
Identity-Based Patterns in Deep Convolutional Networks: Generative
Adversarial Phonology and Reduplication

Gašper Beguša

aDepartment of Linguistics, University of California, Berkeley, 1203 Dwinelle Hall #2650, Berkeley, CA 94720

Abstract

Identity-based patterns for which a computational model needs to output some feature together
with a copy of that feature are computationally challenging, but pose no problems to human learners
and are common in world’s languages. In this paper, we test whether a neural network can learn an
identity-based pattern in speech called reduplication. To our knowledge, this is the first attempt to
test identity-based patterns in deep convolutional networks trained on raw continuous data. Unlike
existing proposals, we test learning in an unsupervised manner and we train the network on raw
acoustic data. We use the ciwGAN architecture (Beguš, 2020a) in which learning of meaningful
representations in speech emerges from a requirement that the deep convolutional network generates
informative data. Based on four generative tests, we argue that a deep convolutional network learns
to represent an identity-based pattern in its latent space; by manipulating only two categorical
variables in the latent space, we can actively turn an unreduplicated form into a reduplicated form
with no other changes to the output in the majority of cases. We also argue that the network
extends the identity-based pattern to unobserved data: when reduplication is forced in the output
with the proposed technique for latent space manipulation, the network generates reduplicated
data (e.g., it copies an [s] e.g. in [s@-siju] for [siju] although it never sees any reduplicated forms
containing an [s] in the input). Comparison with human outputs of reduplication show a high degree
of similarity. Exploration of how meaningful representations of identity-based patterns emerge and
how the latent space variables outside of the training range correlate with identity-based patterns
in the output has general implications for neural network interpretability.

Keywords: artificial intelligence, generative adversarial networks, speech, identity-based learning,
neural network interpretability

1. Introduction

What computational models can and cannot learn has been a topic of focus both in the field
of machine learning and in computational cognitive science. One advantage of probing the learn-
ing of neural networks on language data is that dependencies in speech are well understood and
unique. Particularly informative is precisely phonetic and phonological data. Phonetics, a subfield
of linguistics, is primarily interested in one of the few continuous aspect of human language — the
physical properties of speech sounds. Phonology is primarily concerned with the first discretiza-
tion that human language users perform: from continuous phonetic data to discretized mental
representation of meaning-distinguishing sounds called phonemes. Phonological grammar not only
discretizes and groups sounds into mental representational units, but also manipulates these units

Email address: begus@berkeley.edu (Gašper Beguš)

Preprint submitted to tbd September 13, 2020



pulə pʊpulə

Time (s)
0 1.219

0

8000

Fr
eq

ue
nc

y 
(H

z)

mɑji mʌmɑji

Time (s)
0 1.492

0

8000

Fr
eq

ue
nc

y 
(H

z)

Figure 1: Waveforms and spectrograms (0-8000 Hz) of two pairs of bare and reduplicated items read by an L1
American English speaker: ["phul@] ∼ [pU"phul@] (left) and ["mAji] ∼ [m2"mAji] (right). Note that the Generator is
trained only on waveforms, not spectrograms, which are provided here for the purpose of analysis.

with a computation that can be expressed by subregular classes of computational languages (Heinz
and Idsardi, 2013) and can be called phonological computation. Scientific study of speech with its
long tradition (an overview in van der Hulst 2013 and MacMahon 2013) resulted in a strong under-
standing of how dependencies and computations in speech data work as well as how to represent
these dependencies formally, such that they correspond at least superficially to human behavior
(Chomsky and Halle, 1968; Wilson, 2006).

Another advantage of probing learning of deep neural networks with language data is that we
can superficially compare outputs of computational models to human linguistic behavior. This in
turn provides information on which aspects in human language can be explained with deep neural
networks alone without having to posit language-specific computational devices. On the other
hand, such comparisons can inform us about which aspects of language the deep neural networks
can and cannot learn and potentially why this is the case.

Identity-based patterns, repetition, or copying are dependencies that pose challenges in machine
learning and computational cognitive science. One of the most intriguing processes in phonological
computation is precisely an identity-based pattern — reduplication. It is a morphophonological
process where phonological content (phonemes) get copied from a word (also called the base) with
some added meaning (Inkelas and Zoll, 2005; Urbanczyk, 2017). Reduplication can be total, which
means that all phonemes in a word get copied (e.g. /pula/ → [pula-pula]), or partial, where only
a subset of segments gets copied (e.g. /pula/ → [pu-pula]).

Examples like [pu-pula] and [pula-pula] are discretized representations of reduplication, using
characters to represent continuous sounds. Most, if not all, computational models of reduplication,
to the author’s knowledge, model reduplication as character or feature manipulation; however, raw
audio files are a more accurate representation of what hearing human language learners are actually
faced with as their primary linguistic data in spoken languages. Figure 1 features two waveforms
representing differences in sound pressure when a speaker of English reads an unreduplicated bare
nonce word and its reduplicated counterpart (/pula/ ∼ /[pu-pula/ and /maji/ ∼ /[ma-maji/). As is
clear from Figure 1, an identity-based pattern such as reduplication is considerably more complex in
raw data compared to discretized representations. Additionally, reduplication is often complicated
with other phonetic processes. In our training data, for example, reduplicative vowels get reduced
(e.g. from [A] to [2]) and aspiration of [ph] is reduced in the reduplicative syllable because the reader

2



is an L1 speaker of American English. Nevertheless, the waveforms and spectrograms clearly show
that the reduplicated output contains repeated continuous material from the unreduplicated base.
For example, in the reduplicated [m2"mAji] there is a clear period characteristic of a nasal [m],
which is followed by a vocalic element and another period characteristic of the nasal [m].

Reduplication has a clear function in the linguistic system by adding various meanings/semantic
values across languages: from forming plural nouns to forming adjectives from nouns. For example,
reduplication is used to form adjectives from nouns in Rotuman. A noun [rosi] ‘fraud’ becomes an
adjective [ros-rosi] ‘cunning’ after reduplication (Inkelas and Zoll, 2005). In Motu, on the other
hand, the verb [raka] ‘to walk’ appears as [ra-raka] when used with plural subjects (Lister-Turner
et al., 1941).

Reduplication has been central in discussions about what artificial neural networks can learn.
An early contribution to this debate is Marcus et al. (1999), arguing that simple neural networks
are unable to learn a simple reduplication pattern that 7-month old humans infants are able to
learn (see also Gasser 1993). Marcus et al. (1999) argue that the behavioral outcomes of their
experiments cannot be modeled by simple counting, attention to statistical trends in the input,
attention to repetition, or connectionist (simple neural network) computational models. Instead,
they argue, the results support the claim that human infants employ “algebraic rules” (Marcus
et al., 1999; Marcus, 2001; Berent, 2013) to learn reduplication patterns (for a discussion, see,
among others, McClelland and Plaut 1999; Endress et al. 2007).

Reduplication is indeed unique among processes because combining learned entities based on
training data distributions does not yield the desired outputs. For example, a learner can be
presented with pairs of bare and reduplicated words, such as /pala/ ∼ /papala/ and /tala/ ∼
/tatala/. The learner can then be tested on providing a reduplicated variant of a novel unobserved
item with an initial sound /k/ that they have not been exposed to (e.g. /kala/). If the learner learns
the reduplication pattern, they will output [kakala]. If the learner simply learns that /pa/ and /ta/
are optional constituents that can be attached to words based on data distribution, they will output
[pakala] or [takala]. Reduplication is thus an identity-based pattern (similar to copying), which is
computationally more challenging to learn (Gasser, 1993). In /kiajkiaj la/, the two sounds in the
reduplicative morpheme, /ki/ and /aj/, need to be in an identity relationship with the first two
segments of the base, /ki/ and /aj/ and the learner needs to copy rather than recombine learned
elements.

