English speakers can infer Pokémon types based on sound symbolism

Shigeto Kawahara^{1,*}, Mahayana C. Godoy² and Gakuji Kumagai³

¹The Institute of Cultural and Linguistic Studies, Keio University, Japan
²Federal University of Rio Grande do Norte, Brazil
³Meikai University, Japan
Corresponding author: Shigeto Kawahara, kawahara@icl.keio.ac.jp
Running title: Sound symbolism and Pokémon types

Abstract

Sound symbolism, systematic associations between sounds and meanings, is receiving increasing attention in linguistics, psychology and related disciplines. One general question that is currently explored in this research is what sorts of semantic properties can be symbolically represented. Against this background, within the general research paradigm which explores the nature of sound symbolism using Pokémon names, several recent studies have shown that Japanese speakers associate certain classes of sounds with notions that are as complex as Pokémon types. Specifically, Japanese speakers associate (1) sibilants with the flying type, (2) voiced obstruents with the dark type, and (3) labial consonants with the fairy type. These sound symbolic effects arguably have their roots in the phonetic properties of the sounds at issue, and hence are not expected to be specific to Japanese. The current study thus addressed the question of whether these sound symbolic associations hold with native speakers of English. Two experiments show that these sound symbolic patterns patterns were very robustly observed when the stimuli were presented in pairs; when the stimuli were presented in isolation, the effects were also tangible, although not as robust. We conclude that English speakers can associate certain types of sounds to particular Pokémon types, with an important caveat that we observed a clear task effect. Overall the current results lend some credibility to the hypothesis advanced by Shih et al. (2019) that those attributes that play a role in a Pokémon's survival are actively signaled by sound symbolism

Keywords: Sound symbolism, English speakers, Pokémon types, sibilants, voiced obstruents, [p]

1 Introduction

² 1.1 Theoretical background

One of the most influential dictums that governed modern linguistic theories in the twentieth cen-3 tury was the thesis of arbitrariness-the relationships between sounds and meanings are essentially Δ arbitrary (Hockett 1959; Locke 1689; Saussure 1916/1972). An increasing number of studies, 5 however, have shown that there are many cases of systematic relationships between sounds and 6 meanings observed in human languages, and as such the thesis of arbitrariness was too strong. 7 Such sound-meaning associations are now actively studied under the rubric of sound symbolism, 8 which is a topic of extensive exploration in linguistics, psychology, cognitive science, and other re-9 lated disciplines (see Akita 2015; Dingemanse et al. 2015; Imai and Kita 2014; Kawahara 2020a; 10 Lockwood and Dingemanse 2015; Nielsen and Dingemanse 2020; Nuckolls 1999; Perniss et al. 11 2010; Schmidtke et al. 2014; Sidhu and Pexman 2018; Svantesson 2017 for recent reviews). 12 There are various reasons why sound symbolism is now considered to be an important topic 13 of exploration. A growing body of research has shown, for example, that sound symbolism may 14 guide first and second language acquisition to a non-trivial degree (Asano et al. 2015; Imai and Kita 15 2014; Nielsen and Dingemanse 2020; Nygaard et al. 2009). Some scholars argue that it may have 16 played an essential role in the origin and development of human languages (Cabrera 2012; Perlman 17 and Lupyan 2018; Perniss and Vigiliocco 2014), while others claim that these sound-meaning con-18 nections may be a specific instance of more general synesthetic cross-modal perception, in which 19 sensation in one modality can evoke sensation in another modality (Bankieris and Simner 2015; 20 Cuskley and Kirby 2013; Ramachandran and Hubbard 2001; Spence 2011). Sound symbolism did 21 not use to be a major topic of exploration in linguistics; however, for the reasons briefly outlined 22 here, it has started receiving intensive attention in linguistics, psychology and neighboring fields 23 (see Nielsen and Dingemanse 2020 for some quantitative evidence for this research trend). 24

On the one hand, languages are systems which can connect sounds and meanings in an arbitrary 25 fashion; otherwise, we would expect all the languages to use the same/similar words to express 26 the same meanings (Locke 1689; Saussure 1916/1972), and that languages would not have the 27 immense expressive powers that they do (Lupyan and Winter 2018). At the same time, however, we 28 are witnessing the accumulating body of evidence suggesting that speakers of various languages 29 can systematically associate certain meanings with certain types of sounds. These studies have 30 shown that whether sound-meaning connections are arbitrary or systematic is no longer the right 31 question to ask-instead, the question that should be addressed is how arbitrariness and sound 32 symbolism can coexist in the human language systems (Dingemanse et al. 2015); then an ensuing 33 question is what kinds of semantic properties can be signaled via sound symbolism. 34

³⁵ Two well-known semantic dimensions that are involved in sound symbolic associations are

size and shape, which have been shown to hold across different languages (e.g. Bremner et al. 36 2013, Sidhu and Pexman 2018 and Styles and Gawne 2017); for example, [a] is often judged 37 to be larger than [i] (Sapir 1929) by speakers of different languages (Shinohara and Kawahara 38 2016), and voiceless obstruents tend to be associated with angular shapes, whereas sonorants tend 39 to be associated with round shapes (Köhler 1947; Ramachandran and Hubbard 2001). There are 40 other semantic properties which have been shown to be signaled via sound symbolism, including 41 color, brightness, taste, weight, strength, etc (e.g. Jakobson 1978; Kawahara and Kumagai 2021; 42 Lockwood and Dingemanse 2015; Westbury et al. 2018; Winter et al. 2019, among others), but 43 it remains to be explored precisely what kinds of semantic concepts can be signaled via sound 44 symbolism in natural languages, and relatedly, how complex such concepts can be (Lupyan and 45 Winter 2018; Sidhu and Pexman 2019; Westbury et al. 2018). 46

Within this ever-growing body of studies on sound symbolism, one emerging research strategy 47 is to explore the sound symbolic nature of natural languages using Pokémon names (Kawahara 48 et al. 2018), a research paradigm that is now dubbed "Pokémonastics" (Shih et al. 2019). As 49 discussed in detail by Shih et al. (2019), this approach to sound symbolism has several research 50 advantages.¹ First, since there are many Pokémon characters (N > 800) which all have numerical 51 attributes such as weight and height, it allows researchers to conduct a quantitative assessment of 52 sound symbolism in real words. Second, in natural languages, different languages assign names 53 to a different set of real world attributes; for example, Japanese lexically distinguishes live rice 54 (=ine), cooked rice (=gohan), and generic rice (=kome), a tripartite distinction that is absent in En-55 glish. Japanese on the other hand does not distinguish between, for example, crying and moaning. 56 This sort of cross-linguistic difference makes it difficult to compare the sound symbolic patterns 57 in existing words in different languages (although it is not impossible: see e.g. Blasi et al. 2016, 58 Johansson et al. 2020, Pitcher et al. 2013, Wichmann et al. 2010 for illustrative cases of such stud-59 ies). On the other hand, in the Pokémon world, the set of denotations is fixed across all languages, 60 thereby making the cross-linguistic comparison easier. The third advantage of the Pokémonastics 61 research is that each Pokémon character has various attributes, such as weight, height, evolution 62 levels, strengths and types. This feature allows researchers to explore what sorts of information 63 can be expressed via sound symbolism (Kawahara and Kumagai 2021). 64

Within the framework of Pokémonastics research, this paper focuses on Pokémon types with the hope that it will (albeit modestly) contribute to the general issue addressed in the sound symbolism research discussed above. In the Pokémon game series, players collect fictional creatures called Pokémon, train them, and have them fight with other Pokémon characters. Pokémon characters are classified into several types, including, but not limited to, normal, fire, fairy, water, dragon,

¹However, Pokémonastics, which analyzes made-up names of fictional characters, is not meant to replace the studies of sound symbolism using real words; it is instead meant to complement other related studies on sound symbolism. See Kawahara and Breiss (2021) for some extended discussion on this point.

