
A stripy wug-shaped curve in sound symbolism

Abstract

In recent years, Maximum Entropy Harmonic Grammar (MaxEnt HG) has been success-

fully applied to model various linguistic patterns. Building on these studies, the current exper-

iment examines its quantitative signatures, typical probabilistic patterns that this framework

is predicted to generate (Hayes 2020). Given a linear scale of violations of one constraint,

MaxEnt yields a sigmoid curve. When another constraint is relevant, this sigmoid curve can be

shifted, yielding two sigmoid curves, which together look like a wug, our beloved animal in the

linguistics community. When the second constraint can be violated more than once, MaxEnt

predicts that it yields a set of multiple sigmoid curves separated from one another, resulting

in a “stripy wug-shaped curve.” The current experiment demonstrates that we observe a stripy

wug-shaped curve in patterns of sound symbolism, systematic associations between sounds

and meanings. Concretely, the experiment shows that the judgment of Pokémons’ evolution

status is cumulatively affected by the mora counts of nonce names, resulting in a sigmoid

curve, and that this sigmoid curve can be shifted according to the number of voiced obstruents

contained in the names. This paper concludes that MaxEnt HG is a useful framework to model

sound-meaning mappings, and suggests that there may be a meaningful parallel between sound

symbolic patterns and probabilistic phonological patterns.

1 Introduction

Traditional generative analyses tended to focus on the dichotomous distinction between gram-
matical and ungrammatical forms (Chomsky 1957; Chomsky & Halle 1968). However, the field
of modern linguistic theories has witnessed a rise of interests in probabilistic generalizations
(e.g. Pierrehumbert 2020 for a recent review). One framework that has been used to model a
wide range of probabilistic generalizations in phonology and other linguistic patterns is Maximum
Entropy Harmonic Grammar (MaxEnt HG) (e.g. Goldwater & Johnson 2003; Smolensky 1986).
In the context of current phonological theorization, there are two ways to understand MaxEnt HG.
One is to consider it as application of logisitc regression models for linguistic analyses (Jurafsky &
Martin 2019). The other is to consider it as a stochastic version of Optimality Theory (OT) (Prince

1



& Smolensky 1993/2004). MaxEnt HG, just like OT, consists of inputs and outputs as well as
CON, the set of constraints that regulate the mapping between these two levels of representations.
Unlike OT, however, in MaxEnt HG, the constraints are weighted rather than ranked, and Max-
Ent assigns a probability distribution over a set of output candidates, rather than deterministically
choosing one output candidate as a winner, as OT does.

In order to evaluate the validity of MaxEnt as a grammatical model, Hayes (2020) highlights
very specific predictions that MaxEnt makes in terms of the typical probabilistic patterns that it
generates, which he refers to as “its quantitive signatures.” To illustrate, suppose that there is a
scaler constraint S, whose violation can be assessed on a linear numerical scale. Further suppose
that there is a binary constraint, B, whose constraint violation directly conflicts with that of S.
When we plot the number of violations of the constraint S on the x-axis and the probability of the
candidate that violates S being selected as a winner on the y-axis, it results in a sigmoid curve,
as shown in Figure 1(a). The linear violation scale is converted to a sigmoidal curve in MaxEnt,
because it involves a logistic transformation ( 1

1+e−N ) in calculating the probability distribution of
output candidates.

When another constraint—call it P for “Perturber”—is at play, this sigmoid curve can be
shifted on the x-axis, yielding another sigmoid curve, which results in what Hayes (2020) refers to
as a “wug-shaped curve.” When this third constraint is violated twice, it yields yet another sigmoid
curve. Together, this whole scenario results in a “stripy wug-shaped curve,” which is schemat-
ically shown in Figure 1(b). Hayes (2020) argues that a stripy wug-shaped curve is commonly
observed in probabilistic phonological alternation patterns (McPherson & Hayes 2016; Zuraw &
Hayes 2017), as well as in categorical perception of speech (Liberman et al. 1957) and diachronic
changes in syntax (Kroch 1989; Zimmermann 2017). He further demonstrates that these wug-
shaped curves are difficult to derive in another widely-used stochastic model of phonology, namely,
Stochastic OT (Boersma 1998; Boersma & Hayes 2001). Hayes (2020) thus concludes that to the
degree that wug-shaped curves are omnipresent in various linguistic patterns, support is provided
for MaxEnt being a useful tool to model linguistic knowledge that lies behind these probabilistic
patterns.1

1Noisy Harmonic Grammar (Noisy HG) can derive (stripy) wug-shaped curves as well, given certain assumptions
about how noise is added to the calculation of overall harmony (Hayes 2017). Noisy HG, therefore, can be a viable
alternative to MaxEnt. Following Hayes (2017, 2020), I will not attempt to tease apart these two theories, because the
difference in quantitative predictions that these two theories make can be very subtle. The crucial distinction that the
presence of wug-shaped curves bears upon is the one between those grammatical models with weighted constraints
(Noisy HG and MaxEnt HG) and those grammatical models with ranked constraints (Stochastic OT).
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Figure 1: (a) A sigmoid curve generated by MaxEnt. The function is defined as f(x) = 1
1+e−N ,

where N is linearly correlated with x, the number of violation marks assigned by S. (b) Multiple
sigmoid curves, resulting in a stripy wug-shaped curve.