With the development of neural network architectures, several studies revisited the claim that
neural networks are unable to learn reduplicative patterns (Alhama and Zuidema, 2018; Prickett
et al., 2018; Nelson et al., 2020; Brugiapaglia et al., 2020), arguing that identity-based patterns can
indeed be learned with more complex architectures.1 All these computational experiments, however,
operate on an already discretized level and most of these experiments model reduplication with
supervised learning. The inputs to the models are either characters (phones or phonemes) or discrete
binary featural representations of phonemes rather than raw acoustic data. For example, a seq2seq
model treats reduplication as a pairing between the input unreduplicated sequence of “characters”
(such as /tala/) and an output — a reduplicated sequence (such as /tatala/). Already abstracted
and discretized phonemes or “characters”, however, are not the primary input to language-learning
infants. The primary linguistic data of most hearing infants is raw continuous speech or, in other
words, raw acoustic inputs. Hearing infant learners need to acquire reduplication from continuous
speech data that is substantially more complex than already discretized characters or binary features

1Wilson (2018) proposes another approach that allows modeling reduplication. For a non-connectionist computa-
tional model of phonology, see Dolatian and Heinz (2018).

3



(as demonstrated in Figure 1).
Furthermore, most of the existing models of reduplication are also supervised. Seq2seq models,

for example, are fully supervised: the training consists of pairs of unreduplicated (input) and
reduplicated strings of characters or binary features (output). While the performance can be
tested on unobserved data or even on unobserved segments, the training is nevertheless supervised.
Human language learners do not have access to input-output pairings: they are only presented with
positive, surface, and continuous acoustic data.

To better understand learning in deep convolutional networks, this paper tests learning of
an identity-based pattern, reduplication, with a deep convolutional network architecture ciwGAN
(proposed in Beguš 2020a) within the GAN framework (Goodfellow et al., 2014; Donahue et al.,
2019). The networks are trained on a common reduplication pattern and tested on novel unobserved
acoustic forms. To the author’s knowledge, this is the first proposal to test learning of an identity-
based pattern with deep convolutional networks. The proposed ciwGAN model not only learns
to output data that resembles human speech, but also learns to encode meaningful information
into raw acoustic outputs (Beguš, 2020a). In other words, association between some meaningful
property of the speech data and unique representation of that property in the ciwGAN architecture
emerges automatically from the requirement that the Generator output informative data (Beguš,
2020a). Another advantage of the GAN architecture is that the Generator network which learns to
produce data from only positive raw acoustic inputs has no direct connections to the input data.
The networks produce innovative data that violate training data distributions in structured and
highly informative ways (Beguš, 2020b,a). Learning is unsupervised in the GAN architecture and
the model requires no prior levels of abstraction: it is trained on raw acoustic data. For example,
we train the networks on acoustic data of items such as /pala/ ∼ /papala/ and /tala/ ∼ /tatala/,
but test reduplication on acoustic forms of items such as /sala/, which is never reduplicated in
the training data. While equivalents of copying/identity-based patterns can be constructed in the
visual domain, the author is not aware of studies that test identity-based visual patterns with deep
convolutional neural networks.

How can we test learning of reduplication in a deep convolutional network that is trained only
on raw positive data? We propose a technique to test the ability of the Generator to produce
forms absent from the training data set. For instance, we can measure the learning of reduplication
in testing the ability of the generator to output the reduplicated form /sasana/ when only the
base /sana/ is present in the training set. Using the technique proposed in Beguš (2020b), we
can identify latent variables that correspond some phonetic or phonological representation such as
reduplication. By manipulating and interpolating a single latent variable, we can actively generate
data with and without reduplication. In fact, we can observe a direct relationship between a single
latent variable (out of 100) and reduplication that with interpolation gradually disappears from
the output. Additionally, we can identify latent variables that correspond to [s] in the output. By
forcing both reduplication and [s] in the output through latent space manipulation (Beguš, 2020b),
we can test the network’s learning of reduplication on unobserved data. In other words, we can
observe what the network will output if we force it to output reduplication and an [s] at the same
time. A comparison of generated outputs with human outputs that were withheld from training
reveals a high degree of similarity. We perform an additional computational experiment to replicate
the results from the first experiment. In the replication experiment, evidence for learning of the
reduplicative pattern also emerges. To the author’s knowledge, this is the first attempt to model
reduplication with neural network architectures trained on raw acoustic speech data.

The computational experiments reveal another property about representation learning in deep
neural networks: we argue that the network extracts information in the training data and represents
a continuous acoustic identity-based pattern with discretized representation: out of 100 variables,

4



the network encodes reduplication with one or two variables, which is suggested by the fact that a
small subset of variables are substantially more strongly correlated with presence of reduplication.
In other words, there is a near categorical drop in regression estimates between one variable and the
rest of the latent space. By setting the identified variables to values well beyond the training range
results in near categorical presence of a desired variable in the output. This technique (proposed
for non-identity-based patterns in Beguš 2020b) allows us to directly explore the how the networks
encode dependencies in data, their underlying values, and interactions between variables, and
thus get a better understanding of how exactly deep convolutional networks encode meaningful
representations.

2. Model

Generative Adversarial Networks (Goodfellow et al., 2014) are a neural network architecture
with two main components: the Generator network and the Discriminator network. The Generator
is trained on generating data from some latent space that is randomly distributed. The Discrimi-
nator takes real training data and the Generator’s outputs and estimates which inputs are real and
which are generated. The minimax training, where the Generator is trained on maximizing the
Discriminator’s error rate and the Discriminator is trained on minimizing its own error rate, results
in the Generator network outputting data such that the Discriminator’s success in distinguishing
them from real data is low. It has been shown that GANs not only learn to produce data that
resemble speech, but also learn to encode phonetic and phonological representations in the latent
space (Beguš, 2020b).

The major advantage of the GAN architecture for modeling speech is that the Generator net-
work does not have direct access to the training data (unlike in the autoencoder architecture;
Räsänen et al. 2016; Eloff et al. 2019; Shain and Elsner 2019). Instead, the network has to learn to
generate data from noise. Beguš (2020b) argues that GANs not only learn to encode phonetic and
phonological representations in their latent space, but also learn phonological processes (approx-
imates of phonological computation). For example, the Generator learns to output unaspirated
stops [p, t, k] after an [s] and aspirated stops (produced with a puff of air) [ph, th, kh] when no [s]
precedes when trained on TIMIT (Garofolo et al., 1993) in accordance with a simple allophonic rule
in English where voiceless stops surface as unaspirated when proceeded by an [s] (e.g. ["phIt] ‘pit’
vs. ["spIt]). While the network learns this distribution, it also violates training data and occasion-
ally outputs an aspirated [ph, th, kh] even when [s] precedes. As argued in (Beguš, 2020b), GANs
violate training data in a structured way that can be paralleled to violations of primary linguistic
data in L1 acquisition. For example, human L1 learners occasionally output aspirated stops in the
[s]-condition which are substantially more aspirated than stops in the same condition in the input
data (Bond and Wilson, 1980; Beguš, 2020b).

In the first experiment, we use the ciwGAN (Categorical InfoWaveGAN) model proposed in
Beguš (2020a). The ciwGAN model combines the WaveGAN and InfoGAN architectures. Wave-
GAN, proposed by Donahue et al. (2019), is a Deep Convolutional Generative Adversarial Network
(DCGAN; proposed by Radford et al. 2015) adapted for time-series audio data. The basic architec-
ture is the same as in DCGAN, the main difference being that in the WaveGAN proposal, the deep
convolutional networks take one-dimensional time-series data as inputs or outputs. The structure of
the Generator and the Discriminator networks in the ciwGAN architecture are taken from Donahue
et al. (2019). InfoGAN is an extension of the GAN architecture in which the Discriminator learns
to retrieve the Generator’s latent categorical or continuous codes (Chen et al., 2016) in addition to
estimating realness of generated outputs and real training data.