⁷⁰ ghost, ground, grass, etc. Certain types of characters have (dis)advantage over other types during
⁷¹ their battles; for example, water-type has advantages over fire-type.

Hosokawa et al. (2018) was the first study which examined whether Pokémon types are sym-72 bolically expressed in the Japanese Pokémon names. They found that labial consonants, such [p] 73 and [m], are overrepresented in the names of the fairy type Pokémons, whereas voiced obstruents, 74 such as [d] and [z], are overrepresented in the villainous types (see also Uno et al. 2020). Kawahara 75 and Kumagai (2019b) confirmed the productivity of these associations by an experimental study 76 using nonce words. Extending on these two studies, Kawahara et al. (2020) further found that 77 Japanese speakers associate the flying type with names containing voiceless sibilants, including [s] 78 and [c] (=voiceless alveo-palatal fricative). As discussed in further detail below, these connections 79 are arguably grounded in the phonetic properties of these sounds, and as such they are not expected 80 to be specific to Japanese. The current experiments therefore aim to test the cross-linguistic robust-81 ness of these sound symbolic connections with native speakers of English (see also Godoy et al. 82 2020b for a similar attempt with speakers of Brazilian Portuguese). 83

As discussed above, the Pokémonastics research can potentially provide a useful resource for 84 cross-linguistic comparisons of sound symbolism in natural languages. While Japanese is actively 85 studied via experimentation within the Pokémonastics paradigm (e.g. Kawahara 2020b; Kawahara 86 and Kumagai 2019a,b, 2021; Kawahara et al. 2020; Kumagai and Kawahara 2019), we are yet to 87 gather more data from other languages in order to more thoroughly address the cross-linguistic sim-88 ilarities and differences in sound symbolism. Kawahara and Breiss (2021), Kawahara and Moore 89 (2021), and Godoy et al. (2020a) have gathered experimental data regarding sound symbolism 90 signaling evolution status in English and Brazilian Portuguese, but other than these, experimental 91 studies on languages other than Japanese are limited. It is thus hoped that the current experiments 92 further contribute to expanding the Pokémonastics database, which should be useful for general 93 sound symbolism research (cf. Shih et al. 2019). 94

1.2 The three sound symbolic connections

The three sound symbolic connections that were tested in this study are: (1) sibilants = flying, (2) voiced obstruents = dark, and (3) [p] (as a representative of labial consonants) = fairy. In this subsection we expand on each of these sound symbolic associations.

99 **1.2.1** Sibilants = flying

The investigation of the first sound symbolic association, sibilants = flying, was inspired by the remarks by two ancient writers. First, Socrates suggested that [s] and [z] are suited for words that represent wind and vibration (in Classical Greek), because the production of these sounds accompanies strong breath (Cratylus: 427). Second, the Upanishads suggested that sibilants represent air and sky. To reinterpret these remarks from the perspective of modern phonetics, sibilants (including [s] and [ʃ] in English) involve a large amount of oral airflow during their production (Mielke 2011), and this aspect of these sounds may be iconically mapped onto the image of wind, and, by extension, flying (see also Paraise et al. 2014 for the iconic relationship between high frequency sounds—of which sibilants are typical examples—and the notion of elevation).

Kawahara et al. (2020) presented Japanese speakers with pairs of nonce words in which one member contained sibilants and the other did not (e.g. [saroccuu] vs. [tarokkuu]), and asked them to judge which member of the pairs was better suited for the flying type Pokémon. Their results suggest that Japanese speakers associate nonce names containing sibilants with the flying type above the chance level. One aim of the current study is to examine whether English speakers make the same sound symbolic association.

115 1.2.2 Voiced obstruents = dark

The second association was first identified as an existing sound symbolic pattern in the Japanese 116 Pokémon lexicon by Hosokawa et al. (2018). Prior to their studies, it was already known that 117 Japanese monster names and villainous characters' names frequently contain voiced obstruents 118 (=[b], [d], [q] and [z]) (Kawahara 2017; Kawahara and Monou 2017). Building on these obser-119 vations, Hosokawa et al. (2018) showed that voiced obstruents are overrepresented in villainous 120 Pokémon characters, where they defined "villainous" as consisting of dark, ghost and poison types. 121 In general, voiced obstruents are associated with negative images in Japanese (Hamano 1998; 122 Kawahara 2017; Kubozono 1999; Suzuki 1962), and arguably this sound symbolic connection may 123 have its roots in the articulatory difficulty of producing voiced obstruents (Ohala 1983). In order 124 to maintain vocal fold vibration, the airpressure level has to be lower in the oral cavity than in 125 the subglottal cavity. However, airflow that is required to cause vocal fold vibration is trapped in 126 the oral cavity due to obstruent closure/constriction, which raises the intraoral airpressure. This 127 results in difficulty in maintaining vocal fold vibration, and speakers need to resort to various 128 articulatory adjustments to expand their oral cavity (Ohala 1983; Proctor et al. 2010; Westbury 129 and Keating 1986). Because of this articulatory challenge, many languages phonologically avoid 130 voiced obstruents in favor of voiceless obstruents (Hayes 1999; Hayes and Steriade 2004). It 131 would not be too surprising if this articulatory challenge is projected onto general negative images 132 (Kawahara 2017; Uno et al. 2020). 133

In fact, this association between voiced obstruents and negativity manifests itself in English, as well as in Japanese. Shinohara and Kawahara (2009) presented pairs of pictures of the same object, one in its clean state and the other in its dirty state (e.g. a clean sponge vs. a dirty sponge). Along with these pictures, they presented nonce words containing voiced obstruents and those containing voiceless obstruents (e.g. [zabe] vs. [sape]). Their results showed that both Japanese and English
speakers tend to associate nonce words containing voiced obstruents with dirty pictures. Another
relevant observation is the finding that in the set of Disney characters names in English, villains'
names are more likely to contain voiced obstruents than non-villains' names (Hosokawa et al.
2018; Uno et al. 2020).

Building on these observations, the current study tests whether English speakers associate voiced obstruents with villainous characters in the Pokémon world, taking the dark type as a representative of villains. We used dark type as the representative, because the dark type literally means the "evil" type (=aku) in the original Pokémon series in Japanese. It is explained as such in the instructions of the experiments reported below.

148 **1.2.3** [p] = fairy

The third hypothesis, like the second hypothesis, was also first identified by Hosokawa et al. (2018) 149 as one of the statistically reliable tendencies in the Japanese Pokémon names. The general obser-150 vation that lies behind the hypothesis was that labial consonants-those that are produced by using 151 lips, including [p] and [m]—are generally associated with the image of babies, as evidenced by 152 the fact, for example, that labial consonants are overrepresented in baby diaper names in Japanese, 153 both in the set of existing names and in the new names elicited via experimentation (Kumagai and 154 Kawahara 2020). Labial consonants are also shown to be overrepresented in the names of PreCure 155 girls-a TV series that is popular among young girls in Japan-who are cute fighters (Kawahara 156 2019). Along the same line, Hosokawa et al. (2018) show that bilabial consonants are overrep-157 resented in the fairy type Pokémon characters, which tend to be, like babies and PreCure girls, 158 cute. This association found by Hosokawa et al. (2018) was shown to be productive by a follow-up 159 nonce-word experiment (Kawahara and Kumagai 2019b): given a pair of non-existing names like 160 [parapiru] and [karakiru], Japanese speakers tend to choose the former for fairy type characters. 161

This sound symbolic association is hypothesized to arise from the observation that labial consonants appear frequently in early speech and babbling (e.g. Jakobson 1941; MacNeilage et al. 1997; Ota 2015). The current study thus addresses the question of whether, like Japanese speakers, English speakers also associate labial consonants with cute, fairy characters.² The current study used [p] as a representative of labials, because it is the consonant that has been judged to be outstandingly cute (Kumagai 2019).

