ-readings. For example,
(4) cannot be responded by silence.

(3) Which movie did one/two of the boys watch?
a. Individual reading

‘Which movie y is s.t. one/two of the boys watched y?’ ‘Ironman.’
b. Choice reading

‘For one/two of the boys, [you tell me] which movie did he/they watch?’
‘Andy watched Ironman.’/ ‘Billy and Clark watched Spiderman.’

(4) Which movie did {no boy, none of the boys} watch?
a. Individual reading

‘Which movie y is s.t. no boy watched y?’ ‘Revengers.’
b. Functional reading

‘Which function f to atomic movies is s.t. no boy x watched f(x)?’
‘The movie recommended by their grandfather.’

c. # QiQ-reading
‘For no boy, [you tell me] which movie did they watch?’ [Slience]

The other way to group the aforementioned types of complex questions is to treat questions with
pair-list readings uniformly. Similar to the ∀-question (1), the multi-wh question (5) also has a reading
that requests to specify a list of boy-movie pairs. Accounts adopting this line of thinking either use
the same LF to compose the ∀-question (1) and the multi-wh counterpart (5) (Engdahl 1980, 1986;
Dayal 1996, 2017) or assign these two questions with different structures but the same root denotation
(Fox 2012a,b).

(5) Which boy watched which movie?
a. Single-pair reading

‘Which unique boy-x-movie-y pair is s.t. x watched y?’
‘Andy watched Spiderman.’

b. Pair-list reading
‘Which boy-x-movie-y pairs are s.t. x watched only y?’
‘Andy watched Ironman, Billy watched Spiderman, Clark watched Hulk.’

In sum, it is controversial whether we should treat questions with QiQ-readings (abbreviated as
‘QiQ-questions’ henceforth) uniformly or questions with pair-list readings (abbreviated as ‘pair-list
questions’ henceforth) uniformly. This paper argues for the former option. On the one hand, pair-list
readings of ∀-questions and multi-wh questions differ with respect to domain exhaustivity (Sect. 2.1).

1Functional readings are marginally acceptable in ∃-questions. For example, the fragment functional answer (ia) sounds
under-informative. The boy who watched the movie has to be specified, as in (ib). I leave this puzzle open.

(i) Which movie did one of the boys watch?
(w: Among the relevant boys, only Andy watched a movie, which was his favorite superhero movie — Ironman.)
a. ?? His favorite superhero movie.
b. Andy watched his favorite superhero movie.
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This contrast suggests that these two types of pair-list questions have different root denotations as
well as different procedures of composition. On the other hand, the similarities between these two
types of questions in form and meaning also suggest that their composition procedures should not
be drastically different.

I propose that QiQ-questions and pair-list multi-wh questions both involve wh-dependencies,
namely, that the trace of the subject-quantifier/wh stands in an anaphoric/functional relationwith the
trace of the object-wh. The core assumptions of this proposal are illustrated in (6). Thewh-dependency
is realized by assigning an additional index (i.e., the index of the trace of the subject-wh/quantifier)
to the trace of the object-wh (Sect. 4.1.1). I further assume that in (6a) the subject-quantifier quantifies
into a predication (pred) condition with respect to this dependency, and that in (6b) the subject-wh
quantifies into an identity (ident) condition with respect to this dependency. As we will see in Sect.
6, the differences between these two quantifying-in operations can naturally explain the contrast
between ∀-questions and multi-wh questions with respect to domain exhaustivity.

(6) A schema of composing complex questions
a. Which movie did Det-boy(s) watch? (QiQ-reading)

... [which-moviej ... Det-boy(s)i [pred ... [vp ti watched ti
j ]]]

b. Which boy watched which movie? (Pair-list reading)
... [which-moviej ... which-boyi [ident ... [vp ti watched ti

j ]]]

The rest of this paper is organized as follows. Section 2 presents evidence against the view
of unifying pair-list (∀- and multi-wh) questions as well as evidence for the view of composing
QiQ-questions uniformly. Section 3 lays out the technical challenges in composing QiQ-questions
and the related semantic phenomena that this paper aims to account for. The phenomena include
the contrast between ∀- and multi-wh questions with respect to domain exhaustivity, the point-wise
uniqueness effects in pair-list questions with a singular-marked wh-object, the limited distribution
of pair-list readings in matrix QiQ-questions, and the quantificational variability (QV) effects in
embeddings of pair-list questions. Section 4 reviews two influential approaches to composing pair-list
questions, including the functionality approach of Dayal (1996) and the family-of-questions approach
of Fox (2012a,b). My analysis take ingredients of these two approaches while overcoming their
problems. Section 5 introduces a hybrid categorial approach to question composition (Xiang 2016,
2020), which I use as a general framework of composing questions. The core assumptions of my
analysis is independent from this framework, but this framework allows to derive QV effects in
embeddings of pair-list questions without assuming a non-flat semantics. Section 6 puts forward my
central analysis of composing pair-list multi-wh questions and QiQ-questions. The denotations and
the composition procedures of these two types of questions will be presented in tandem. Section 7
accounts for the QV effects in embeddings of pair-list questions. Section 8 concludes.

2. Arguments for unifying the derivation of QiQ-readings

This section argues that pair-list ∀-questions should be composed uniformly as other QiQ-questions,
not as pair-list multi-wh questions. On the one hand, when having pair-list readings, ∀-questions are
subject to a domain exhaustivity condition, while their multi-wh counterparts are not (Sect. 2.1). This
contrast suggests that these two types of questions should be interpreted and derived differently. On
the other hand, evidence from syntactic distributions suggests that QiQ-questions have a uniform
syntax — in these questions, QiQ-readings exhibit the same subject-object/adjunct asymmetry, and
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moreover, the distributional pattern of QiQ-readings is preserved in questions where the subject is a
coordination of quantifiers (Sect. 2.2).

2.1. A contrast in domain exhaustivity

It is commonly thought that pair-list readings of multi-wh questions and ∀-questions are both subject
to domain exhaustivity (Dayal 1996, 2002; among others). For a question with a wh/∀-subject and a
wh-object, the domain exhaustivity condition says that every member of the set quantified over by the
wh/∀-subject must be paired with a member of the set quantified over by the wh-object. For instance,
in (1) and (5), repeated below, domain exhaustivity requires that every boy watched a (possibly
different) movie. Moreover, since the object-wh is singular-marked (viz., the wh-complement is
singular), the two questions are also subject to point-wise uniqueness, which says that each boy
watched at most one movie.

(7) a. Which movie did every/each boy watch?
b. Which boy watched which movie?

While the point-wise uniqueness effect is easy to attest, the domain exhaustivity effect is quite
obscure. For example, in the multi-wh question (7a), it is unclear which set of boys is quantified over
by the subject-wh; domain exhaustivity would be trivial if this quantification domain consists of only
the boys who did watch a movie. To remove this confound, Fox (2012a) uses the pair of examples in
(8), where the quantification domain of each wh-phrase is explicitly specified. Fox claims that (8b)
rejects a pair-list reading (in contrast to (8a)), arguing that this reading is rejected because the domain
exhaustivity condition presupposed in a pair-list reading is contextually infelicitous — pairing four
kids with three chairs yields that there will be multiple kids sitting on the same chair.

(8) a. Guess which one of the three kids will sit on which one of the four chairs.
b. Guess which one of the four kids will sit on which one of the three chairs.

In contrast to the dominant view, I argue that pair-list multi-wh questions are not subject to
domain exhaustivity. First, pair-list multi-wh questions can be felicitously used in contexts where
domain exhaustivity is violated. In (9), the sentence copied from (8b) is fully acceptable and must be
interpreted with a pair-list reading.

(9) (w: Four kids are playing Musical Chairs and are competing for three chairs.)
Guess which one of the four kids will sit on which one of the three chairs.
6 ‘Each of the four kids will sit on one of the three chairs.’

The game rules of Musical Chairs yield two conditions: (i) one of the four kids will not sit on any of
the three chairs, and (ii) the rest three kids each will sit on a different chair. Condition (ii) ensures
that the embedded multi-wh question has a pair-list reading, not a single-pair reading. Condition (i)
contradicts the domain exhaustivity inference that each of the kids will sit on one of the chairs. If
pair-list multi-wh questions were subject to domain exhaustivity, (9) would suffer a presupposition
failure and would be infelicitous in the given context, contra fact.

Second, in contrast to their multi-wh counterparts, pair-list ∀-questions cannot be felicitously used
in contexts where domain exhaustivity is violated. In the context in (10), the quantification domain
of the subject-wh/quantifier is greatly larger than that of the object-wh. The multi-wh question (10a)
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is fully acceptable, but the ∀-question (10b) is not: (10b) presupposes that each candidate will get
one of the jobs, contra context.

(10) (w: 100 candidates are competing for three job openings.)
a. 3 Guess which candidate will get which job.
b. # Guess which job will every candidate get.

Onemight suggest that the domain exhaustivity condition of amulti-wh question can be associated
with any of the wh-phrases, including also the object-wh. For example, in (9) and (10), it could be the
case that domain exhaustivity requires every chair and every job to be taken by a kid and a candidate,
respectively. However, this possibility is also ruled out: a pair-list multi-wh question can be uttered
in a context where neither type of domain exhaustivity is satisfied. For example, the sentence (11) is
felicitous, and it does not imply domain exhaustivity relative to boys or to girls.

(11) (w: Four boys and four girls will form four boy-girl pairs to perform in a dance competition, but only
two of the pairs will get into the final round.)
Guess which one of the four boys will dance with which one of the four girls in the final
round.
6 ‘Each of the four boys will dance with one of the four girls in the final round.’
6 ‘Each of the four girls will dance with one of the four boys in the final round.’

In conclusion, pair-list readings of ∀-questions are subject to domain exhaustivity, while pair-list
readings of multi-wh questions are not. This contrast suggests that these two pair-list questions
should be interpreted and composed differently.

2.2. Uniform distribution of QiQ-readings

The distribution of QiQ-readings uniformly exhibits a subject-object/adjunct asymmetry (May 1985,
1988; Chierchia 1991, 1993). As seen in (12) and (13), pair-list readings and choice readings are
available if the non-wh quantifier serves as the subject while the wh-phrase serves as the object,
and otherwise are unavailable. In (12b), the uniqueness inference triggered by the singular-marked
wh-subject has to be interpreted with wide scope relative to the object universal quantifier. As for
the ∃-questions in (13), despite that (13b) marginally admits a choice reading, (13a) is much more
preferable if the questioner seeks for a choice answer.2 The subject-adjunct asymmetry is analogous,
as illustrated in (14) and (15). Thus, unless there is compelling evidence to suggest otherwise, it is
appealing to assume that QiQ-readings are derived uniformly.

(12) (w: Ten students made votes for three candidates. Each student voted for only one candidate. The
questioner wants to know all of the student-candidate pairs)
a. Which candidate did every student vote for? (3Pair-list)
b. # Which student voted for every candidate? (7Pair-list)

 ‘Exactly one of the students voted for every candidate.’
(13) (w: Ten students made votes for three candidates. Each student voted for only one candidate. The

questioner is only interested in knowing one of the student-candidate pairs.)
2The reason why (13b) and (15) marginally admit choice readings might be that existential indefinites have more ways to

take scope than universal quantifiers, such as through choice functions.
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a. Which candidate did one of the students vote for? (3Choice)
Andy voted for the first candidate.

b. ? Which student voted for one of the candidates? (?Choice)
(14) (w: Each driver refueled at a nearby station exactly once.)

a. At which station did every driver refuel? (3Pair-list)
b. # Which driver refueled at every gas station? (7Pair-list)

(15) (w: Each driver refueled at a nearby station exactly once.)
a. At which station did [one of the drivers] refuel? (3Choice)
b. ? Which driver refueled at [one of the nearby stations]? (?Choice)

The view of unifying QiQ-readings is further supported by the interpretations of questions with
a coordination of quantifiers. In (16a) where the subject is a conjunction of a universal quantifier and
an existential indefinite, the pair-list reading associated with the universal quantifier and the choice
reading associatedwith the existential indefinite are both preserved. This question can be understood
as requesting to specify all boy-watch-movie pairs and one girl-watch-movie pair. In contrast, since
negative quantifiers do not license QiQ-readings (recall (4)), coordinating a universal/existential
quantifier with a negative quantifier blocks the QiQ-reading. For example, (16b) cannot be read as
requesting to list all boy-watch-movie pairs and not to list any teacher-watch-movie pairs.

(16) a. Which movie did [each of the boys and one of the girls] watch? (3QiQ)
b. Which movie did [each of the boys and none of the teachers] watch? (7QiQ)
c. Which movie did [one of the girls and none of the teachers] watch? (7QiQ)

3. Challenges and goals

Section 2 has laid out two goals for this paper: (i) to compose QiQ-questions uniformly, and (ii) to
compose pair-list multi-wh questions and ∀-questions in tandem while explaining their contrast in
domain exhaustivity. However, it is not easy to achieve both goals. This section discusses the technical
challenges that need to be overcome and the related semantic effects that need to be accounted for.3

First, for most frameworks of question semantics, the structure in (17) is ill-formed. The general-
ized quantifier ‘Det-boy’ takes arguments of type 〈e, t〉 and can only quantify into a t-type expression.
However, the contained open question ‘which movie did x watch’ is not of type t; it has been treated,
for example, as a set of propositions (of type 〈st, t〉) as in Hamblin-Karttunen Semantics, and as a
one-place predicate/property (of type 〈e, t〉 or 〈e, st〉) as in categorial approaches.