5



x̂ =

Time (s)
0 0.8352

-0.834

0.8546

0

Generator
network

G(z)

Latent space
98 random variables (z)

z3−100 ∼ U(−1, 1)

2 features (cat. variables) φ

φ =
φ1 φ2
0 1
1 0

Q network

Estimates φ̂
[φ1,φ2]

x =

Time (s)
0 0.7593

-0.1664

0.1236

0

Discriminator
network

D(x)

Training data

996 unpaired bare
and reduplicated items

CiVjCV
CiVjCiVjCV

Generated
or real?

Backpropagation

BackpropagationBackpropagation

Figure 2: The ciwGAN architecture as proposed in Beguš (2020a) used in this paper with training data as described
in Section 3. Green trapezoids represent deep convolutional neural networks.

In Beguš (2020a), we propose a model that combines these two proposals and introduces a
new latent space structure (in the fiwGAN architecture). Because we are primarily interested in
simple binary classification between bare and reduplicated forms, we use the ciwGAN variant of the
proposal. The model introduces a separate deep convolutional Q-network that learns to retrieve
the Generator’s internal representations. Code is available here: https://github.com/gbegus/

fiwGAN-ciwGAN. For all details about the architecture, see Beguš (2020a).
The Generator network is a deep convolutional network that takes as its input 100 latent

variables (see Figure 2). Two of the 100 variables are code variables (φ1 and φ2) that constitute
a one-hot vector. The remaining 98 z-variables are uniformly distributed on the interval (−1, 1).
The Generator learns to take as the input the 2 code variables and the 98 latent variables and
output 16384 samples that constitute just over one second of audio file sampled at 16 kHz through
five convolutional layers. The Discriminator network takes real and generated data (again in the
form of 16384 samples that constitute just over one second of audio file) and learns to estimate the
Wasserstein distance between generated and real data (according to the proposal in Arjovsky et al.
2017) through five convolutional layers. In the majority of InfoGAN proposals, the Discriminator
and the Q-network share convolutions. We introduce a separate Q-network (also in Rodionov
2018). The Q-network is in its structure identical to the Discriminator network, but the final layer
is fully connected to nodes that correspond to the number of categorical variables (Beguš, 2020a).
In the ciwGAN architecture, the Q-network is trained on estimating the latent code variables with
a softmax function (Beguš, 2020a). In other words, the Q-network takes the Generator’s outputs
and estimates the latent code variables φ1 and φ2. Weights of both the Generator network and the
Q-network are updated according to the Q-network’s loss function. This forces the Generator to
output informative data.

The advantage of the ciwGAN architecture is that the network not only learns to output inno-
vative data that resemble speech in the input, but also provides meaningful representations about
data. These meaningful representations arise in an unsupervised manner. For example, the ciw-
GAN network encodes reduplication as a meaningful category: it learns to assign a unique code for

6

https://github.com/gbegus/fiwGAN-ciwGAN
https://github.com/gbegus/fiwGAN-ciwGAN


bare and reduplicated items. This encoding emerges in an unsupervised fashion from the require-
ment that the generator output data such that unique information is retrievable from its acoustic
outputs. Given the structure of the training data, the Generator is most informative if it encodes
presence of reduplication in the code variables.

To replicate the results, we run an independent experiment on a bare WaveGAN architec-
ture using the same training data. The difference between the two architecture is that the bare
GAN architecture does not involve a Q-network and the latent space only includes latent variables
uniformly distributed on the interval (−1, 1). In other words, there is no requirement that the
Generator outputs informative data. For the GAN architecture in Experiment 2, see Figure 7.

Beguš (2020b,a) also proposes a technique for latent space interpretability in GANs: manip-
ulating individual variables to values well beyond the training range can reveal underlying repre-
sentations of different parts of the latent space. We use this technique throughout the paper to
evaluate learning of reduplication.

3. Reduplication in training data

The training data was constructed to test a simple reduplication pattern, common in human
languages: partial CV reduplication found in languages such as Paamese, Roviana, Tawala, among
others (Inkelas and Zoll, 2005). Base items are of the shape C1V2C3V4 (C = consonant; V =
vowel), e.g. /tala/. Reduplicated forms are of the shape C1V2C1V2C3V4, where the first syllable
(C1V2) is repeated. The items were constructed so that C1 contains a voiceless stop /p, t, k/, a
voiced stop /b, d, g/, a labiodental voiced fricative /v/, and nasals /m, n/. The vowels V2 and V4

consist of /A, i, u/. C3 consists of /l, ô, j/. All permutations of these elements were created. The
stress was always placed on V2 in the base forms and on the same syllable in reduplicated forms
(["phAl@] ∼ [p@"phAl@]). Because the reader of the training data was a speaker of American English,
the training data is phonetically even more complex. The major phonetic effects in the training
data include (i) reduction of the vowel in the unstressed reduplicated forms and in the final syllable
and (ii) deaspiration of voiceless stops in the unstressed reduplication syllable. The training data
includes two unique repetitions of each item and two repetitions of the corresponding reduplicated
forms. Table 1 illustrates the training data. All items used in training are given in Tables A.3, A.4,
and A.5.

The training data also includes base forms C1V2C3V4 with the initial consonant C1 being a
fricative [s]. These items, however, always appear unreduplicated in the training data—the purpose
of [s]-initial item is to test how the network extends the reduplicative pattern to novel unobserved
data. All 27 permutations of sV2C3V4 were included. To increase representation of [s]-initial
words, four or five repetitions of each unique s-initial base were used in training.2 Altogether 132
repetitions of the 27 unique unreduplicated words with an initial [s] were used in training.

Sibilant fricative [s] was chosen as C1 for testing learning of reduplication because its frica-
tion noise is acoustically prominent and sufficiently different from C1s in the training data both
acoustically and phonologically. This satisfies the requirement that a model learns to generalize
“across the board”, i.e to novel feature values not only to novel segments (Berent, 2013; Prickett
et al., 2018). In phonological terms, the model is tested on a novel feature (sibilant fricative or
[±strident]; Hayes 2009) — the training data did not consist of any bare or reduplicated forms
with other sibilant fricatives. To make the learning even more complex, voiceless fricatives ([f, T,
S]) are altogether absent from the training data. All voiced fricatives except for [v] are absent too.

2Items ["sala], ["suru], and ["suju] each miss one repetition (four altogether).

7



voiceless C1
C1V2C3V4 "phAli "thAli "khAli
C1V2C1V2C3V4 p2"phAli t2"thAli k2"khAli

voiced C1
C1V2C3V4 "bAli "dAli "gAli
C1V2C1V2C3V4 b2"bAli d2"dAli g2"gAli

C1 = [m, n, v]
C1V2C3V4 "mAli "nAli "vAli
C1V2C1V2C3V4 m2"mAli n2"nAli v2"vAli

C1 = [s]
C1V2C3V4 "sAli "sAli "sAli
C1V2C1V2C3V4 — — —

Table 1: A schematic illustration of the training data in the International Phonetic Alphabet. For the entire training
data set, see Tables A.3, A.4, and A.5.

Spectral properties of the voiced non-sibilant fricative [v] in the training data (and in Standardized
American English in general) are so substantially different from a voiceless sibilant fricative [s] that
we kept them in the training data. We excluded all items with initial sequences /ti/, /tu/, and
/ki/ from the training data, because acoustic properties of these sequences, especially frication of
the aspiration of /t/ and /k/, are similar to those of frication noise in /s/.

The training data was recorded in a sound attenuated booth at the University of Washington.
A female speaker of English who was compensated for her time read words from sheets of paper
and was recorded with a MixPre 6 (SoundDevices) preamp/recorder and the AKG C544L head-
mounted microphone positioned approximately 2 cm to the side of the mouth, initially with 16-bit
quantization and 44.1 kHz sampling, but then downsampled to 16 kHz. Altogether 996 unique
sliced items were used in training data.

