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1 The problem of adjuncts in Generative Grammar3

The Generative Grammar enterprise has been remarkably successful at reducing a wide variety4

of grammatical relations to a handful of simple ones. The adjunct relation, though, is among a5

few which have stubbornly refused reduction.1 So, while relations such as subject-of, object-of,6

and possessum-of can now be defined in terms of Merge, the adjunct relation cannot. Instead7

their exceptional nature is stipulated, or an attempt is made to show that it is illusory. The former8

approach, of course, is undesirable, but the latter approach, if successful, would yield a very9

desirable result.10

The latter approach, I will argue in section 2, does not seem likely to succeed, because the evidence11

for the exceptionality of adjuncts is fairly strong. I will further ague that the nature of this12

exceptionality—that is, the very nature of adjuncts—makes reduction to Merge logically impossible.13

I will then argue, in section 3 that attempts to account for adjuncts by either redefining Merge or14

adding a novel operation, while logically feasible, are undesirable when we consider the broader15

context of linguistic theory. Specifically I argue that the optionality of adjuncts negates any claims16

of necessity for introducing theoretical complication to account for them. This conclusion, however,17

seems to contradict the conclusion of section 2, creating an apparent paradox which I address in18

section 4.19

1Also in this group is conjunction.
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In the remainder of the paper, I present a theory of adjuncts according to which, adjuncts, like argu-20

ments, are derived in separate workspaces from their host but, unlike argument, adjunct workspaces21

are never incorporated into their host’s workspace. I introduce the theoretical background for this22

proposal in section 5, make my proposal in section 6, and offer corroborating evidence in section 7.23

2 The essence of adjuncts24

Adjuncts are generally distinguishable from predicates and arguments on the basis of three25

properties—optionality, stackability, and reorderability.2 They are optional in the sense that (1)—26

without any adjuncts—and (2)—with an adjunct—are both grammatical. They are stackable in27

the sense that an expression like (2), with one adjunct, is as grammatical as one like (3) with a28

second adjunct added, and so on. Finally, they are reorderable in the sense that (3) and (4) are both29

grammatical despite the fact that their adjuncts are ordered differently.30

(1) [X The police silenced the workers].31

(2) [Y [X The police silenced the workers], [against their wills]].32

(3) [Z [Y [X The police silenced the workers], [against their wills]], [following the demonstration]].33

(4) [U [W [X The police silenced the workers] [following the demonstration]], [against their34

wills]].35

A theoretical approach like cartography (Cinque and Rizzi 2010), though, argues that adjuncts do36

not form a class of their own. Rather, “adjuncts” are actually specifiers of particular functional37

heads. The argument for this claim begins with the observation that “adjuncts” are not as reorderable38

as (3) and (4) would suggest. For instance, there are well-known restrictions on the ordering of39

adjectives—an ordering of size adjectives before shape adjectives, as in (5), is preferred to the40

reverse order, as in (6).341

2These properties are generalizations to which, no doubt, there are exceptions. I ask the reader to attach “all else
being equal” to such generalizations.

3See Sproat and Shih (1991) for further discussion of the adjective ordering restriction
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(5) a small square table42

(6) ?*a square small table43

By hypothesis, such an ordering restriction reflects a fixed ordering of a set of functional heads44

(SIZE>SHAPE) which select adjectives as specifiers. Since this set of functional heads is innate, it45

must be finite. It follows, —then, that adjectives—and, by extension, adjuncts in general—cannot be46

stacked indefinitely. That is, there is a fixed upper bound of the number of adjuncts in an expression.47

As for optionality, one need only point out the plethora of optionally transitive verbs, or pro-drop48

languages to see that optionality is not the sole province of adjuncts. Thus a cartographic approach49

comes to the conclusion that there is no special class of constituents that answers to the name50

“adjuncts”.51

The cartographic conclusion, however, has certain implications which, when made explicit, cast52

doubt on it. The first implication is that adjective ordering restrictions such as the one demonstrated53

in (5) and (6) represents only an example case of a larger ordering restriction that includes not54

only all other adjective classes but also determiners and nouns. That is, the ordered sequence of55

functional heads SIZE > SHAPE is part of a larger sequence given in (7).56

(7) D > . . . > SIZE > . . . SHAPE > . . . N57

However, when we test this we see that placing a determiner or noun out of order yields a different58

sort of unacceptability compared to that in (6)59

(8) a. *square a small table60

b. *square small a table61

c. *square small table a62

(9) a. *a square table small63

b. *a table square small64

c. *table a square small65

While (6) is an awkwardly formed nominal phrase, the strings in (8) and (9) are gibberish.66
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Or consider another ordering restriction in English—S>V>O. Disobeying this ordering restriction67

usually yields ungrammatical strings (*VSO, *VOS), but sometimes yields a distinct grammatical68

sentence (OVS). The latter result does not seem to occur when adjunct ordering restrictions are69

violated.70

The task of assimilating adjuncts to specifiers or complements seems difficult at least. As soon as71

they are brought under the same umbrella as other types of constituents, they must immediately be72

relegated to a special corner of that umbrella. Absent any stronger arguments, I will continue to73

assume that adjuncts exist and have the properties listed above.74

It stands to reason, though, that the three characteristic properties of adjuncts—optionality, stack-75

ability, and reorderability—should be reducible to a single essential characteristic, and that the76

discovery of that characteristic is the first step towards an explanatory account of adjuncts. The key77

to discovering this characteristic, I think, is the fact that the labelled expressions in (1)-(4)—U, W,78

X, Y and Z—are all syntactically equivalent, a term that bears explanation.79

The expressions in question are all equally grammatical, but this is not enough to call them80

syntactically equivalent—(10) and (11) are equally grammatical but not equivalent, as they are81

distinct categories.82

(10) The cat ate the fish.83

(11) The morning star84

The expressions in question are of the same category, but this is also not enough to call them85

syntactically equivalent. According to most standard theories of labelling, the expressions in (12)86

are both labelled as V and the expressions in (13) are both labelled as T, but the (a) examples are87

not equivalent to the (b) examples.88

(12) a. hit89

b. hit the ball90

(13) a. ate the cake91
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b. Juan ate the cake92