²A previous Pokémonastics experiment has shown that given pairs of nonce words containing labial consonants and those containing coronal consonants (e.g. *Meepen* vs. *Neeten*), English speakers tend to choose the former for pre-evolution characters more often than for post-evolution characters (Kawahara and Moore 2021).

168 2 Experiment 1

To recap, the current experiment tested three sound symbolic associations that have been shown to hold for Japanese speakers: (1) sibilants = flying, (2) voiced obstruents = dark, and (3) [p] = fairy. In addition to testing these patterns, we also examined a task effect by conducting two experiments: in Experiment 1, the stimuli were presented in isolation, whereas in Experiment 2, the stimuli were presented in pairs.

Many experiments on sound symbolism present the stimuli in pairs (see Westbury et al. 2018) 174 for a very comprehensive overview). For instance, Sapir (1929), one of the classic experimental 175 studies on sound symbolism, presented two nonce words (mal vs. mil) and asked the participants 176 which one means "a big table" and which one means "a small table." In establishing the bouba-kiki 177 effect, Ramachandran and Hubbard (2001) presented the two stimuli (bouba and kiki) in a pair, and 178 asked which one corresponds to a round figure and which one corresponds to an angular figure. 179 The same holds for Köhler (1947) who used takete vs. maluma. The two previous experimental 180 Pokémonastics studies that the current study significantly builds upon (Kawahara and Kumagai 181 2019b; Kawahara et al. 2020) also deploy this format. 182

This format, more generally known as a 2AFC (2 Alternative Forced Choice) task-has been 183 the common practice in sound symbolic research, but this raises the question of how robustly sound 184 symbolic patterns hold when the stimuli are presented in isolation (again, see Westbury et al. 2018). 185 Generally speaking, the task would be easier for the participants if the stimuli are presented in pairs 186 than in isolation.³ Since many of the previous studies in Pokémonastics—as well as other studies 187 in sound symbolism—use a 2AFC format, we took advantage of this opportunity to test examine 188 whether sound symbolic associations under question hold even when the stimuli are presented in 189 isolation. 190

191 2.1 Methods

192 **2.1.1 The stimuli**

¹⁹³ The list of stimuli used in this experiment is shown in Table 1. For all the pairs, the target conso-

¹⁹⁴ nants appeared twice within each stimulus. The vowels and other target consonants were controlled

¹⁹⁵ between the two conditions.

³In fact, in Signal Detection Theory, a quantitive measure of sensitivity ("d-prime") is adjusted by $\sqrt{2}$ when the stimuli are presented in pairs in a 2AFC format (Macmillan and Creelman 2005).

(a) Names with sibilants	(b) Control
Silshin	Tiltin
Salshim	Taltim
Sulshur	Tulkur
Shieshen	Kieten
Shilsum	Kiltun
Shalshick	Kaltick
Shelshim	Kelkim
(c) Names with voiced obstruents	(d) Control
Bringlin	Prinklin
Branzlam	Pranslam
Drinzlin	Trinslin
Dramblum	Tramplum
Grimblin	Krimplin
Grenzlin	Krenslin
Zegdum	Sektum
Zumgul	Sumkul
(e) Names with [p]	(f) Control
Peepol	Teetol
Polpen	Tolken
Pafpil	Tastil
Pimpock	Tintock
Paapair	Kaakair
Pupmir	Kukmir
Pepmil	Kekmil

Table 1: The list of stimuli used in Experiment 1.

For the sibilant condition, the target words contained two sibilants. There were 3 items that 196 started with [s] and 4 items that started with [ʃ] ("sh"), but all of them had [ʃ] internally, because 197 word-internal orthographic 's' in English can be read as [z]. We focused on voiceless sibilants in 198 this study because voiced sibilants can be produced as approximants, as the intraoral airpressure 199 cannot be raised too much to maintain vocal fold vibration (Ohala 1983). The control condition 200 had 3 items that started with [t] and 4 items that started with [k]. While the stimulus items were not 201 directly paired in Experiment 1, [s] was matched with [t] and [f] was matched with [k], because 202 articulatorily speaking, [t] and [s] are front consonants, whereas [f] and [k] are back consonants 203 (Mann and Repp 1981). 204

For the voiced obstruent condition, the target items began with either [b], [d], [g] or [z] (2 items each), and contained one or more word-internal voiced obstruents. The control condition consisted of words that contained corresponding voiceless obstruents with the same manner and place of articulation. For the last condition, the target words started with [p] and contained an additional ²⁰⁹ word-internal [p]. The control consisted of words that contain either [t] or [k].⁴

Since Pokémon names are often communicated in written forms, and since the previous 210 Pokémonastics experiments used orthographic stimuli, the current experiment followed that 211 methodology (Kawahara and Kumagai 2019a; Kawahara and Moore 2021). Yet, an experiment 212 with auditory stimuli may be warranted in future studies given the possible influences of orthog-213 raphy on sound symbolism (Cuskley et al. 2017). We note, however, Sidhu et al. (2016) have 214 demonstrated that sound symbolism holds beyond the influences of orthography. With this caveat 215 in mind, the participants were nevertheless asked to read each name silently in their head before 216 making their decision. 217

218 2.1.2 Procedure

The experiment was administered online using SurveyMonkey. The first page of the experiment was a consent form, which was approved by the first author's institute. The second page presented our qualification questions, and only those who fulfilled all four of the following conditions were allowed to proceed: (1) they are a native speaker of English, (2) they are familiar with Pokémon, (3) they are not already familiar with sound symbolism, (4) and they have not participated in a Poémonastics experiment before.

The entire experiment was blocked into three sections, each of which tested one sound symbolic effect on type, in the order of flying type, dark type, and fairy type. The first page within each section introduced a difference between one type of Pokémon, which was contrasted with a normal type of Pokémon, using a pair of pictures shown in Figure 1. The participants were asked to answer whether they understood the difference between the two types. The flying type was defined as those that fly in the sky. The dark type was defined as those that are villainous and evil. The fairy type was those that were cute.

Each name was presented in isolation, and the participants were asked to choose which type each name fits better. They were also told that there are no "right" or "wrong" answers, and were asked to provide their answer using their intuitive feelings. The order of the stimuli within each block was randomized per participant.

236 2.1.3 The participants

The responses were collected using the buy response function of SurveyMonkey. A total of 159 English speakers participated in the experiment. Eleven of them were excluded based on the ex-

⁴The fact that the first and third hypotheses had 7×2 items whereas the second hypothesis had 8×2 items is due to the fact that SurveyMonkey maximally allows 50 questions in order for us to use the buy response function (see §2.1.3 below). It was necessary to include the consent form, the qualification questions, and illustrations of each type, which made it impossible to have 8×2 items for all the three hypotheses.

Figure 1: Pictures used to illustrate each of the three types of Pokémon in the current experiment. These are non-existing Pokémon characters drawn by a digital artist *toto-mame*. They are used in the experiment with the permission from the artist.

clusion criteria listed in §2.1.2. Thirteen participants were excluded because they responded that
one or more difference in type was not clear. The data from the remaining 135 participants were
analyzed. Among them, 56 of them were male, with one not reporting their gender.