4. CiwGAN (Beguš, 2020a)

Our model features two latent code variables, φ1 and φ2 (Figure 2). In the training phase,
the two variables compose the one-hot vector with two levels: [0, 1] and [1, 0]. This means
that the network can encode two categories in its latent space structure that correspond to some
meaningful feature about the data. The Q-network forces the Generator to encode information
in its latent space. In other words, the loss function of the Q-network forces the Generator to
output data such that the Q-network is effective in retrieving the latent code φ1 and φ2 from
the Generator’s acoustic outputs only. Nothing in the training data pairs base and reduplicated
forms. There is no overt connection between the bases and their reduplicated correspondents.
Yet, the structure of the data is such that given two categories, the most informative way for the
Generator to encode unique information in its acoustic outputs is to associate one unique code
with base forms and another with reduplicated form. The Generator would thus have a meaningful
unique representation of reduplication that arises in an unsupervised manner exclusively from the
requirement on the Generator to output informative data.

To test whether the Generator encodes reduplication in latent codes, we train the network for
15,920 steps (or approximately 5,114 epochs) with the data described in Section 3. The choice of the
number of steps is based on two objectives; first, the output data should approximate speech to the
degree that allows acoustic analysis. Second, the Generator network should not be trained to the
degree that it replicates data completely. As such, overfitting rarely occurs in the GAN architecture
(Adlam et al., 2019; Donahue et al., 2019). The best evidence against overfitting in the ciwGAN
architecture comes from the fact that the Generator outputs data that violate training distributions
substantially (see Section 4.2 below) (Beguš, 2020a). Despite these guidelines, the choice of number
of steps is somewhat arbitrary (for discussion, see Beguš 2020b).

8



Code Bare Redup. % Redup.

[1, 0] 78 22 22%
[0, 1] 40 60 60%

[5, 0] 98 2 2%
[0, 5] 13 87 87%

Table 2: Counts of bare and reduplicated (redup.) outputs when the latent codes φ1 and φ2 are set to [1, 0], [0, 1],
[5, 0], and [0, 5].

We generate 100 outputs for each latent code [0, 1] and [1, 0] (200 total) and annotate them
for presence or absence of reduplication. There is a significant correlation between the two levels of
latent code and presence of reduplication. Counts are given in Table 2. When the code is set to [1,
0], 78% of the generated outputs are base forms; when set to [0, 1], 60% of outputs are reduplicated
(odd ratio = 5.27, p < 0.0001, Fisher Exact Test). When the latent codes are set to [0, 5] and [5,
0], we get a near categorical distribution of bare and reduplicated forms. For [5, 0], the Generator
outputs an unreduplicated bare form in 98% samples. For [0, 5], it outputs a reduplicated form
in 87% outputs (odd ratio = 308.3, p < 0.0001, Fisher Exact Test). These outcomes suggest
that the Generator encodes reduplication in its latent codes and again confirm that manipulating
latent variables well beyond training range reveals the underlying learning representations in deep
convolutional networks (as proposed in Beguš 2020b,a).

4.1. Interpolation

That the Generator uses latent codes to encode reduplication is further suggested by another
generative test performed on interpolated values of the latent code. To test how exactly the
relationship between the latent codes (φ1 and φ2) works, we created sets of generated outputs
based on interpolated values of the code φ1 and φ2. We manipulate φ1 and φ2 from the value 1.5
towards 0 in increments of 0.125. For example, we start with [1.5, 0] and interpolated first to [0,
0] (e.g. [1.375, 0], [1.25, 0], etc.). From [0, 0] we furher interpolate in increments of 0.125 to [0,
1.5] (e.g. [0, 0.125], [0, 0.25]). All other variables in the latent space are kept constant across all
interpolated values. Each such set thus contains 25 generated samples. We generate 100 such sets
(altogether 2500 outputs) and analyze each output. Out of the 100 sets, the output was either bare
or reduplicated throughout the interpolated values and did not change in 53 sets. As suggested
by Section 4 and Table 2, the number of bare and reduplicated forms for each level rises to near
categorical values as the variables approach values of 5.

In the 45/100 sets, the output changes from the base form to a reduplicated form at some point as
the codes are interpolated. If the network only learned to randomly associate base and reduplicated
forms with each endpoint of the latent code, we would expect base forms to be unrelated to
reduplicated forms. For example, a base form ["khulu] could turn into reduplicated [d@"dAl@]. An
acoustic analysis of the generated sets, however, suggests that the latent code directly corresponds
to reduplication. In 25 out of 45 sets (55.6%) of generated outputs that undergo the change from
base to a reduplicated form, the base form is identical to the reduplicated form with the only
major difference between the two being the presence of reduplication. This proportion would likely
be even higher with a higher interpolation resolution (higher than 0.125) and because we do not
count cases in which even one sound changes beside the reduplication syllable (for example, if
["nAôi] changes to [nU"nuôi], we count the output as unsuccessful). Under the null hypothesis, if
the Generator learns to pair the base and reduplicated forms randomly, each base form could be
associated with any of the unique 243 reduplicated forms at he probability of 1/243 (0.004). Even if
we assume very conservatively that each base form could be associated with only each subgroup of

9



piɹu pəpiɹu

Time (s)
0 1.856

dɑji dədɑji

Time (s)
0 1.466

Figure 3: Waveform and spectrograms (0-4000 Hz) of bare and reduplicated forms by the Generator network in the
CiwGAN architecture. (left) When latent codes are set at [0, 0.125], the network outputs unreduplicated ["phiôu].
When the latent code is set at [0, 1.5], the network outputs a reduplicated [p@"phiôu]. The waveform and spectrogram
illustrate that there are no other major changes between the bare and reduplicated form. (right) Similarly, the
Generator in the ciwGAN architecture outputs an unreduplicated ["dAji] when the latent code is set to [0.875, 0]
and reduplicated [d@"dAji] when the code is set to [0, 0.75]. Note that the Generator only outputs waveforms, not
spectrograms, which are provided here for the purpose of analysis.

reduplicated consonant (C1) disregarding the vowel (e.g. voiceless stops, voiced stops, [m], [n], [v])
and disregarding changes in the base, the probability of both forms being identical would still be
at only 0.2 (for each of the five subgroups). In both cases, the ratio of identical base-reduplication
pairs, while not categorical, is highly significant (CI = [0.4, 0.7], p < 0.0001 for both cases according
to Exact Binomial Test).

Figures 3 and 4 illustrate how, keeping the latent space constant except for the manipulation of
the latent code with which the Generator represents reduplication, the generated outputs gradually
transition from the base forms ["phiôu] and ["dAji] to the reduplicated forms [p@"phiôu] and [d@"dAji].3

All other properties of the output are unchanged, as is clear from the spectrograms in Figure 3.
This interpolative generative test again suggests that the network learns reduplication and encodes
the process in the latent codes. By interpolating the codes we can actively force reduplication in
the output with no other substantial changes in the majority of cases.

4.2. Reduplication of unobserved data

To test whether the ciwGAN network learns to generalize the reduplicative pattern on unob-
served data, we use latent space manipulation to force reduplication at the same time as presence
of [s] in the output. Items with a [s] as the initial consonants (e.g. ["siju]) appear only in bare forms
in the training data. In Sections 4 and 4.1, we established that the network uses the latent code (φ1
and φ2) to represent reduplication. Following Beguš (2020b,a), we can force any phonetic property
in the output by manipulating the latent variables well beyond the training range results. Redu-
plication is forced by setting the latent code to values higher than [0, 1]. We can simultaneously
force [s] in the output to test the network’s performance on reduplication in unseen data.

3The exact vowel quality estimation in the generated outputs is challenging, especially in short vocalic elements
of reduced vowels in the reduplicative syllables. For this reason, we default transcriptions to a [@].

