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Abstract

�is study uses a series of Arti�cial Grammar Learning experiments to test

for a synchronic relationship between the severity of an individual phonotac-

tic violation and the linearity of its cumulative interaction with other violations,

prompted by previous experimental �ndings (Albright, 2012, Breiss, resubmi�ed).

We �nd that as individual phonotactic pa�erns are made more exceptionful, their

cumulativity moves from linear to super-linear. We evaluate �ve contemporary

phonological frameworks using this data, and �nd that Maximum Entropy HG,

and to a lesser degree Noisy HG, are able to capture the super-linear pa�erns

observed signi�cantly be�er than other frameworks. Further, we demonstrate

that a MaxEnt model provided the same training data as experimental partici-

pants exhibits similar emergent super-linear cumulativity, and we explore the

weighting conditions under which MaxEnt models yield sub-linear, linear, and

super-linear cumulativity.
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1. Introduction

�is paper addresses the relationship between the strength of phonotactic

constraints and the way in which multiple coincident violations of such con-

straints interact in the grammar. Prompted by a dissonance in previous exper-

imental results, we investigate whether there is a causal relationship between

the strength of a given phonotactic (as measured in number of exceptions) and

how it “gangs” with that of other violations in the grammar. Using an Arti�cial

Grammar Learning (AGL) paradigm similar to Breiss (resubmi�ed), we �nd that

this is the case. As the number of exceptions to a given phonotactic grows, the

additional penalty for multiple coincident violations increases beyond what is

obtained by simple combination of these independent penalties. �at is, partici-

pants’ acceptability ratings for doubly-marked forms are lower than what is ob-

tained by adding up the independent penalties in acceptability for each of those

forms’ individual violations. We argue that this constitutes a case of super-linear
cumulativity, and discuss its implications in light of previous experimental and

lexical studies of cumulativity.

�is �nding in hand, we consider what characteristics a phonological frame-

work must possess to capture these e�ects, and use our experimental data to

compare two prominent constraint-based models, Maximum Entropy Harmonic

Grammar (MaxEnt; Smolensky (1986); Goldwater and Johnson (2003)) and Noisy

Harmonic Grammar (NHG; Boersma and Pater (2008)). We also evaluate a range

of other constraint-based theories of phonotactic well-formedness: Stochastic

OT (Boersma et al., 1997, 1998; Boersma and Hayes, 2001), Linear Harmonic

Grammar (Coetzee and Pater (2008), cf. also the nearly-identical Linear Optimal-

ity �eory of Keller (2006)), and the surface-based Maximum Entropy approach

(herea�er simply called the Surface-based model (Hayes and Wilson, 2008; Wil-

son and Gallagher, 2018)). We �nd that MaxEnt and NHG can capture the re-

lationship between super-linear cumulativity and exceptionfulness substantially

be�er than the other frameworks, and further that MaxEnt outperforms NHG.

Finally, we demonstrate that the MaxEnt model can arrive at a weighting which

displays super-linear cumulativity when provided only with the training data

that participants received.

2. Howdo speakers compute grammaticality acrossmultiplemarked struc-
tures?

A growing consensus in the phonological literature supports the view that

markedness violations are cumulative: when speakers judge the well-formedness
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of a word, their judgement is not based on only the most marked structure it con-

tains (as predicted by strict-ranking constraint-based models such as Optimality

�eory (Prince and Smolensky, 1993) and its variants). Rather, they a�end to all

relevant structures and weight their importance according to their severity (as

predicted by weighted-constraint models such as Harmonic Grammar (Legendre

et al., 1990) and its variants). �is aggregation of evidence — termed cumulativity
(cf. Jäger and Rosenbach (2006) for more on this terminology) — can be observed

in two separate domains: that of probability of a given structure in the lexicon,

and that of experimentally-determined acceptability or probability.
1

In studies

of the contents of lexicons, it has been repeatedly observed that the frequency of

word-types which contain a single given marked structure x is greater than that

of words which contain both x and also an independently marked structure y.

An example of this type of cumulativity can be found in the lexicon of English:

as part of a study of English monosyllable phonotactics, Albright (2012) found

that 491 (8.2%) of monosyllables in the CELEX database (Baayen et al., 1995)

had a stop+l onset, and 47 (3.2%) had a s+stop coda. However, the number of

#stop+l…s+stop# words was lower than either of these, with only 7 occurrences

(0.11%). Experimentally, Pizzo (2015) found that English-speaking participants

judged words which violated English syllable-margin phonotactics in one loca-

tion, ex. plavb, tlag as less acceptable than one which violated none — plag —

and crucially more acceptable than those which violated both, ex., tlavb. Breiss

(resubmi�ed) tested for cumulativity in phonotactic markedness using an AGL

paradigm, and found that, when trained on a language which conformed to two

exceptionless phonotactics, participants judged words that violated both phono-

tactics as less well-formed than those which violated only one, again demonstrat-

ing cumulativity. Kawahara and Breiss (resubmi�ed) examined cumulativity in

sound symbolism, and found that participants combined multiple phonological

cues to the same sound-symbolic quality in a cumulative manner.

2.1. Terminology
�is paper builds on these experimental and lexical observations of cumula-

tivity to probe the precise relationship between the probability of singly-violating

and multiply-violating forms.
2

�us, it is important to clearly de�ne terms de-

1
In this paper we use the terms acceptability and probability interchangeably, though in gen-

eral this is a non-trivial assumption.

2
It is important to note that these types of cumulativity are orthogonal to the distinction

between counting and ganging cumulativity (cf. Jäger and Rosenbach (2006)).
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scribing the di�erent types of relationship that can obtain.

In general, discussions of constraint cumulativity in probabilistic models of

grammar have (o�en tacitly) assumed that when a word violates multiple con-

straints, the probability given to the multiply-violating word by the grammar is

obtained by multiplying the probabilities of each of the structures it contains.

�is is not the only relationship possible between the probabilities of singly- and

doubly-marked forms, however. For example, consider a language with vowel

backness/rounding harmony and consonant nasality harmony, such as the one

used in the experiments reported in this paper in section 5. �e full range of

relations between the probability of a doubly-violating form poni, p([poni]), and

the probability of minimally-di�erent forms poti and ponu that violate only one

of the two constraints, is laid out in �gure 1.
3

�e diagram groups these types of

relations �rst into those that exhibit any cumulativity (Case 2) from those that

do not (Case 1), and then further di�erentiates the di�erent cumulative ways in

which the probability of the doubly-violating form might relate to the singly-

violating ones (sub-cases 3, 4, 5).
4

One possibility — Case 1 — is that the two violations are not cumulative, and

thus the probability of the doubly-marked form is equal to least probable of the

two individual violations that it contains; such lack of cumulativity is character-

istic of the strict domination of Classic Optimality �eory (Prince and Smolensky,

1993). �e alternative, Case 2, is a catch-all category that simply states that there

is some e�ect of the additional violation on the probability of the doubly-marked

form, though what type of cumulativity that is remains unspeci�ed. Cases 3, 4,

and 5 are speci�c types of cumulative interaction, where the probability of the

doubly-marked form is, respectively, equal to, less than, or greater than the prod-

uct of the probabilities of its component violations. Case 3 — linear cumulativity

— is what is typically assumed in probabilistic constraint-based grammars.
5
.

3
Although this example uses two markedness constraints for simplicity’s sake, the concept

generalizes to any number of constraints.

4
�anks to an anonymous reviewer for inspiring this diagram.