(17) Which movie did Det-boy(s) watch?
*[Det-boy(s) λxe [which movie did x watch]]

There are two general strategies to solve this type-mismatch problem. One is to extract the domain
of quantification of the subject-quantifier via a type-shifting operation (Groenendijk and Stokhof
1984; Chierchia 1993; Dayal 1996, 2017; among others). For example, Dayal extracts the quantification
domain of a universal quantifier as extracting the unique minimal witness set of the quantifier. This
strategy is feasible in principle but a bit ad hoc (see Sect. 4.1.2 and footnote 10).

3This paper does not attempt to explain effects that more likely to be related to syntax in nature, such as the superiority
effects and constraints of extractions/movements. See Kotek 2014, 2019 and the references therein for detailed discussions.
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The other strategy is to create a t-type constituent in the LF that the quantifier can quantify into
standardly. For example, in Partition Semantics (Groenendijk and Stokhof 1984) which defines the
root denotation of a question as a partition of possible worlds, the formation of a partition involves a
t-type node expressing the equivalence of two extensions. Alternatively, Karttunen (1977) and Krifka
(2001) reduce quantification-into matrix questions into quantification-into question-embeddings. The
two analyses based on partitions and question-embeddings overcome the type-mismatch problem
but bring up other problems (for reviews, see Appendices A and B). Instead, my proposal will follow
Fox (2012b) in assuming that the root of a QiQ-question contains a t-type node that expresses a
predication condition (Sect. 4.2 and 6.3).4

Second, pair-list readings have a limited distribution inmatrix QiQ-questions. Inmatrix questions,
only subject each/every-phrases can license pair-list readings. For example, in the ∃-question (18)
which has a numeral-modified indefinite two of the students, the seeming pair-list answer (18a) which
distributes over two chosen students is actually an over-informative specification of a cumulative
choice answer (18b) (Moltmann and Szabolcsi 1994; Szabolcsi 1997a). Questions with a plural
the-phrase like (19) are analogous (Srivastav 1991; Krifka 1991).

(18) Who did two of the students vote for?
a. Andy voted for Mary, and Billy voted for Jill.
b. Andy and Billy voted for Mary and Jill. In particular, Andy voted for Mary, and Billy

voted for Jill.
(19) Who did the students vote for?

The confound from cumulative answers can be removed by replacing the number-neutral word who
with a singular-marked wh-phrase, which triggers a uniqueness presupposition. In the following set
of matrix questions, distributivity above uniqueness is possible only in (20a-b), where the subject
quantifier is distributive in lexicon. In other cases, for example, the choice reading of the ∃2-question
(20d) presupposes that two of the students voted for the same candidate and only this candidate,
conflicting with the context.

(20) I know that every student voted for a different candidate. Which candidate did ...
a. ... every student vote for? (∀ � ι)
b. ... {each student, each of the students} vote for? (each� ι)
c. # ... all/most of the students vote for? (all/most� each� ι)
d. # ... two of the students vote for? (∃2� each� ι)
e. # ... two or more students vote for? (∃2+� each� ι)
f. # ... the students vote for? (the-NPpl � each� ι)

To account for the limited distribution of pair-list readings in matrix questions, many works on
composing complex questions propose to derive pair-list readings in a way that crashes in questions
with a non-universal quantifier (e.g., Dayal 1996 and Fox 2012b; see Sect. 4 for details.) This strategy,
however, comes with an expense of failing to account for choice readings of ∃-questions. In contrast, I
argue that a subject-quantifier licenses pair-list readings only if this quantifier is lexically distributive

4Other than these two general strategies, Inquisitive Semantics also exempts from this type-mismatch problem because it
defines declaratives and interrogatives uniformly as a set of sets of propositions (of type 〈stt, t〉) and generalized quantifiers
as functions of type 〈〈e, stt〉, t〉. To my knowledge, this idea has not been explored extensively. For a possible direction, see
Ciardelli and Roelofsen (2018: Sect. 4.3.3).

7



and is productive in scoping. According to this analysis, the limited distribution of pair-list naturally
follows from the independently observed contrasts between distributive-universal quantifiers and
the other quantifiers with respect to lexical distributivity and scoping (Szabolcsi 1997b; Beghelli and
Stowell 1997; for details, see Sect. 6.3.2 and 6.3.4).

Third, there are several semantic effects robustly observed with QiQ-questions and/or pair-list
wh-questions. Section 2.1 has discussed two effects, including the uniqueness effect triggered by the
singular-marked object-wh, as seen in all the sentences in (21), and the domain exhaustivity effect
observed only in ∀-questions, as seen in (21a). These effects were not extensively considered until
Srivastav 1991/Dayal 1996.

(21) a. Which movie did every/each boy watch?
 ‘For every boy x, x watched exactly one movie.’

b. Which boy watched which movie?
 ‘For every boy x s.t. x watched a movie, x watched exactly one movie.’

c. Which movie did one/two of the boys watch?
 ‘For some x s.t. x is one/two of the boys, x watched exactly one movie.’

Moreover, embeddings of pair-list questions are subject to quantificational variability (QV) effects.
As first observed by Berman (1991), question-embeddings modified by a quantificational adverbial
(e.g., mostly, partly, for the most part, in part) commonly have a QV inference. As illustrated in (22) and
(23), in paraphrasing such an inference, the quantification domain of the matrix quantity adverbial
mostly can be thought of as (a) a set of propositions (Lahiri 1991, 2002; Cremers 2016), (b) a set of
sub-questions (Beck and Sharvit 2002), or (c) a set of individuals or pairs (Xiang 2016, 2019b, 2020;
Cremers 2018). This effect casts challenges to accounts such as Dayal 1996 which analyzes pair-list
questions with a flat semantics (Sect. 4.1.2). In Sect. 8, assuming a categorial approach to define
and compose questions, I argue that the QV inference can be derived as in (23c) based on the short
answers to the embedded question.

(22) Jill mostly knows [which students left].
a.  ‘Most p: p is a true proposition of the form pstudent-x leftq, Jill knows p.’
b.  ‘Most Q: Q is a question of the form pwhether student-x leftq, Jill knows Q.’
c.  ‘Most x: x is an atomic student and x left, Jill knows that x left.’

(23) Jill mostly knows [pair-list

{
which movie every boy watched
which boy watched which movie

}
].

a.  ‘Most p: p is a true proposition of the form pboy-x watched movie-yq, Jill knows p.’
b.  ‘Most Q: Q is a question of the form pwhich movie boy-x watchedq, Jill knows Q.’
c.  ‘Most 〈x, y〉: 〈x, y〉 is a boy-movie pair and x watched y, Jill knows that x watched y.’

4. Two general approaches to composing complex questions

There is a rich literature on composing pair-list multi-wh questions and questions with quantifiers.
This section reviews two lines of approaches that have tackled both types of questions, including
the functionality approaches which assume that these complex questions involve wh-dependencies,
and the family-of-questions approaches which define each of such questions as a family of sub-
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questions.5 I will focus on two influential accounts given by Dayal (1996, 2017) and Fox (2012a,b),
because they successfully predict the domain exhaustivity and point-wise uniqueness effects in
singular-marked ∀-questions, and because my analysis will take ingredients from these two accounts.
For extensive literature reviews, see the Appendices as well as Xiang 2016: chapter 5 and 6, Dayal
2017: chapter 4, and Ciardelli and Roelofsen 2018.

4.1. Functionality approaches

Functional readings of wh-questions with a quantificational subject exhibit a clear functional de-
pendency relation between the subject-quantifier and the object-wh, called a “wh-dependency”. In
example (1b), repeated below, the answer involves a pronoun interpreted as being bound by the
subject-quantifier in the question.

(24) Which movie did every-boyi watch?
Hisi favorite superhero movie.

As for pair-list readings of questions, functionality approaches assume that pair-list ∀-questions
and multi-wh questions also involve a wh-dependency relation between the higher ∀/wh-phrase and
the lower wh-phrase. In this view, for example, the pair-list answer (25a) is thought of as specifying
the graph of a Skolem function from the set that the subject-∀/wh ranges over to the set that the
object-wh ranges over, as in (25b).

(25) Which movie did every boy watch?/ Which boy watched which movie?

a.
Andy watched Ironman,
Billy watched Spiderman,
Clark watched Hulk.

b. f =

 a → i
b → s
c → h


The functionality approach was originally proposed only for ∀-questions (Engdahl 1980, 1986;

Chierchia 1993), especially to account for the uniform subject-object/adjunct asymmetry in their
functional readings and their pair-list readings. This asymmetry is illustrated by the contrast between
(26) and (27) (see also Sect. 2.2): functional readings and pair-list readings are available only if the
universal quantifier is higher than the wh-phrase in the syntactic structure. Assuming functionality,
one can explain this asymmetry in terms of Weak Crossover violations or the Left-ness Constraint in
binding and functionality (Chierchia 1993; Jacobson 1994; Williams 1994).

(26) Which woman did every boy invite? (3Individual, 3Functional, 3Pair-list)
a. Anna.
b. His mother.
c. Andy invited Mary, Billy invited Susi, Clark invited Jill.

(27) Which woman invited every boy? (3Individual, 7Functional, 7Pair-list)
a. Anna.
b. # His mother. (Intended: ‘Every-boyi was invited by hisi mother.’)
c. # Andy invited Mary, Billy invited Susi, Clark invited Jill.

5The core assumptions of these two approaches are compatible with each other. For example, Chierchia (1993) assumes
wh-dependency while defining a QiQ-question as a family of questions. See details in footnote 10.
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Further, Dayal (1996, 2017) extends the idea of functionality to pair-list multi-wh questions. She
points out that the corresponding relations expressed by pair-list answers are Skolem functions —
the correspondence can be one-to-one or many-to-one, but not one-to-many, as witnessed in (28). See
also Caponigro and Fălăuş (To appear) for an extension of this approach to multi-wh free relatives in
Romanian.

(28) Which student talked to which professor? (Dayal 2017: 96)
a. Alice talked to Professor Carl, and Bill talked to Professor Dan.
b. Alice and Bill both talked to Professor Carl.
c. # Alice talked to Professors Carl and Dan.

This paper does not take a position on whether the subject-object/adjunct asymmetry and the
unavailability of one-to-many relations should be explained in terms of constraints in functionality.
However, in Sect. 6, proposing a new compositional analysis, I will show that wh-dependency is
independently needed to account for the contrast between multi-wh questions and ∀-questions with
respect to domain exhaustivity.

4.1.1. Wh-dependency in basic functional questions

In the current dominant analysis, wh-dependencies in functional questions are derived by assuming a
complex wh-trace (Groenendijk and Stokhof 1984; Chierchia 1993; among others).6 The tree diagram
in (29) illustrates the LF schema for a ∀-question with a functional reading.7 In this LF, the wh-trace
tj
i carries two indices, including:

(i) a functional index i, which is interpreted as an intensional functional variable f (of type 〈s, ee〉)
and is bound by the fronted object-wh which movie;

(ii) an argument index j, which is interpreted as an individual variable x (of type e) and is bound
by the subject-quantifier every boy.

With the above binding relations, the IP is interpreted as an open proposition expressing a quan-
tificational functional dependency condition, read as ‘every boy x watched f(x)’. The details of
composition above IP are omitted for now because they vary by the framework of question composi-
tion. For example, in Hamblin-Karttunen Semantics, the yielded root denotation of this question is a
set of propositions of the form pevery boy x watched f(x)qwhere f is an intensional Skolem function
to atomic movies (viz., ∀w[Ran(f(w)(x)) ⊆ Mw], or equivalently, ∀w∀x ∈ Dom(f(w))[Mw(x)]), as in
(30a). In categorial approaches, the yielded denotation is a property/predicate of these intensional
Skolem functions, as in (30b). I will add further details on this issue in Sect. 5.

6Other than the complex trace approach, the variable-free approach of Jacobson (1999) does not use indices/variables
at all. Instead, functional dependency is derived by a locally applied z-rule which can close off the anaphoric dependency
between the arguments of a predicate. The wh-trace is interpreted as an identity function over Skolem functions λ f〈e,e〉. f ,
and the abstraction λ f is passed up to the entire question nucleus by the application of another type-shifting rule — the
Geach (g)-rule. For ease of comparing with existing works on composing complex questions, this paper follows the complex
functional trace approach. For an attempt of using the variable-free approach to compose complex questions, see Xiang 2019b.

7Following Groenendijk and Stokhof (1984), I translate LF representations into the Two-sorted Type Theory (Ty2) of Gallin
(1975). Compared with Montague’s Intensional Logic, Ty2 is different in that it introduces s (the type of possible worlds) as a
basic type (just like e and t), and in that it uses variables and constants of type s which can be thought of as denoting possible
worlds. For example, the English common noun boy is translated into Bw in Ty2, where B is a property of type 〈s, et〉 and w a
world variable of type s. With these assumptions, Ty2 can make direct reference to worlds and allows quantification and
abstraction over world variables.
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(29) Which movie did every boy watch? (Functional reading)
CP

DP

wh-movie
i ...