10



Time (s)
0 0.8202

-0.9253

0.7247

0 [0, 1.375]

[0, 0.875]

[0, 0.625]

[0, 0.375]

[0.125, 0]

Time (s)
0 0.7588

-0.8647

0.6697

0 [0, 0.875]

[0, 0.625]

[0, 0.375]

[0.375, 0]

[0.625, 0]

Figure 4: Waveforms showing how interpolation of latent codes φ1 and φ2 has a direct effect on presence of
reduplicattion: as the values are interpolated from [1.5, 0] to [0, 1.5], the reduplication gradually appears/disappears
from the output. Waveforms on the left represent reduplication of ["phiôu] to [p@"phiôu]; waveforms on the right
represent reduplication of ["dAji] to [d@"dAji] (for spectrograms of the endpoints, see Figure 3).

To identify latent variables with which the Generator encodes the sound [s] in the output, we
generate 1000 samples with randomly sampled latent variables, but with the latent code variables
(φ1 and φ2) set at [0, 1] and [1, 0] (500 samples each with the same latent variable structure of the
remaining 98 variables across the two conditions). We annotate outputs for presence of [s] for the
two sets and fit the data to a Lasso logistic regression model in the glmnet package (Simon et al.,
2011). Presence of [s] is the dependent variable coded as a success; the independent variables are
the 98 latent variable uniformly distributed on the interval (−1, 1) (for the technique, see Beguš
2020b). Lambda is computed with 10-fold cross validation. Estimates of the Lasso regression
model (Figure 5) suggest that z90 with the highest regression estimates is the variable with which
the Generator encodes presence of [s] in the output. For a generative test providing evidence that
Lasso regression estimates correlate with network’s internal representations, see Beguš (2020b).

We can thus set z90 to marginal levels well beyond the training range and the latent code
(φ1, φ2) to levels well beyond [0, 1]. For example, when the latent code is set to [0, 3] (which
forces reduplication in the output) and z90 to 4 (forcing [s] in the output), the network outputs a
reduplicated [s@"siji] even though items containing an [s] are never reduplicated in the training data.
When the code is set to even higher number, [0, 7.25], and z90 to 7, the network outputs [s@"siru] in a
different output. The spectrograms in Figure 6 show a clear period of frication noise characteristic
of a sibilant fricative [s], interrupted by a reduplicative vowel and followed by a repeated period of
frication noise characteristic of [s].

In fact, at the values [0, 7.25], and z90 = 7, the network generates 40 (out of 100 tested or
40%) outputs that can be reliably analyzed as reduplicated forms with initial sV- reduplication
unseen in the training data. The other 67 outputs are reduplicated forms containing other C1s or
unreduplicated [s]-forms. No outputs were observed in which C1 of the reduplication syllable and
C1 of the base would be substantially different. While all the cases when z90 is manipulated involve
a front vowel [i] in the base item, we can also elicit reduplication for other vowels. For example,
we identify variable z4 as corresponding to an [s] and a low vowel [A] in the output (with the same
technique as described for z90 above but with presence of [sA] as the dependent variable in the

11



●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

0.00

0.25

0.50

0.75

1.00

3 5 7 8 9 121520213035364250546166777981838792969714499939717819455628857631472340747563653443559846485233189473728658418464702993576982272538671768100538832378924 4 6244951060 6 51912213115926168090

Latent variables (z)

La
ss

o 
re

gr
es

si
on

 e
st

im
at

es

Figure 5: Absolute Lasso regression estimates (sorted from highest on the right-hand side) for a ciwGAN model iden-
tifying presence of [s] after 1000 transcribed outputs, 500 for each latent code (with the same latent variable structure
of the remaining 98 variables across the two conditions). Variable z90 is identified as the variable corresponding to
presence of [s] (the variable with the highest regression estimates).

Lasso regression model). By manipulating z4 to 9.5 (forcing [sA] in the output) and setting the
latent codes to [0, 7.5], we get [s@"sAôu] in the output. A waveform and spectrogram of this output
are given in Figure 6.

For comparison, the same L1 speaker of English who read the words in the training data read the
reduplicated [s@"siji], [s@"siru], and [s@"sAôu] which were not included in the training data. Figure
6 parallels the generated reduplicated forms based on unobserved data (which were elicited by
forcing [s] and reduplication in the output) and the recording of the same reduplicated form read
by a human speaker. The spectrograms show almost identical acoustic properties in the Generated
outputs and the recording read by a human speaker (who read the words prior to computational
experiments and did not hear or analyze the generated outputs).

5. Reproduction: Bare WaveGAN (Donahue et al., 2019)

To test whether the learning of reduplicative patterns in GANs is a robust or idiosyncratic
property of the model presented in Section 4, we conduct a replication experiment. We introduce one
crucial difference in the replication experiment: we train the Generator without the requirement to
produce informative data. We use the model in Donahue et al. (2019) which features a “bare” GAN
architecture for audio data: only the Generator and Discriminator networks without the Q-network.
This architecture has the potential to inform us how GANs represent reduplicative patterns without
an explicit requirement to learn informative data, i.e. without an explicit requirement to encode
some salient feature of the training data in the latent space. The architecture is summarized in
Figure 7. The data used for training is the same as in the first experiment (described in Section
3). We train the network for 15,930 steps or approximately 5,118 epochs, which is almost identical
to the number of steps/epochs in the ciwGAN experiment (Section 4).

5.1. Identifying variables

Testing the learning of reduplication in the bare GAN architecture requires that we force redu-
plication and presence of [s] in the output simultaneously. To identify which latent variables corre-
spond to the two properties, we use the same technique as described in Section 4. We generate and

12



Time (s)
0 1.55

0

8000
Fr

eq
ue

nc
y 

(H
z)

Generated Human recording

Time (s)
0 1.547

0

8000

Fr
eq

ue
nc

y 
(H

z)

Generated Human recording

Time (s)
0 1.555

0

8000

Fr
eq

ue
nc

y 
(H

z)

Generated Human recording

Figure 6: Waveforms and spectrograms (0–8000 Hz) of reduplicated forms containing an [s] which were absent from
the training data suggesting that the ciwGAN network learn to extend reduplication o novel unobserved data. The
generated forms on the left are paired with recordings of a female speaker reading reduplicated forms that were absent
from the training data. The comparison shows a high degree of similarity between the generated outputs and human
recordings. (top) When the latent code is set to [0, 3] and z90 to 4, the network outputs a reduplicated [s@"siji].
(middle) When the latent code is set to [0, 7.25], and z90 to 7, the network outputs [s@"siru]. (bottom) When the
latent code is set to [0, 7.5] and z4 to 9.5, we get [s@"sAôu]. Note that the Generator only outputs waveforms, not
spectrograms, which are provided here for the purpose of analysis.

13



x̂ =

Time (s)
0 0.8352

-0.834

0.8546

0

Generator
network

G(z)

Latent space

100 random variables (z)
z1−100 ∼ U(−1, 1)

x =

Time (s)
0 0.7593

-0.1664

0.1236

0

Discriminator
network

D(x)
Training data

996 unpaired bare
and reduplicated items

CiVjCV
CiVjCiVjCV

Generated
or real?

Backpropagation

Backpropagation

Figure 7: The bare GAN architecture as proposed in Donahue et al. (2019). Green trapezoids represent deep
convolutional neural networks.

annotate 500 outputs of the Generator network with randomly sampled latent variables. We anno-
tate the presence of [s] and the presence of reduplication. The annotations are fit to a Lasso logistic
regression (as in Section 4.2): presence of reduplication or [s] are the dependent variables and each
of the 100 latent z-variables are the independent predictors. Lambda values were computed with
10-fold cross validation. Regression estimates are given in Figure 8.

The plots illustrate a steep drop in regression estimates between the few latent variables with
the highest estimates and the rest of the latent space. In fact, in both models, one or two variables
per model emerge with a substantially higher regression estimates: z91 and z5 when the dependent
variable is presence of reduplication and z17 when the dependent variable is presence of [s]
in the output. We can assume the Generator network uses these two variables to encode presence
of reduplication and [s], respectively.