We can show that the (a) examples are not equivalent to the (b) examples by attempting to substitute93

one for the other in a test context. So in (14), the ungrammatical (b) is derived from (a) by94

substituting hit for hit the ball, and in (15), the ungrammatical (b) is derived from (a) by substituting95

an incomplete TP for a complete one.96

(14) a. The toddler hit the ball.97

b. *The toddler hit98

(15) a. I believe Juan ate the cake.99

b. *I believe ate the cake.100

Compare this to a case of adjunction—in (16), (b) is derived from (a) by substituting a VP with101

an adjunct for one without an adjunct. Both examples are grammatical, because the VP with an102

adjunct is equivalent to the VP without the adjunct.103

(16) a. Rosie [sang the anthem].104

b. Rosie [sang the anthem with gusto].105

The substitution test does not furnish us with a definition of syntactic equivalency, though. Such a106

definition requires additional work. The fact of syntactic equivalency, though, leads to an important107

conclusion about host-adjunct expressions—they are not formed by Merge.108

The reasoning to this conclusion is straightforward. By definition, Merge combines two objects α109

and β to create a new object γ that is distinct from both α and β . So, if a host-adjunct expressions110

H_A were formed by Merging H and A, it would be distinct. All host-adjunct expressions H_A111

are equivalent to their host H and therefore cannot be formed by Merge.112

Several researchers have previously reached this conclusion in some form or another. This leads113

them to propose an additional way of combining expressions. In the next section, I show that this114

step is neither necessary, nor desirable.115
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3 Adjunction is optional116

Our current approaches to adjunction—late Merge and Pair-Merge—introduce complications to117

the theory of grammar, and any complication should be viewed with some skepticism and only118

accepted if they are shown to be absolutely necessary. Proponents of the current approaches, then,119

plead necessity. The argument goes as follows: Adjunction is ubiquitous in language but cannot be120

reduced to cyclic application of simple Merge, therefore our theory of language cannot be limited to121

cyclic application of simple Merge.122

This can be seen as analogous to one of Chomsky’s argument for transformations in Syntactic123

Structures, which goes roughly as follows: phrase structure rules alone are not sufficient to generate124

all the sentences of natural language, therefore we must augment them with transformations.4125

Although there were other arguments for transformations, I would like to compare their necessity to126

the supposed necessity of Pair-Merge or late Merge.127

To start with, we must come to some description of a valid necessity argument in generative syntax.128

A necessity argument takes the form of a syllogism consisting of two premises and a conclusion.129

The first premise is an empirical claim about the expressiveness of natural language, where what I130

mean by expressiveness is the range of thoughts that are expressible in natural language. The claim131

made in the first premise is something like “the expressiveness of natural language includes at least132

the thought-classes A, B, C, D,” where A, B, C and D are demonstrated with some data. The second133

premise is a claim about the expressiveness of some theoretical grammar—something like, “the134

proposed grammar G of natural language generates expressions of thought-classes A, B and C, but135

not D.” The conclusion, of course, is that G is an insufficient theory of natural language.136

A simplified version of the necessity argument for transformations is as follows. Natural languages137

can express both declarative and interrogative forms of the same core proposition as shown in (17)138

4This is, of course, an oversimplification of the argument, but it will do for our current purposes. As Chomsky
(1965) points out, PSRs are powerful enough to capture the weak generative capacity of language, but crucially not
the strong generative capacity. Furthermore, the addition of transformations to our theory of grammar allowed us to
explain the fact that expressions can be related to each other in a number of ways.
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and (18).139

(17) Violet wrote the anthem.140

(18) What did Violet write?141

Phrase structure rules, however, can generate declaratives, but not interrogatives. Therefore, phrase142

structure rules are insufficient as a theory of natural language. Important to note is that both premises143

rest on other premises. The first premise assumes that declaratives and interrogatives express distinct144

classes of thoughts, while the second premise assumes a particular version of phrase structure rules.145

The necessity argument for Pair-Merge or late Merge goes as follows. Natural language can express146

thought with or without adjuncts as shown in (19) and (20)147

(19) Rosie sang the anthem.148

(20) Rosie sang the anthem with gusto.149

A Merge-only grammar can generate unadjoined expressions like (19) but not adjoined sentence150

like (20). Therefore, a Merge-only grammar is insufficient as a theory of natural language. Since I151

have already argued in favour of the the second premise, I will examine the first premise here.152

The first premise assumes that (19) and (20) express two distinct classes of thought. When we153

analyze (20) though, we see that it can actually be expressed as the juxtaposition of two distinct154

sentences: (19) and (21).155

(21) The singing had gusto.156

If a Merge-only grammar can generate (19), it should also be able to generate (21), and therefore, it157

can generate the juxtaposition of the two. Given my definition of expressiveness in terms of the158

range of thoughts expressible by a language, then, it seems that the thought expressed by (20) can159

be expressed in a Merge-only grammar. So, the necessity argument for Pair-Merge or late Merge160

does not go through.161
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4 A paradox?162

In section 2 I argued that Merge could not create host-adjunct structures, while in section 3 I argued163

that a Merge-only grammar was expressive enough to generate the thoughts behind expressions with164

adjuncts. On their face, these seem to contradict each other. This apparent contradiction, though,165

can be cleared up by being a bit more precise about what is being claimed in each case.166

The first claim is a conditional claim. It says that if there exists a computational combinatory167

operation—call it Adjoin—that creates host adjunct structures, then Adjoin cannot be identical to168

to Merge. The second claim is a modal claim. It says that the human language faculty does not169

necessarily contain the computational combinatory operation Adjoin. Stated this way, then, the two170

claims are compatible with each other, though they leave in a difficult position in our search for a171

theory of adjuncts.172

5 Towards a theory of Adjuncts173

Our theory of adjuncts, then, must account for the fact that adjunction is syntactically vacuous and174

it should do so without adding any additional combinatory operation.175

5.1 Workspaces176

In recent years, two distinct conceptions of workspaces have gained currency among generative177

theorists. In one conception, formalized by Collins and Stabler (2016), each stage of a derivation178

consists of a lexical array, containing lexical item tokens, and a workspace, containing syntactic179

objects. In the other conception, described by Nunes (2004), a stage of a derivation consists of180

possibly several workspaces. I will be adopting the latter conception.181

Under this conception, a workspace is a way of formalizing the intuition that arguments are derived182

separately from clausal spines. So for instance, the derivation of a simple transitive clause like (22)183

involves at least three workspaces—One derivation each for the nominal arguments, the citizens and184
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the masks, and one derivation for the clausal spine.185