5
Another set of terminology sometimes used is that of additivity, with subtypes sub-additive,

additive and super-additive. While there are subtle di�erences between the two, such as the fact

that additivity implies cumulativity but not homogeneity, while linearity implies both, I use the

linearity term here in keeping with previous literature (Smith and Pater, 2020, Breiss, resubmi�ed;

Kawahara and Breiss (resubmi�ed))
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1. p([poni]) = min{p([poti]), p([ponu])}
No cumulativity

2. p([poni]) < min{p([poti]), p([ponu])}
Any cumulativity

3. p([poni]) = p([poti]) × p([ponu])

Linear cumulativity

4. p([poni]) < p([poti]) × p([ponu])

Super-linear cumulativity

5. p([poni]) > p([poti]) × p([ponu]),

< min{p([poti]), p([ponu])}
Sub-linear cumulativity

Figure 1: Classes of cumulative relationships.

3. Super-linear cumulativity in experimental data, and how to explain it

�e studies demonstrating cumulativity reviewed in section 2 simply served

to motivate the claim that phonological grammars allow cumulativity — that is,

that we are concerned with determining which sub-cases of Case 2 the phono-

logical grammar allows, rather than being in a Case 1 scenario. Figure 1 makes

clear though that the existence of cumulative constraint interactions is not a full

answer to what type of cumulative constraint interactions the grammar allows.

Using these de�nitions, we can look at the empirical landscape of cumula-

tivity in a more nuanced way. Recent work by Breiss (resubmi�ed) found using

an AGL paradigm that participants inferred linear cumulativity (Case 3) between

markedness violations. However, this �nding of linearity contrasts with a num-

ber of cases of apparent super-linear cumulativity (Case 4) in other lexical and

experimental data. For an illustrative example, let us return to Albright’s study

of monosyllabic English words. In section 1 the example served to illustrate the

presence of any kind of cumulativity in lexical counts — that words with two

marked structures were less common than words with only one. �antifying

what “less common” means, however, reveals that in this instance the cumu-

lativity exhibited is super-linear in nature: the independent probabilities of the

marked syllable margins alone predicts that 8.2%× 3.2% = 0.22% of the monosyl-
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lables in the database — about 16 unique words — should exhibit both the marked

onset and marked coda. In fact, however, there are only 7 words which do so, less

than half the number predicted by the product of the probability of the marked

structures. �us the relationship between singly- and doubly-marked forms in

the English lexicon resembles Case 4, super-linear cumulativity, rather than Case

3.

To complement these lexical �ndings, Albright (2012) replicated a nonword

acceptability judgment task from Bailey and Hahn (2001) which asked subjects

to rate the acceptability of novel English monosyllables containing onset clusters

(e.g. [krEn, draf]), coda clusters (e.g. [lEsk, mısp]), or both (e.g. [drısp, krEsk]).

Albright then modeled whether the acceptability of the doubly-marked forms

could be predicted solely on the basis of their constituent violations — the ex-

pected result in a Case 3 scenario of linear cumulativity — and found that it could

not: doubly-marked forms such as [drısp] were rated less acceptable than pre-

dicted by the sum of their independent penalties, again suggesting Case 4. Other

cases of super-linearity have been documented in phonological alternations: for

example Smith and Pater (2020) note that super-linear behavior is observed in

the interaction of deletion and epenthesis in the surface-realization of French

schwa. A full review of super-linear cumulativity in lexical data and alternations

is reserved for section 8.3, since the focus of this paper is on static phonotactics.

3.1. In search of an explanatory theory
Although there is growing evidence of super-linear cumulativity in experi-

mental studies, there is not yet a consensus about the synchronic mechanism that

produces these e�ects. A prerequisite for any suitable explanation is that it must

be able to explain simultaneously both established examples of linear cumula-

tivity (Case 3, �ndings of Breiss (resubmi�ed), as well as Durvasula and Liter (to
appear), and literature reviewed therein) as well as the cases of super-linear cu-

mulativity reviewed here. Below, we outline two theoretical mechanisms which

yield testable predictions about how and when we should expect super-linear

e�ects (or lack thereof) in constraint interactions.

3.1.1. �e frequency matching hypothesis
Although the studies discussed here are suggestive of a relationship between

exceptionfulness and super-linearity in cumulative interactions, the close con-

nection between the lexicon and the phonological grammar prevents us from

drawing reliable conclusions from these data. A robust body of evidence, pri-

marily drawn from the study of phonological alternations, indicates that all else
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equal, speakers will extend statistical trends which hold of their lexicon to novel

items in generalization tasks such as wug tests, a propensity which Hayes et al.

(2009) call the “Law of Frequency Matching”. �is tendency poses a confound

for the study of super-linear cumulativity using natural languages in light of lit-

erature which suggests that the lexicons of many languages exhibit super-linear

under-representation (cf. Albright (2012)’s own study on the English lexicon, as

well as other cases reviewed in section 8.3). �us there is an alternative expla-

nation for experimental �ndings such as those of Albright (2012), namely that

they could be an experimental artefact of participants generating acceptability

judgements using phonological grammars learned from a lexicon that exhibits

super-linear underrepresentation of the very structures which the participants

are being asked to judge. In this scenario, the synchronic grammar would not

need to encode a relationship between exceptionality and super-linearity, only to

allow participants to learn from or draw on the distributional asymmetries in the

lexicon, a capacity which has been well established over the past decade or more

of phonological research. In this scenario, the experimental �ndings of Albright

and others in section 3 would be due to frequency-matching lexical statistics

which exhibit super-linear underrepresentation of doubly-marked forms for rea-

sons independent of the synchronic grammar, while the linear cumulativity for

exceptionless phonotactics found by Breiss would re�ect the synchronic phono-

logical grammar.

3.1.2. �e synchronic hypothesis
In contrast to the frequency-matching account, it could be the case that the

synchronic grammar encodes a relationship between the degree of exception-

ality of an individual phonotactic, and the type of cumulativity that it exhibits

when “ganging up” with other markedness violations. �e proposed synchronic

mechanism would need to account for both the super-linear cumulativity of ex-

ceptionful phonotactics found by Albright, as well as the linear cumulativity of

exceptionless ones found by Breiss, and depend on the number of exceptions to

the phonotactic in question.

4. Experimental design overview

To distinguish between these two accounts, we used an AGL experiment to

test the prediction about the relationship between constraint weight and linearity

made by the synchronic hypothesis. If the experimentally-observed super-linear
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cumulativity discussed above has its source in the synchronic grammar, the lin-

earity of constraint interaction should be sensitive to the number of exceptions

to the phonotactics involved (as a proxy for constraint “strength”). On the other

hand, if the synchronic grammar plays no role and the results found by Albright

(2012); Pizzo (2015) were the result of participants “frequency-matching” their

lexicons in acceptability, the number of exceptions to a constraint should not

impact the cumulativity that the constraint exhibits.

Breiss (resubmi�ed) used an AGL paradigm to create a “sandbox” environ-

ment in which participants were taught a language containing evidence for two

phonotactic constraints, free from the confound of the lexicon (cf. section 3.1.1).

Participants were then asked to give well-formedness ratings of novel words vi-

olating neither, one, or both phonotactics. In Experiment 1 we adopt a very

similar experimental design, except that we systematically manipulate the num-

ber of exceptions to each phonotactic constraint. �e critical manipulation was

the training group to which participants were assigned: we created �ve distinct

training Conditions (labeled A-E for convenience), each containing a di�erent

number of exceptions to each phonotactic (ranging from 0% (Condition A) to

25% (Condition E) in 6.25% increments). �e quantity of interest was the penalty

for doubly-marked forms relative to the singly-marked ones, as modulated by

the percentage of learning data which did not conform to the majority pa�ern.