242 **2.1.4 Analysis**

To statistically analyze the data, we fit a Bayesian mixed effects logistic regression model. There are various advantages of using Bayesian analyses instead of a more traditional frequentist approach; for accessible introduction to Bayesian analyses in psychology and linguistic research, see e.g. Franke and Roettger (2019), Nicemboim and Vasishth (2016), and Kruschke and Liddell (2018); Kruschke (2014) is a thorough but accessible introductory book on this general approach. A slightly more technical illustration as well as application of Bayesian analyses in linguistic/phonetic studies using brms, also used in the current study, can be found in Vasishth et al.
(2018).

²⁵¹ Bayesian analyses take into account both prior knowledge (if any) and the data at hand to ²⁵² yield a range of posterior estimates for parameter values that are of interest. In logistic regression ²⁵³ analyses, we are primarily interested in the estimate of the slope coefficient (β_1) of a particular ²⁵⁴ effect; i.e. for the case at hand, the slope coefficient of the sound symbolic effect.

One particular advantage of Bayesian analyses is that we can interpret the posterior distribu-255 tions of β -coefficients as directly reflecting the degrees of our belief—or (un-)certainty—about the 256 estimates of the parameter that we are interested in. One commont heuristic to interpret these pos-257 terior distributions, which is roughly analogous to significance testing in a frequentist approach, is 258 to examine its 95% Credible Intervals (CIs) of the distributions, which can be obtained by discard-259 ing the extreme 2.5% of the posterior samples at the upper and lower ends. If 95% CI does not 260 include 0, we can be reasonably confident that the effect meaningfully impacts the responses, or 26 put differently, β_1 at issue is not equivalent to 0. 262

However, one important advantage of Bayesian analyses is that we can move beyond the "sig-263 nificant vs. non-significant" dichotomy in a frequentist analysis (see e.g. Franke and Roettger 2019; 264 Kruschke 2014; Nicemboim and Vasishth 2016; Vasishth et al. 2018). Instead, we can, for exam-265 ple, calculate the proportion of posterior values that are larger than a particular value. To be more 266 specific, in order to examine whether a particular sound increases certain responses, we can ana-267 lyze the whole posterior distribution of its β_1 -coefficient, and calculate the proportion of posterior 268 values that are above 0. A more conservative approach would be to examine the ROPE (Region 269 Of Practical Equivalence) of a point hypothesis that $\beta_1 = 0$ (Kruschke 2014; Kruschke and Lid-270 dell 2018). To do so, we take the effect size of 0.1 (Cohen 1988) of a standardized parameter 271 value to define the range of ROPE. In logistic regression model, the standardized parameter value 272 can be conveniently approximated as $\frac{\pi}{\sqrt{3}} = 1.8$ (Makowski et al. 2019); thus, we calculated the 273 proportions of posterior samples that are more extreme than 0.18. 274

In short, we calculated the 95% CI of β_1 as well as $p(\beta_1 > 0)$ and $p(\beta_1 > 0.18)$. All the posterior samples are available in the supplementary file, and interested readers are welcome to examine them in other ways—another virtue of a Bayesian approach.

The details of the actual implementation are as follows. Analyses were implemented using the brms package (Bürkner 2017) and R (R Development Core Team 1993–). The dependent variable was whether or not the response was the target type. The predictor contained a fixed effect of a sound type, a random intercept of items, and a random slope and intercept of participants. The weakly informative priors (the default setting for brms) were used. Four chains were run. The R-values were generally 1.00 and maximally 1.01, suggesting that the chains mixed successfully. We first ran 2,000 iterations with 1,000 warmups. When the ESS values were too large, more iterations (e.g. 4,000) were run, and the last 1,000 iterations were interpreted. See the accompanying markdown file provided as the supplementary file for complete details.

287 2.2 Results

Figure 2 show violin plots which represent the normalized probability distributions of byparticipant "flying response" ratios for those names with sibilants (right) and those names without (left). Transparent triangles represent data from each participant. The black circles within each violin plot represent the grand averages. On average, the names with sibilants were more likely to be judged to be the names of the flying type than the were control names (54.2% vs. 39.4%).

Figure 2: The normalized probability distribution of "flying response" ratios. The black circles represent the grand means. The transparent triangles represent each individual point (jittered).

The mean of the slope coefficient (β_1) for the difference between the control condition and the sibilants condition was positive (0.77). The 95% CI of β_1 was [0.21, 1.35]. Since this interval does not include zero, we can be reasonably confident that names with sibilants meaningfully increase "the flying response" with respect to the control names. Examination of all the posterior samples shows that 99.6% of the posterior estimates of this slope coefficient were above 0, and 98.2% of them were above 0.18. We can thus be at least 98% confident that names with sibilants increase the flying responses with respect to the control names.

Figure 3 shows the violin plots of the normalized probability distribution of the by-participant "dark response" ratios for those names with voiced obstruents (left) and those names with voiceless obstruents (right). Overall, names with voiced obstruents were more likely to be associated with the dark type Pokémon characters than the control names with voiceless obstruents (58.8% vs. 46.8%). Since the "voiced (vcd)" condition was the baseline and the coefficient tells how "voiceless (vls)" condition lowered "dark" responses, the mean value of the β_1 coefficient was -0.55 with its 95% CI being [-1.38, 0.26]. Since we are interested in how the voiceless condition lowers dark responses, we calculated the proportions of posterior estimates that are negative and those that are lower than -0.18. The results suggest $p(\beta_1 < 0) = 91\%$ and $p(\beta_1 < -0.18) = 84.2\%$.

Figure 3: The normalized probability distributions of the "dark response" ratios.

Figure 4 shows the results for the fairy condition. The names with [p] were more likely to be associated with the fairy type than the control names (55.1% vs. 46.3%). The mean of the β_1 coefficient is 0.42, with its 95% CI being [-0.24, 1.08]. The examination of all the posterior samples of the β_1 coefficient shows that 90% of them were positive, and 77% of them were above 0.18.

Figure 4: The normalized probability distributions of the "fairy response" ratios.

314 2.3 Discussion

All of the three conditions showed responses in the expected direction. None of the effects are deterministic; i.e. it was not the case that names with particular phonological properties are categorically associated with a certain Pokémon type, although we can identify individual responses that were categorical in the violin plots. Such a stochastic nature of sound symbolism, however, is the norm rather than the exception (Dingemanse 2018; Kawahara et al. 2019).

How confident we can be about these effects differed among the three conditions; i.e. the 320 probability β_1 being larger/smaller than the ROPE threshold was 98% for the flying condition, 84% 321 for the dark condition, 77% for the fairy condition; and the probability of β_1 being in the expected 322 direction was 99.6%, 91%, and 90%, respectively. We took the advantage of Bayesian approach 323 and offered several numerical indices of how confident we can be about these sound symbolic 324 effects, rather than making a dichotomous "yes significant" vs. "not significant" decision often 325 deployed in a frequentist approach. Heuristically, it seems safe to conclude that the sibilant=flying 326 connection seems to be a very robust sound symbolic connection. On the other hand, the [p]=fairy 327 connection may not be too reliable, although the result still seems encouraging. The connection 328 between dark type and voiced obstruents lies somewhere in-between. 329

There are two possible interpretations regarding why we did not identify a robust effect of, say, the [p]=fairy connection in the current experiment. One interpretation is to posit that English speakers do not make this sound symbolic association at all.⁵ We hesitate to accept this interpretation because many of the posterior samples of β_1 were in the expected direction, and even if we take the more conservative approach, more than 75% were above 0.18.