(22) The citizens wore some masks.186

Operations like Merge are defined in terms defined in terms of workspaces, which has the effect187

of encapsulating the workspaces. In the case of Merge, this means that the workspace defines the188

operation’s accessibility conditions. Two objects, then, can be Merged only if they are in the same189

workspace. So, for instance, in the derivation of (22), the indefinite determiner some cannot Merge190

with citizens, as the two objects are not in the same workspace.191

5.2 Deletion192

Deletion is a much more intuitive, yet less understood, operation of the language faculty. Every193

generative theory of syntax has some mechanism to either not pronounce certain constituents of194

a given expression or imbue silence with meaning. In current transformational theories, this is195

accomplished by the sensorimotor system rather than the narrow syntax. In these theories, syntactic196

derivations tend to create redundant structure. For example the derivation of a wh-question like (23)197

involves merging the wh-expression twice, first as the direct object and then at the left edge of the198

sentence. This results in a syntactic object with two instances of that wh-expression as in (24).199

(23) What did the student hear?200

(24) What did the student hear what201

Since (23), rather than (24), is pronounced, we know that the rightmost copy of what has been202

deleted.203

Our current theory of deletion starts with a single principle given in (25).204

(25) Given two identical objects X and Y where X asymmetrically c-commands Y, delete Y.205

This principle accurately predicts (23), but faces several issues. Empirically speaking, there are many206

apparent exceptions to (25). Theoretically speaking, the notion of identity is not fully understood207
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and, as I will discuss in section 6.1.2, c-command as the deciding factor is too narrow.208

Despite these issues, I will assume something like (25), perhaps with exceptions, is active in the209

language faculty.210

6 A workspace-based theory of adjunction211

The theory of adjuncts that I propose is best viewed in contrast to the workspace theory of arguments.212

According to this theory, outlined in section 5.1, an argument is derived in a separate workspace213

from its clausal spine, and the result of that derivation is merged into clausal spine derivation. An214

adjuncts is also derived in a separate workspace, except that that workspace is never merged into the215

clausal spine derivation. So the syntactic representation of (20) is given in (26) with the adjunct-free216

sentence derived (19) in WS1, and the adjunct PP with gusto derived in WS2.217

(26) 〈[{Rosie,{T, . . .{sing,{the,song}}}}]WS1, [{with,gusto}]WS2〉218

Note this perfectly captures the essential character of adjuncts, namely that they are syntactically219

vacuous. The VPs sing the anthem and sing the anthem with gusto are syntactically equivalent220

because there is no narrow syntactic object that corresponds to the latter string. So, it is wrong to221

say that a Voice head selects both objects. Rather the relevant part of the derivation of sing the222

anthem proceeds as in (27) while the corresponding derivation part for sing the anthem with gusto223

proceeds as in (28).224

(27) Stage N: 〈[{sing,{the,anthem}},Voice]WS1〉 (Merge(Voice, WS1))225

Stage N+1: 〈[{Voice,{sing,{the,anthem}}]WS1〉226

(28) Stage N: 〈[{sing,{the,anthem}},Voice]WS1, [{with,gusto}]WS2〉 (Merge(Voice, WS1))227

Stage N+1: 〈[{Voice,{sing,{the,anthem}}]WS1, [{with,gusto}]WS2〉228

Notice that each stage pair is derived by the same operation.229

In terms of interpretation, this proposal makes roughly the correct prediction/ That is, the host230
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and adjunct are distinct syntactic objects and, therefore, would be interpreted as such. Recall,231

in section 3, I argued that an expression with an adjunct could be expressed as two juxtaposed232

expressions. This analysis formalizes that intuition.233

Turning to pronunciation, it might be suggested that my proposal introduces new complexity234

to the already complicated nature of pronunciation—Our best theories suggest that c-command235

is vital for linearization, but there can be no c-command relation across workspaces. Such an236

objection, however, would mistake the nature of the linearization problem, namely that Merge237

creates unordered objects that must be converted to ordered object for pronunciation. A derivation238

stage such as (26), though, is already ordered (WS1 ≺WS1), so no linearization problem should239

occur.240

In what follows, I will refine this proposal somewhat, but the core claim—that adjuncts are in241

separate workspaces from their hosts—will remain the same. I pause here to note that this solution242

broadly accounts for adjunct without recourse to novel operations or major modifications to the243

architecture of the grammar, and is therefore superior to Pair-Merge and late Merge.244

6.1 The problem of adjunct scope245

The sentence in (29) is ambiguous.246

(29) Sharon made the error deliberately.247

It can be interpreted as saying either that Sharon intended to make the error in question, or that she248

made the error in a deliberate manner. The conclusion drawn from this sort of ambiguity is that the249

adverb deliberately has two possible scopes—A high scope resulting in the first interpretation, and250

a low scope resulting in the second interpretation. Under an X-bar theory of adjuncts, this can be251

easily accounted for by aligning scope with attachment site as in (30) and (31).252

(30) The high-scope interpretation of (29) in X-bar theory253
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254

(31) The low-scope interpretation of (29) in X-bar theory255

256

As it stands, however, the workspace theory of adjuncts cannot account for adjunct scope. Or, to be257

more precise, it cannot account for the fact that adjuncts can have multiple scope possibilities. This258

can be seen when we consider how we would represent (29) in a workspace-based analysis—as the259

juxtaposition of Sharon made the error and deliberately as shown in (32).260

(32)

〈
[{Sharon,{T, . . .{Voice,{make,{the,error}}}}}],

[deliberately]

〉
261

If we take a full declarative clause to describe a situation or state of affairs, then, according to (32),262

(29) would describe a situation s, such that in s Sharon made the relevant error, and that s was263

brought about by a deliberate choice of the agent of s. In other words, the proposed workspace-based264

theory of adjuncts seems to predict only the high-scope interpretation of (29).265