An advantage of pursuing this question using an AGL task rather than study-

ing speakers’ intuitions about their native language, as was done in Albright

(2012), is that the total number of items in the “lexicon” participants are exposed

to is very small. �is makes it easier to maintain the subject’s ignorance about the

language-wide probability of di�erent phonological structures in their environ-

ment that would otherwise be compromised by speakers’ knowledge of their lex-

icon, either because they could infer a speci�c number of doubly-marked struc-

tures based on the joint probability of those minority structures in the lexicon,

or have noticed an obvious gap in the lexicon corresponding to doubly-marked

forms and learned a more complex phonotactic penalizing them directly. Within

the tight con�nes of the arti�cial lexicon, we can keep the number of doubly-

marked forms expected via the joint probability of the individual marked struc-

tures very close to zero (in the experiment reported below it ranges between

0 and 2 in 0.25-unit increments across the �ve Conditions). �us the experi-

ment is in most cases somewhat ambiguous as to whether the nonoccurence of

doubly-marked forms is due to linear or super-linear cumulativity, minimizing

(though not removing entirely) the possibility that any super-linear cumulativ-

ity was overtly learned. Experiment 2 further addresses the question of whether
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participants could have been sensitive to the fraction of expected doubly-marked

forms absent from the more exceptionful conditions of Experiment 1, despite the

sensitivity which would be required to overtly learn super-linear cumulativity

from this subtle signal in the data. We �nd that even when there no super-linear

underrepresentation present in the experimental stimuli, learners still display

super-linear cumulativity. We take this as strong evidence to support a syn-

chronic connection between the strength of a given phonotactic and the cumu-

lativity it enters into (per the synchronic hypothesis), and further speculate that

in certain conditions speakers may be biased in favor of learning super-linearly

cumulative interaction of markedness constraints.

5. Experiment 1: testing for a synchronic relationship between phono-
tactic strength and linearity

�is experiment built upon the results of an experiment reported as Exper-

iment 3b in Breiss (resubmi�ed); data from that experiment is included here as

Condition A, the training group whose learning data conformed exceptionlessly

to both phonotactics. All data reported below included these participants. Fur-

ther, the experimental materials were the same as those used in Breiss (resubmit-
ted) unless reported otherwise.

5.1. Methods
5.1.1. Participants

375 undergraduate students were recruited from a subject pool at a North

American university, and were compensated with course credit. Participants’

data were excluded if they failed to meet the criterion for su�cient learning as

assessed during the veri�cation phase (n = 0; see section 5.2 for details), for not

having spoken English consistently since early childhood (n = 43), and in the

case of experimenter error (n = 3), leaving data from 329 participants included

in the �nal analysis.

5.1.2. Stimuli
�e exposure phase contained 32 unique CVCV, initially-stressed nonwords,

with consonants ∈ {/p, t, m, n/} and vowels ∈ {/i, e, u, o/}. One of the two

phonotactics was a requirement that consonants harmonize with respect to the

feature [nasal], such that both consonants in the word were drawn from either

{/p, t/} or {/m, n/} (exhibiting nasal harmony). �e other phonotactic required

that vowels harmonize with respect to the feature [back], such that both vowels
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Condition: A B C D E

Percent exceptions to each phonotactic: 0% 6.25% 12.5% 18.75% 25%

Unmarked potu 32 28 24 20 16

Back exceptions poti 0 2 4 6 8

Nasal exceptions ponu 0 2 4 6 8

Doubly-violating poni 0 0 0 0 0

Table 1: Distribution of stimuli across Conditions in Experiment 1.

in the word were drawn from either {/i, e/} or {/u, o/} (backness harmony). For

more on these types of consonant and vowel harmony respectively, see Hansson

(2010); Walker (2011).

Five distinct training Conditions (A-E) were distinguished by the number of

items that violated each of the phonotactic pa�erns in the language: 0%, 6.25%,

12.5%, 18.75% or 25%. �ere were no training items which violated both phono-

tactics at once, so even in the most exceptionful Condition (Condition E) each

phonotactic received support from 75% of the words in the training phase. Table

1 below displays the counts and violation pro�les of stimuli.

�e veri�cation phase used 16 pairs of minimally-di�ering nonwords: one

member of each pair was a fully-conforming word from the exposure phase, and

the other was created by reversing the featural speci�cation for backness (and

rounding) or nasality of one of the consonants or vowels in the fully-conforming

word. �is yielded a pair of words di�ering only in a single instance of that

phoneme. 8 pairs di�ered in a violation of nasal harmony, and 8 in violation

of backness harmony, with di�erences between pair-members balanced for seg-

mental placement and identity. Veri�cation pairs were balanced so that when a

fully-conforming veri�cation word had identical consonants (ex. totu), it di�ered

only in the violation of backness harmony (ex., totu vs. toti). �e same condition

was imposed on veri�cation trials whose conforming word contained identical

vowels. �ere were no doubly-violating words in the veri�cation phase, since

its purpose was simply to ensure that participants had learned each of the two

phonotactic constraints independently.

�e test phase used a set of 48 novel nonwords which varied in conformity

both phonotactics. 24 conformed to both phonotactics (ex. potu), eight vio-

lated only the nasal-harmony phonotactic (ex., ponu), eight violated only the

backness-harmony phonotactic (poti), and eight violated both the nasal-harmony

and backness-harmony phonotactics (poni).
All words were recorded in a sound-a�enuated room by a phonetically trained
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female native English speaker using PC�irer. �ey were digitized at 44,100 Hz

and normalized for amplitude to 70 dB.

5.2. Design
Participants were assigned to one of the �ve Conditions, and learned the lan-

guage by listening to a continuous speech stream containing 20 randomized rep-

etitions of the 32 words selected for that particular training phase. A�er expo-

sure, participants completed 16 self-paced two-alternative forced choice veri�-

cation trials. Participants were allowed to advance to the generalization phase

if they learned each of the phonotactics to a non-signi�cantly-di�erent degree.

�is was operationalized by imposing a condition that the di�erence in num-

ber of correct answers between pairs di�ering only in a nasal harmony violation

and those di�ering only in a backness harmony violation was not allowed to be

greater than 2, chosen by using Fisher’s exact test (Fisher, 1934) to determine

the level at which the proportion of correct answers for each phonotactic signif-

icantly di�ered, across the range of possible accuracies. If participants did not

meet criteria a�er two exposure blocks (one initial and one a�er failing to meet

criterion during the veri�cation phase), they were simply asked to complete the

�nal demographic questionnaire and did not generate data in the generalization

phase (although recall from in section 5.1.1 that no participants were excluded

for this reason).

If participants met criteria on the veri�cation phase, they advanced to a gen-

eralization phase which consisted of a ratings task containing 48 novel words in

which participants were asked to rate each of the words on a scale from 0 (very
bad) to 100 (very good) based on how good they sounded as an example of the

language they had learned during the exposure phase. At the end of the exper-

iment, demographic and language-background information was collected. �e

entire experiment lasted approximately 20-30 minutes, depending on the num-

ber of additional exposure blocks each participant required.

5.2.1. Procedure
�e experiment was conducted in a sound-a�enuated room using a modi�ed

version of the Experigen platform (Becker and Levine, 2010). At the start of

the experiment, participants were informed that they would �rst be learning a

new language, and that they then would be tested on their knowledge of that

language. During the exposure phase, participants were instructed to simply sit

and listen to the speech stream and, if they felt themselves ge�ing bored, to try

to count how many unique words they could �nd in the speech stream (this task
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was suggested simply to encourage participants to a�end to the speech stream).

�e exposure phase lasted about ten minutes.

Following the exposure phase, participants completed a self-paced veri�ca-

tion phase. On each veri�cation trial participants were played a pair of non-

words in a random order, and were instructed to choose the one that sounded

like it could belong to the language they had learned. �e generalization phase

followed a similar structure, except that each trial containing a single novel non-

word to which participants assigned a numerical rating. A�er completing the

generalization phase (or a�er failure to meet criterion during the veri�cation

phase), participants completed a brief demographic questionnaire.