An alternative possibility that we would like to explore next is that there is indeed a sound symbolic effect between [p] and the fairy type, but this effect was not very clearly observed in this experimental format. First, as stated at the beginning of this section, it is more challenging for the participants to make a judgment when stimuli are presented in isolation than in pairs—this is one crucial difference between the current experiment and Kawahara and Kumagai (2019b), who found a robust effect of labiality with Japanese speakers.

Second, it is possible that since the stimuli are presented in isolation, the participants' responses were influenced by other segments that are contained in the stimuli. For example, *Polpen* was judged more likely to be the normal type than the fairy type, despite the fact that it contains two [p]s. This may be because the initial vowel [o] is the "large" vowel in English (Newman 1933), and hence may have been judged to be inappropriate for the fairy type. Likewise, *Tintok* was judged to be the fairy type almost as frequently as the normal type, which may be because of its initial

⁵The Bayesian approach we took suggests that this is too strong a conclusion. In order for the null hypothesis (β_1 =0) to be true, the 95% CI of β_1 should be contained in the ROPE of that null hypothesis, which is [-0.18, 0.18] (Kruschke 2014; Kruschke and Liddell 2018; Makowski et al. 2019).

³⁴⁷ [i], which is the "small" vowel in English (Newman 1933).⁶ In order to further explore the sound ³⁴⁸ symbolic effects under question, the next experiment presented the stimuli in pairs.

349 3 Experiment 2

350 3.1 Methods

The methods for Experiment 2 were almost identical to those for Experiment 1, unless otherwise noted. Table 2 lists the stimulus pairs used in Experiment 2. Most of the stimuli were the same as those used in Experiment 1, except that the first and the third conditions contained one additional test pair. In this experiment, all the conditions had 8 pairs.

As in Experiment 1, the responses were collected using the buy response function in Survey-355 Monkey. A total of 157 native speakers of English participated in the experiment. Thirteen of them 356 were excluded because they did not fulfill all the participation requirements (see §2.1.2). One par-357 ticipant did not finish the experiment. Eight were not sure about at least one of the three type dif-358 ferences. The data from the remaining 135 participants entered into the following analysis. Among 359 them 66 were male. One of the exclusion criteria ("have not participated in a Pokémonastics ex-360 periment before") ensured no overlap between the participants for Experiment 1 and those for 361 Experiment 2. 362

The procedure for the experiment was identical to that of Experiment 1, except that the stimuli were presented in pairs. As in Experiment 1, the participants were asked to read the stimuli and use their auditory impression to make their responses.

To fit a mixed effects model using the results obtained in a 2AFC format, we followed the 366 methodology proposed by Daland et al. (2011), which has advantages over other possible alterna-367 tives (see their footnote 5)—this is also the methodology often used in other Pokémonastics ex-368 periments when analyzing data obtained using a 2AFC format (Kawahara and Kumagai 2019a,b; 369 Kawahara et al. 2020). Specifically, one trial was split into two observations, each corresponding 370 to one member of a stimulus pair. The other details are almost identical to those of Experiment 1, 371 except the models did not include an item-specific random intercept, because each item contributes 372 to both an expected response and an unexpected response. The fixed effect ("expectedness") was 373 sum-coded as -0.5 vs. 0.5. See the accompanying markdown file for complete details. 374

⁶This is truly a post-hoc speculation, but this name may have sounded too much like *Tinker Bell* or *Tink*. Since this is a post-hoc hypothesis, we will not re-run the statistics excluding this item to avoid p-hacking (Simmons et al. 2011).

(a) Sibilants = flying
Silshin vs. Tiltin
Salshim vs. Taltim
Sulshur vs. Tulkur
Surshum vs. Turkum
Shieshen vs. Kieten
Shilsun vs. Kiltun
Shalshick vs. Kaltick
Shelshim vs. Kelkim
(b) Voiced obstruents = dark
Bringlin vs. Prinklin
Branzlam vs. Pranslam
Drinzlin vs. Trinslin
Dramblum vs. Tramplum
Grimblin vs. Krimplin
Grenzlin vs. Krenslin
Zegdum vs. Sektum
Zumgul vs. Sumkul
(c) [p] = fairy
Peepol vs. Teetol
Polpen vs. Tolken
Pafpil vs. Tastil
Pimpock vs. Tintock
Paapair vs. Kaakair
Pupmir vs. Kukmir
Pepmil vs. Kekmil
Parpil vs. Karkil

Table 2: The list of stimuli used in Experiment 2.

375 3.2 Results

Figure 5 shows the normalized probability distribution of the by-participant expected response ratios for each condition, where "expected" indicates (1) sibilants = flying, (2) voiced obstruents = dark, (3) [p] = fairy. The grand averages are all above the chance level (flying: 0.57; dark 0.70; fairy: 0.69), although we observe that some speakers showed responses that were below chance.

Figure 5: The probability distribution of "expected response" ratios for each condition.

The means of the β_1 coefficients were all positive (flying = 0.57, dark = 1.71, fairy = 1.58), and none of their Bayesian 95% CIs included zero (flying [0.40, 0.74]; dark [1.53, 1.89]; fairy [1.39, 1.76]), and in fact, none of the posterior samples of the β_1 coefficients were lower than 0.18. For this format of the experiment, we can be 100% confident that each sound symbolic principle meaningfully affected the participants' responses.

385 **3.3 Discussion**

Experiment 2 has confirmed the productivity of all the three sound symbolic connections that were of interest. Taken together with the results of Experiment 1, we conclude that English speakers make similar sound symbolic connections between certain classes of sounds and particular types of characters in Pokémon games, just as Japanese speakers do, with an important caveat that we observed a clear task effect—the sound symbolic effects were more robustly observed in an experiment in which the stimuli were presented in pairs, i.e. in a 2AFC format.

Recall however that the previous experiments conducted with Japanese speakers deployed a 2AFC format (Kawahara and Kumagai 2019b; Kawahara et al. 2020), just like our Experiment 2. The current results were thus no less reliable than the previous Pokémonastic studies. With this said, how sensitive Japanese speakers are to these sound symbolic associations needs to be studied using an experimental format like Experiment 1 in future work. In fact, echoing Westbury et al. (2018), more generally speaking, this future task applies to many sound symbolic patterns that have been studied using a 2AFC format.

At this point we would like to address one potential general concern about the 2AFC format that was raised by Westbury et al. (2018) in the context of the current experiment. In the 2AFC format that is deployed in Experiment 2, there is an alternative possibility that the normal type of Pokémons (those that were contrasted with the three types of Pokémons that we were interested in) were sound symbolically associated with the control names, which can explain the skews in response that were observed in Experiment 2. We doubt that this alternative possibility is viable, because the normal type of Pokémon was not associated with any particular feature, at least in this experiment. Neither do we have reasons to believe that voiceless obstruents, used in control names in all the comparisons, were associated with the normal type in terms of sound symbolism.

3.4 Inference from the existing patterns

One question that arises from these experimental results is whether these sound symbolic patterns hold in the existing set of English Pokémon names, or whether English speakers could infer Pokémon types based on their tacit knowledge about sound symbolism in the experiments. To address this question, we examined the dataset created by Shih et al. (2019), which includes all the data about English Pokémon names up to the 7th generation (total N = 802).⁷

Table 3 shows the distribution of names containing sibilants in the flying type and normal type; contrary to our experimental results, names containing sibilants were in fact more common for the normal type than for the flying type, although this difference was not significant ($\chi^2(1) =$ 1.22, *n.s.*).

Table 3: The distributions of names containing voiceless sibilants in the flying type and normal type in the existing English Pokémon names.