In order to modify our proposal to allow for adjunct scope, we must first realize that adjunct266

scope-taking is different from other kinds of scope-taking, such as quantifier scope. Usually, when267

we talk about scope, we have in mind an asymmetric relation. So the two readings of (33) can be268
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described by saying which of the two quantifier phrases scopes over the other.269

(33) Every student read a book.270

a. ∀s(∃b(read(b,s)))271

b. ∃b(∀s(read(b,s)))272

The relationship between a modifier and a modified expression, however, is generally considered273

to be symmetric, at least in terms of their interpretation.5 So, in the low-scope interpretation of274

(29), the logical predicate expressed by deliberately is conjoined with the one expressed by make an275

error, as shown in (34).276

(34) λe(make(the-error,e)&deliberate(e))277

It does not, then, make sense to say that deliberately “scopes over” the VP. We can still ask, though,278

why does deliberately conjoin with the VP and not, say, with AspP, or TP. The answer, at least in279

X-bar terms is obvious—the adverb and the VP conjoin because they are in the same position, that280

is [Comp, Voice]. In other words, deliberately conjoins with the VP, because both scope directly281

under Voice, and therefore, indirectly under everything that scopes over Voice.282

This rethinking of adjunct scope, then suggests a workspace-based analysis of the low scope283

interpretation of (29), shown in (35).284

(35)

〈
[{Sharon,{T, . . .{Voice,{make,{the,error}}}}}],

[{Sharon,{T, . . .{Voice,{deliberately}}}}],

〉
285

Here we can say that deliberately and the VP are in the same position, as they are both the286

complement of Voice in their respective workspaces. Such a representation, however, raises three287

obvious questions:288

1. How is (35) interpreted?289

2. How is (35) pronounced?290

3. How is (35) derived?291

5Setting aside cases of non-intersective modification.
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I address these three questions in turn directly.292

6.1.1 How is (35) interpreted?293

The derivation stage in (35) contains two workspaces, each of which contains a finite clause. I will294

assume that the interpretation of each clause contains an event description and a specification of295

how the event described relates to the context of utterance. For the sake of clarity, I will consider296

only the event-description portion of the meaning.297

So the event description contained in the first workspace—the one associated with the host— is298

given in (36), and the event description contained in the second workspace—the one associated299

with the adjunct—is given in (37).300

(36) λe(make(e)& AGENT(e)(sharon)& THEME(e)(the-error))301

(37) λe(AGENT(e)(sharon)&deliberately(e))302

If, as we’ve assumed thus far, juxtaposing (36) and (37) yields the conjunction of the two, and if we303

take the further simplifying step of eliminating redundant conjuncts, we get the correct interpretation304

in (38).305

(38) λe(make(e)& AGENT(e)(sharon)& THEME(e)(the-error)&deliberately(e))306

More could be said, of course, about the interpretation of (35), but I will leave this as a task for307

further research and move on to the question of pronunciation308

6.1.2 How is (35) pronounced?309

The problem posed for pronunciation by (35) is that the adjunct workspace contains most of a clause310

which is not pronounced. That is, Sharon, T, Voice, etc. must be deleted somehow. Recall from311

section 5.2 that the basic rule of deletion is that if a syntactic object contains two constituents, α312

and β , such that α = β and α asymmetrically c-commands β , then β is deleted.313

The notion of identity here, must capture copies, but not repetitions, so in order for the various314
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phrases and heads to be deleted from the adjunct we must show that they can be treated as copies of315

the corresponding phrases and heads in the host. since the distinction between copies and repetitions316

is to follow from the derivational history of an expression, I will postpone the question of identity317

until the following section and stipulate, for the moment, that Sharon, T, Voice, etc. in the adjunct318

are considered copies of their counterparts in the host.319

As for the c-command requirement for deletion, it is quite plain that it cannot apply to the deletion320

of copies in different workspaces as in (35). Since the c-command relation is dependant on Merge,321

the domain of which is limited to the workspace, it cannot hold across workspaces. However, if we322

broaden the c-command requirement on deletion to one of a more general ordering (α > β ) then it323

can apply to elements in separate workspaces, since workspaces in a derivation are ordered with324

respect to each other.325

This broadening of the c-command requirement may seem ad hoc on its face, but there is a good326

reason to think that an operation like deletion is not sensitive specifically to c-command. That327

reason is that, as decades of research suggest, the syntactic component is the only component of328

the language faculty that is particular to the language faculty. It follows from this that deletion,329

an operation of the externalization system, is not particular to language. Since it is not particular330

to language, it should not be defined in language-particular terms. Therefore, defining deletion in331

terms of ordering as opposed to c-command is theoretically preferred.332

So, turning back to the task at hand, (35) is pronounced by deleting all the redundant structure in333

the adjunct. This occurs because every element of the deleted structure is identical to an element in334

the host and ordered with respect to that matching element.335

6.1.3 How is (35) derived?336

The derivation of host-adjunct structures such as (35) can be divided into to parts. In the first337

part, the two workspaces—host and adjunct— are derived independently of each other, and in the338

second part, the workspaces are derived in lockstep. The first part represents the standardly assumed339
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operation of workspaces, and is, therefore, already understood, at least insofar as workspaces are340

understood. The second part—the part involving lockstep derivation—is novel and its explanation341

will occupy this section.342

The result of the first part of the derivation is given in (39) below.343

(39)

〈
[{make,{the,error}},Voice, . . . ,T ]WS1,

[{deliberately},Voice, . . . ,T ]WS2, [Sharon]WS3

〉
344

Let’s suppose that nothing forces the workspaces to derive in lockstep, but rather they derive freely345

and only result in a host adjunct structure if their respective derivations mirror each other. This,346

however, would lead to two problems.347

The first problem this poses has to do with the copy/repetition distinction. The externalization348

system, by hypothesis, deletes copies, not repetitions. Recall that T, Voice, the subject, etc. of the349

adjunct workspace delete in this case. This deletion would only occur if those objects were copies of350

their counterparts in the host object and, while the necessary and sufficient conditions on copy-hood351

are not well understood, There is good reason to believe that content-identity is not sufficient. That352

is, Two instances of, say, VoiceAct are not copies just because they have identical content—it seem353

they must have an identical derivational history. This could not possibly hold of Voice, T, etc if the354

second stage of the derivation under discussion proceeds freely.355

The second problem has to do with the fact that the subject Sharon appears in both the host and356

adjunct workspace in (35). If we were to derive the two workspaces independently of each other,357

starting with (39), there would be a step in which WS3 would be added to either WS1 or WS2.358