It has been argued in Beguš (2020b) that GANs learn to encode phonetic and phonological
representations with a subset of latent variables. The discretized representation of continuous
phonetic properties in the latent space appears even more radical in the present case. For example,
in Beguš (2020b), presence of [s] as a sound in the output is represented by at least seven latent
variables, each of which likely controls different spectral properties of the frication noise. In the
present experiment, the Generator appears to learn to encode presence of [s] with a single latent
variable, as is suggested by a steep drop of regression estimates after the first variables with the
highest estimates. For a generative test showing that regression estimates correlate to actual rates
of a given property in generated data, see Beguš (2020b). Such near-categorical cutoff is likely a
consequence of the training data in the present case being considerably less variable compared to
TIMIT (used for training in Beguš 2020b). The network also represents an identity-based process,
reduplication, with only two latent variables and features a substantial drop in regression estimates
after these two variables. This discretized representation thus emerges even without the requirement
of the Generator to output informative data.

In the replication experiment too, the Generator network outputs reduplicated outputs for unob-
served data when both reduplication and [s] are forced in the output via latent space manipulation,
but significantly less so than in the ciwGAN architecture. When z91 (forcing reduplication) and z17
(forcing [s] in the output) are set to value −8.5, a higher level compared to the generated samples
in the ciwGAN architecture (7 and 7.25), the network outputs only one reduplicated form with [s]-
reduplication out of 100 generated outputs. By comparison, the proportion of the [s]-reduplication
in the ciwGAN architecture is 33/100 – a significantly higher ratio (OR = 48.1, p < 0.0001; Fisher

14



●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.0

0.5

1.0

1.5

1 14153033343554565769727475768995982799554324442840 4 2631381121226271932037 6 58397812426373259048828594238697494677 7 536113708067108784 9 6032501645961792185165 8 598364192966100688852 2 79 3 47368141 5 91

Latent variables (z)

La
ss

o 
re

gr
es

si
on

 e
st

im
at

es
Presence of reduplicationa

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●0.00

0.25

0.50

0.75

1.00

1.25

1 3 6 9 1114161832343537404243444548495455575859616566676972757781828891941002751211286222546953378267413 7 8 398771801579854136937096992029476468246331987683238956 4 92 5 5028909784736230105219605338 2 17

Latent variables (z)

La
ss

o 
re

gr
es

si
on

 e
st

im
at

es

Presence of [s]b

Figure 8: Absolute Lasso regression estimates (sorted from highest on the right-hand side) for two models identifying
(a) presence of reduplication and (b) presence of [s] in the generated outputs of the bare GAN model (Section 5).
The models are based on 500 transcribed outputs. Variables z91 and z5 are identified as the variables corresponding
to presence of reduplication (the variable with the highest regression estimates). Variables z17 is identified as the
variables corresponding to presence of [s] (the variable with the highest regression estimates).

Exact Test). When z5 (forcing reduplication) is set to −9.25 and z17 (forcing [s] in the output) to
−9.0, the proportion of reduplicated [s]-items is slightly higher (4/100), but still significantly lower
than in the ciwGAN architecture (OR = 11.7, p < 0.0001; Fisher Exact Test). Despite these lower
proportions of reduplicated [s] in the output, the bare GAN network nevertheless extends redupli-
cation on novel unobserved data. Figure 9 illustrates an example of a reduplicated [s]-item from
the Generator network trained in the bare GAN architecture: [s@"siôi]. The spectrogram reveals
a clear period of frication noise characteristic of an [s], followed by a reduplicative vowel period,
followed by another period of frication.

6. Discussion

We perform four generative tests to asses learning of reduplication in deep convolutional net-
works: (i) a test of proportion of outputs when latent codes are manipulated to marginal values,
(ii) a test of interpolating latent variables, (iii) a test of reduplication on unobserved data in the
ciwGAN architecture, and (iv) a replication test of reduplication on unobserved data in the bare
WaveGAN architecture. All four tests suggest that deep convolutional networks can learn a simple
identity-based pattern in speech called reduplication, i.e. a process that copies some phonological
material to express new meaning. The ciwGAN network learns to encode a meaningful representa-
tion — presence of reduplication into its latent codes. There is a near one-to-one correspondence
between the two latent codes φ1 and φ2 and reduplication. By interpolating latent codes, we cause
the bare form to gradually turn into a reduplicated form with no other major changes in the out-
put in the majority of cases. These results are close to what would be considered appearance of
symbolic computation or algebraic rules. Additional evidence that an approximation of symbolic
computation emerges comes from the bare GAN replication experiment: there is a substantial
drop in regression estimates after the first one or two latent variables with highest regression es-
timates, suggesting that even without the requirement to produce informative data, the network

15



Time (s)
0 1.486

0

8000

Fr
eq

ue
nc

y 
(H

z)

Generated Human recording

Figure 9: Waveforms and spectrograms (0–8000 Hz) of a reduplicated form containing an [s] which were absent from
the training data suggesting that even the bare GAN network learns to extend reduplication o novel unobserved data.
The generated form on the left is paired with a recordings of a female speaker reading the same reduplicated form
that were absent from the training data. The comparison shows a high degree of similarity between the generated
outputs and human recordings. When z5 (forcing reduplication) is set to −9.25 and z17 (forcing [s] in the output) to
−9.0, the Generator outputs a reduplicated [s@"siôi] which is absent from the training data. Note that the Generator
only outputs waveforms, not spectrograms, which are provided here for the purpose of analysis.

“discretizes” the continuous and highly variable phonetic feature — presence of reduplication —
and uses a small subset of the latent space to represent this phonetic/phonological property.

Encoding an identity-based pattern as a meaningful representation in the latent space emerges
in a completely unsupervised manner in the ciwGAN architecture — only from the requirement that
the Generator output informative data. Reduplicated and unreduplicated forms are never paired
in the training data. The network is fed bare and reduplicated forms randomly. This unsupervised
training approximates conditions in language acquisition: the human language learner needs to
represent reduplication and to pair bare and reduplicated forms from raw unlabeled acoustic data
(for hearing learners). The ciwGAN learns to group reduplicated and unreduplicated forms and
assign a unique representation to the process of reduplication. In fact, the one-hot vector (φ1
and φ2) that the Generator learns to associate with reduplication in training can be modeled as a
representation of the unique meaning/function that reduplication adds, in line with an approach to
represent unique semantics with one-hot vectors (e.g. in Steinert-Threlkeld and Szymanik 2020).

The dependencies that deep neural networks can and cannot learn has been an ongoing line
of inquiry. The results of the computational experiments presented in this paper suggest that
the Generator network learns to extend the learned identity-based patterns to novel unobserved
data. While the network was not trained on reduplicated items that start with an [s], we were able
to elicit reduplication in the output following a technique proposed in Beguš (2020b). First, we
identify variables that correspond to some phonetic/phonological representation such as presence
of [s], based on Beguš (2020b), which proposes that setting single variables well above training
range can reveal the underlying value for each latent variable and forces the desired property in the
output. We can thus force both [s] and reduplication in the output simultaneously. For example,
the network outputs [s@siju] if we force both reduplication and [s] in the output; however, it never
sees [s@siju] in the training data — only [siju] and other reduplicated forms, none of which included
an [s]. We also excluded reduplicated and unreduplicated items that contain sequences that are
acoustically similar to [s]. This suggests that the network extends reduplication to novel forms even
in absence of acoustically similar reduplication patterns.

16



Thus, these experiments again confirm that the network uses individual latent variables to rep-
resent linguistically meaningful representations (Beguš, 2020b,a). Setting these individual variables
to values well above the training interval reveals their underlying values. By manipulating these
individual variables, we can explore how the representations are learned as well as how interactions
between different variables work (for example, between the representation of reduplication and
presence of [s]). The results of this study make apparent that the deep convolutional network is
not only capable of encoding different phonetic properties in individual latent variables, but also
processes as abstract as copying or reduplication.