IP
λw.∀x[Bw(x)→ Ww(x, fi(w)(x))]

λw

DP

every boyw
j VP

Ww(xj, fi(w)(xj))

tj watchedw tj
i

(30) a. Question denotation in Hamblin-Karttunen Semantics
JCPK = {λw.∀x[Bw(x)→ Ww(x, f(w)(x))] | ∀w[Ran(f(w)(x)) ⊆ Mw]}

b. Question denotation in categorial approaches
JCPK = λf〈s,ee〉 : ∀w[Ran(f(w)) ⊆ Mw]. λw.∀x[Bw(x)→ Ww(x, f(w)(x))]

4.1.2. Dayal (1996, 2017) on composing pair-list questions

Dayal (1996, 2017) assumes that the two pair-list questions in (31) both denote a set of conjunctive
propositions, and that each of these conjunctive propositions specifies a Skolem function f from the
quantification domain of the ∀/wh-subject (i.e., B@) to the quantification domain of the wh-object
(i.e., M@).8 This denotation yields domain exhaustivity since the function f takes the set of atomic
boys as its domain.

(31) Which movie did every boy watch?/ Which boy watched which movie?
(Context: There are two relevant boys b1b2 and two relevant movies m1m2.)
JQ∀K = JQmulti-whK = {

⋂{λw.Ww(x, f(x)) | B@(x)} | f ∈ [B@ → M@]}

=


λw.Ww(b1, m1) ∧Ww(b2, m1)
λw.Ww(b1, m1) ∧Ww(b2, m2)
λw.Ww(b1, m2) ∧Ww(b2, m1)
λw.Ww(b1, m2) ∧Ww(b2, m2)


Dayal assumes that both of the pair-list questions in (31) have the LF (32). In this LF, the subject-

wh/quantifier and the object-wh are both moved to the specifier of a functional C head C0
func.

8‘@’ stands for the actual world. For simplicity, here and henceforth, I assume that the extensions of the wh-complements
are evaluated relative to the actual world.
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(32) CP::〈st, t〉

DP::et
↑ts

wh-movie@

DP::et
↑ts

wh/every-boy@

C′

C0
func IP::〈ee, est〉

i
j st

λw. tj watchw tj
i

(33) a. JIPK = λf〈e,e〉λxeλw.Ww(x, f(x))

b. JC0funcK = λq〈ee,est〉λDλRλp.∃f ∈ [D → R][p =
⋂

λp′.∃x ∈ D[p′ = q(f)(x)]]
= λq〈ee,est〉λDλR.{⋂{q(f)(x) | x ∈ D} | f ∈ [D → R]}

c. JC′K = λDλRλp.{⋂{λw.Ww(x, f(x)) | x ∈ D} | f ∈ [D → R]}
d. JCPK = {⋂{λw.Ww(x, f(x)) | x ∈ B@} | f ∈ [B@ → M@]}

The composition precedes in three steps. First, the trace of thewh-object carries two indices, including
a functional index i interpreted as an 〈e, e〉-type variable f and an argument index j interpreted as
an e-type variable x. The trace of the wh/∀-subject also carries the argument index j. Abstracting
the two indices at the edge of IP yields a two-place property (of type 〈ee, est〉). As schematized
in (33a), this property maps a Skolem function f and an individual x to an open proposition that
expresses a functional dependency relation between the subject and the object of watched. Second, as
in (33b-c), the complex head C0

func introduces domain and range arguments for the Skolem function
f and creates a graph for f. For q (of type 〈ee, est〉) being the denotation of IP, the graph of a Skolem
function f yielded based on q is the conjunction of propositions of the form pq(f)(x)q where x is
in the domain of f. Last, the sets that the ∀/wh-phrases range over are extracted by type-shifting
operations (indicated by ‘↑ts’) and are passed to fill the range and domain arguments introduced by
C0

func.9 With this composition, the denotation of the question root (i.e., CP) is a set of conjunctive
propositions, each of which names a Skolem function defined for the set that the wh/∀-subject ranges
over. This domain condition gives rise to a domain exhaustivity effect.

Finally, to account for the uniqueness effects of singular-marked wh-phrases, Dayal defines an
answerhood-operator that presupposes the existence of the strongest true answer. The strongest true
answer to a question is the true proposition in the Hamblin set of this question that entails all the
true propositions in this Hamblin set.

(34) AnsDayal(w)(Q) = ∃p[w ∈ p ∈ Q ∧ ∀q[w ∈ q ∈ Q→ p ⊆ q]].
ιp[w ∈ p ∈ Q ∧ ∀q[w ∈ q ∈ Q→ p ⊆ q]]

The following shows how the AnsDayal-operator accounts for the uniqueness effect. The ontology of
individuals assumes that a singular noun denotes a set of atomic entities, while a plural noun ranges
over both atomic and sum entities (Sharvy 1980; Link 1983), as represented as in Figure 1. Letters
abc each denotes an atomic boy. Lines indicate part of relations from bottom to top.

9Dayal (2017) discusses two ways to obtain the quantification domain of a wh-phrase. One way is to define a wh-phrase as
an existential quantifier and extract out its quantification domain via the application of a Be-shifter (Partee 1986). The other
way is to define a wh-phrase as a set of entities and derive its quantificational meaning via employing an ∃-shifter.
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a⊕ b⊕ c

a⊕ b a⊕ c b⊕ c

a b c boy

 boys

Figure 1: Ontology of individuals (Sharvy 1980; Link 1983)

Accordingly, the Hamblin set of the singular-marked wh-question (35a) includes only propositions
naming atomic boys, while that of the corresponding plural-marked question (35b) includes also
propositions naming sums of boys. In a discourse where both Andy and Bill watched Hulk, the true
answers are as in (35a’-b’). Note that the set (35b’) has a strongest proposition λw.Ww(a⊕ b, h) but
(35a’) does not; therefore, employing AnsDayal(w) in (35a) gives rise to a presupposition failure. To
avoid this presupposition failure, the singular-marked question (35a) can only be uttered in a world
where only one of the boys watched Hulk, which therefore explains its uniqueness effect.

(35) (w: Among the considered boys, only Andy and Billy watched Hulk.)
a. Which boy watched Hulk? a′. {λw.Ww(a, h), λw.Ww(b, h)}
b. Which boys watched Hulk? b′. {λw.Ww(a, h), λw.Ww(b, h), λw.Ww(a⊕ b, h)}

In a pair-list question, if the object-wh is singular-marked, the presupposition of AnsDayal yields
point-wise uniqueness. For example, if in w1 the boy b1 watched only m1 but b2 watched both m1m2,
then the top two propositions in the Hamblin set in (31) are both true in w1. Since neither of the true
propositions is stronger than the other, applying AnsDayal(w1) yields a presupposition failure.

The account of Dayal successfully predicts domain exhaustivity and point-wise uniqueness effects
in ∀-questions with a singular-marked wh-object. In her account, domain exhaustivity is hard-wired
into the lexical meaning of C0

func, and point-wise uniqueness comes from the conjunctive closure in
C0

func and the presuppositional AnsDayal-operator. This account also manages to keep the semantic
type of questions low (i.e., single/double-wh questions and ∀-questions are uniformly of type 〈st, t〉),
leaving space to tackle wh-constructions that are more complex (e.g., wh-triangles, multi-wh echo
questions).

However, this account faces many problems. On the conceptual side, the composition involves a
few stipulative or even problematic assumptions. First, the index abstractions are isolated from the
moved wh-phrases and quantifiers. This way of abstracting indices is especially concerning since
here the IP involves multiple abstractions — isolating the λ-operators from the moved phrases make
the binding relations ambiguous. Second, the C0

func is structure specific and is interpreted with a
rather complex semantics. It is unclear why a covert functional head should be interpreted as such
and appear only in particular structures. Thus, Dayal is not fully satisfied with this C0

func and calls
her account the “crazy C0 approach.” Last, for ∀-questions in specific, it is implausible to move a
non-interrogative phrase to the specifier of an interrogative CP (Heim 2012).

In addition to the above conceptual problems, this account also yields a couple of problematic
empirical predictions. (Note that these problems are independent from assuming functionality.)
First of all, composing pair-list ∀-questions and multi-wh questions based on the very same LF, this
account predicts that the two types of pair-list questions are semantically equivalent. However, as
argued in Sect. 2.1, the two questions differ in domain exhaustivity. As seen in (10), repeated below,
only the multi-wh question can be felicitously used in a context that violates domain exhaustivity.
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(36) (Context: 100 candidates are competing for three job openings.)
a. Guess which candidate will get which job.
b. # Guess which job will every candidate get.

Second, this account does not extend to choice readings of ∃-questions. As seen in Sect. 3, in matrix
questions, only subject every/each-phrases can license pair-list readings. To avoid over-generating
pair-list readings in matrix ∃-questions, Dayal stipulates that the quantification domain of a non-
interrogative quantifier can only be obtained by extracting the unique minimal witness set of this
quantifier. Table 1 illustrates the minimal witness sets of the three basic generalized quantifiers in a
discourse domain with three boys abc. Observe that only the universal quantifiers have a non-empty
uniqueminimalwitness set, which is simply the smallest live-on set. In contrast, existential indefinites
have multiple minimal witness sets. Negative quantifiers (and other decreasing quantifiers) have
a unique minimal witness set, which is however the empty set. With this stipulation, the LF (33)
assumed for composing pair-list questions is unavailable for questionswith a non-universal quantifier.
Although this stipulation avoids over-generating pair-list readings in questions with a non-universal
quantifier, it is pretty ad hoc and leaves choice readings of ∃-questions unexplained.

(37) Live-on sets and witness sets (Barwise and Cooper 1981)
For any π of type 〈et, t〉:
a. π lives on a set B if and only if π(C)⇔ π(C ∩ B) for any set C;
b. If π lives on B, then A is a witness set of π if and only if A ⊆ B and π(A).

Generalized quantifier π Minimal witness set(s) of π

every/each boy {a, b, c}
one of the boys {a}, {b}, {c}

no boy ∅

Table 1: Illustration of minimal witness sets (with three relevant boys abc)

Third, as pointed out by Lahiri (2002), defining a pair-list question as a set of conjunctive propositions,
this account has difficulties in accounting for the QV effects in embeddings of pair-list questions. For
example, the question-embedding sentence (38) implies a QV inference, which can be paraphrased as
if the matrix quantificational adverbial mostly quantifies over a set of atomic propositions. However,
these atomic propositions cannot be retrieved from the question denotation assumed in (31): from a
conjunctive proposition, we cannot extract out its propositional conjuncts semantically.

(38) Jill mostly knows [pair-list

{
which movie every boy watched
which boy watched which movie

}
].

 ‘Most p: p is true proposition of the form pboy-x watched movie-yq, Jill knows p.’

To account for the QV effects, in an ongoing work, Dayal (2016) removes the
⋂
-closure in the lexicon

of C0
func and defines the root of a pair-list question as a family of sets of propositions. The revised

account manages to keep the atomic propositions alive, but it sacrifices the advantage of keeping the
semantic type of questions low.
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4.2. Family-of-questions approaches

Family-of-questions approaches regard a pair-list question as a set/family of sub-questions (Hagstrom
1998; Preuss 2001; Fox 2012a,b; Nicolae 2013; Kotek 2014; Xiang 2016: chapter 5; Dayal 2016; among
others). As exemplified in (39), if a simplex wh-question denotes a set of propositions, a family of
questions denotes a set of sets of propositions.10

(39) (Context: There are two relevant boys b1b2 and two relevant movies m1m2.)
Which movie did every boy watch?/ Which boy watched which movie?
JQ∀K = JQmulti-whK = {Jwhich movie did x watch?K | x ∈ B@}

= {{λw.Ww(x, y) | y ∈ M@} | x ∈ B@}

=

{
{λw.Ww(b1, m1), λw.Ww(b1, m2)}
{λw.Ww(b2, m1), λw.Ww(b2, m2)}

}

The non-flat semantics assumed in (39) makes it easy to account for the QV effects in embeddings
of pair-list questions. As in (40), the QV inference can be defined as if the matrix adverbial mostly
quantifies over a set of sub-questions.

(40) Jill mostly knows [pair-list

{
which movie every boy watched
which boy watched which movie

}
].

 ‘Most Q: Q is a question of the form pwhich movie did boy-x watch?q, Jill knows Q.’

Fox (2012a,b) composes the two pair-list questions via different LFs that yield the very same
root denotation. The LF of a pair-list multi-wh question is illustrated in (41). Since wh-phrases are
treated as existential indefinites (viz., JwhichK = JsomeK), this LF is read as ‘the set of Q such that for
some boy x, Q is identical to Jwhich movie did x watch?K’, which is simply the set of questions of the
form pwhich movie did boy-x watch?q. The composition follows the Government-and-Binding style of
Karttunen Semantics (Heim 1995) except that it treats the identity (Id-)operator type-flexible and
allows this operator to be iterated.