	Flying type	Normal type
contain sibilants	19 (19%)	29 (26.4%)
contain no sibilants	81	81
total	100	110

Table 4 shows the distribution of names containing voiced obstruents in the dark Pokémons and normal Pokémons. It shows that voiced obstruents are slightly more overrepresented in the dark Pokémons, but this difference was not significant ($\chi^2(1) = 1.29, n.s.$).

⁷We are grateful to Stephanie Shih and her colleagues for letting us use the database. Due to the data sharing agreement, this dataset cannot be publicly made available.

	Dark type	Normal type
contain voiced obstruents	28 (59.6%)	53 (48.2%)
contain no voiced obstruents	19	57
total	47	110

Table 4: The distributions of names containing voiced obstruents in the dark type and normal type.

Finally, Table 5 shows the distribution of names containing [p] in the fairy type and normal type, which shows that [p] is, contrary to the experimental results, more common in the normal type. This difference is not statistically significant, however ($\chi^2(1) = 0.62, n.s.$).

Table 5: The distributions of names containing [p] in the fairy type and normal type.

	Fairy type	Normal type
contain [p]	9 (19.1%)	26 (23.6%)
contain no [p]	38	84
total	47	110

Overall, none of the sound symbolic effects are visible in the existing English Pokémon names. 424 This result reveals an interesting difference between English and Japanese, as recall that Hosokawa 425 et al. (2018) showed that two of the three sound symbolic patterns under question hold in the ex-426 isting Pokémon names in Japanese. (The connection between sibilants and the flying type is not 427 observed in the existing Japanese names: Kawahara et al. 2020.) The reason why the existing En-428 glish names do not exhibit these sound symbolic connections may be because Pokémon characters 429 were created and named in Japan first, and they were translated into English sometimes by using 430 real words to describe those characters; for instance, *hitokage*, a small lizard-like character which 431 blows fire, is named *Charmander*, based on *charcoal* and *salamander*. After all, for many words, 432 sound-meaning associations are arbitrary (Hockett 1959; Saussure 1916/1972); therefore, together 433 with the semantic restrictions imposed during the translation process, the English names may have 434 ended up not being very sound symbolic (although see Shih et al. 2019 who show that some sound 435 symbolic effects are observable in the existing English Pokémon names as well). 436

⁴³⁷ Nevertheless we find it interesting that when English speakers are given nonce words with
 ⁴³⁸ appropriate phonological properties, they are able to, albeit probabilistically, make the same sound ⁴³⁹ symbolic associations that Japanese speakers do. The overall results therefore support the thesis
 ⁴⁴⁰ that arbitrariness and sound symbolic connections can co-reside within a single linguistic system,

or put differently, just because existing words are arbitrary, it does not mean that speakers do not
 have intuitions about possible sound-symbolic connections.

443 **4** Conclusion

We started with a general question regarding sound symbolic effects in natural languages: what kinds of semantic properties can be signaled via sound symbolism, and how complex can these properties be? The current experiments have shown that notions as complex as Pokémon types can be symbolically represented. We find this result to be intriguing as they show that sound symbolism is not limited to simple semantic notions such as size and shape.

We also find it encouraging that those sound symbolic associations that are tested in the exper-449 iments have plausible bases in the phonetic and/or phonological properties of the sounds at issue. 450 To recap, sibilants involve large amounts of oral airflow during their production which is required 451 to cause frication (Mielke 2011), and this phonetic property may be iconically mapped onto the 452 notion of wind, and by extension, flying. Voiced obstruents may be associated with general nega-453 tive images, because of their articulatory challenge (Ohala 1983). Labial consonants, particularly 454 [p], may be associated with the image of cuteness, because those are the typical sounds that are 455 produced by babies (Jakobson 1941). It would not be surprising if such sound symbolic patterns, 456 which are grounded in phonetics, are shared across different languages. We do not intend to pre-457 tend that testing these effects in just two languages—Japanese and English—suffices to establish 458 the universality of sound symbolism, yet the current finding offers a good start for future cross-459 linguistic investigations (though see also Godoy et al. 2020b). 460

Having established that English speakers too can infer Pokémon types from sound symbolism, 461 we would like to end this paper by briefly discussing what Shih et al. (2019) conclude based on 462 an extensive cross-linguistic comparison of Pokémon names. In the real world, we observe var-463 ious types of sound symbolic effects to signal gender differences (Sidhu and Pexman 2019); for 464 instance, male names are more likely to contain obstruents than female names (Eric vs. Erin: Cas-465 sidy et al. 1999; Sidhu and Pexman 2019). On the other hand, we do not observe robust sound 466 symbolic effects to signal gender differences in the Pokémon world. This difference between the 467 real world and the Pokémon world arises maybe because finding a mate is important for reproduc-468 tion, i.e. survival, in the real world, but not so much in the Pokémon world. This hypothesis is 469 further supported by the fact that Pokémon strength status is sound symbolically signaled across 470 languages, together with the fact that Pokémon characters fight with each other; i.e., Pokémon 471 strengths are important for their survival. 472

Thus, sound symbolism may be actively deployed to signal those attributes that are important for their survival in that world (Uno et al. 2020). Types play a non-trivial role in Pokémon battles

(e.g. fairy type has advantages over dark type), and therefore, it is predicted that types constitute 475 an attribute that should be signaled by sound symbolism. While the current study lends further 476 support to this idea, it also raises a few new questions. One is whether types other than flying, 477 dark, and fairy can be symbolically represented. Another is whether the sound symbolic patterns 478 tested in the current study also hold for speakers of languages other than English and Japanese. 479 More generally, can we observe sound symbolic effects for any properties that are relevant for 480 survival and reproduction in the real world? These questions can and should be tested via future 481 experimentation. 482

All in all, the current experiments have shown that English speakers can associate certain types of sounds with certain Pokémon types, as do also Japanese speakers. This parallel may not come as too much of a surprise, to the extent that the sound-meaning associations are grounded in the phonetic and phonological properties of the sounds at issue. Finally, the fact that the sound symbolic associations are not observed in the existing English Pokémon names but yet can be identified by English participants with nonce words shows that arbitrariness and sound symbolism can co-exist within a single linguistic system.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions

All authors contributed to the design and execution of the experiment as well as the discussion of the results. SK analyzed the results and wrote the initial version of the paper. MG and GK revised the paper.

Funding

This research is supported by the JSPS grant #17K13448 and # 20H05617 to SK.

Acknowledgments

We are grateful to Donna Erickson for comments on previous versions of the paper.

Supplemental Data

N/A.

Data Availability Statement

All of the data and the code, as well as the posterior samples, are available in the osf repository: https://osf.io/2m34s/?view_only=cba24b7045314cacad1238c2def5c23a.