One of the advantages of probing learning in deep convolutional neural networks on speech data
trained with GANs is that the innovative outputs violate training data in structured and highly
informative ways. The innovative output with reduplication of [s]-initial forms such as [s@siju] can
be directly paralleled to acoustic outputs read by L1 speaker of American English that were absent
from the training data. Acoustic analysis shows a high degree of similarity between the generated
reduplicated forms and human recordings, meaning that the network learns to output novel data
that are linguistically interpretable and resemble human speech processes even though they are
absent from the training data. Thus, the results of the experiments have implications for cognitive
models of speech acquisition. It appears that one of the processes that has long been held as a
hallmark of symbolic computation in language, reduplication, can emerge in deep convolutional
network without language-specific components in the model even when they are trained on raw
acoustic inputs.

The present paper tests a simple partial reduplicative pattern where only CV is copied and
appears before the base item. This is perhaps computationally the simplest reduplicative pattern.
The world’s languages feature a large number of other reduplicative patterns in which only a C,
CVC, or other types of phonological content is copied. Additionally, reduplication can precede
or follow the base or can be inserted inside the base item. This paper is thus also an appeal
to use these well-understood identity-based patterns in speech with various degrees of complexity
to further test which patterns deep convolutional networks can and cannot learn and how self-
organization of meaningful representations and discretization of a continuous space emerges in
deep convolutional networks.

Acknowledgements

This research was funded by a grant to new faculty at the University of Washington. I would
like to thank Ella Deaton for reading the training data.

Declaration of interests

The author declares no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

17



Adlam, B., Weill, C., Kapoor, A., 2019. Investigating under and overfitting in wasserstein generative
adversarial networks.

Alhama, R. G., Zuidema, W. H., 2018. Pre-wiring and pre-training: What does a neural network
need to learn truly general identity rules? Journal of Artificial Intelligence Res. 61, 927–946.

Arjovsky, M., Chintala, S., Bottou, L., 06–11 Aug 2017. Wasserstein generative adversarial net-
works. In: Precup, D., Teh, Y. W. (Eds.), Proceedings of the 34th International Conference on
Machine Learning. Vol. 70 of Proceedings of Machine Learning Research. PMLR, International
Convention Centre, Sydney, Australia, pp. 214–223.
URL http://proceedings.mlr.press/v70/arjovsky17a.html

Beguš, G., 2020a. Ciwgan and fiwgan: Encoding information in acoustic data to model lexical
learning with generative adversarial networks.

Beguš, G., 2020b. Generative adversarial phonology: Modeling unsupervised phonetic and phono-
logical learning with neural networks. Frontiers in Artificial Intelligence 3, 44.
URL https://www.frontiersin.org/article/10.3389/frai.2020.00044

Berent, I., 2013. The phonological mind. Trends in Cognitive Sciences 17 (7), 319 – 327.
URL http://www.sciencedirect.com/science/article/pii/S1364661313001034

Bond, Z. S., Wilson, H. F., 1980. /s/ plus stop clusters in children’s speech. Phonetica 37 (3),
149–158.
URL https://www.karger.com/DOI/10.1159/000259988

Brugiapaglia, S., Liu, M., Tupper, P., 2020. Generalizing outside the training set: When can neural
networks learn identity effects?

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P., 2016. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In:
Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., Garnett, R. (Eds.), Advances in Neural
Information Processing Systems 29. Curran Associates, Inc., pp. 2172–2180.
URL http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.

pdf

Chomsky, N., Halle, M., 1968. The Sound Pattern of English. Harper & Row, New York.

Dolatian, H., Heinz, J., Oct. 2018. Modeling reduplication with 2-way finite-state transducers. In:
Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and
Morphology. Association for Computational Linguistics, Brussels, Belgium, pp. 66–77.
URL https://www.aclweb.org/anthology/W18-5807

Donahue, C., McAuley, J. J., Puckette, M. S., 2019. Adversarial audio synthesis. In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.
URL https://openreview.net/forum?id=ByMVTsR5KQ

Eloff, R., Nortje, A., van Niekerk, B., Govender, A., Nortje, L., Pretorius, A., Biljon, E., van der
Westhuizen, E., Staden, L., Kamper, H., 09 2019. Unsupervised acoustic unit discovery for speech
synthesis using discrete latent-variable neural networks. In: Proc. Interspeech 2019. pp. 1103–
1107.

18

http://proceedings.mlr.press/v70/arjovsky17a.html
https://www.frontiersin.org/article/10.3389/frai.2020.00044
http://www.sciencedirect.com/science/article/pii/S1364661313001034
https://www.karger.com/DOI/10.1159/000259988
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
https://www.aclweb.org/anthology/W18-5807
https://openreview.net/forum?id=ByMVTsR5KQ


Endress, A. D., Dehaene-Lambertz, G., Mehler, J., 2007. Perceptual constraints and the learnability
of simple grammars. Cognition 105 (3), 577 – 614.
URL http://www.sciencedirect.com/science/article/pii/S0010027706002605

Garofolo, J. S., Lamel, L., M Fisher, W., Fiscus, J., S. Pallett, D., L. Dahlgren, N., Zue, V., 11
1993. Timit acoustic-phonetic continuous speech corpus. Linguistic Data Consortium.

Gasser, M., 1993. Learning words in time: Towards a modular connectionist account of the acqui-
sition of receptive morphology. Tech. rep.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.6474

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
Bengio, Y., 2014. Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. D., Weinberger, K. Q. (Eds.), Advances in Neural Information Processing Systems
27. Curran Associates, Inc., pp. 2672–2680.
URL http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Hayes, B., 2009. Introductory Phonology. Wiley-Blackwell, Malden, MA.

Heinz, J., Idsardi, W., 2013. What complexity differences reveal about domains in language*. Topics
in Cognitive Science 5 (1), 111–131.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12000

Inkelas, S., Zoll, C., 2005. Reduplication: Doubling in Morphology. Cambridge Studies in Linguis-
tics. Cambridge University Press.

Lister-Turner, R., Chatterton, P., Clark, J. B., 1941. A grammar of the Motu language of Papua,
2nd Edition. Government Printer Sydney.

MacMahon, M. K. C., 07 2013. Orthography and the early history of phonetics. In: Allan, K. (Ed.),
The Oxford Handbook of the History of Linguistics. Oxford University Press, pp. 105–122.
URL https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199585847.001.

0001/oxfordhb-9780199585847-e-6

Marcus, G. F., 2001. The algebraic mind: Integrating connectionism and cognitive science. MIT
press.

Marcus, G. F., Vijayan, S., Bandi Rao, S., Vishton, P. M., 1999. Rule learning by seven-month-old
infants. Science 283 (5398), 77–80.
URL https://science.sciencemag.org/content/283/5398/77

McClelland, J. L., Plaut, D. C., 1999. Does generalization in infant learning implicate abstract
algebra-like rules? Trends in Cognitive Sciences 3 (5), 166 – 168.
URL http://www.sciencedirect.com/science/article/pii/S1364661399013200

Nelson, M., Dolatian, H., Rawski, J., Prickett, B., 2020. Probing rnn encoder-decoder generaliza-
tion of subregular functions using reduplication. Proceedings of the Society for Computation in
Linguistics 3 (1), 31–42.

Prickett, B., Traylor, A., Pater, J., Oct. 2018. Seq2Seq models with dropout can learn generalizable
reduplication. In: Proceedings of the Fifteenth Workshop on Computational Research in Phonet-
ics, Phonology, and Morphology. Association for Computational Linguistics, Brussels, Belgium,

19

http://www.sciencedirect.com/science/article/pii/S0010027706002605
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.6474
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12000
https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199585847.001.0001/oxfordhb-9780199585847-e-6
https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199585847.001.0001/oxfordhb-9780199585847-e-6
https://science.sciencemag.org/content/283/5398/77
http://www.sciencedirect.com/science/article/pii/S1364661399013200


pp. 93–100.
URL https://www.aclweb.org/anthology/W18-5810

Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convo-
lutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Räsänen, O., Nagamine, T., Mesgarani, N., 08 2016. Analyzing distributional learning of phonemic
categories in unsupervised deep neural networks. CogSci ... Annual Conference of the Cognitive
Science Society. Cognitive Science Society (U.S.). Conference 2016, 1757–1762.
URL https://pubmed.ncbi.nlm.nih.gov/29359204

Rodionov, S., 2018. info-wgan-gp. https://github.com/singnet/semantic-vision/tree/

master/experiments/concept_learning/gans/info-wgan-gp.