5.3. Analysis
To determine the e�ect of the number of nonconforming items in training on

the linearity of the constraint interaction, we �t a linear mixed e�ects regression

model using the lme4 package (Bates et al., 2015) in R (Team et al., 2013) to

the ratings data from the generalization phase. �e model included as �xed ef-

fects a three-way interaction between two binary predictors (violation of vowel

harmony (y/n, reference level = n), violation of consonant harmony (y/n, refer-

ence level = n)) and a continuous �xed e�ect corresponding to the percentage of

exceptions to individual phonotactics in a given participants’ training condition

(herea�er simply “Condition”), as well as all subsidiary two-way interactions and

main e�ects. Analysis began by ��ing a maximally-speci�ed model (following

Barr et al. (2013)) and simplifying as necessary to achieve convergence. �e �-

nal model contained the �xed e�ects outlined above, plus random intercepts for

participant and nonword.

5.4. Results
�e results of the experiment are plo�ed in �gure 2. Statistical analysis re-

vealed that violating the nasal-harmony phonotactic was associated with signif-

icantly lower ratings (β =−24.93, p < 0.001). �e interaction between violation

of nasal-harmony and Condition was signi�cant (β = 0.29, p< 0.001), indicating

that as the percentage of forms violating the nasal-harmony phonotactic in the

training data increased, novel forms which violated this phonotactic were judged

less ill-formed. �e analogous main e�ects and interaction between violation

of the backness-harmony phonotactic and training group was also signi�cant

(main e�ect: β = −9.95, p = 0.015; interaction: β = 0.19, p < 0.001). �ere was

also a signi�cant main e�ect of training group, indicating that as as the number
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Figure 2: Experiment 1 results, group-level rating plo�ed on the vertical axis with standard error,

Condition plo�ed on the horizontal axis. Color denotes which phonotactics were violated.

of fully-conforming words heard in training decreased, fully-conforming words

were judged less well-formed as a baseline (β = −0.18, p < 0.001).

Critically, the three-way interaction between violation of nasal-harmony, vi-

olation of backness-harmony, and Condition was signi�cant (β = −0.17, p <
0.002). As the percentage of nonconforming words in training increased, the

di�erence between singly-marked and unmarked items decreased, while the rel-

ative markedness associated with the doubly-marked items remained approxi-

mately unchanged. Interpreting these �ndings in light of the di�erent cases of

cumulativity in �gure 1, we can see that in Condition A, which probed the cu-

mulativity of exceptionless phonotactics, the rating given to the doubly-violating

form (purple) is below the nasal-violating form (teal) by approximately the same

amount that the backness-violating form (green) is below the non-violating form

(red). �is is the intuitive correspondent of the two main e�ects of violating each

phonotactic, and the non-signi�cant two-way interaction between them — linear

cumulativity. Moving rightward along the horizontal axis to Condition E we see

that while there is e�ectively no penalty for violating backness harmony alone,

there is a penalty for violating backness harmony alongside nasal harmony. Put
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another way, the cumulativity of backness and nasal harmony (purple) is super-

linear because the rating assigned to it is less than the sum of the di�erences

between non-violating (red) and backness-violating (green) — essentially zero —

and between non-violating and nasal-violating (teal).

5.5. Local discussion
Experiment 1 tested for a causal link between the strength of a given phono-

tactic in isolation and the linearity of cumulative constraint interactions in which

it participates. We found that learners judged doubly-violating items as more

ill-formed than expected when trained on a language which contained more ex-

ceptions to individual phonotactics than when trained on a more categorical lan-

guage, supporting such a connection.

5.6. Against an under-learning explanation
Because the fully-conforming forms became indistinguishable in generaliza-

tion from those violating only the backness-harmony phonotactic at the highest

level of exceptionality (Condition E), it is possible that participants simply did
not learn the backness harmony phonotactic in this Condition. We deem this

unlikely, because participants were required to learn both phonotactics to non-

signi�cantly-di�erent degrees, per the veri�cation phase. Despite this, it may be

that a preponderance of participants were simply skating through at chance on

the backness phonotactic and above chance on the other.

To test for this possibility, we calculated each participant’s nasal advantage
score, a measure ranging between −2 and 2 which corresponded to the di�er-

ence between the number of correct answers (out of 8) that participant gave

on questions testing backness- vs. nasal-harmony in the veri�cation phase. A

positive score indicates that a participant got more correct answers on the nasal-

harmony-assessing questions, and a negative score indicates the reverse. If par-

ticipants were simply not learning the backness-harmony phonotactic, we should

expect to see participants in training Conditions wither more exceptions having

a higher nasal advantage score. Figure 3 plots nasal advantage scores by Condi-

tion, with a linear trend.

A linear model con�rmed the visual impression that training Condition (coded

as a numerical predictor corresponding to the percentage of training data con-

forming to both phonotactics) does not signi�cantly predict nasal advantage

score (B= − 0.015, p = 0.791). We therefore deem it unlikely that the e�ects

observed in Experiment 1 are due to insu�cient learning of the backness har-

mony phonotactic.
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Figure 3: Nasal advantage score by Condition: one dot is one participant’s score (ji�er added for

readability).

5.7. Was super-linear cumulativity emergent or overtly learned?
Recall that as the number of singly-violating forms in training increased

across Conditions, the number of doubly-violating forms in training remained

zero. �is design maintained a “sandbox” environment, ensuring that general-

ization to doubly-violating forms was una�ected by the broader lexical statistics

of participants’ native language(s). A side-e�ect of this choice, however, was that

the training data contained subtle super-linear under-representation of doubly-

marked forms, raising the possibility that the super-linear cumulativity observed

in participants’ responses was explicitly learned from the data, as anticipated in

section 4. Put another way, the more individual exceptions to each phonotac-

tic a participant sees, the more conspicuous the absence of a doubly-violating

form becomes. In the most exceptionful training phase, Condition E, partici-

pants would expect to hear 2 doubly-violating tokens of the form poni based on

the product of the probability backness-harmony violations and nasal-harmony
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violations in their training data (using a formula analogous to of Case 3 in �gure

1). Instead they heard zero — a blatant case of super-linear underrepresentation

of doubly-marked forms, exactly of the type discussed in section 3.1.1, albeit a

much more subtle one than found in natural language lexicons (Albright, 2008;

Yang et al., 2018; Albright, 2012).

�us the results of Experiment 1 are ambiguous between supporting a syn-

chronic grammar which incorporates a relationship between exceptionality and

linearity of cumulativity that allows super-linear cumulativity to “emerge” un-

der conditions with more exceptionful stimuli, or simply indicating that learners

are sensitive enough to infer a conjoined constraint on the basis of (maximally) 2

missing forms in their learning data (cf. Shih (2017) for more on the role of con-

straint conjunction in weighted-constraint grammars). We conducted a follow-

up experiment to distinguish between these two possibilities.

6. Experiment 2: a control for Experiment 1’s Condition E

To determine whether the super-linear cumulativity observed in Experiment

1 was emergent or overtly learned, we carried out a replication of Condition E

from Experiment 1, except that the training data included two doubly-violating

forms, thus removing their super-linear underrepresentation in the training data.

If participants in Experiment 2 do not exhibit constraint cumulativity which sig-

ni�cantly di�ers from that exhibited in Experiment 1 Condition E, we can con-

clude that the dependency in the synchronic grammar between exceptionality

and super-linear cumulativity must exist in the synchronic grammar, and at least

in certain cases must be strong enough to actually override speakers’ tendency

to frequency-match their input, leading to non-veridical representation of super-

linear cumulativity in the face of non-super-linearly-underrepresentative learn-

ing data (cf. Kiparsky (1982)). On the other hand, if participants exhibit linear

cumulativity in this experiment, we can conclude that the participant is sensitive

enough to detect such pa�erns in the learning data, suggesting support for the

possibility that speakers are highly a�uned to the nuances of their lexicon which

exhibits super-linear underrepresentation (cf. section 3.1.1).
6

6
Note that even if participants do not distinguish between Experiment 1’s Condition E and

Experiment 2, it may still be possible for speakers to overtly learn a super-linear pa�ern in their

data; all we will have demonstrated is that in this case the super-linear cumulativity in Experiment

1 was not due to overt learning.
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Experiment: 1E 2

Unmarked potu 16 16

Back exceptions poti 8 8

Nasal exceptions ponu 8 8

Doubly-violating poni 0 2

Table 2: Distribution of training items by type, comparing Experiment 1 (Condition E) to Exper-

iment 2.