(41) Which boy watch which movie? (Pair-list reading)
10The approaches given by Groenendijk and Stokhof (1984) and Chierchia (1993) are also family-of-questions approaches.

In these two approaches, as schematized in (i), a QiQ-question is defined as a family of sub-questions ranging over a minimal
witness set (mws) of the subject quantifier. (‘PB@ ’ stands for a generalized quantifier ranging over the set of atomic boys B@.
‘mws(PB@ , A)’ says that A is a minimal witness set of the quantifier PB@ .)

(i) Jwhich movie did PB@ watch?KQiQ = {Jwhich member of A watched which movie?K | mws(PB@ , A)}

However, the predictions made by these two accounts are quite different from the predictions made by the non-flat semantics
in (39). For example, Chierchia (1993) defines a sub-question as a set of propositions of the form pboy-x watched movie f(x)q,
as formalized in (ii). The denotations of the related ∀/∃-questions are thus illustrated as in (iii). Chierchia further assumes
that answering a family of sub-questions means answering one of the sub-questions (in contrast to Fox’s assumption that
answering a family of sub-questions means answering all of the sub-questions). Accordingly, since the existential quantifier
one of the boys has multiple minimal witness sets, the QiQ-reading of the ∃-question has a choice flavor. While this account
naturally extends to ∃-questions, it cannot explain the semantic effects in pair-list ∀-questions such as domain exhaustivity
and point-wise uniqueness.

(ii) JQP K =
{
{λw.Ww(x, f(x)) | x ∈ A, f ∈ [A→ B@]} | mws(PB@ , A)

}
(iii) (Context: There are two relevant boys b1b2 and two relevant movies m1m2.)

a. JQ∀K =
{{

λw.Ww(b1, m1), λw.Ww(b2, m2),
λw.Ww(b1, m2), λw.Ww(b2, m2)

}}
b. JQ∃K =

{
{λw.Ww(b1, m1), λw.Ww(b1, m2)},
{λw.Ww(b2, m1), λw.Ww(b2, m2)}

}
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[CP2 λQ〈st,t〉 [wh-boy@ λxe [C′2 [Id Q] [CP1 λpst [wh-movie@ λye [C′1 [Id p] [IP x watch y]]]]]]]

a. JIdK = λατλβτ .α = β (τ stands for an arbitrary type)
b. JIPK = λw.Ww(x, y)

c. JC′1K = JIdK(p)(JIPK)
= [p = λw.Ww(x, y)]

d. JCP1K = λp.∃y[M@(y) ∧ p = λw.Ww(x, y)]
= {λw.Ww(x, y) | M@(y)}

e. JC′2K = JIdK(Q)(JCP1K)
= [Q = {λw.Ww(x, y) | M@(y)}]

f. JCP2K = λQ.∃x[B@(x) ∧Q = {λw.Ww(x, y) | M@(y)}]
= {{λw.Ww(x, y) | y ∈ M@} | x ∈ B@}

The LF of the corresponding pair-list ∀-question is as in (42), read as ‘the unique minimal set K such
that for every boy x: Jwhich movie did x watch?K is a member of K.’ The most important operations
involved in forming this LF are (i) quantifying-into predication and (ii) minimization (à la Pafel
1999; Preuss 2001). For operation (i), the ∀-subject undergoes quantifier raising and quantifies into a
predication condition, which is yielded by applying a predicative variable K to the open wh-question
which movie did x watch. This operation yields a universal predication condition, read as ‘for every boy
x: Jwhich movie did x watch?K is a member of K’. For operation (ii), the minimization (min-)operator
binds the K variable across the subject-quantifier every boy, returning the unique minimal K set that
satisfies the universal predication condition. This minimal K set is simply the set consisting of exactly
all the questions of the form pwhich movie did boy-x watch?q.

(42) Which movie did every boy watch? (Pair-list reading)
[CP2 min λK〈st,t〉 [every-boy@ λxe [K [CP1 λpst [wh-movie@ λye [[Id p] [IP x watch y]]]]]]]

a. JCP1K = {λw.Ww(x, y) | M@(y)} (Composition is the same as in (41a-d))
b. JminK = λα〈σt,t〉 : ∃K〈σ,t〉[K ∈ α ∧ ∀K′ ∈ α[K ⊆ K′]].ιK〈σ,t〉[K ∈ α ∧ ∀K′ ∈ α[K ⊆ K′]]

(For a set of sets α, JminK(α) is the unique minimal set in α that is a subset of every set in
α, defined only if this minimal set exists.) (Pafel 1999)

c. JCP2K = JminK(λK.Jevery boy@K(λx.K({λw.Ww(x, y) | M@(y)})))
= JminK(λK.∀x[B@(x)→ K({λw.Ww(x, y) | M@(y)})])
= {{λw.Ww(x, y) | y ∈ M@} | x ∈ B@}

As for answerhood, Fox (2012a,b) assumes that answering a family of sub-questions means
answering all of the contained sub-questions. In other words, the answerhood operation is applied
point-wise. As recursively defined in (43), when applied to a set of sub-questions, the point-wise
answerhood-operator imposes AnsDayal to each sub-question and returns the conjunction of the
strongest true propositional answer to each sub-question. Since the fronted wh-phrase is singular-
marked, the point-wise triggered presupposition, namely that every sub-question has a strongest
true answer, yields domain exhaustivity and point-wise uniqueness.

(43) Point-wise answerhood-operator (Fox 2012a)

Anspw = λwλQ.

 AnsDayal(w)(Q) if Q is of type 〈st, t〉⋂{Anspw(w)(α) | α ∈ Q} otherwise
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The account of Fox has two advantages over the account of Dayal (1996, 2017). First, as discussed in
(40), the non-flat semantics of pair-list questions can easily account for the QV effects in embeddings.
Second, the composition is quite neat; it does not use any ad hoc type-shifting rules or any complex
operators. In composing the multi-wh question, the same as assumed in Karttunen Semantics, the
wh-phrases function as existential indefinites and quantify into an identity condition. In composing
the ∀-question, the subject-quantifier standardly combines with a one-place predicate via Functional
Application.

However, the account of Fox faces the same empirical problems as the account of Dayal. First,
treating pair-list ∀-questions semantically equivalent to their multi-wh counterparts, Fox also cannot
explain the contrast with respect to domain exhaustivity. Second, this account does not extend to
∃-questions either. In composing questions with quantifiers, Fox uses the min-operator to obtain
the unique minimal K set that satisfies a quantificational predication condition, which is however
unavailable if the predication condition is existentially quantified. For instance, for the ∃-question
(44a), in a discourse with two relevant boys b1 and b2, the smallest K sets satisfying the existential
quantification condition (44b) are the two sets in (44c), neither of which is a subset of the other.

(44) a. Which movie did one of the boys watch?
b. ∃x[B@(x) ∧ Jwhich movie did x watch?K ∈ K]

c. {Jwhich movie did b1 watch?K}, {Jwhich movie did b2 watch?K}

5. Formal theory: A hybrid categorial approach

My general treatment of question composition follows the hybrid categorial approach developed
by Xiang (2016, 2020). This approach follows traditional categorial approaches in assuming that
questions denote functions but overcomes their technical problems in composition. Compared with
proposition-based frameworks (e.g., Hamblin-Karttunen Semantics), this framework allows to derive
QV effects in embeddings of pair-list questions without assuming a non-flat semantics (Sect. 7). Note
that, however, assumptions made in Sect. 6 on how to compose the question nucleus are independent
from this framework.

The hybrid categorial approach has threemain ingredients. First, matrix and embedded questions
uniformly denote functions from short answers to corresponding propositional answers, called
“topical properties”. For example, the question in (45) denotes a function that maps each atomic
boy x to the proposition that x came. Accordingly, short answers are extractable from a question
denotation as meanings in the property domain. This assumption is basic in any categorial approach
to questions. It will be crucial for explaining the QV effects in embeddings of pair-list questions.

(45) a. Jwhich boy came?K = λxe : B@(x) .λw[Cw(x)]

b. Jwhich boy came?K(JJohnK) = B@(j) .λw[Cw(j)]

Second, wh-phrases are existential quantifiers ranging over polymorphic sets. In questions with
extensional readings, the quantification domain of a wh-phrase of the form pwh-Awq consists of not
only elements in the extension of the wh-complement JAKw but also Skolem functions from entities
to JAKw, as defined in (46b). The semantics of wh-phrases in questions with an intensional reading is
defined analogously, as schematized in (46c).

(46) The semantics of a wh-phrase (Modified from Xiang 2020)
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a. For any set A, Ran(f) ⊆ A if and only if ∀x ∈ Dom(f)[f(x) ∈ A].
b. For extensional readings

Jwh-AwK = λP.∃α ∈ ⋃{ JAKw,
{f | Ran(f) ⊆ JAKw}

}
[P(α)]

c. For intensional readings

Jwh-λw.AwK = λP.∃α ∈ ⋃{ {R | ∀w[R(w) ∈ JAKw]},
{f | ∀w[Ran(f(w)) ⊆ JAKw]}

}
[P(α)]

The above definitions treat wh-expressions as existential indefinites. In the composition of a wh-
question, however, fronted wh-phrases are type-shifted into type-flexible function domain restrictors
via the application of a BeDom-operator. For any existential quantifier π, Be(π) is the set that π

ranges over (Partee 1986), and BeDom(π) is a function domain restrictor which combines with a
function θ and returns the function that is similar to θ but is undefined for items not in Be(π).

(47) The BeDom-operator
For any π of type 〈σt, t〉 where σ is an arbitrary type, we have:
a. Be(π) = λx.P(λy.y = x)

b. BeDom(π) = λθτ .ιPτ

[
[Dom(P) = Dom(θ) ∩ Be(π)]

∧ ∀α ∈ Dom(P)[P(α) = θ(α)]

]
For example, in the LF (48), ‘BeDom (wh-boy@)’ combines with the ‘came’-property defined for all
entities and returns the ‘came’-property defined only for entities that are atomic boys. The same as
discussed in footnote 7, LF representations are translated into Ty2. World variables of predicative
expressions within the nucleus are abstracted at the edge of IP. The extension of the wh-restrictor is
evaluated relative to the actual world @.

(48) Which boy came? CP
λxe : B@(x) .λw[Cw(x)]

DP

BeDom DP

wh-boy@

λxeλw.Cw(x)

i C′

IP

λw. ti camew

Crucially, BeDom(π) is type-flexible — it can combine with any function of a 〈σ, ...〉 type where σ is
the type of an element in Be(π). Type-flexibility makes it possible to compose a question regardless
of whether the function denoted by the question nucleus is defined for individuals or functions,
and regardless of how many wh-phrases there are in this question. Take the single-wh question (49)
for example. This question has an individual reading if the fronted wh-phrase binds an individual
trace, as in (49a), and a functional reading if it binds an (intensional) functional trace, as in (49b).
As for multi-wh questions, the tree diagram in (50) illustrates the derivation of single-pair readings.
‘BeDom(wh-movie@)’ applies to a one-place property of type 〈e, st〉 defined for any entities and
returns a similar property defined only for atomic movies. Likewise, ‘BeDom(wh-boy@)’ applies to a
two-place property of type 〈e, 〈e, st〉〉 defined for any entities and returns a similar property defined
only for atomic boys.

(49) Which movie did every boy watch?
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a. Individual reading: ‘Which movie y is such that every boy watched y?’
CP

λye : M@(y).λw[∀x[Bw(x)→ Ww(x, y)]]

DP

BeDom(wh-movie@)

〈e, st〉
λyeλw.∀x[Bw(x)→ Ww(x, y)]

i C′

IP

λw
DP

every boyw
j Ww(xj, yi)

tj watchw ti

b. (Intensional) functional reading: ‘Which Skolem function f to atomic movies is such
that for every boy x, x watched f(x)?’

CP
λf〈s,ee〉 : ∀w[Ran(f(w)) ⊆ Mw].λw[∀x[Bw(x)→ Ww(x, f(w)(x))]]

DP

BeDom(wh-λw.moview)

〈see, st〉
λf〈s,ee〉λw.∀x[Bw(x)→ Ww(x, f(w)(x))]

i C′

IP

λw

DP

every boyw
j Ww(xj, fi(w)(xj))

tj watchw tj
i

(50) Which boy watched which movie?
Single-pair reading: ‘Which unique boy-movie pair 〈x, y〉 is such that x watched y?’

CP :: 〈e, 〈e, st〉〉
λxeλye : B@(x) ∧M@(y).λw[Ww(x, y)]

DP :: 〈τ, τ〉

BeDom(wh-boy@)

〈e, 〈e, st〉〉
λxeλye : M@(y).λw[Ww(x, y)]

i 〈e, st〉
λye : M@(y).λw[Ww(x, y)]

DP :: 〈τ, τ〉

BeDom(wh-movie@)

〈e, st〉
λyeλw.Ww(x, y)

j C′

IP

λw. ti watchw tj
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Last, complete true answers to questions are obtained by applying the answerhood-operators
in (51). Compared with the AnsDayal-operator (34), the major difference is that the Hamblin set
Q is replaced with a topical property P, which can supply both propositional answers and short
answers.11 These answerhood-operators account for uniqueness effects in the same way as AnsDayal.