Shain, C., Elsner, M., Jun. 2019. Measuring the perceptual availability of phonological features
during language acquisition using unsupervised binary stochastic autoencoders. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for
Computational Linguistics, Minneapolis, Minnesota, pp. 69–85.
URL https://www.aclweb.org/anthology/N19-1007

Simon, N., Friedman, J., Hastie, T., Tibshirani, R., 2011. Regularization paths for cox’s propor-
tional hazards model via coordinate descent. Journal of Statistical Software 39 (5), 1–13.
URL http://www.jstatsoft.org/v39/i05/

Steinert-Threlkeld, S., Szymanik, J., 2020. Ease of learning explains semantic universals. Cognition
195, 104076.
URL http://www.sciencedirect.com/science/article/pii/S0010027719302495

Urbanczyk, S., 03 2017. Phonological and morphological aspects of reduplication.
URL https://oxfordre.com/linguistics/view/10.1093/acrefore/9780199384655.001.

0001/acrefore-9780199384655-e-80

van der Hulst, H., 07 2013. Discoverers of the phoneme. In: Allan, K. (Ed.), The Oxford Handbook
of the History of Linguistics. Oxford University Press, pp. 167–191.

Wilson, C., 2006. Learning phonology with substantive bias: An experimental and computational
study of velar palatalization. Cognitive Science 30, 945–982.

Wilson, C., July 2018. Modeling morphological affixation with interpretable recurrent networks:
sequential rebinding controlled by hierarchical attention. In: Kalish, C., Rau, M., Zhu, J., Rogers,
T. (Eds.), CogSci 2018. pp. 2693–2698.

20

https://www.aclweb.org/anthology/W18-5810
https://pubmed.ncbi.nlm.nih.gov/29359204
https://github.com/singnet/semantic-vision/tree/master/experiments/concept_learning/gans/info-wgan-gp
https://github.com/singnet/semantic-vision/tree/master/experiments/concept_learning/gans/info-wgan-gp
https://www.aclweb.org/anthology/N19-1007
http://www.jstatsoft.org/v39/i05/
http://www.sciencedirect.com/science/article/pii/S0010027719302495
https://oxfordre.com/linguistics/view/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-80
https://oxfordre.com/linguistics/view/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-80


AppendixA. Training data

voiceless voiced
V2 C3 labial coronal dorsal labial coronal dorsal

[a]

[l]
pala papala tala tatala kala kakala bala babala dala dadala gala gagala
pali papali tali tatali kali kakali bali babali dali dadali gali gagali
palu papalu talu tatalu kalu kakalu balu babalu dalu dadalu galu gagalu

[r]
para papara tara tatara kara kakara bara babara dara dadara gara gagara
pari papari tari tatari kari kakari bari babari dari dadari gari gagari
paru paparu taru tataru karu kakaru baru babaru daru dadaru garu gagaru

[y]
paya papaya taya tataya kaya kakaya baya babaya daya dadaya gaya gagaya
payi papayi tayi tatayi kayi kakayi bayi babayi dayi dadayi gayi gagayi
payu papayu tayu tatayu kayu kakayu bayu babayu dayu dadayu gayu gagayu

[i]

[l]
pila pipila — — — — bila bibila dila didila gila gigila
pili pipili — — — — bili bibili dili didili gili gigili
pilu pipilu — — — — bilu bibilu dilu didilu gilu gigilu

[r]
pira pipira — — — — bira bibira dira didira gira gigira
piri pipiri — — — — biri bibiri diri didiri giri gigiri
piru pipiru — — — — biru bibiru diru didiru giru gigiru

[y]
piya pipiya — — — — biya bibiya diya didiya giya gigiya
piyi pipiyi — — — — biyi bibiyi diyi didiyi giyi gigiyi
piyu pipiyu — — — — biyu bibiyu diyu didiyu giyu gigiyu

[u]

[l]
pula pupula — — kula kukula bula bubula dula dudula gula gugula
puli pupuli — — kuli kukuli buli bubuli duli duduli guli guguli
pulu pupulu — — kulu kukulu bulu bubulu dulu dudulu gulu gugulu

[r]
pura pupura — — kura kukura bura bubura dura dudura gura gugura
puri pupuri — — kuri kukuri buri buburi duri duduri guri guguri
puru pupuru — — kuru kukuru buru buburu duru duduru guru guguru

[y]
puya pupuya — — kuya kukuya buya bubuya duya duduya guya guguya
puyi pupuyi — — kuyi kukuyi buyi bubuyi duyi duduyi guyi guguyi
puyu pupuyu — — kuyu kukuyu buyu bubuyu duyu duduyu guyu guguyu

Table A.3: All items in which C1 is a voiceless or voiced stop used in training data. All items feature two unique
repetitions and were read by an L1 American English speaker. The items are in transcription that was presented to
the reader.

21



V2 C3 [m] [n] [v]

[a]

[l]
mala mamala nala nanala vala vavala
mali mamali nali nanali vali vavali
malu mamalu nalu nanalu valu vavalu

[r]
mara mamara nara nanara vara vavara
mari mamari nari nanari vari vavari
maru mamaru naru nanaru varu vavaru

[y]
maya mamaya naya nanaya vaya vavaya
mayi mamayi nayi nanayi vayi vavayi
mayu mamayu nayu nanayu vayu vavayu

[i]

[l]
mila mimila nila ninila vila vivila
mili mimili nili ninili vili vivili
milu mimilu nilu ninilu vilu vivilu

[r]
mira mimira nira ninira vira vivira
miri mimiri niri niniri viri viviri
miru mimiru niru niniru viru viviru

[y]
miya mimiya niya niniya viya viviya
miyi mimiyi niyi niniyi viyi viviyi
miyu mimiyu niyu niniyu viyu viviyu

[u]

[l]
mula mumula nula nunula vula vuvula
muli mumuli nuli nunuli vuli vuvuli
mulu mumulu nulu nunulu vulu vuvulu

[r]
mura mumura nura nunura vura vuvura
muri mumuri nuri nunuri vuri vuvuri
muru mumuru nuru nunuru vuru vuvuru

[y]
muya mumuya nuya nunuya vuya vuvuya
muyi mumuyi nuyi nunuyi vuyi vuvuyi
muyu mumuyu nuyu nunuyu vuyu vuvuyu

Table A.4: All items in which C1 is a [m], [n], or [v] used in training data. All items feature two unique repetitions
and were read by an L1 American English speaker. The items are in transcription that was presented to the reader.

C1 = [a] Count [i] Count [u] Count

sala 4 sila 5 sula 5
sali 5 sili 5 suli 5
salu 5 silu 5 sulu 5
sara 5 sira 5 sura 5
sari 5 siri 5 suri 5
saru 5 siru 5 suru 4
saya 5 siya 5 suya 5
sayi 5 siyi 5 suyi 4
sayu 5 siyu 5 suyu 5

Table A.5: All items in which C1 is a [s] with corresponding number of unique repetitions in the training data per
item. These items were never reduplicated in the training data. All items were read by an L1 American English
speaker. The items are in transcription that was presented to the reader.

22


	 Introduction
	 Model
	 Reduplication in training data
	CiwGAN begusCiw
	Interpolation
	Reduplication of unobserved data

	Reproduction: Bare WaveGAN donahue19
	 Identifying variables

	Discussion
	Training data