Incorporating WS3 into one workspace, however, precludes a later step of incorporating it into the359

other workspace. Therefore, (35) does not seem to be derivable if its two workspaces are derived360

independently of each other.361

The lockstep derivation, then, must be “forced”, yet current theory offers no method for this. In362

the remainder of this section I will present and discuss a proposal which would allow for lockstep363

derivation. First, I will introduce and formally define a workspace-based version of Merge—what364
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Chomsky (2019) refers to as MERGE. Then, I will discuss the higher-order function, map, which365

will allow us do derive in lockstep. Finally, I will discuss how the copy/repetition distinction can be366

made in light of these developments.367

6.1.3.1 MERGE and its formal definition368

Chomsky (2019) argues that the standard conception of Merge—Merge(α,β )→{α,β}—needs369

to be replaced with a new one, called MERGE, which meets a number of desiderata. One such370

desideratum is that MERGE should be defined in terms of workspaces, rather than syntactic objects.371

In order to do this we must first provide some definitions for workspaces and other derivational372

notions. These definitions are given in (40)-(42).373

(40) A derivation D is a finite sequence of stages 〈S1, S2,. . . ,Sn〉, where D(i) = Si.374

(41) A stage S is a finite sequence of workspaces 〈WS1, WS2,. . . WSn〉, where S(i) = WSi.375

(42) A workspace WS is a finite sequence of syntactic objects 〈SO1, SO2,. . . SOn〉, where WS(i) =376

SOi.377

In addition to the workspace desideratum, MERGE should also “restrict computational resources”378

(Chomsky 2019), by ensuring that when a new object is created bye MERGE, its constituent parts379

do not remain in accessible in the workspace. That is, MERGE substitutes the new object for the380

old objects. The definition of MERGE in (43), where “+” represents an “append” operation and381

“−” represents a “delete” operation, meets the two desiderata that I have mentioned thus far.6382

(43) Where ω is a workspace, and α and β are syntactic objects,383

MERGE3(ω,α,β )→


{α,β}+((ω−α)−β ) if α and β are in ω

{α,β}+(ω−α) if α is in ω and β is in α

undefined otherwise

384

6The astute reader will likely note that my definition of MERGE sacrifices the simplicity of Merge to meet the
Chomsky’s desiderata. This, I believe, reflects the fact that we lack a sufficient model of neural computation in which to
ground our grammatical theory. Such a model would likely meet the “restrict resources” desideratum automatically.
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This definition, however, seems to over-generate. Consider the derivation in (44)385

(44) WS = 〈P, Q, X, Y〉 (P, Q, X, and Y are lexical item tokens)386

a. merge(WS, P, Q)→ 〈{P, Q,X, Y〉(= WS′)387

b. merge(WS′, X, Y)→ 〈{P, Q},{X, Y}〉(=WS′′)388

If such a derivation were possible within a single workspace, then we could derive an entire389

clause—including complex nominal arguments—within a single workspace. This would, at best,390

render workspaces redundant, perhaps making the grammar indeterminate—any sentence would be391

derivable in at least two distinct ways.392

The situation gets worse when we consider the fact that the definition of merge in (43) stipulates the393

distinction between internal and external merge. By hypothesis, though, the two cases of merge394

should fall out from a single definition of merge. Without the stipulation, it’s likely that unrestricted395

parallel merge (Citko 2005) or sideward merge (Nunes 2004) would be derivable in this system.396

As Chomsky (2019) argues, though, once such varieties of merge are allowed, there is virtually397

no restriction on what can be derived. Thus, a definition of merge like that in (43) would likely398

over-generate.399

This issue can be overcome in a non-stipulative way by eliminating one of the syntactic-object400

arguments from the definition of merge and defining merge as in (45).401

(45) Where ω is a workspace, and α is a syntactic object,402

MERGE2(ω,α)→


{α,ω(1)}+((ω−α)−ω(1)) if α is in ω

{α,ω(1)}+(ω−ω(1)) if α is in ω(1)

undefined otherwise

403

I have restricted merge here by identifying a privileged member of a given workspace—the first404

member ω(1). This is what is sometimes referred to as the root of the tree. This is a justifiable step405

in that the first member of a workspace has a unique property among workspace members—the406

existence of a workspace depends only on the existence of its first member. That is, there are407
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workspaces of length 1, 2, 3, etc but no workspaces of length 0. A corollary of this is that the408

proposition in (46) is only true for i = 1.409

(46) For every workspace ω , ω(i) is defined.410

By restricting merge in this way, we can rule out the derivation in (44). All instances of MERGE2411

modify WS(1). WS′′(1) and WS′(1) in (44) are identical. Therefore No instance of MERGE2 could412

derive WS′′ from WS′.413

Being a computational procedure, MERGE ought to proceed in steps. Therefore, it should be a414

curried (or schönfinkeled) function. So, MERGE would be defined as in (47), with M standing in415

for the intension of MERGE (i.e., the right side of the equals sign in (43)).416

(47) MERGE = (λω.(λα.M ))417

Curried functions are a variety of higher-order functions because they have functions as outputs418

in contrast first-order functions whose inputs and outputs are strictly non-functional. Under this419

version of MERGE a step of external merge is divided into two steps as in (48).420

(48) a. MERGE(W)→MERGEW
421

b. MERGEW(X)→MERGEW,X→ {X, W(1)}+((W−X)−W(1))422

Note here that, since lambda abstraction and reduction is sensitive only to the form of the variables,423

the order of these steps, dictated by the order of lambda expressions in (47), is arbitrary. We could, in424

principle, reorder the lambda expressions in (47) and we would have a different order of operations425

in (48) with the same result. This fact will come into play shortly.426

6.1.3.2 The map function427

In the previous section I noted that curried functions are a class of higher-order functions because428

they have functions as outputs. In this section I will introduce a higher-order function that takes429

functions as inputs—the map function—which will be key to achieving lockstep parallel derivations.430