(51) Answerhood-operators
a. For the complete true short answer

AnsS(w)(P) = ∃α ∈ Dom(P)[w ∈ P(α) ∧ ∀β ∈ Dom(P)[w ∈ P(β)→ P(α) ⊆ P(β)]].
ια ∈ Dom(P)[w ∈ P(α) ∧ ∀β ∈ Dom(P)[w ∈ P(β)→ P(α) ⊆ P(β)]]

b. For the complete true propositional answer
Ans(w)(P) = P(AnsS(w)(P))

6. Proposal

In line with functionality approaches, I analyze pair-list readings of multi-wh questions and QiQ-
readings of questions with quantifiers as extensional functional readings. For both types of questions,
I assume that the composition involves a quantificational condition with respect to an open sentence
of the form px P f(x)qwhich expresses a functional dependency relation between the two arguments
of a two-place predicate ‘P’. In particular, in a pair-list multi-wh question, the composition involves
existential quantification of the subject-wh into an identity condition (à laKarttunen Semantics); while
in a QiQ-question, the composition involves that the subject-quantifier quantifies into a predication
condition (à la Fox 2012b). A general schema of composition is as follows, repeated from (6):

(52) A schema of composing complex questions
a. Which boy watched which movie? (Pair-list reading)

... [which-moviej ... which-boyi [ident ... [vp ti watched ti
j ]]]

b. Which movie did Det-boy(s) watch? (QiQ-reading)
... [which-moviej ... Det-boy(s)i [pred ... [vp ti watched ti

j ]]]

The subtle distinctions between these two operations of quantifying into functional dependencies
lead to a sharp contrast between multi-wh and ∀- questions with respect to domain exhaustivity. In
addition to ∀-questions, the composition schema for QiQ-readings also automatically explains why
questions with existential indefinites have choice readings as well as why questions with negative
questions do not have QiQ-readings. What’s more, with known contrasts among non-interrogative
quantifiers in distributivity and scoping, this analysis can also explain why counting quantifiers do
not license QiQ-readings.

In what follows, I will provide the root denotation of each type of complex questions upfront
(Sect. 6.1) and then show how to derive these root denotations compositionally (Sect. 6.2 and 6.3).

11Following Fox (2013), Xiang (2016, 2020) assumes a weaker definition of complete answers: a true answer to a question is
complete as long as it is not asymmetrically entailed by any true answers to this question. This answerhood is assumed to
account for mention-some readings of questions and free relatives. Since mention-some is not the focus of this paper, for
easier comparisons with competing theories in composing complex questions, here I follow Dayal (1996, 2017) and define the
complete true answer as the unique strongest true answer.

20



6.1. Question denotations

I propose that pair-list readings and QiQ-readings of complexwh-questions are extensional functional
readings. When having a QiQ/pair-list reading, a question denotes a topical property of type 〈ee, st〉.
It maps a Skolem function f to a conjunctive proposition that expresses the graph of f. Formal
illustrations of the topical properties are given in (53-54) in tandem. In specific, the (a)-denotations
are represented in a way isomorphic to the structures of composition (for details of composition, see
Sect. 6.2 and 6.3). The (b)-denotations are semantically equivalent to their (a)-counterparts but are
represented in a way more convenient for comparison.

(53) Jwhich boy watched which movie?Kpair-list
⇔ λf〈e,e〉 : Ran(f) ⊆ M@.

⋂{p | ∃-B@(λx.p = λw.Ww(x, f(x)))} (a)
⇔ λf〈e,e〉 : Ran(f) ⊆ M@.

⋂{λw.Ww(x, f(x)) | B@(x)}] (b)
(54) Jwhich movie did Det-boy(s) watch?KQiQ

⇔ λf〈e,e〉 : Ran(f) ⊆ M@.
⋂

E-min({K | Det-B@(λx.K(λw.Ww(x, f(x))))}) (a)
⇔ λf〈e,e〉 : Ran(f) ⊆ M@ ∧ Det-B@(Dom(f)).⋂

E-min({K | Det-B@(λx.K(λw.Ww(x, f(x))))}) (b)

A crucial contrast between (53b) and (54b) is that the former restricts only the range of the input
Skolem functions, while the latter restricts also the domain. More specifically, in (53), the topical
property of the multi-wh question maps any Skolem function that maps entities to atomic movies to
the graph of this function. In contrast, in (54), the topical property yielded by the corresponding QiQ-
question is definedmore restrictively only for Skolem functions that mapDet-boy(s) to atomicmovies,
and this topical property maps each such Skolem function to the conjunction of a proposition set
ranging over exactly Det-boy(s). The additional domain restriction in (54b), namely Det-B@(Dom(f)),
is a definedness condition of the value description in (54a): the quantificational predication condition
Det-B@(λx.K(λw.Ww(x, f(x)))), read as ‘for Det-boy(s) x, the proposition px watched f(x)q is amember
of K’, is defined only if the Skolem function f is defined for Det-boy(s).

For a concrete illustration of the QiQ-denotation, consider the related ∀-question. If the ‘Det’ in
(54) is every/each, the defined topical property is as follows:

(55) Jwhich movie did every/each boy watch?K
⇔ λf〈e,e〉 : Ran(f) ⊆ M@︸ ︷︷ ︸

from wh-obj

.
⋂

E-min({K | ∀-B@(λx.K(λw.Ww(x, f(x))))})︸ ︷︷ ︸
(i) from question nucleus

(a)

⇔ λf〈e,e〉 : Ran(f) ⊆ M@︸ ︷︷ ︸
from wh-obj

. [∀-B@(Dom(f)).
⋂
{λw.Ww(x, f(x)) | B@(x)}]︸ ︷︷ ︸

(ii) equivalent to (i)

(a’)

⇔ λf〈e,e〉 : Ran(f) ⊆ M@︸ ︷︷ ︸
from wh-obj

∧∀-B@(Dom(f))︸ ︷︷ ︸
from (ii)

.
⋂{λw.Ww(x, f(x)) | B@(x)} (b)

In (55a), the input can be any function f from entities to atomic movies, and for each such input f, the
output is the conjunction of the set that consists of exactly all propositions of the form pboy-x watched
f(x)q. Crucially, as represented explicitly in (55a’), this output inference is partial — the universal
predication condition over the open sentence ‘boy-x watched f(x)’ is defined only if f is defined for
every boy in the discourse domain, which therefore yields domain exhaustivity. Finally, as in (55b),
moving this definedness condition to the domain condition of the topical property yields that the
input Skolem functions pair each boy with an atomic movie. In short, the topical property of the
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∀-question is the same as that of the corresponding multi-wh question, except that it presupposes
domain exhaustivity.

At this point, it is clear why I pursue a functionality approach instead of a family-of-questions
approach: the domain exhaustivity effect in a ∀-question comes from a definedness condition of
applying quantification into a functional dependency. In family-of-questions approaches, however,
domain exhaustivity is attributed to an operation outside the question nucleus (e.g., the point-wise
answerhood-operator as in the analysis of Fox 2012a,b), which clearly cannot capture the semantic
contrast between ∀-questions and multi-wh questions in terms of their structural differences.

6.2. Composing pair-list multi-wh questions

Figure 2 illustrates the derivation of the root denotation of a pair-list multi-wh question. As marked in
the tree diagram, this composition precedes in four steps. First, deriving a functional dependency.
Within IP, the argument variable of the complex functional trace of the object-wh is co-indexed with
the trace of the subject-wh, yielding an open proposition that expresses a functional dependency
relation between the subject and object arguments of watched. Second, quantifying-into an identity
condition. Employing an identity (Id-)operator yields an identity relation between a covert variable p
and the open sentence denoted by IP. At node 1, the subject-wh, interpreted as an existential quantifier,
binds the argument variable in IP across the Id-operator, yielding an existential identity condition
with respect to a sentence expressing a functional dependency. Third, creating a function graph.
Abstracting the variable p cross the existential identity condition yields the set of propositions of
the form pboy-x watched f(x)q. Conjoining this set of propositions yields the graph of the Skolem
function f. Here the

⋂
-closure can be considered as a function graph creator in the sense of Dayal 2017.

Last, creating a topical property. Abstracting the index of the functional variable yields a property
(of type 〈ee, st〉) that maps each Skolem function to a proposition that describes the graph of this
Skolem function. Further, the fronted DP ‘BeDom(wh-movie@)’ restricts the domain of this property
and yields a similar property only defined for Skolem functions that range over atomic movies. The
yielded property is the topical property of this multi-wh question.

(56) Steps 1 & 2: Quantifying-into an identity condition of a functional dependency
a. JIPK = λw.Ww(xj, fi(xj))

b. JIdK = λατλβτ .α = β

c. JC′K = JIdK(p)(JIPK)
= [p = λw.Ww(xj, fi(xj))]

d. Jwh-boy@K = λP〈e,t〉.∃x[B@(x) ∧ P(x)]

e. J1K = Jwh-boy@K(JC′K)
= ∃x[B@(x) ∧ p = λw.Ww(x, fi(x))]

(57) Step 3: Creating a function graph
a. JCP1K = λp.∃x[B@(x) ∧ p = λw.Ww(x, fi(x))]

= {λw.Ww(x, fi(x)) | B@(x)}
b. J2K =

⋂{λw.Ww(x, fi(x)) | B@(x)}
(58) Step 4: Creating a topical property

JCP2K = λf〈e,e〉 : Ran(f) ⊆ M@.
⋂{λw.Ww(x, f(x)) | B@(x)}

22



CP2 :: 〈ee, st〉 Topical property
λf〈e,e〉 : Ran(f) ⊆ M@.

⋂{λw.Ww(x, f(x)) | B@(x)}

DP

BeDom(wh-movie@)

〈ee, st〉

i C′

2 :: st Function graph⋂{λw.Ww(x, fi(x)) | B@(x)}⋂
CP1 :: 〈st, t〉

λpst 1 :: t Quantification-into identity
∃x[B@(x) ∧ p = λw.Ww(x, fi(x))]

DP

wh-boy@

et

j C′:: t

Id p IP :: st
Functional dependency
λw.Ww(xj, fi(xj))

λw. tj watchw tj
i

Figure 2: Composition of the pair-list multi-wh question which boy watched which movie?

It is worthy noting that, in contrast to basic functional questions, pair-list multi-wh questions do
not admit fragment functional answers like (59a). Instead, multi-wh questions are only congruent
with fragment answers that are lists of pairs as in (59b) (Kang 2012; Sharvit and Kang 2017).12 From
the perspective of functionality approaches, as Chierchia (1993) argues, this gap shows that pair-list
readings can be treated as special functional readings, but functional readings cannot be treated as
special pair-list readings because the distribution of functional readings is more restrictive.

(59) Which boy watched which movie?
a. # His favorite superhero movie.
b. Andy, Ironman, Billy, Spiderman, Clark, Hulk.

6.3. Composing QiQ-questions

The root denotation of the QiQ-question in (54) is uniformly composed based on the LF schema in
Figure 3. In particular, as for the denotation in (54b), the condition on the range of the input Skolem
functions (i.e., f maps to atomic movies) is supplied by the fronted wh-object. All the rest, including
the condition on the domain of the input Skolem function (i.e., that f is defined for Det-boy(s))
and the output proposition which describes the graph of the input Skolem function, are from the
question nucleus (i.e., the scope of the fronted wh-object). Observe that the four general steps in
this composition are in tandem with those in the composition of a pair-list multi-wh question. The
following subsections will show how this composition schema derives each type of QiQ-readings.

12Sharvit and Kang (2017) provide an explanation to why pair-list questions do not admit intensional functional answers.
However the syntax of multi-wh questions assumed by Sharvit and Kang is quite different from mine. I leave this issue open.
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CP :: 〈ee, st〉 Topical property

DP

BeDom(wh-movie@)
i C′

2 :: st Function graph

⋂
γ :: 〈st, t〉

E-min
λK〈st,t〉 1 :: t quantification-into predication

DP

Det-boy(s)@

et

j t

K IP :: st Functional dependency

λw. tj watchw tj
i

Figure 3: Composition of the QiQ-question which movie did Det-boy(s) watch?

(54) Jwhich movie did Det-boy(s) watch?KQiQ
⇔ λf〈e,e〉 : Ran(f) ⊆ M@︸ ︷︷ ︸

from wh-object

.
⋂

E-min({K | Det-B@(λx.K(λw.Ww(x, f(x))))})︸ ︷︷ ︸
(i) from nucleus

(a)

⇔ λf〈e,e〉 : Ran(f) ⊆ M@∧ Det-B@(Dom(f))︸ ︷︷ ︸
definedness cond of (i)

.
⋂

E-min({K | Det-B@(λx.K(λw.Ww(x, f(x))))})
(b)

Recall that questions with a quantificational subject admit both functional readings and QiQ-
readings. The following compares the derivations of these two readings.

On the one hand, the same as in a functional reading, the derivation of a QiQ-reading involves
creating a functional dependency relation between the subject-quantifier and the object-wh. To
derive this dependency, the fronted object-wh ‘BeDom(wh-movie@)’ leaves a complex functional
trace, whose argument index is bound by the subject-quantifier ‘Det-boy(s)@’.