References

- Akita, K. (2015). Sound symbolism. In *Handbook of Pragmatics, Installment 2015*, eds. J.-O. Östman and J. Verschueren (Amsterdam and Philadelphia: John Benjamins)
- Asano, M., Imai, M., Kita, S., Kitaji, K., Okada, H., and Thierry, G. (2015). Sound symbolism scaffolds language development in preverbal infants. *Cortex* 63, 196–205
- Bankieris, K. and Simner, J. (2015). What is the link between synaesthesia and sound symbolism? *Cognition* 136, 186–195
- Blasi, D., Wichman, S., Hammarström, H., Stadler, P. F., and Christianson, M. H. (2016). Soundmeaning association biases evidenced across thousands of languages. *Proceedings of National Academy of Sciences* 113, 10818–10823
- Bremner, A. J., Caparos, S., Davidoff, J., de Fockert, J., Linnell, K. J., and Spence, C. (2013). "Bouba" and "Kiki" in Namibia? A remote culture make similar shape-sound matches, but different shape-taste matches to Westerners. *Cognition* 126, 165–172
- [Dataset] Bürkner, P.-C. (2017). brms: An R Package for Bayesian Multilevel Models using Stan. R package
- Cabrera, J. C. M. (2012). The role of sound symbolism in protolanguage: Some lingusitic and archaeological speculations. *Theoria et Historia Scientiarum* 9, 115–130
- Cassidy, K. W., Kelly, M. H., and Sharoni, L. J. (1999). Inferring gender from name phonology. *Journal of Experimental Psychology: General* 128, 362–381
- Cohen, J. (1988). *Statistical Power Analysis for the Behavioral Science* (Lawrence Erlbaum Associates)
- Cuskley, C. and Kirby, S. (2013). Synesthesia, cross-modality, and language evolution. In *Oxford Handbook of Synesthesia*, eds. J. Simner and E. Hubbard (Oxford: Oxford University Press)
- Cuskley, C., Simner, J., and Kirby, S. (2017). Phonological and orthographic influences in the bouba-kiki effect. *Psychologiacl Research* 81, 119–130
- Daland, R., Hayes, B., White, J., Garellek, M., Davis, A., and Norrmann, I. (2011). Explaining sonority projection effects. *Phonology* 28, 197–234
- Dingemanse, M. (2018). Redrawing the margins of language: Lessons from research on ideophones. *Glossa* 3, 4, doi:org/10.5334/gjgl.444
- Dingemanse, M., Blasi, D. E., Lupyan, G., Christiansen, M. H., and Monaghan, P. (2015). Arbitrariness, iconicity and systematicity in language. *Trends in Cognitive Sciences* 19, 603–615
- [Dataset] Franke, M. and Roettger, T. B. (2019). Bayesian regression modeling (for factorial designs): A tutorial. Ms. https://doi.org/10.31234/osf.io/cdxv3

- Godoy, M. C., de Souza Filho, N. S., Marques de Souza, J. G., Alves, H., and Kawahara, S. (2020a). Gotta name'em all: An experimental study on the sound symbolism of Pokémon names in Brazilian Portuguese. *Journal of Psycholinguistic Research* 49, 717–740
- [Dataset] Godoy, M. C., Gomes, A. L. M., Kumagai, G., and Kawahara, S. (2020b). Sound symbolism in Brazilian Portuguese Pokémon names: Evidence for cross-linguistic similarities and differences. Ms. Federal University of Rio Grande do Norte, Meikai University and Keio University
- Hamano, S. (1998). The Sound-Symbolic System of Japanese (Stanford: CSLI Publications)
- Hayes, B. (1999). Phonetically-driven phonology: The role of Optimality Theory and inductive grounding. In *Functionalism and Formalism in Linguistics, vol. 1: General Papers*, eds. M. Darnell, E. Moravscik, M. Noonan, F. Newmeyer, and K. Wheatly (Amsterdam: John Benjamins). 243–285
- Hayes, B. and Steriade, D. (2004). Introduction: The phonetic bases of phonological markedness.In *Phonetically Based Phonology.*, eds. B. Hayes, R. Kirchner, and D. Steriade (Cambridge: Cambridge University Press). 1–33
- Hockett, C. (1959). Animal "languages" and human language. Human Biology 31, 32-39
- [Dataset] Hosokawa, Y., Atsumi, N., Uno, R., and Shinohara, K. (2018). Evil or not? Sound symbolism in Pokémon and Disney character names. Talk presented at the 1st international conference on Pokémonastics
- Imai, M. and Kita, S. (2014). The sound symbolism bootstrapping hypothesis for language acquisition and language evolution. *Philosophical Transactions of the Royal Society B: Biological Sciences* 369
- Jakobson, R. (1941). *Child Language, Aphasia and Phonological Universals* (The Hague: Mouton). Translated into English by A. Keiler, 1968
- Jakobson, R. (1978). Six Lectures on Sound and Meaning (Cambridge: MIT Press)
- Johansson, N. E., Anikin, A., Carling, G., and Holmer, A. (2020). The typology of sound symbolism: Defining macro-concepts via their semantic and phonetic features. *Linguistic Typology* 24, 253–310
- Kawahara, S. (2017). Introducing Phonetics through Sound Symbolism (Tokyo: Hitsuzi Syobo)
- Kawahara, S. (2019). What's in a precure name? *ICU Working Papers in Linguistics 7: Festschrift* for Professor Tomoyuki Yoshida on his 60th birthday, 15–22
- Kawahara, S. (2020a). Sound symbolism and theoretical phonology. *Language and Linguistic Compass* 14, e12372
- Kawahara, S. (2020b). A wug-shaped curve in sound symbolism: The case of Japanese Pokémon names. *Phonology* 37
- Kawahara, S. and Breiss, C. (2021). Exploraing the nature of cumulativity in sound symbolism: Experimental studies of pokémonastics with english speakers. *Laboratory Phonology*
- Kawahara, S., Godoy, M. C., and Kumagai, G. (2020). Do sibilants fly? Evidence from a sound symbolic pattern in Pokémon names. *Open Linguistics* 6, 386–400
- Kawahara, S., Katsuda, H., and Kumagai, G. (2019). Accounting for the stochastic nature of sound symbolism using Maximum Entropy model. *Open Linguistics* 5, 109–120
- Kawahara, S. and Kumagai, G. (2019a). Expressing evolution in Pokémon names: Experimental explorations. *Journal of Japanese Linguistics* 35, 3–38
- Kawahara, S. and Kumagai, G. (2019b). Inferring Pokémon types using sound symbolism: The effects of voicing and labiality. *Journal of the Phonetic Society of Japan* 23, 111–116

- Kawahara, S. and Kumagai, G. (2021). What voiced obstruents symbolically represent in Japanese: Evidence from the Pokémon universe. *Journal of Japanese Linguistics* 37
- Kawahara, S. and Monou, T. (2017). Onshochoo-no gengokyooiku-deno yuukooriyoo-ni mukete: urutoraman-no kaijuumei-to onshoochoo. *Journal of the Phonetic Society of Japan* 21, 43–49
- Kawahara, S. and Moore, J. (2021). How to express evolution in English Pokémon names. *Linguistics*
- Kawahara, S., Noto, A., and Kumagai, G. (2018). Sound symbolic patterns in Pokémon names. *Phonetica* 75, 219–244
- Kingston, J., Kawahara, S., Mash, D., and Chambless, D. (2011). Auditory contrast versus compensation for coarticulation: Data from Japanese and English listners. *Language and Speech* 54, 496–522
- Köhler, W. (1947). *Gestalt Psychology: An Introduction to New Concepts in Modern Psychology* (New York: Liveright)
- Kruschke, J. K. (2014). *Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan* (Academic Press)
- Kruschke, J. K. and Liddell, T. M. (2018). The bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and pewer analysis from a Bayesian perspective. *Psychological Bulletin* and Review 25, 178–206
- Kubozono, H. (1999). Nihongo-no Onsei: Gendai Gengogaku Nyuumon 2 [Japanese Phonetics: An Introduction to Modern Linguisitcs 2] (Tokyo: Iwanami Shoten)
- Kumagai, G. (2019). A sound-symbolic alternation to express cuteness and the orthographic Lyman's Law in Japanese. *Journal of Japanese Linguistics* 35, 39–74
- Kumagai, G. and Kawahara, S. (2019). Effects of vowels and voiced obstruents on Pokémon names: Experimental and theoretical approaches [in Japanese]. *Journal of the Linguistic Society of Japan* 155, 65–99
- Kumagai, G. and Kawahara, S. (2020). How abstract is sound symbolism? Labiality and diaper names in Japanese [in Japanese]. *Journal of the Linguistic Society of Japan* 157, 149–161
- Locke, J. (1689). An Essay concerning Human Understanding (London: MDCC)
- Lockwood, G. and Dingemanse, M. (2015). Iconicity in the lab: A review of behavioral, developmental, and neuroimaging research into sound-symbolism. *Frontiers in Psychology*, doi: 10.3389/fpsyg.2015.01246
- Lupyan, G. and Winter, B. (2018). Language is more abstract than you think, or, why aren't languages more iconic? *Proceedings of Royal Society B*. 373, 20170137.
- Macmillan, N. and Creelman, D. (2005). *Detection Theory: A User's Guide. 2nd Edition* (Mahwah: Lawrence Erlbaum Associates Publishers)
- MacNeilage, P. F., Davis, B. L., and Matyear, C. L. (1997). Babbling and first words: Phonetic similarities and differences. *Speech Communication* 22, 269–277
- Makowski, D., Ben-Shachar, M. S., and Lüdecke, D. (2019). bayestestr: Describing effects and their uncertainty, existence and significance within the bayesian framework. *Journal of Open Source Software* 4, 1541
- Mann, V. and Repp, B. (1981). Influence of preceding fricative on stop consonant perception. *Journal of the Acoustical Society of America* 69, 548–558
- Mielke, J. (2011). A phonetically based metric of sound similarity. Lingua 122, 145-163
- Newman, S. (1933). Further experiments on phonetic symbolism. *American Journal of Psychology* 45, 53–75