Informally speaking, map takes a function and applies it to a list of arguments. Formally, map is431
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defined in (49).432

(49) map( f , 〈x0,x1, . . .xn〉)→ 〈 f (x0), f (x1), . . . f (xn)〉433

Now, lets consider how lockstep parallel derivations would proceed. The stage at which the lockstep434

derivation begins was given in (39) and repeated here as (50).435

(50)

〈
[{make,{the,error}},Voice, . . . ,T ]WS1,

[{deliberately},Voice, . . . ,T ]WS2, [Sharon]WS3

〉
436

The next step is to merge Voice in WS1 and WS2 and to do that we start with MERGE curried437

in the reverse order of (47), shown in (51), with and α and ω ranging over SOs and workspaces,438

respectively. Note, though, that R-MERGE is not a newly proposed operation. It has the same439

intension as MERGE—represented as M —with inverted lambda terms.440

(51) R-MERGE = (λα.(λω.M ))441

Our first step, then, is to apply R-MERGE to Voice as in (52)442

(52) R-MERGE(Voice)→ R-MERGEVoice
443

Next we map this function to WS1 and WS2 as in (53).444

(53) map(R-MERGEVoice, 〈WS1, WS2〉)→

〈
[{Voice,{make,{the,error}}}, . . . ,T ],

[{Voice{deliberately}}, . . . ,T ]

〉
445

And so on like that for the remainder of the derivation. Thus we can derive (35).446

6.1.3.3 Identity across workspaces447

If (52) and (53) are two steps in the derivation on (35), we still need to explain how the the two448

instances of Voice can be considered copies of each other in order to explain how one of them449

deletes.450

I mentioned in section 6.1.2 that, under a derivational theory of syntax, copies can be distinguished451

from repetitions in that the former share a derivational history, while the latter do not. In order452

for two objects to share a derivational history, they must have the same origin. The origin of any453
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syntactic object in a given derivation is a tokening operation (Select in terms of Collins and Stabler454

(2016)) in the case of lexical item tokens or a subderivation in the case of derived objects like455

complex nominals.456

In the case of Voice, since it a lexical item token, it’s two instances in (35) must be linked by a457

single instance of the tokening operation Select, defined in (54).458

(54) Select(α,ω)→ ω +α459

Where α is a lexical item and ω is a workspace460

Of course, this operation can be curried as in (55) and mapped so that a single instance of Select461

can put a single token in two workspaces as in (56)462

(55) (λα.(λω.ω +α))463

(56) a. Select(Voice)→ SelectVoice
464

b. Map(SelectVoice, 〈WS1, WS2〉)→ 〈WS1+Voice,WS2+Voice〉465

So, the two instances of Voice share a single tokening operation, and therefore are the same object.7466

7 Problems solved by this theory467

In this section, I will outline a few problems related to adjunction that the proposed theory provides468

natural solutions to. First, I will address the island-hood of adjuncts. Then, I will discuss parasitic469

gaps, whereby adjunct island-effects are ameliorated. Finally, I will discuss a class of facts470

commonly associated with Cartographic/Nanosyntactic approaches to syntax—adjunct ordering471

constraints.472

7This also seems to be how we identify individual objects in general: I am the same individual as I was last year
because both versions of me share the same birth event—the same origin.
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7.1 The Island-hood of adjuncts473

A well-known property of adjuncts is that they are islands to movement. Indeed, Bošković (forth-474

coming) points out that, while the island-hood of many other constructions varies across languages,475

adjunct island-hood seems to be constant.8So, for instance (57) is an ungrammatical question,476

and (58) is contains an ungrammatical relative clause because they both require an instance of477

wh-movement out of an adjunct.478

(57) *Whati did she eat an apple [after washing __i]?479

(58) *The student whoi he invited Barbara [without meeting __i]480

To see how the theory of adjuncts I propose here predicts adjunct island-hood consider the stage481

of the derivation of (57) immediately before wh-movement occurs. As shown in (59), the wh-482

expression what is in the adjunct workspace (WS2), which “scopes over” the TP. Note that both483

workspaces contain a Cwh head.484

(59)

〈
[{Cwh,{she,{T, . . .}}}]WS1,

[{Cwh,{a f ter,{washing,what}}}]WS2

〉
485

In order to derive (57), we would need a wh-movement operation such as (60).486

(60) MERGE(WS1)(what)487

The result of this operation, however, is undefined because what is neither a member of WS1, nor488

contained in the root object of WS1.489

The operation in (61), on the other hand, is defined yielding the stage in (62).490

(61) MERGE(WS2)(what)491

(62)

〈
[{Cwh,{she,{T, . . .}}}]WS1,

[{what{Cwh,{a f ter,{washing,what}}}}]WS2

〉
492

This stage is problematic for two reasons. First, the Cwh head in WS1 would bear an unsatisfied493

8Bošković notes that, since the Coordinated Structure Constraint is also constant across languages, it should be
unified with adjunct island-hood.
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wh-feature which would lead to a crash at the CI interface. Second, (62) would not yield (57) when494

linearized because what, being in WS2 would ordered after all of the words in WS1. That is, we495

would expect (62) to be linearized as (63).496

(63) *She ate an apple what after washing497

Thus the island-hood of adjuncts follows naturally from my proposed theor of adjuncts.498

7.2 Parasitic Gaps499

The island-hood of adjuncts, though constant across languages, is circumvented in so-called parasitic500

gap constructions (Engdahl 1983) as in (64) and (65).9501

(64) Whati did she eat __i [after washing eci]?502

(65) The student who he invited __ [without meeting eci]503

Here the parasitic gaps in the adjuncts, represented here as ecs, are licensed if there is a parallel504

trace in the host. This required parallelism is both syntactic—the trace and the parasitic gap have the505

same grammatical role (i.e. direct object in (64) and (65))—and semantic—the trace and parasitic506

gap co-refer.507

Here, the mechanism for ensuring lockstep derivation—higher-order functions—allows us to derive508

parasitic gaps. To demonstrate this, consider the penultimate stage in the derivation of (64) shown509

in (66).510

(66)