On the other hand, different from the case of a basic functional reading but the same as in a pair-list
multi-wh question, here the functional variable f in the complex functional trace is extensional (of type
〈e, e〉, not 〈s, ee〉). Moreover, here the question nucleus involves two covert operations — predication
and minimization. These operations are similar to what Fox (2012b) assumes for composing ∀-
questions (see (42)), but they depart from Fox’s particular implementation in two respects, yielding
desirable consequences in accounting for the domain exhaustivity effects in ∀-questions and the
choice readings of ∃-questions. First, in the presented analysis, the predication operation is applied
to an open proposition λw.Ww(x, f(x)) (as opposed to an open question). This proposition expresses
a functional dependency between the arguments of watched. The binding of the variables x and f
contribute to the derivation of domain exhaustivity (Sect. 6.3.1). Second, the minimization operator
E-min is semantically weaker than the min-operator that Fox adopts from Pafel (1999). As defined in
(60) and illustrated in (61), the E-min-operator is lexically encoded with a choice function variable
fch and does not presuppose uniqueness.13 Replacing min with E-min makes the analysis feasible of

13For readers who are familiar with Boolean Semantics, the E-min-operator is roughly the same as the collectivity raising
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tackling ∃-questions (Sect. 6.3.2).

(60) JE-minK = λα〈σt,t〉. fch({K〈σ,t〉 | K ∈ α ∧ ∀K′ ∈ α[K′ 6⊂ K]})
(For a set of sets α: JE-minK(α) is a set K s.t. K is in α and no set in α is a proper subset of K.
[ fch stands for a free choice function variable.])

(61) Let a and b be two distinct entities, A = {∅, {a}, {b}}, and B = {{a}, {b}}. Then we have:
a. JminK(A) = JE-minK(A) = ∅;
b. JminK(B) is undefined;
c. JE-minK(B) has two possible values: {a} and {b}.

6.3.1. Composing ∀-questions

This section presents the details of composing a pair-list ∀-question. The most important issues are
to derive the pair-list reading and to account for the domain exhaustivity effect.

The LF is given in Figure 4. I divide the composition into four steps, in parallel to the composition
of the corresponding pair-list multi-wh question (Sect. 6.2). First, deriving a functional dependency.
The IP denotes an open proposition expressing a functional dependency relation, composed in
exactly the same way as the IP in the corresponding multi-wh question. Second, quantifying-into a
predication condition. Anull predicate K (of type 〈σ, σt〉where σ is an arbitrary type) combines with
the open proposition denoted by IP, yielding a simple predication condition that this open proposition
is a member of K. Next, the subject-quantifier every/each-boy quantifies into this predication condition,
yielding a universal predication condition as stated in (62b). Crucially, this universal predication
condition is defined only if f is defined for every boy, which yields domain exhaustivity. Third,
creating a function graph. Abstracting the predicative variable K returns the set of K sets that satisfy
the universal predication condition yielded from Node 1. These are the sets that contain all the
propositions of the form pboy-x watched f(x)q, as in (63a). At Node γ, applying the minimizer E-min
returns one of the safistied minimal K sets. Among those satisfying the universal quantification
predication, there is only one such minimal set, namely, the set of the propositions of the form
pboy-x watched f(x)q, as in (63b). At Node 2, this set of propositions is flattened by the application
of a

⋂
-closure, returning a conjunctive proposition describing the graph of the function f, as in

(63c). Forth, creating a topical property. The fronted ‘BeDom(wh-movie@)’ binds the f variable and
restricts the range of f to the set of atomic movies. The possible inputs of this topical property are
therefore Skolem functions that map each boy to an atomic movie, and the outputs are conjunctive
propositions describing the graph of this function.

(62) Step 1 & 2: Quantifying-into the predication condition of functional dependency
a. JIPK = λw.Ww(xj, fi(xj)) (Equivalent to (56))
b. J1K = Jevery boy@K(λx.K(λw.Ww(x, fi(x))))

= ∀x ∈ B@[K(λw.Ww(x, fi(x)))] (defined only if ∀x ∈ B@[x ∈ Dom(f)])
(For every boy x, the proposition ‘x watched f(x)’ is a member of K.)

(63) Step 3: Creating a function graph
a. λK.J1K = λK. ∀x ∈ B@[λw.Ww(x, f(x)) ∈ K]

= λK : ∀x ∈ B@[x ∈ Dom(f)] .{λw.Ww(x, f(x)) | B@(x)} ⊆ K

operator in Winter 2001.
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CP2 :: 〈ee, st〉 Topical property
λf〈e,e〉 : Ran(f) ⊆ M@ ∧ ∀x ∈ B@[x ∈ Dom(f)].

⋂{λw.Ww(x, f(x)) | B@(x)}

DP

BeDom(wh-movie@)
i 2 :: st Function graph

∀x ∈ B@[x ∈ Dom(f)].
⋂{λw.Ww(x, fi(x)) | B@(x)}⋂

γ :: 〈st, t〉

E-min
λK〈st,t〉 1 :: t Quantification-into predication

∀x ∈ B@(x)[K(λw.Ww(x, fi(x)))]

DP

every boy@

et

j t

K IP :: st
Functional dependency
λw.Ww(xj, fi(xj))

λw. tj watchw tj
i

Figure 4: Composition of the ∀-question which movie did every boy watch?

b. JγK = JE-minK(λK.J1K)
= ∀x ∈ B@[x ∈ Dom(f)] .{λw.Ww(x, f(x)) | B@(x)}

c. J2K =
⋂
(JE-minK(λK.J1K))

= ∀x ∈ B@[x ∈ Dom(f)] .
⋂{λw.Ww(x, f(x)) | B@(x)}

(64) Step 4: Creating a topical property
JCPK = λf〈e,e〉 : Ran(f) ⊆ M@ ∧ ∀x ∈ B@[x ∈ Dom(f)] .

⋂{λw.Ww(x, f(x)) | B@(x)}

Step 2 of this composition — quantification-into predication — is especially important. First, it
carries forward the advantage of Fox’s analysis that the subject-quantifier standardly combines with
a one-place predicate of type 〈e, t〉. In contrast to earlier accounts (e.g., Groenendijk and Stokhof 1984;
Chierchia 1993; Dayal 1996, 2017), there is no need of assuming a type-shifting operation or making
use of a minimal witness set. What’s more, since here the subject-quantifier also binds the argument
variable of the functional wh-trace, the quantifying-in operation yields the following definedness
condition: each input Skolem function f is defined for Det-boy(s). For example, for the ∀-question,
the universal predication condition (62b) is defined only if f is defined for every boy. The same as
any presupposition, this definedness condition projects over CP, yielding a domain exhaustivity
effect for the ∀-question.

The explanation of domain exhaustivity crucially relies on the presence of a universal quantifier
— the domain exhaustivity effect comes from the universal predication condition, and especially, the
binding relation between a universal quantifier and the argument of the functional wh-trace. Nicely,
this analysis does not over-predict domain exhaustivity for a pair-list multi-wh question: in amulti-wh
question, the argument variable of the functional trace of the object-wh is existentially bound by the
subject-wh. For comparison, the family-of-questions approach of Fox (2012a,b) attributes domain
exhaustivity to an operation outside the question nucleus, namely, the point-wise answerhood-
operator. Since the selection of answerhood is independent from the root structure/meaning of
a question, the family-of-questions approach cannot explain the contrast in domain exhaustivity
between ∀-questions and multi-wh questions.
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To sum up, the QiQ-reading of a ∀-question is [+d-exh,+pl,−ch]. It is subject to domain ex-
haustivity because the universal predication condition (Node 1) is defined only if the input Skolem
function f is defined for every boy. It expects a pair-list answer because the yielded eligible mini-
mal proposition set K (Node γ) that satisfies the aforementioned universal predication condition
is a non-singleton set ranging over multiple boys. It does not have a choice flavor because there is
only one such eligible minimal K set.

6.3.2. Composing ∃-questions

The composition of a choice ∃-question is in analogy to that of the pair-list ∀-question. Note 1 creates
an existential predication condition over the open proposition λw.Ww(x, f(x)), as in (65a). At Node γ,
binding the K variable with the E-min-operator across the subject-indefinite one of the boys returns one
of the minimal K sets that satisfy this existential predication condition. Crucially, different from the
case of the ∀-question, here there are multiple eligible minimal K sets, each of which is a singleton
set consisting of exactly one proposition of the form pboy-x watched f(x)q, as in (65b). (‘x = fch(B@)’
means that the boy x is chosen by a choice function variable fch encoded within the E-min-operator.)
Each such minimal K set supplies a possible topical property for the question, which therefore gives
rise to a choice flavor. The rest steps are the same as in the ∀-question.

(65) Which movie did one of the boys watch?
[cpBeDom(wh-movie@) λf〈e,e〉 [2

⋂
[γ E-min λK〈st,t〉 [1 one-boy@ λx [K(λw.x-watchw-f(x))]]]]]

a. J1K = ∃x ∈ B@[K(λw.Ww(x, f(x)))]

b. JγK = JE-minK(λK.J1K)
= {λw.Ww(x, f(x))}, where x = fch(B@)

c. J2K =
⋂{λw.Ww(x, f(x))}

= λw.Ww(x, f(x)), where x = fch(B@)

d. JCPK = λf〈e,e〉 : Ran(f) ⊆ M@ .λw[Ww(x, f(x))], where x = fch(B@)

In contrast to the case of a ∀-question, the yieldedQiQ-reading of an ∃-question is [−d-exh,−pl,+ch].
In specific, this reading is not subject to domain exhaustivity because the existential predication
condition (65a) only requires f to be defined for at least one of the boys.14 The possible answers to
this question are single-pairs, not pair-lists, because the minimal K sets satisfying the existential
predication condition are all singleton sets, as seen in (65b). This reading has a choice flavor, because
there can be multiple eligible minimal K sets satisfying the existential predication condition.

The above discussion is for the ∃1-quantifier one of the boys. The rest of this section extends this
analysis to other existential indefinites of the form ‘Num-NP’ or ‘Num-of-the-NP’. Recall from Sect.
3 that pair-list readings are not available in matrix ∃-question. For example, the ∃2-question in (66c)
cannot be interpreted with distributivity in between quantification and uniqueness.

(66) I know that every student voted for a different candidate. Which candidate did ...
a. ... every/each student vote for? (∀/each� ι)
b. ... one of the students vote for? (∃1� ι)
c. # ... two of the students vote for? (∃2� each� ι)

14In (65d-e), there is no need to write out the domain condition that f must be defined for at least one boy, because
this condition is entailed by the definedness condition of the output proposition: for any chosen boy x, the proposition
λw.Ww(x, f(x)) is defined only if f is defined for this x.
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To avoid over-generating pair-list readings, pioneering works such as Dayal 1996 and Fox 2012b
derive pair-list readings in ways that would crash in questions with a non-universal quantifier. In
Dayal’s analysis, the derivation of pair-list crashes because existential quantifiers have multiple
minimal witness sets. In Fox’s analysis, the derivation crashes because we cannot find the unique
minimal set among the sets that satisfy an existential predication condition. Obviously, this strategy
comes with an expense of failing to account for choice readings of ∃-questions.

I propose that the determiner of the numeral-modified indefinite two of the boys is not ∃2 but
rather ∃; in other words, the cardinal numeral two is part of the restrictor of the determiner. With
this assumption, the quantifier two of the boys ranges over the set of entities that are pluralities of two
boys, and it denotes a set of sets that contain at least one of such plural entities.

(67) a. ∃2 =def λP〈e,t〉λQ〈e,t〉.|P ∩Q| = 2

b. ∃ =def λP〈e,t〉λQ〈e,t〉.P ∩Q 6= ∅

This assumption is supported by the contrast between (68a-b): unlike distributive universal quantifiers
such as every/each boy, the existential quantifier two (of the) boys can grammatically combine with a
collective predicate such as formed a team. This fact shows that the quantifier two (of the) boys is not
distributive in lexicon, and more specifically, it should not be defined as existentially distributing
over two atomic boys.

(68) a. Every/Each boy joined/*formed a team.
b. Two (of the) boys joined/formed a team.

The composition of two of the boys precedes as in (69). First, of combines with an entity denoted by
the the-phrase and returns a set of subparts of this entity. Next, the numeral two, as a basic predicate
restrictor, combines with a set of entities and returns a subset consisting of only the entities that have
exactly two atomic (At) subparts, as in (69c-d). Finally, a covert existential determiner ∅∃ combines
with this set-denoting NumP and returns an existential generalized quantifier (Link 1987).