6.1. Methods
6.1.1. Participants

86 undergraduate students were recruited from the same subject pool to par-

ticipate in the experiment, of which 15 were excluded for not being native speak-

ers of English, leaving data from 71 participants for analysis. �e current ex-

periment only had one training Condition which was identical to that used in

Experiment 1’s Condition E, except that two of the singly-violating forms were

altered so as to also violate the other phonotactic; see table 2. Compensation,

design, and procedure were identical to those of Experiment 1.

6.2. Analysis
To test whether the linearity of cumulativity exhibited in Experiment 2 dif-

fered meaningfully from that of Condition E of Experiment 1, the two datasets

were analyzed together in a mixed-e�ects linear regression model. In contrast

to Experiment 1, we used a Bayesian implementation of the model so as to al-

low for direct interpretability of a possible null result, using the brms package

(Bürkner et al., 2017).
7

Bayesian models estimate a range of probable values for

the parameters of interest; thus we can conclude that an e�ect is robust to the

extent that 95% of these values, a measure known as a 95% Credible Interval

(abbreviated to “95% CI”, followed by upper and lower bounds in square brack-

ets), does not include zero. �e inverse of this is that if the range is centered

on zero, then we can say there is no evidence of an e�ect for the parameter of

interest. For a linguistically-oriented introduction to Bayesian methods for both

7
�e model we �t used default weakly-informative priors, with a burn-in period of 1000 iter-

ations followed by a sampling period of 1000 iterations. We ran four chains to ensure thorough

exploration of the posterior distribution, and all R̂ values were between 1 and 1.01, indicating

that the chains mixed successfully.
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theory-building and data analysis, see Nicenboim and Vasishth (2016); for tuto-

rial materials on the brms package in a linguistic context, see Nalborczyk et al.

(2019); Vasishth et al. (2018); for a more general primer in Bayesian statistical

modeling, see Kruschke (2014).

As in Experiment 1, the dependent variable was the numerical rating given

to each word in the generalization phase. Also as in Experiment 1 the model

contained a �xed e�ect of whether the form violated backness harmony (y/n,

reference level = n), whether the form violated nasal harmony (y/n, reference

level = n), and a binary factor for Experiment (one/two, reference level = one),
as well as all two- and three-way interactions of these predictors. �e model

also contained random intercepts for nonword with slopes for Experiment, and

random intercepts for subject with slopes for the interaction of the two binary

phonotactic predictors.

We can interpret the results of the model as follows: if the 95% Credible Inter-

val for the three-way interaction of violating backness harmony, violating nasal

harmony, and Experiment excludes zero, it indicates that the degree of linearity

in the cumulative interaction of violating both phonotactics together compared

to their independent violations di�ered meaningfully between studies. If the 95%

Credible Interval for the interaction is centered on zero, we can conclude that the

cumulative e�ect of violating both phonotactics did not di�er between studies,

and thus was unlikely to have been overtly learned in Experiment 1.

6.3. Results
�e results of Experiment 2 are shown in �gure 4. Violating nasal harmony

resulted in lower ratings (β = −12.72, 95% CI [−21.49, −3.85]), while the e�ect

of violating backness harmony did not (β = −0.10, 95% CI [−8.91, 8.72]). One

experiment was not reliably associated with higher ratings than the other overall

(β = 3.89, 95% CI [−0.87, 8.35]). �e coe�cient for the interaction between

violating backness and nasal harmony did not di�er meaningfully from zero (β =
−8.87, 95% CI [−22.44, 4.96]), nor did the coe�cient for the interaction between

Experiment and violating backness harmony (β = −0.72, 95% CI [−4.50, 2.96]),

nor did the coe�cient for the interaction between Experiment and violating nasal

harmony (β = 2.56, 95% CI [−2.30, 7.22]). Turning to the quantity of interest, the

credible intervals for coe�cient of the three-way interaction between violating

backness harmony, violating nasal harmony, and Experiment surrounded around

zero (β = 1.89, 95% CI [−4.13, 7.73]).

18



Figure 4: Comparison of mean and standard error of ratings by word type in Experiment 1 Con-

dition E, and Experiment 2.

6.4. Local discussion
Experiment 2 tested for whether the super-linear cumulativity observed in

Experiment 1 was a result of participants overtly learning a super-linear penalty

from the super-linear underrepresentation in their data. We found that the lin-

earity of cumulativity was not a�ected by whether or not the training data con-

tained a subtle super-linear pa�ern, a possible confound to the results of Ex-

periment 1. We take this to be compelling evidence in support a synchronic

link between exceptionality in learning data and super-linear cumulativity, as

discussed in section 3.1.1, and against the possibility of the e�ect having been

overtly learned. Further, the fact that participant’s responses contained super-

linear cumulativity in spite of the fact that doing so directly contradicted their

learning data suggests that under certain circumstances, learners may be biased

towards super-linear pa�erns. Much further experimental inquiry on this topic

is needed to expand and verify this claim, and it is thus le� for future work. With

this data in hand, we turn to how these data can be accounted for by phonological

theories.
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7. Locating super-linearity in phonological models

Since we observed that increasingly super-linear cumulativity emerges from

increasingly exceptionful learning data in a context free from the confound of

the lexicon, we can ask what qualities a phonological theory must possess in

order to capture this dependency. Two theories which explicitly encode non-

linear relationships between Harmony and probability are MaxEnt and NHG

models; for in-depth discussion, see (Smith and Pater, 2020; Zuraw and Hayes,

2017; Hayes, 2017, 2020; McPherson and Hayes, 2016, Kawahara and Breiss, re-
submi�ed; Hayes, in progress). �e schematic diagram in �gure 5 depicts the

sigmoidal relationship of MaxEnt, which we use here for illustration. NHG and

Linear HG also have such curves which di�er in subtle ways, which will not be

the focus of discussion here. Rather, the focus below is on demonstrating that in

such theories, the same change in Harmony can translate to di�erent changes in

probability.

Figure 5: A schematic illustration of a sigmoidal relationship between Harmony (horizontal axis)

and probability (vertical axis). �e red, green, and blue lines are tangent to the curve, and demon-

strate super-linear (red), linear (green), and sub-linear (blue) cumulativity.

�e horizontal axis counts violations of a generic scalar markedness con-

straint, and the vertical axis plots the probability of a candidate violating it com-
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peting against a candidate with a single violation of a binary faithfulness con-

straint (this schematization is heavily inspired by Zuraw and Hayes (2017); Hayes

(2020)). As the number of scalar constraint violations increases, the probability

of the candidate violating the scalar markedness constraint decreases in a non-

linear fashion. In this scenario, the relationship between di�erent numbers of

violations of the scalar markedness constraint are non-linear, technically remi-

niscent of counting cumulativity (cf. Jäger and Rosenbach (2006) on this terminol-

ogy). To see how the same mechanism applies in cases of ganging cumulativity,

we need only consider the case where the horizontal axis plots the Harmony of a

candidate which is a composite of contributions from several di�erent marked-

ness violations. Here the non-linearity of the relationship between Harmony

and probability is evident in that the same amount of Harmony penalty yields

di�erently-sized decrements in probability at di�erent places on the horizontal

axis. �is corresponds to the di�erent slopes of the tangent lines in �gure 5. Be-

low we compare a variety of phonological frameworks on their ability to model

the experimental data.