〈
[{Cwh,{she,{T,{. . . ,whati}}}}]WS1,

[{Cwh,{a f ter,{washing,whati}}}]WS2

〉
511

Note that the two instances of what here are copies of each other, meaning they share a derivational512

origin. The final stage of (64), given in (68) is derived in two steps given in (67).513

(67) a. R-MERGE(whati)→ R-MERGEwhati514

9I represent the gaps within the adjuncts here as {ec}s because, depending on the analysis, they are alternately
identified as traces of movement or null proforms.
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b. map(R-MERGEwhati , 〈WS1, WS2〉)→ (68)515

(68)

〈
[{whati{Cwh,{she,{T,{. . . ,whati}}}}}]WS1,

[{whati{Cwh,{a f ter,{washing,whati}}}}]WS2

〉
516

As discussed in section 6.1.2, all instances of whati except for the highest instance in the first517

workspace is deleted, yielding the string (64).518

Thus parasitic gaps are naturally accounted for in the theory I propose here.519

7.3 Cartography’s facts520

In section 2 I discussed the adjective ordering restriction as an example of the class of facts521

which motivate the cartographic approach to adjuncts. I argued that adjective ordering restrictions522

(e.g., SIZE > SHAPE) and stronger word orderings (e.g., D > N in English) are different sorts of523

phenomena. This conclusion does not, however, mean that adjective ordering restrictions are not524

real, and therefore don’t need explanation. Rather, it means that the must be explained in a way525

different from the stronger word-order restrictions. A workspace-theoretic approach can provide526

such a different explanation, given a few auxiliary hypotheses.527

To begin, I give the derivation of (5)—a nominal phrase with an acceptable adjective sequence—in528

(69), followed by the derivation of (6)—a nominal phrase with a deviant adjective sequence— in529

(70).10
530

10I leave out Select operations for the sake of brevity.
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(69)

(Start)

〈[{small},SIZE]WS1,

[{square},SIZE,SHAPE]WS2,

[
√

TABLE,n,SIZE,SHAPE]WS3

〉
0

MERGE(n)(WS3) →

〈[{small},SIZE]WS1,

[{square},SIZE,SHAPE]WS2,

[{
√

TABLE,n},SIZE,SHAPE]WS3

〉
1

Map(MERGE(SHAPE))(〈WS2,WS3〉) →

〈[{small},SIZE]WS1,

[{SHAPE,square},SIZE]WS2,

[{SHAPE,{n,
√

TABLE}},SIZE]WS3

〉
2

Map(MERGE(SIZE))(〈WS1,WS2,WS3〉) →

〈[{SIZE,small}]WS1,

[{SIZE,{SHAPE,square}}]WS2,

[{SIZE,{SHAPE,{n,
√

TABLE}}}]WS3

〉
3

531

(70)

(Start)

〈[{square},SIZE,SHAPE]WS1,

[{small},SIZE]WS2,

[
√

TABLE,n,SIZE,SHAPE]WS3

〉
0

MERGE(n)(WS3) →

〈[{square},SIZE,SHAPE]WS1,

[{small},SIZE]WS2,

[{
√

TABLE,n},SIZE,SHAPE]WS3

〉
1

Map(MERGE(SHAPE))(〈WS1,WS3〉) →

〈[{SHAPE,square},SIZE]WS1,

[{small},SIZE]WS2,

[{SHAPE,{n,
√

TABLE}},SIZE]WS3

〉
2

Map(MERGE(SIZE))(〈WS1,WS2,WS3〉) →

〈[{SIZE,{SHAPE,square}}]WS1,

[{SIZE,small}]WS2,

[{SIZE,{SHAPE,{n,
√

TABLE}}}]WS3

〉
3

532

The key point of comparison here is between respective second steps, in which SHAPE is merged.533
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In (69), this step maps MERGE(SHAPE) to a contiguous sub-sequence of the active workspaces.534

In (70), on the other hand, this step maps the same curried function to a non-contiguous sub-535

sequence. If we make the auxiliary hypothesis that mapping over a contiguous sequence is more536

computationally efficient than mapping over a non-contiguous sequence, then we have a possible537

explanation of the deviance of (6) and, by extension, a possible explanation of adjunct ordering538

restrictions. That is, violations of adjunct ordering restrictions, rather than being violations of539

selection restrictions, are the result of suboptimal derivations.540

Note, however, that this approach maintains the universal hierarchy proposed by cartographers with541

a few alterations. Under the cartographer’s approach, adjuncts merge with their respective functional542

heads as specifiers, and a functional head selects its subordinate category as a complement. This543

seems to lead to the conclusion that the entire functional sequence of a domain is merged in every544

derivation of that domain. Under the present approach, adjuncts still merge with their respective545

functional heads, but as complements. That is, the structural relation between functional heads, like546

SIZE, and modifiers, like small, is the same as the relation between roots and their categorizing547

heads. It follows from this that modifiers merged with the interpretive relation between functional548

head and modifier should be the same as the one between categorizing heads and roots. This549

prediction is borne out in the intuitive understanding of polysemy.11
550

Consider, for instance, how one would define the word work. Since it is polysemous we would have551

to give a list of definitions—we would say “work as a noun means . . . ” followed by “work as a verb552

means . . . ”, or vice versa. We could formalize these as in (71).553

(71) a. SEM({n,
√

WORK}) = . . .554

b. SEM({v,
√

WORK}) = . . .555

Now compare this to the adjective light which is many ways polysemous. Our list of definitions556

would be as follows—“light as a colour adjective means . . . ”, “light as a weight adjective means557

. . . ”, “light as an evaluative adjective means . . . ”, and so on Again, we can formalize these as in558

11There seems to be no systematic account of grammatical category or polysemy in current semantic theory.
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(72).559