(69) two of the boys DP

D

∅∃

〈e, t〉

n/two
of e

the boys@
Assume that the discourse domain has three boys abc:
a. Jthe boys@K = a⊕ b⊕ c

b. JofK = λxe.{y | y ≤ x}
c. JtwoK = λQ〈e,t〉.{x | |At(x)| = 2∧Q(x)}
d. Jtwo of the boys@K = {a⊕ b, b⊕ c, a⊕ c}
e. J∅∃ two of the boys@K = λP〈e,t〉.∃x[|At(x)| = 2∧ Bs@(x) ∧ P(x)]

= λP〈e,t〉.∃x ∈ {a⊕ b, b⊕ c, a⊕ c}[P(x)]

Return to the composition of a matrix ∃2-question. In the following, 2-Bs@ abbreviates for the set
of entities that are pluralities of two boys in the actual world. The same as in (65b), here the eligible
minimal K sets yielded by the application of the E-min-operator are all singleton sets, each of these

28



sets consists of a proposition of the form px watched f(x)q where x is the plurality of two boys, as in
(70b). Hence, the derived reading is [−pl], the same as in the ∃1-question.

(70) Which movie did two of the boys watch? (QiQ-reading)
[cpBeDom(wh-movie@) λf〈e,e〉 [2

⋂
[γ E-min λK [1 two-boys@ λx [K(λw.x-watchw-f(x))]]]]]

a. J1K = ∃x ∈ 2-Bs@[K(λw.Ww(x, f(x)))]

b. JγK = JE-minK(λK.J1K)
= {λw.Ww(x, f(x))}, where x = fch(2-Bs@)

c. J2K = λw.Ww(x, f(x)), where x = fch(2-Bs@)

d. JCPK = λf〈e,e〉 : Ran(f) ⊆ M@.λw[Ww(x, f(x))], where x = fch(2-Bs@)

In contrast to matrix ∃-questions, extensional embeddings of ∃-questions sometimes admit pair-
list readings (Szabolcsi 1997a; Beghelli 1997; Appendix B). For example, the embedding sentence (71)
is felicitous even if each boy watched a different movie. I assume that this sentence has the LF in
(71a) and is interpreted as in (71b). In this LF, the existential indefinite moves over the embedding
verb know, and its trace in the matrix clause is associated with a covert distributor each, which yields
the ‘each� ι’ reading.

(71) Susi knows [which movie two of the boys watched]. (∃2� each� ι)
a. [[∅∃ two-boys@] λxe [[x each] λye [Susi knows which movie y watched]]]
b. ∃x[x ∈ 2-Bs@ ∧ ∀y ∈ At(x)[JSusi knows which movie y watchedK]]

In matrix ∃-questions, however, pair-list readings cannot be licensed by VP-each. In (72), the semantic
contribution of the distributor each is just that the two chosen boyswatched the samemovie separately,
not that they watched possibly a different movie. The presented analysis explains the fact easily:
to derive a pair-list reading as in ∀-questions, the quantificational predication condition has to
be distributive. Such distributivity arises only if (i) the quantifier itself is distributive, or if (ii) an
additional distributor appears between the quantifier and the null predication operator K. Condition
(i) is easily seen in questions with an each/every-subject. Condition (ii) does not apply to English,
because VP-each can only be interpreted within IP as in (72a), not as high as in (72b).

(72) Which movie did two of the boys each watch? (∃2� each� ι)
a. ... [

⋂
[E-min λK [two-boys@ λxe [K [ip λw [[x each] λye [y watchw f(y))]]]]]]]

b. * ... [
⋂

[E-min λK [two-boys@ λxe [[x each] λye [K [ip λw [y watchw f(y))]]]]]]]

6.3.3. Composing no-questions

Recall that negative quantifiers do not license QiQ-readings. For example, the no-question (73) cannot
be responded by silence. This question has only a individual reading and a functional reading.

(73) Which movie did {no boy, none of the boys} watch? (3Individual, 3Functional, 7QiQ)
a. Hulk.
b. The movie that his grandpa recommended.
c. # [Silence]
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The proposed analysis easily explains the deviance of the QiQ-reading in a no-question. The minimal
set that contains no proposition of the form pboy-x watched f(x)q is simply the empty set, whose
conjunction is undefined. Hence, composing the no-question (73) using the LF schema in Figure
3 yields a function that maps each input Skolem function to undefinedness. The main steps of the
composition are given as follows:

(74) Which movie did no boy watch? (#QiQ-reading)
[cpBeDom(wh-movie@) λf〈e,e〉 [2

⋂
[γ E-min λK〈st,t〉 [1 no-boy@ λxe [K(λw.x-watchw-f(x))]]]]]

a. Jno boy@K = λP〈e,t〉 .¬∃x[boys@(x) ∧ P(x)]

b. J1K = ¬∃x ∈ B@[K(λw.Ww(x, f(x)))]

c. JγK = JE-minK(λK.J1K) = ∅
d. J2K is undefined

6.3.4. Questions with a counting quantifier

It looks appealing and straightforward to extend the analysis in Sect. 6.3.3 for negative quantifiers to
other decreasing quantifiers. For example, as seen in (75), decreasing quantifiers such as at most two
boys and less than three boys also do not license QiQ-readings. The boy(s)-movie pair answer (75b)
must be read in the same way as the individual answer (75a) except that the two boys are named
explicitly, and the uniqueness inference triggered by which movie must be interpreted globally.

(75) Which movie did {at most two, less than three} boys watch?
# ‘For {at most two, less than three} boys x, [tell me] which unique movie did x watch?’
a. Hulk. (Intended: ‘Hulk is the only movie watched by {at most two, less than three} boys.

The other movies were watched by more boys.’)
b. Andy and Billy watched Hulk.

i. 3 Individual reading: ‘Hulk is the onlymovie watched by {at most two, less than
three} boys, who are Andy and Billy. The other movies were watched by more
boys.’

ii. 7 Choice reading: ‘Andy and Billy are two boys who both watched only Hulk.’

Following Hackl (2000), Xiang (2019a) decomposes a decreasing quantifier into a negative determiner
no and a set-denoting restrictor, as in (76). With this decompositional analysis, the unavailability of
QiQ-readings in (75) can be explained in the same way as in (74).

(76) a. Jat most two boys@K = λP〈e,t〉 .¬∃x[#At(x) > 2∧ Bs@(x) ∧ P(x)]

b. Jless than three boys@K = λP〈e,t〉 .¬∃x[#At(x) ≥ 3∧ Bs@(x) ∧ P(x)]

However, the questions in (77) do not admit QiQ/choice-readings either, despite that the quanti-
fiers at least two boys and exactly two boys are not decreasing. The same as in (75), here the uniqueness
inference triggered by the singular-markedwh-object has to be interpreted above the subject-quantifier.
This fact shows that the unavailability of QiQ-readings in (75) and (77) has nothing to do with the
monotonicity pattern of the subject-quantifier.

(77) Which movie did {at least, exactly} two boys watch? (3Individual, 3Functional, 7QiQ)
# ‘For {at least two, exactly two} boys x, [tell me] which unique movie did x watch?
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In contrast to Xiang 2019a, I argue that the unavailability of QiQ-readings in (75) and (77) comes
from a general syntactic constraint that counting quantifiers are scopally unproductive (Szabolcsi
1997b; Beghelli and Stowell 1997; among others). Beghelli and Stowell (1997) distinguish between
the following four types of non-interrogative quantifiers and argue that they have different landing
sites. In particular, counting quantifiers have very local scope and resist specific interpretations.

(78) Types of non-interrogative quantifiers (Beghelli and Stowell 1997)
a. Negative quantifiers: no-NP.
b. Universal-distributive quantifiers: every/each-NP
c. Grouping quantifiers: indefinites like a/some/several-NP, bare-numeral quantifiers (e.g.,

one student, three students), and the-phrases.
d. Counting quantifiers: decreasing quantifiers headed with determiners like few, fewer

than five, and at most six; cardinality expressions with a modified numerals (e.g., more
than five, between six and nine).

To derive the QiQ-reading of a question, the quantifier in this question must escape the IP and take
scope above a null predicative operator K. Counting quantifiers cannot land at such a high position
and thus do not license QiQ-readings.

6.4. Summary

To sum up the core analysis, I have argued that pair-list readings of multi-wh questions and QiQ-
readings of questions with a quantificational subject are extensional functional readings. In these
questions, the object-wh leaves a complex functional trace, in which the argument index is bound
by the subject-wh/quantifier. As generalized in (79a) and (79b), for both types of questions, the
composition of the question nucleus precedes in three steps as described in (80).

(79) a. Which boy watched which movie? (Pair-list reading)
... wh-movie@ λf〈e,e〉 [c

⋂
λp〈s,t〉 [b wh-boy@ λxe [ [Id p] [a λw.x watchedw f(x) ]]]]

b. Which movie did Det-boy watch? (QiQ-reading)
... wh-movie@ λf〈e,e〉 [c

⋂
E-min λK〈st,t〉 [b Det-boy@ λxe [ K [a λw.x watchedw f(x) ]]]]

(80) a. Indexations with the traces of the quantifiers and the wh-phrases yield an open sentence
expressing a functional dependency;

b. The subject-wh/quantifier quantifies-into an identity/predication condition of the func-
tionality sentence;

c. Conjoining a set of propositions in the functionality form of (a) yields a function graph.

Table 2 compares the nucleus denotations of four related pair-list multi-wh questions and QiQ-
questions. In all questions, the asserted component of the nucleus denotation is the conjunction of a
proposition set that describes the graph of the input Skolem function f. In the three questions with a
non-interrogative subject, the quantificational predication condition yielded at the (b)-node gives
rise to a definedness condition which restricts the domain of the input Skolem function f. In contrast,
the multi-wh question does not have this condition and therefore is free from domain exhaustivity.

The QiQ-effect in questions with a non-interrogative quantifier is derived by extracting one of
the minimal proposition sets that satisfy the quantificational predication condition yielded at the
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subject-type Domain condition of f Function graph of f d-exh pl ch
which boy

⋂{λw.Ww(x, f(x)) | B@(x)} − + −
every/each boy ∀x ∈ B@[x ∈ Dom(f)]

⋂{λw.Ww(x, f(x)) | B@(x)} + + −
n of the boys ∃x ∈ n-Bs@[x ∈ Dom(f)]

⋂{λw.Ww(x, f(x))} (x ∈ n-Bs@) − − +
none of the boy ¬∃x ∈ B@[x ∈ Dom(f)]

⋂
∅ − − −

Table 2: Comparing the denotation of the question nucleus

(b)-node. This analysis naturally explains the contrasts between ∀-questions and ∃-questions with
respect to the following three parameters:

– [±d-exh]: As in a ∀-question, the yielded QiQ-reading presupposes domain exhaustivity if the
quantificational predication condition yielded at the (b) is subject to a definedness condition
that the input f is defined for every element in the quantification domain of the subject.

– [±pl]: As in an ∀-question, with other conditions being equal, the yielded QiQ-reading admits
pair-list answers only if there is a non-singleton set of propositions that minimally satisfies
the quantificational predication condition yielded at (b).

– [±ch]: As in an ∃-question, with other conditions being equal, the yielded QiQ-reading has
a choice flavor if there are multiple minimal proposition sets satisfying the quantificational
predication condition yielded at (b).

In addition to questions with a universal quantifier or an existential indefinite, this section has
also explained why in many cases QiQ-readings are unavailable. In questions with a negative
quantifier (e.g., no boy, none of the boys), QiQ-readings are semantically deviant because the only
minimal proposition set that satisfies a negative-quantificational predication condition is the empty
set. In questions with a counting quantifier (e.g., exactly two boys, two or more (of the) boys), the LF used
for deriving QiQ-readings is unavailable because counting quantifiers are unproductive in scoping.

7. Quantificational variability effects

As seen in Sect. 4.1.2, defining pair-list questions as sets of conjunctive propositions, the functionality
approach of Dayal (1996, 2017) cannot account for the QV effects in embeddings of pair-list questions.
Dayal defines simplex questions and pair-list questions uniformly as sets of propositions. In the case
of embedding a simplex question, the most natural way for Dayal to define a QV inference is to let
the matrix adverbial quantify over a set of atomic propositions, as exemplified in (81).

(81) Jill mostly knows [which students left].
 ‘Most p: p is a true proposition of the form pstudent-x leftq, Jill knows p.’

This proposition-based definition of QV inferences, however, is infeasible for embeddings of pair-list
questions if pair-list questions are defined as conjunctive propositions (Lahiri 2002). For example, in
case that three relevant boys b1b2b3 watched movies m1m2m3, respectively, the strongest true proposi-
tional answer of the embedded pair-list question in (82) is λw.Ww(m1, b1)∧Ww(m2, b2)∧Ww(m3, b3),
and the embedding sentence is true only if Jill knows at least two of the three atomic conjuncts, as in
(82a); however, these conjuncts cannot be semantically retrieved out of their conjunction. In contrast,
family-of-questions approaches such as Fox 2012a,b can derive this QV inference by defining the
quantification domain as a set of sub-questions as in (82b).
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(82) Jill mostly knows [pair-list

{
which movie every boy watched
which boy watched which movie

}
].

a.  ‘Most p: p is a true proposition of the form pboy-x watched movie-yq, Jill knows p.’
b.  ‘Most Q: Q is a question the form pwhich movie boy-x watchedq, Jill knows Q.’
c.  ‘Most 〈x, y〉: 〈x, y〉 is a boy-movie pair and x watched y, Jill knows that x watched y.’