7.1. Two questions to ask when modeling experimental data
Phonological theories can be evaluated on their ability to model experimental

results in (at least) two ways: one is to ask whether, given the experimental

results, a model can achieve a good �t to the experimental data. Success on this

metric indicates that the empirical data are in the space of grammars which are

allowed by the framework in question — that is, the framework in question is

descriptively adequate with respect to the phenomenon, and the model needs no

further aid from linking hypotheses to capture the data. Given that a framework

can capture the experimental results, a more rigorous criterion is explanatory
adequacy: the proposed model should reproduce the crucial data pa�ern in the

experimental �ndings given the same training data as the experimental subjects.

In a sense, this is asking the model to “take the experiment” itself. Below, we

evaluate MaxEnt and NHG using these criteria.

7.1.1. Model setup and ��ing
We adopt a linking hypothesis which interprets the experimental rating (0-

100) as the probability of endorsement in a binary lexical decision task (0%-100%).

�erefore, we employ a model structure in which each a�ested form competes

with a single alternative candidate, the Null Parse (Prince and Smolensky, 1993;

Albright, 2008, 2012). An example of one such competition is in table 3.
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/poti/ Agr([back]) MParse H

2.5 1

[poti] 1 2.5

+null 1 1

Table 3: Competition with the null parse in a schematic tableau.

Our choice to model the experimental data as competition with the Null Parse

is motivated the fact that it is in competition with another candidate that MaxEnt

and NHG exhibit a sigmoidal relationship between probability and acceptability,

and thus we give the models the best chance to succeed. Although o�en used

in cases of phonologically-conditioned gaps in morphological or syntactic con-

texts (Rice, 2005; Prince and Smolensky, 1993; McCarthy, 2005, among others),
in the context of phonotactics the Null Parse model can be thought of as set-

ting a minimum threshold of well-formedness as a criterion of existence. In the

context of a probabilistic model of phonotactics, this threshold is “so�”, allow-

ing exceptions but dramatically reducing likelihood of forms with a Harmony

penalty greater than the weight of MParse. Despite a super�cial similarity to

traditional faithfulness-based approaches to phonotactics (Prince and Smolen-

sky, 1993; Tesar and Smolensky, 1998; Prince and Tesar, 2004), in the Null Parse

model the phonotactic grammar allots a probability to a possible form, the alter-

native to which is nonexistence (rather than repair), as in the markedness-only

approach to phonotactics taken by Hayes and Wilson (2008); Wilson and Gal-

lagher (2018) and others.

7.2. Evaluating descriptive adequacy
We �rst evaluated the descriptive adequacy of MaxEnt and NHG to capture

the results of Experiment 1. Figure 7.2 provides predicted ratings derived from

the statistical model in section 5.4.
8

For MaxEnt and NHG, we �t three parameters for each Condition: the weights

of MParse, Agree([nas]), and Agree([back]).
9

Figure 7.2 displays the experi-

8
We used model-predicted group means per Condition instead of simply averaging over rat-

ings for each category so as to normal potential by-participant and by-item idiosyncrasies in the

experimental results.

9
�e MaxEnt models were �t using the Solver utility in Microso� Excel (Fylstra et al., 1998).

�e NHG models were �t using OTSo� (Hayes et al., 2003), with the following se�ings: 1,000,000

learning iterations, 100,000 testing iterations, initial plasticity = 0.01, �nal plasticity = 0.001;
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mental �ndings alongside the best-��ing predictions of the MaxEnt and NHG

models; these values are also given in table 7.2.

Condition
Source Phonotatics violated A B C D E

Experiment 1 None 0.70 0.67 0.68 0.64 0.62

Nasal 0.44 0.52 0.50 0.54 0.49

Backness 0.61 0.61 0.64 0.62 0.62

Backness and nasal 0.35 0.40 0.38 0.44 0.40

MaxEnt None 0.70 0.70 0.70 0.66 0.64

Nasal 0.44 0.51 0.48 0.52 0.47

Backness 0.61 0.60 0.62 0.60 0.60

Backness and nasal 0.35 0.41 0.40 0.46 0.42

NHG None 0.77 0.78 0.79 0.80 0.76

Nasal 0.43 0.53 0.55 0.55 0.51

Backness 0.51 0.53 0.55 0.55 0.51

Backness and nasal 0.29 0.36 0.38 0.39 0.35

Table 4: Mean group-level percent endorse for Experiment 1 (converted from predicted ratings

by dividing by 100, obtained from the regression model in section 5), and best-��ing predicted

values from MaxEnt and NHG grammars.

�e two sets of experimental �ndings and model predictions were then com-

pared by calculating the sum, maximum, and mean of the squared error between

the predicted and observed data; these are given on table 5.

Model Sum squared error Mean squared error Max squared error
MaxEnt 0.0057 0.0003 0.0008

NHG 0.1264 0.0063 0.0240

Table 5: Sum, mean, and maximum squared error for the MaxEnt and NHG models.

noise applied by-constraint.
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Figure 6: A�ested (le�) and model predicted (MaxEnt, center; NHG, right) experimental results.

It is clear from both �gure and table 5 that while the MaxEnt model achieves

a qualitatively and quantitatively tight �t to the experimental data, the NHG

matches its training data with less �delity. Why should this be? As noted in

Smith and Pater (2020), although NHG is able to capture super-linear cumula-

tivity, its ability to do so is more limited than MaxEnt. We demonstrate in the

next section, however, that both the MaxEnt and NHG models fare signi�cantly

be�er than other models.

7.3. Evaluating other models
To this point we have considered only those frameworks which are known

to have a sigmoidal relationship between Harmony and probability — MaxEnt

and NHG — as candidate models of the phonological grammar. �ere remain,

however, a number of other phonological frameworks commonly in use which

have not been considered, Stochastic OT (Boersma et al., 1997, 1998; Boersma

and Hayes, 2001), Linear Harmonic Grammar (Coetzee and Pater (2008), cf. also

the nearly-identical Linear Optimality �eory of Keller (2006)), and the surface-

based Maximum Entropy approach (Hayes and Wilson, 2008; Wilson and Gal-

lagher, 2018). So as to avoid an abundance of theories being underdetermined by

a dearth of discriminating data, we brie�y take up these models here. We demon-
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strate that these models fare substantially worse on the measure of descriptive

adequacy, using the same linking hypothesis as in section 7.1.1.

7.3.1. Model setup and ��ing
�e Stochastic OT model was �t using OTSo� with the same se�ings as the

NHG model. Fi�ing the Linear HG model followed the protocol for the MaxEnt

model described above, except that the negative Harmony of each candidate was

not exponentiated in the calculation of the probability of occurrence. �is re-

duces each binary competition to an instance of the Luce Choice Axiom (Luce,

1959), as previously noted by Pizzo (2015). �e surface-based model necessitated

a slightly more involved approach: because the it yields a probability distribu-

tion over candidates which sum to 1, each of the �ve separate MaxEnt models

without the Null Parse candidate contained four candidates, corresponding to a

fully-conforming stimulus (potu), two singly-violating stimuli (poti, ponu) and a

doubly-violating stimulus (poni). Constraints and violations were assessed as in

the models discussed in section 7.1.1, with the exception that the markedness-

only models contained no MParse constraint because the Null Parse was not a

candidate. Finally, to allow direct comparison between the model output and Ex-

periment 1, the probability assigned to each word type was raised to the power of

1/T, where T is a free temperature parameter.
10

�e models were �t in Excel using

Solver, with the objective function of maximizing the sum of the log-likelihood

of the data (by allowing the constraint weights to vary, as is standard in Max-

Ent) plus the negative sum of the squared error between the model’s predicted

probabilities for each category and those obtained in Experiment 1 (with T free

to vary to allow for a best-�t scaling parameter for each Condition’s model).

�ese procedures yielded the following �ts, plo�ed in �gure 7 and displayed

in table 6.