(72) a. SEM({COLOUR, light}) = . . .560

b. SEM({WEIGHT, light}) = . . .561

c. SEM({VALUE, light}) = . . .562

In both cases, we replace the as-a relation with the head-complement relation. If such a move563

were made in isolation, it would would be quite innocuous, even trivial. In the current context,564

though, the move was a logical result of a substantive hypothesis and should, therefore, be seen as565

corroborating evidence in favour of that hypothesis.566

8 Conclusion567

I have argued in this paper that the basic facts about adjuncts only make sense if we assume that568

adjuncts are not truly attached to their hosts. While previous theories of grammar have not offered569

any way of formalizing this assertion, I proposed that the relatively new notion of workspaces570

offers such a possibility. That is, I proposed that adjuncts, like arguments, are derived in their571

own workspaces, but, unlike arguments, they are not incorporated into the “main” workspace. I572

formalized this proposal and, in the process, proposed a workspace-based formalization of MERGE.573

I then applied this formalized proposal to some generalizations related to adjunct—Islands, Parasitic574

Gaps, and adjective ordering constraints—showing that those generalizations are either predicted by575

my proposal or consistent with it.576

Before concluding, though, I would like to discuss some possible implications of some of my577

proposals—specifically, the introduction of higher-order functions. My proposal makes crucial use578

of the higher-order function map, and this suggests an obvious minimalist criticism—namely that I579

have introduced unnecessary complexity to the grammar. Put concisely: If adding Pair-Merge to the580

grammar is illegitimate, then why isn’t the addition of map? I will propose and discuss two possible581

answers to this challenge. First, I will discuss the possibility that higher-order functions like map582
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are derivable from MERGE—that they “come for free”. Second, I will discuss the possibility that it583

is these higher-order functions, rather than MERGE, which are the fundamental basis of language.584

The idea that one could derive higher-order functions from MERGE begins with the suggestion—585

made frequently by Chomsky12—that internal MERGE is sufficient to explain the human faculty586

of arithmetic. The reasoning is as follows: The simplest case of Merge is vacuous internal Merge587

(Merge(x)→ {x}), which is identical to the set-theoretic definition of the successor function588

(S(n) = n+1). Since the arithmetic is reducible to a notion of 0 or 1, the successor function and a589

few other axioms, Merge suffices to generate arithmetic. The process of learning arithmetic, then, is590

merely the process of setting the axioms of the system.591

This result should not be surprising, though, since theoretical models of computation are closely592

linked to arithmetic. In fact, early models of computation were largely models of arithmetic—where593

the set of determinable functions that could be represented in model X is the set of X-computable594

functions on the natural numbers. An assumption generally made, called the Church–Turing thesis,595

is that a general class of computable functions is identical to the class of functions computable by a596

Turing machine. So, if we assume that a Merge-based computation system is capable of general597

computation, then it should be capable of performing every computable function. Since higher-order598

functions are computable functions, then a Merge-based system should allow for them.599

This reasoning hinges on a few hypotheses, but even if it could be done completely deductively,600

it would still face the serious problem that models of computation and related systems assume601

a strict distinction between operations and atoms. Take, for instance, the process of deductive602

reasoning, which derives statements from from statements following rules of inference. In this603

case our operations are the rules of inference and the atoms are the statements. As Carroll (1895)604

famously illustrated, it is very easy to blur the lines between a rule of inference—such as modus605

ponens, given in (73)—and the logical statement in (74), but doing so renders the system useless.606

(73)
P→ Q,P

Q
607

12See Chomsky (2019, 274) for an instance in writing.
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(74) ((P→ Q)&P)→ Q608

The former is a rule of inference that may or may not be active in a logical system, while the latter is609

a statement which may or may not be true in a logical system. If a system doesn’t explicitly include610

(73) but can effectively perform it, we can say that the system in question can simulate (73). IF a611

system can prove (74) without it being an axiom, then we can say that the system generates (74).612

In the grammatical system that I have been assuming, MERGE corresponds to the rules of inference,613

and the syntactic objects and workspaces correspond to the atoms. In my reasoning above, I614

concluded that a MERGE-based system could simulate higher-order functions like map, but it615

cannot be concluded from this that map could be an integral part of adjunction. The human mind616

is capable of simulating wide variety of systems. For instance, a skilled Python programmer is617

effectively able to simulate a Python interpreter, but such a simulation requires learning, practice618

and considerable mental effort. Adjunction, on the other hand, seems to be fully innate and mostly619

effortless.620

The second possibility is to propose that higher-order functions, or some principle that allows for621

them, are the basis for language. That is, we accept the minimalist evolutionary proposal that a622

single mutation separates us from our non-linguistics ancestors, but we propose that instead of623

MERGE/Merge, the result of that mutation was higher-order functions. There are a number of624

issues of varying levels surmountability with this proposal which I discuss below.625

The first issue is that, while Merge/MERGE is a single operation and, therefore, easily mappable to626

a single genetic change, higher-order functions are a class of functions, making the task of linking627

them to a single mutation non-trivial. However, if they do form a (natural) class of functions, then628

they must share some singular feature, which can be mapped to a single mutation. The definition629

of a higher-order function as one that takes or gives a function as an input or output, respectively,630

suggests a such a feature—abstraction.631

If abstraction is to be the defining feature of the faculty of language, then it behooves us to give a632

concrete definition of it. In the mathematico-computational sense, abstraction can be seen as the633
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ability of system to treat functions as data. Applied to our cognitive system, this seems to allow634

meta-thinking—thinking about thinking, reasoning about reasoning, reflecting upon reflections, and635

so on, what Hofstadter (1979) calls “jumping out of the system.” This kind of meta-thinking, though,636

is commonly associated with consciousness, which leads to two problems with this approach. The637

first problem is the hard problem of consciousness—if abstraction and consciousness are the same,638

then we may never fully understand either. The second problem is more mundane—We are no more639

conscious of adjunction than we are of MERGE, yet my reasoning here suggests that perhaps we640

should be conscious of the former.641

There is however, a third possibility—a synthesis of the two previous possibilities. The early642

results of computability theory (Gödel 1931; Turing 1936) made crucial use of abstraction—using,643

say, number theory to reason about the axioms and operations of number theory. In fact, every644

simple model of computation allows for abstraction of the sort I am considering here.13 This seems645

to suggest that the choice between the two possibilities above is a false one—that MERGE and646

abstraction cannot truly be disentangled. This does not allow us to avoid the problems that I have647

raised, though, but it does suggest that they can be combined and perhaps be solved together.648
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