Although this paper does not pursue a family-of-questions approach, the assumed hybrid cate-
gorial approach to question composition unlocks the option (82c), where the quantification domain
of mostly is a set of atomic functions. In my proposal, a pair-list question denotes a topical property
that maps each input Skolem function to a conjunctive proposition. From this topical property, we
can extract the Skolem function that yields the strongest true answer to this question and define the
quantification domain of mostly as a set of atomic subparts of this Skolem function. For example in
(84), the strongest true answer is the Skolem function (84a), and its atomic subparts are those in (84b).

(83) a. A function f is atomic if and only if
⊕

Dom(f′) is atomic.
b. At(f) = {f′ | f′ ⊆ f and f′ is atomic}

(84) Which boy watched which movie?/ Which movie did every boy watch?
(Context: The discourse domain includes three boys b1b2b3 and three movies m1m2m3. In a world
w, b1 watched only m1, b2 watched only m2, and b3 watched only m3.)

a. AnsS(w)(JQK) =

 b1 → m1
b2 → m2
b3 → m3

 b. At(AnsS(w)(JQK)) =


[b1 → m1]

[b2 → m2]

[b3 → m3]


Xiang 2020 provides two ways to define a QV inference based on short answers. Ignoring the

complications needed for accounting formention-some readings, I schematize these twodefinitions as
in (85a-b).15 (For a compositional derivation, see Cremers 2018.) In both definitions, the quantification
domain of the matrix adverbial mostly is a set of atomic entities or a set of atomic Skolem functions.

(85) The QV inference of ‘Jill mostly knows Q’
a. λw.Most x[x ∈ At(AnsS(w)(JQK))][knoww(j, JQK(x)]

(For most x such that x is an atomic subpart of the strongest true short answer to Q, Jill
knows the inference JQK(x).)

b. λw.Most x[x ∈ At(AnsS(w)(JQK))][knoww(j, λw′.x ≤ AnsS(w′)(JQK))]
(For most x such that x is an atomic subpart of the strongest true short answer to Q, Jill
knows that x is a subpart of the strongest true short answer to Q.)

In (85a), the scope of the adverbial mostly says that Jill knows an atomic proposition, which is
derived by applying the topical property of the embedded question to an entity or Skolem function x,
where x is an atomic subpart of the strongest true answer to the embedded question. This definition
works for embeddings of multi-wh questions, but not for embeddings of ∀-question: the topical
property of the ∀-question which movie every boy watched is only defined for Skolem functions that are
defined for every boy, not for atomic Skolem functions such as [b1 → m1].

Alternatively, in (85b), the scope of mostly says that Jill knows a sub-divisive inference, which is
semantically equivalent to that Jill correctly identifies most of the boy-watched-movie pairs. This

15Xiang (2020) considers also mention-some readings of questions, where a question can have multiple complete true
answers. Once mention-some reading is concerned, AnsS(w)(Q) needs to be defined as a set of entities/functions, not one
single entity/function.
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definitions works also for ∀-questions. In the context described in (84), this sub-divisive inference is
true if and only if in every world w′ such that w′ is compatible with Jill’s belief, the strongest true
short answer to the embedded ∀-question in w′ is among the seven Skolem functions in Figure 5. This
figure illustrates a partition of possible worlds grouped based on which movie each of the three boys
watched. The world w described in (84) belongs to the middle cell. In the other cells, correspondences
conflicting with w are colored in gray. It is straightforward to see that the union of the seven cells is
equivalent to the following proposition: ‘for most of the pairs 〈b, m〉 in {〈b1, m1〉, 〈b2, m2〉, 〈b3, m3〉},
b watched m.’ Knowing this inference simply means correctly identifying most of the three boy-
watched-movie pairs.

b1 → m2
b2 → m2
b3 → m3

 b1 → m3
b2 → m2
b3 → m3


b1 → m1

b2 → m1
b3 → m3

 b1 → m1
b2 → m2
b3 → m3

 b1 → m1
b2 → m3
b3 → m3


b1 → m1

b2 → m2
b3 → m1

 b1 → m1
b2 → m2
b3 → m2


Figure 5: Illustration of the sub-divisive inference in the quantification scope of (85b)

8. Conclusions

In this paper, I have made a novel observation that pair-list ∀-questions and their multi-wh counter-
parts are semantically different — only the ∀-questions are subject to domain exhaustivity. Given
this contrast, I have argued that the structure of composition of a pair-list ∀-question must be distinct
from that of its multi-wh counterpart. Furthermore, drawing on the uniform syntactic constraints
on distributing QiQ-readings, I have concluded that QiQ-readings of matrix questions should be
derived uniformly.

Influential accounts such as Dayal 1996, 2017 and Fox 2012a,b are not aware of the contrast
between ∀- and multi-wh questions with respect to domain exhaustivity. These accounts treat pair-
list questions uniformly and compose these questions either with the same LF or with different LFs
that yield the same root denotation. In addition, to explain why only subject every/each-phrases
license pair-list readings, these accounts derive pair-list readings in a way that crashes in questions
with a non-universal quantifier. In consequence, they overly predict domain exhaustivity effects for
multi-wh questions and fail to account for choice readings of ∃-questions.

This paper has presented a novel analysis to compose complex questions. This analysis has three
core ingredients. First, in line with functionality approaches, I have proposed that QiQ-questions
and pair-list multi-wh questions both involve wh-dependencies — the subject-wh/quantifier binds
the argument variable of the functional trace of the wh-object. In particular, in a pair-list multi-wh
question, the subject-wh quantifies into an identity condition with respect to this wh-dependency
relation; in a QiQ-question, the subject-quantifier quantifies-into a predication relation with respect
to this dependency. The subtle differences between the two quantifying-in operations are responsible
of the contrast between ∀- and multi-wh questions with respect to domain exhaustivity. Second,
for questions with quantifiers in specific, inspired by Fox (2012b), I have assumed that the seeming
QiQ-effect is derived by extracting one of theminimal proposition sets that satisfy the quantificational
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predication condition. This analysis naturally predicts which questions admit QiQ-readings and
whether their QiQ-readings are subject to domain exhaustivity, admit pair-list answers, and have a
choice flavor. Finally, adopting the hybrid categorial approach to compose questions, the presented
analysis have also overcome the difficulty with the functionality analysis of Dayal 1996 in accounting
for the QV effects in embeddings of pair-list questions.

Appendix A. The partition-based approach

Section 3 has mentioned that the following LF, repeated from (17), suffers type-mismatch for most
frameworks of question semantics:

(86) Which movie did Det-boy watch?
*[Det-boy λxe [which movie did x watch]]

Partition Semantics exempts from this type-mismatch problem. Groenendijk and Stokhof (1984:
chapter 3) first analyze the pair-list ∀-question (87) as a partition of possible worlds grouped in terms
of which boy watched which movie. In the derivation of this denotation, the quantifier every boy
quantifies into an identify condition (of type t), which says that x watched the same movies in w and
in w′.

(87) Which movie did every boy watch?
λwλw′.∀x[B@(x)→ {y | M@(y) ∧Ww(x, y)} = {y | M@(y) ∧Ww′(x, y)}]
(w and w′ are in the same partition cell if and only if for every boy x, x watched the same
movies in w and in w′.)

However, Groenendijk and Stokhof themselves are not satisfied with this account since it does
not extend to questions with a non-universal quantifier. For example, the predicted meaning for
the corresponding ∃-question (88) is not a partition (see also Krifka 2001). Thus, Groenendijk and
Stokhof ultimately pursues another family-of-questions approach using witness sets (footnote 10).

(88) Which movie did one of the boys watch?
λwλw′.∃x[B@(x) ∧ {y | M@(y) ∧Ww(x, y)} = {y | M@(y) ∧Ww′(x, y)}]
(w and w′ are in the same partition cell if and only if for one of the boys x, x watched the
same movies in w and in w′.)

For illustration, consider a discourse with two boys ab and two movies m1m2. The four worlds vary
by which boy watched which movie. w1w2w3 are grouped in one cell C1: a watched the same movie
in w1 and w2 (and b watched the same movie in w1 and w3). Likewise, w2w3w4 are in one cell C2: b
watched the same movie in w2 and w4. In addition, C1 and C2 are distinct cells because neither boy
watched the same movie in w1 and w4. The world grouping in Fig. 6 is clearly not a partition: C1
and C2 are overlapped, both containing w2 and w3. Moreover, from this world grouping, we cannot
identify which movie any of the boys watched. For example, if w1 is the actual world, then C1 is
the cell which the actual world belongs to; however, based on C1, we cannot decide on whether a
watched m1 (as in w1 and w2) or he watched m2 (as in w3).

In addition, this analysis inherits the theory-internal problems with Partition Semantics. For
instance, Partition Semantics cannot explain the uniqueness effects of singular-marked wh-questions
(Xiang 2020); likewise, the partition-based account cannot explain the point-wise uniqueness effects
in pair-list ∀-questions.
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C1 :

w1 : {〈a, m1〉, 〈b, m2〉}
w2 : {〈a, m1〉, 〈b, m1〉}
w3 : {〈a, m2〉, 〈b, m2〉}
w4 : {〈a, m2〉, 〈b, m1〉}

C2 :

w1 : {〈a, m1〉, 〈b, m2〉}
w2 : {〈a, m1〉, 〈b, m1〉}
w3 : {〈a, m2〉, 〈b, m2〉}
w4 : {〈a, m2〉, 〈b, m1〉}

......

Figure 6: World grouping yielded by (88)

Appendix B. The question-embedding approach

Another intuitive and framework-independentway to solve the type-mismatch problem in quantifying-
into questions is to reduce matrix questions into question-embeddings (Karttunen 1977; Krifka 2001).
The LF assumed by Karttunen (1977) is given in (89). Basically, whatever the embedded question
denotes, the question-embedding is a t-type expression which can be quantified into.

(89) Which movie did Det-boy(s) watch?
[Det-boy(s) λxe [I-ask-you [which movie did x watch]]]

This analysis relies on the quantifier in the embedded question taking scope over the intensional
embedding predicate ask. In the following, however, drawing on the limited distribution of pair-list
readings in matrix questions and intensional question-embeddings, I argue that this scoping pattern
is not available.16

As seen in Sect. 3 and explained in Sect. 6.3, only every/each-phrases may license pair-list readings
of matrix questions. As for question-embeddings, Szabolcsi (1997a) observes a contrast between
intensional complements and extensional complements.17 In particular, in embeddings with an
extensional predicate (e.g., know, find out), numeral-modified indefinites such as two of the boysmay
also license a pair-list reading. For example, in a context assuming point-wise uniqueness from boys
to movies, the sentences (90a-b) are felicitous and can be read with the following scopal pattern:
‘∃2� each� V� ι’ where ‘V’ stands for an extensional embedding predicate. As I have argued in
Sect. 6.3.2, this reading can be derived from the LF in (91) (see also (71)): the existential indefinite
takes wide scope relative to the embedding predicate know, and its closest trace in the matrix clause
is associated with a covert distributor each.18

(90) Susi knew that each boy watched a different movie. In addition, ...
a. Susi knew which movie each/two of the boys watched.
b. Susi found out which movie each/two of the boys watched.

16Krifka (2001) assumes the structure in (i) where the quantifier scopes over a speech act operator quest. This analysis
exempts from the over-generation problem since Krifka assumes that speech acts cannot be disjoined. However, it also leaves
the choice readings of ∃-questions unexplained.

(i) Which movie did every boy watch?
[every-boy λxe [quest [which movie did x watch]]]

17The intension-vs-extension qualification comes from Groenendijk and Stokhof 1984. In later works starting from Lahiri
2002, this division is re-labeled as ‘rogative’-vs-‘responsive’. Rogative predicates admit only interrogative complements, while
responsive predicates admit also declarative complements.

18Instead of assuming covert movement of the quantifier, Szabolcsi (1997a) derives the wide scope reading by type-lifting the
interrogative complements of extensional predicates. Combining the type-lifted question-denotation (i) with an embedding
predicate P yields a wide scope reading of the quantifier π relative to P. Further, Szabolcsi argues that wonder-type predicates
cannot select for lifted questions and hence that quantifiers in intensional complements cannot take wide scope.

(i) Complement of find out-type predicates: λP.π(λx.P(which y[x watched y]))
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(91) Susi V-ed which movie two of the boys watched.
[[two-of-the-boys λx [[each x] λy [Susi V-ed which movie y watched]]]

However, embeddings with an intensional predicate (e.g., ask, wonder) behave the same as matrix
questions— only every/each-phrases may license pair-list readings in these embeddings. For example,
in (92a-b), the uniqueness inference triggered by the singular-marked object which movie must be
interpreted between the embedding predicate and the quantifier: ask� ι� ∃2. The lack of pair-list
readings shows that the sentences (92a-b) cannot have the LF in (91). As Szabolcsi (1997a) argues, a
natural explanation to the unavailability of this LF would be that intensional predicates create weak
islands, which prevent the quantifiers in the embedded questions from taking wide scope. If this
explanation is on the right track, the embedding structure (89), which requires the quantifier in the
embedded question to scope over ask, should be infeasible.

(92) Susi knew that every boy watched a different movie. ...
a. Susi wondered which movie each/#two of the boys watched.
b. Susi asked me which movie each/#two of the boys watched.
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