Summary statistics for these models, as well as the best-performing MaxEnt

model from table 5, are shown in table 7.

As anticipated, all of these models fall substantially short of even the less-

well-��ing NHG model on the measure of descriptive adequacy.

10
For prior usage of temperature as a scaling factor in comparing model-generated and

experimentally-obtained data, see Hayes and Wilson (2008), Breiss (resubmi�ed).
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Figure 7: A�ested (le�) and model predicted (Stochastic OT, center le�; Linear HG, center right;

Surface-based model, right) experimental results.

7.4. Evaluating explanatory adequacy
Since we have observed that the experimental data are approximated well

by the Null Parse-equipped MaxEnt model, we can ask whether the relationship

between exceptionality in learning data and super-linear cumulativity emerges

from the framework given the same training data as the human participants, as

suggested in section 3.1.2.
11

We �t a set of 5 MaxEnt grammars, providing each

with the training data of one of the Conditions in Experiment 1 (as in table 1).

Each grammar was allowed to set the weights of MParse, Agree([nas]), and

Agree([back]) to match the frequencies in training data as closely as possible —

this corresponds to maximizing the likelihood of the training data, as is standard

with MaxEnt models. However, because participants exhibited markedly di�er-

ent responses to violations of Agree([nas]) and Agree([back]), we additionally

required the model to match the average di�erence in ratings between nasal-

harmony and backness-harmony violators across Conditions, as measured using

the sum standard error, by modifying the likelihood term in the model. Figures

8 and 9 display these results.

To demonstrate that super-linear cumulativity emerges from the MaxEnt model

11
�ough in principle this same test could be carried out with NHG model, it is not clear what

“success” would look like, given the apparent remoteness of the experimental results from the

framework’s parameter space.
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Condition
Source Phonotactics violated A B C D E

Experiment 1 None 0.70 0.67 0.68 0.64 0.62

(for reference) Backness 0.61 0.61 0.64 0.62 0.62

Nasal 0.44 0.52 0.50 0.54 0.49

Backness and nasal 0.35 0.40 0.38 0.44 0.40

Stochastic OT None 1 1 1 1 1

Backness 0.55 0.51 0.56 0.58 0.55

Nasal 0.39 0.41 0.42 0.51 0.42

Backness and nasal 0.30 0.39 0.32 0.38 0.32

Linear HG None 1 1 1 1 1

Backness 0.61 0.61 0.64 0.63 0.63

Nasal 0.44 0.52 0.50 0.55 0.50

Backness and nasal 0.35 0.39 0.39 0.42 0.38

Surface-based None 0.60 0.61 0.61 0.60 0.58

Backness 0.56 0.57 0.58 0.57 0.56

Nasal 0.48 0.53 0.51 0.54 0.50

Backness and nasal 0.44 0.49 0.48 0.52 0.48

Table 6: Mean group-level percent endorse for Experiment 1 (converted from predicted ratings

by dividing by 100, obtained from the regression model in section 5), and best-��ing predicted

values from Stochastic OT, Linear HG, and Surface-based grammars.

Model Sum squared error Mean squared error Max squared error
MaxEnt (for reference) 0.0057 0.0003 0.0008

Stochastic OT 0.6438 0.0322 0.1444

Linear HG 0.5638 0.0212 0.1444

Surface-based 0.0765 0.0038 0.0105

Table 7: Sum, mean, and maximum squared error for the Stochastic OT, Linear HG, and Surface-

based models; the best-��ing MaxEnt model is repeated from table 5 for reference.

as discussed in section 3.1.1, we plot the predicted percent endorsement rate of

the doubly-violating forms (purple) based on the product of the probability of

their individual violations (linear cumulativity, as in Case 3 of �gure 1) alongside

the lower actual predicted endorsement rate under the model (blue).
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Figure 8: MaxEnt predictions based on Experiment 1’s training data.

Figure 9: Figure 8, zoomed to focus on the doubly-violating forms, demonstrating emergent

super-linear cumulativity in the MaxEnt model.
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8. General discussion

�is paper sought to determine whether super-linear cumulativity observed

in prior experimental work had its source in the synchronic grammar, or whether

the data pa�erns ought to be explained via frequency matching a diachronically-

in�uenced lexicon. Examining the predictions of two constraint-based phonolog-

ical frameworks, MaxEnt and NHG, we found that under certain conditions these

frameworks exhibit a super-linear relationship between Harmony and probabil-

ity. Further, these models predict that the linearity of any cumulative constraint

interaction in the synchronic grammar should be sensitive to the strength of

the constraints involved, operationalized here as relative exceptionfulness. We

tested this prediction using an AGL experiment in which we systematically var-

ied the number of exceptions to the two primary harmony phonotactics that

learners were exposed to in training. We found that as the number of exceptions

to each phonotactic in training increased, the well-formedness of the doubly-

violating forms fell lower than predicted based on the linear sum of their penal-

ties — that is, participants exhibited super-linear cumulativity of markedness vio-

lations, modulated by the strength of the constraints involved. Because the e�ect

emerged in a controlled paradigm using an arti�cial language, we concluded that

we must a�ribute the �nding to the synchronic grammar, rather than simply to

a side-e�ect of a diachronically-skewed lexicon. We also veri�ed that this super-

linear behavior was emergent from the interaction of the two constraints — a

property of the grammar itself — rather than overtly learned from the training

data.

Building on these experimental �ndings that implicated the synchronic gram-

mar, we evaluated a range of probabilistic constraint-based phonological mod-

els on their ability to capture the data. We found that while a MaxEnt model

was able to capture the participants’ responses well, the NHG model fell short, a

qualitatively similar pa�ern as the �ndings in Smith and Pater (2020). Further, as

predicted, super-linear cumulativity emerged from the MaxEnt framework when

exposed to the same exceptionful training data as the experimental participants.

8.1. �e mathematical basis of super-linearity in MaxEnt
Because the MaxEnt framework is based on relatively simple equations relat-

ing Harmony and probability, we can explicitly outline the weighting conditions

under which a MaxEnt grammar will depart from linear cumulativity. To start,
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we use variables to abstract away from speci�c constraint weights, and thus can

characterize the probability of the singly-marked poti, violating Agr([back]), as

being proportional to e−w(Agr([back]))
, and that of the other singly-marked type

ponu, violating Agr([nas]), as being proportional to e−w(Agr([nas]))
. By the same

logic, the probability of the doubly-marked type poni, violating both Agr([back])

and Agr([nas]), is proportional to e−w(Agr([back])) + e−w(Agr([nas]))
, and the proba-

bility of the Null Parse is proportional to e−w(MParse)
.

It follows, therefore, that the probability of the backness-violating poti, when

competing against the Null Parse, should be
e−w(Agr([back]))

Z
, whereZ is e−w(Agr([back]))+

e−w(MParse)
, and that the probability of nasal-violating ponu in its own competi-

tion against the Null Parse is
e−w(Agr([nas]))

Z
, where Z is e−w(Agr([nas]))+ e−w(MParse)

.