- Nicemboim, B. and Vasishth, S. (2016). Statistical methods for linguistic research: Foundational ideas part ii. *Language and Linguistic Compass* 10, 591–613
- Nielsen, A. K. S. and Dingemanse, M. (2020). Iconicity in word learning and beyond: A critical review. *Language and Speech*
- Nuckolls, J. B. (1999). The case for sound symbolism. *Annual Review of Anthropology* 28, 225–252
- Nygaard, L. C., Cook, A. E., and Namy, L. L. (2009). Sound to meaning correspondence facilitates word learning. *Cognition* 112, 181–186
- Ohala, J. (1983). The origin of sound patterns in vocal tract constraints. In *The Production of Speech*, ed. P. MacNeilage (New York: Springer-Verlag). 189–216
- Ota, M. (2015). L1 phonology: Phonological development. In *The Handbook of Japanese Language and Linguistics: Phonetics and Phonology*, ed. H. Kubozono (Berlin: Mouton). 681–717
- Paraise, C. V., Knorre, K., and Ernst, M. O. (2014). Natural auditory scene statistics shapes human spatial hearing. *Proceedings of National Academy of Sciences* 111, 6104–6108
- Perlman, M. and Lupyan, G. (2018). People can create iconic vocalizations to communicate various meanings to naïve listeners. *Scientific Reports*, 26–34
- Perniss, P., Thompson, R. L., and Vigiliocco, G. (2010). Iconicity as a general property of language: Evidence from spoken and signed languages. *Frontiers in Psychology* doi:10.3389/fpsyg.2010.00227
- Perniss, P. and Vigiliocco, G. (2014). The bridge of iconicity: From a world of experience to the experiment of language. *Philosophical Transactions of the Royal Society B* 369, 20130300
- Pitcher, B. J., Mesoudi, A., and McElligott, A. G. (2013). Sex-based sound symbolism in Englishlanguage first names. *PLOS ONE* 8, e64825, doi:10.1371/journal.pone.0064825
- Proctor, M. I., Shadle, C. H., and Iskarous, K. (2010). Pharyngeal articulation differences in voiced and voiceless fricatives. *Journal of the Acoustical Society of America* 127, 1507–1518.
- R Development Core Team (1993–). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria
- Ramachandran, V. S. and Hubbard, E. M. (2001). Synesthesia-a window into perception, thought, and language. *Journal of Consciousness Studies* 8, 3–34
- Sapir, E. (1929). A study in phonetic symbolism. *Journal of Experimental Psychology* 12, 225–239
- Saussure, F. d. (1916/1972). *Course in general linguistics* (Peru, Illinois: Open Court Publishing Company)
- Schmidtke, D. S., Conrad, M., and Jacobs, A. M. (2014). Phonological iconicity. Frontiers in Psychology 5, doi: 10.3389/fpsyg.2014.00080
- [Dataset] Shih, S. S., Ackerman, J., Hermalin, N., Inkelas, S., Jang, H., Johnson, J., et al. (2019). Cross-linguistic and language-specific sound symbolism: Pokémonastics. Ms. University of Southern California, University of California, Merced, University of California, Berkeley, Keio University, National University of Singapore and University of Chicago
- Shinohara, K. and Kawahara, S. (2009). Onshoochoo no gengokan hikaku [A cross- linguistic comparison of sound symbolism]. *Proceedings of Japan Cognitive Science Society*
- Shinohara, K. and Kawahara, S. (2016). A cross-linguistic study of sound symbolism: The images of size. In *Proceedings of the Thirty Sixth Annual Meeting of the Berkeley Linguistics Society*. (Berkeley: Berkeley Linguistics Society). 396–410
- Sidhu, D. and Pexman, P. M. (2018). Five mechanisms of sound symbolic association. Psycho-

nomic Bulletin & Review 25, 1619–1643

- Sidhu, D. and Pexman, P. M. (2019). The sound symbolism of names. *Current Directions in Psychological Science* 28, 398–402
- Sidhu, D. M., Pexman, P. M., and Saint-Aubin, J. (2016). From the Bob-Kirk effect to the Benoit-Éric effect: Testing the mechanism of name sound symbolism in two languages. Acta Psychologica 169, 88–99
- Simmons, J., Nelson, L., and Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. *Psychological Science* 22, 1359–1366
- Spence, C. (2011). Crossmodal correspondences: A tutorial review. *Attention, Perception & Psychophysics* 73, 971–995
- Styles, S. J. and Gawne, L. (2017). When does maluma/takete fail? Two key failures and a metaanalysis suggest that phonology and phonotactics matter. *i-Perception* 8, 1–17
- Suzuki, T. (1962). Oninkookan to igibunka no kankei ni tsuite–iwayuru seidakuon tairitsu-o chuushin toshite. *Gengo Kenkyu [Journal of the Linguistic Society of Japan]* 42, 23–30
- Svantesson, J.-O. (2017). Sound symbolism: The role of word sound in meaning. *WIRE Cog Sci* 8, e01441
- Uno, R., Shinohara, K., Hosokawa, Y., Ataumi, N., Kumagai, G., and Kawahara, S. (2020). What's in a villain's name? Sound symbolic values of voiced obstruents and bilabial consonants. *Annual Review of Cognitive Linguistics* 18, 428–457
- Vasishth, S., Nicenboim, B., Beckman, M., Li, F., and Jong Kong, E. (2018). Bayesian data analysis in the phonetic sciences: A tutorial introduction. *Journal of Phonetics* 71, 147–161
- Westbury, C., Hollis, G., Sidhu, D. M., and Pexman, P. M. (2018). Weighting up the evidence for sound symbolism: Distributional properties predict cue strength. *Journal of Memory and Language* 99, 122–150
- Westbury, J. R. and Keating, P. (1986). On the naturalness of stop consonant voicing. *Journal of Linguistics* 22, 145–166
- Wichmann, S., Holman, E. W., and Brown, C. H. (2010). Sound symbolism in basic vocabulary. *Entropy* 12, 844–858
- Winter, B., Pérez-Sobrino, P., and Lucien, B. (2019). The sound of soft alcohol: Crossmodal associations between interjections and liquor. *PLOS ONE*