Continuing in this vein, the probability of the doubly-violating form poni in com-

petition with the Null Parse is
e−w(Agr([nas]))−w(Agr([back]))

Z
, where Z is e−w(MParse) +

e−w(Agr([back]))−w(Agr([nas]))
. In contrast, we can can obtain the probability of vio-

lating both constraints by multiplying the probability of the forms with each of

those individual violations. �is is shown in equation 1.

e−w(Agr([nas]))

e−w(MParse) + e−w(Agr([nas]))
× e−w(Agr([back]))

e−w(MParse) + e−w(Agr([back]))
(1)

�is expression simpli�es to the following:

e−w(Agr([back]))−w(Agr([nas]))

(e−w(MParse) + e−w(Agr([back])))(e−w(MParse) + e−w(Agr([nas])))
(2)

�is equation simpli�es again, and allows us to characterize the joint probability

of two markedness violations as the following:

e−w(Agr([back]))−w(Agr([nas]))(
e−w(MParse)−w(Agr([back])) + e−w(MParse)−w(Agr([nas]))+

e−w(Agr([nas]))−w(Agr([back])) + e−2w(MParse)
) (3)

Comparing this quantity to the probability of the doubly-marked candidate in

its own competition against the Null Parse, it becomes clear why certain weight-

ing conditions in MaxEnt yields super-linear cumulativity: the denominators in

equations 3 and 4 are not the same.

e−w(Agr([back]))−w(Agr([nas]))

e−w(MParse) + e−w(Agr([back]))−w(Agr([nas]))
(4)
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Because Harmony is computed via the simple addition of penalties before expo-

nentiation in equation 4, the probability of the doubly-violating candidate poni
is not guaranteed to equal the joint probability of the structures which make it

marked (the backness harmony violation of poti, and the nasal harmony viola-

tion of ponu). We can examine the relationship between these two quantities by

cancelling the e−w(Agr([back]))−w(Agr([nas]))
term found in the numerator and de-

nominator out of both equations 3 and 4, and compute the ratio of the remaining

quantities to see exactly when MaxEnt will exhibit super-linear cumulativity of

markedness violations.

e−w(MParse)

e−w(MParse)−w(Agr([back])) + e−w(MParse)−w(Agr([nas])) + e−2w(MParse)
(5)

If the ratio in equation 5 is greater than 1, MaxEnt will exhibit super-linear cu-

mulativity of violations: the probability of the doubly-marked candidate will be

less than the joint probability of the violating structures in the language. If it

is less than 1, MaxEnt predicts sub-linear cumulativity: the probability of the

doubly-marked candidate will be greater than the joint probability of the vio-

lating structures in the language. Finally, when the ratio is exactly 1 — that is,

the denominators in equations 3 and 4 are equal — MaxEnt will exhibit linear

cumulativity: the probability of the doubly-marked structure will equal the joint

probability of its component structures. Since the weight of MParse is in both

quantities in the ratio, the ratio is proportional to the weights of Agr([back])

and Agr([nas]): for any given weight of MParse, relatively higher weights for

the two Agree constraints will result in sub-linear cumulativity, and relatively

lower weights will result in super-linear cumulativity, as stated in section 3.1.2.

8.2. Sub-linear cumulativity
To this point we have demonstrated experimentally that there is a depen-

dency between the degree of strength of an individual phonotactic (operational-

ized here as exceptionality), and the type of cumulativity that it enters into. We

have also demonstrated that a certain class of phonological theories — MaxEnt

and to a lesser extent NHG — can capture the data well, and also exhibit a sig-

moidal relationship between Harmony and probability (cf. �gure 5). We have

not demonstrated, however, that the non-linear relationship between Harmony

and probability is necessarily sigmoidal in shape: all that is necessary to account

for the experimental data is for the relationship between Harmony and probabil-

ity to be some nonlinear function with a “shoulder” in it, resembling the upper
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half of the sigmoid curve drawn in �gure 5 which gives rise to the super-linear

cumulativity of weak markedness violations.

If we take the proposed theoretical mechanism at face value, however, the

equations in section 8.1 suggest that will we see not only super-linear cumula-

tivity of weak violations, but also sub-linear cumulativity of strong violations.

Exactly such a �nding comes from Pizzo (2015), who investigates the cumulative

e�ect of violating exceptionless syllable-margin constraints in English, crossing

an ill-formed onset with an ill-formed coda. She found that while each viola-

tion resulted in a signi�cant decrement in assessed well-formedness, the penalty

for a form containing both violations was less than that which is predicted by

the summed penalty for each of the markedness violations. �ough this �nding

certainly invites further study, it suggests that a sigmoidal relationship between

Harmony and probability may be not only su�cient, but also necessary to de-

scribe the properties of the grammar. �is �nding corresponds to the predicted

but heretofore undocumented Case 5 in �gure 1.

8.3. Reconciling grammar and lexicon
In section 3.1.1 we considered the possibility that frequency-matching lexical

statistics could explain the experimental �ndings of super-linearity by Albright

(2012) and others. Although the experimental results presented in this paper sug-

gest that this is not the case, the puzzle of super-linear undera�estation in the

lexicon remains unsolved. Albright’s lexical study is not alone: a number of re-

searchers have found evidence that some marked structures exhibit super-linear

cumulativity in lexical counts, such that the probability of two marked structures

calculated using the formula for linear cumulativity (Case 3, �gure 1) is greater

than the probability of actual lexical items containing both marked structures.

Albright (2008) �nds that Lakhota roots which contain multiple structures which

are only moderately uncommon, such as consonant clusters and fricatives, co-

occur in dramatically fewer roots than predicted by their joint probability. Also in

this vein is a study by Yang et al. (2018), who carry out a comparison of English

and Mandarin monosyllables and �nd that the a�ested sub-lexicons are more

well-formed than would be expected by the joint probabilities of their parts. In a

slightly di�erent domain, Green and Davis (2014) �nd that multiple optional syl-

lable structure simpli�cations in colloquial Bamana are dramatically less likely to

co-occur than expected given the product of the probability of each independent

simpli�cation process. Kim (2019), building on Kumagai (2017), demonstrates the

cumulative e�ect of nasals on blocking the inter-morpheme obstruent-voicing
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process rendaku in Japanese compounds which also displays super-linear behav-

ior. Super-linear cumulativity has also been observed in the contribution of dif-

ferent phonological structures to the likelihood of belonging to a speci�c lexical

class (Shih, 2017).

How can we reconcile these lexical �ndings with the synchronic mecha-

nism demonstrated in this paper? Although it is tempting to extend the syn-

chronic mechanism to account for the lexical data, doing so fails to take into

account the diachronic origin of these lexical statistics (cf. Frisch (1996); Beguš

(2016)). Although lexical statistics are o�en advanced as evidence of synchronic

phonological knowledge, divergences between lexical statistics and productive

grammatical knowledge are well-known (Hayes and White, 2013; Becker et al.,

2011, among others). �us simply observing that a generalization holds of a lan-

guage’s lexicon does not necessarily imply that it enjoys a cognitively real status

in the synchronic grammar of its speakers. Further, while there is ample evidence

that learners change their language over time (Martin, 2007), it is unlikely that

such widespread under-representation can be the e�ect of a single generation of

speakers. We suggest, then, that a full explanation of the lexical �ndings must

take into account the bidirectional relationship between the synchronic phono-

logical grammar and the diachronic trends which shape the lexicon. Such an

undertaking is le� for future research.

9. Conclusion

�e primary contribution of this paper was to advance experimental evidence

in favor of a synchronic phonological grammar in which the type of cumulativ-

ity constraints enter into (sub-linear, linear, or super-linear) is dependent on the

strength of those constraints in the grammar. We have argued that MaxEnt, and

to a lesser extent NHG, can capture the data successfully, and outlined the struc-

ture and predictions of the best-��ing MaxEnt model, including the conditions

in which it does and does not predict super-linear cumulativity of violations.

Finally, we adduced evidence of sub-linear cumulativity of strong markedness

violations from the literature which further supports the speci�cally sigmoidal
shape of the non-linear relationship between Harmony and probability that Max-

Ent predicts.

�e work presented here, however, is only a �rst step towards a fuller under-

standing of the empirical and typological landscape of non-linear cumulativity.

�e dependency between constraint strength and cumulative behavior proposed

here makes strong predictions about both the wide scope of constraints that can
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enter into super-linearly cumulative relationships, and also speci�c claims about

the weighting requirements that must be met for such e�ects to be observed.

A great deal of further empirical research, using natural as well as arti�cial lan-

guages and lexicons, is therefore needed to test and re�ne these predictions going

forward.
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