The current paper demonstrates that this quantitive prediction of MaxEnt holds in a particu-
larly clear manner in the domain of sound symbolism, systematic associations between sounds and
meanings (Hinton et al. 1994). The current experiment builds upon an earlier experiment reported
in Kawahara (2020b), who manipulated the mora counts and the presence of a voiced obstruent in
nonce names. Kawahara (2020b) asked native speakers of Japanese whether each name is better
suited for a pre-evolution Pokémon character or a post-evolution character, the latter of which is
generally heavier and larger. The results of this experiment showed that varying the mora count of
nonce names increases the post-evolution responses in a sigmoidal manner. The experiment also
showed that the presence of a name-initial voiced obstruent horizontally shifts the entire sigmoid
curve, resulting in a wug-shaped curve. Expanding upon Kawahara (2020b), the current experi-
ment varies the number of voiced obstruents from 0 to 2, which is fully crossed with mora count
differences, in order to examine whether this new manipulation results in a stripy wug-shaped
curve, illustrated in Figure 1(b).

To preview the results, this manipulation indeed results in what looks to be three separate sig-
moid curves, yielding a stripy wug-shaped curve. The Bayesian modeling analysis shows that we
can conclude, with a reasonable amount of confidence, that the three sigmoid curves are identical
and separated from one another (§3 and §4). A MaxEnt analysis shows that the experimental re-
sults are indeed nicely modeled by MaxEnt HG, when we posit that MaxEnt mediates the mapping
from sound to meaning, with the sort of constraints that are used in the OT research tradition (§5).
Overall, this paper provides further support to the recent proposal that MaxEnt HG is a useful
tool to model sound symbolic patterns (Kawahara et al. 2019; Kawahara 2020b). Some intriguing
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parallels between sound symbolic patterns and probabilistic phonological patterns are discussed at
the end of the paper (§6).

2 Methods

2.1 Background

The current experiment is a case study of Pokémonastics, a general research paradigm in which
researchers explore the nature of sound symbolic patterns in natural languages using Pokémon
names. I refer the readers to Shih et al. (2019) for several research advantages of this research
program; here it suffices to note that Pokémon characters can undergo evolution, and when they do
so, they are assigned a different name. The first Pokémonastics study, which analyzed the existing
Pokémon names in Japanese (Kawahara et al. 2018), pointed out that the names of evolved char-
acters tend to be longer, and are more likely to contain voiced obstruents; for example, Anopusu

evolves into Aamarudo, the latter of which is longer (4 moras vs. 5 moras) and contains a voiced
obstruent, [d]. The first principle is arguably an instance of what has been known as “the iconic-
ity of quantity” in the literature on sound symbolism, in which larger words tend to denote larger
quantity (Dingemanse et al. 2015; Haiman 1980; see Marks 1978 for its general cognitive basis).
The second observation is perhaps rooted in the well-known observation in Japanese that voiced
obstruents denote larger quantities (Hamano 1998), which itself may be grounded in the expansion
of the oral cavity which occurs during the production of voiced obstruents (Ohala 1983). Several
experimental studies using nonce names have confirmed the productivity of these two sound sym-
bolic patterns in the Japanese Pokémon universe (Kawahara 2020b; Kawahara & Kumagai 2019,
2021). The current experiment makes use of these sound symbolic patterns in order to address the
specific prediction MaxEnt makes which was illustrated in Figure 1(b).

2.2 Stimuli

The current experiment heavily draws upon Kawahara (2020b), who manipulated the mora counts
and the presence of a word-initial voiced obstruent in nonce names. Table 1 lists the stimuli of
the current experiment, in which dots represent mora boundaries. The experiment manipulated
both the number of moras and the number of voiced obstruents. Mora counts were varied from 2
to 6, which each corresponds to the minimum and maximum lengths that are allowed in the real
Japanese Pokémon names. Since the stimuli contained no heavy syllables, the mora boundaries and
syllable boundaries always coincided with each other in the current stimulus set. This is one aspect
in which the current study improves upon Kawahara (2020b), whose stimuli included diphthongs
(e.g. [doiwanu]), failing to control for the syllable counts.
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In the current stimulus set, the mora count manipulation was fully crossed with another factor,
the number of voiced obstruents, varying from 0 to 2. Voiced obstruents, when they were present,
were placed either word-initially or in the first two syllables. The positions of voiced obstruents
were therefore consistent across all the mora count conditions.

Five items were included in each cell, resulting in a total of 75 items (5 mora conditions × 3
voicing conditions × 5 items). All the stimulus names were created using an online nonce name
generator, which combines Japanese moras randomly to create new names.2 Since [p] is known
to have its own salient sound symbolic values, such as cuteness (Kumagai 2019) and smallness
(Shih et al. 2019), this segment was not used in the current stimuli. Another potential factor is
vowel quality, which was not controlled in the experiment for two reasons. One is that Kawahara
et al. (2018) did not find a substantial impact on vowel quality in the existing Pokémon names in
Japanese; the other is that an attempt to control for vowel quality, for example by using the same
vowel in the whole names, resulted in very artificial names, especially in long names.

2.3 Procedure

The experiment was distributed online using SurveyMonkey. The first page of the experiment
presented a consent form, which has been approved by the author’s institute. The instruction of
the experiment stated that the participation in this experiment is voluntary, but requires some basic
familiarity with Pokémon. The participants were reminded that in the Pokémon universe, there are
pre-evolution characters and post-evolution characters, and that post-evolution characters tend to
be larger and stronger.

Within each trial, the participants were provided with one nonce name and were asked to judge
whether each name is better suited for a pre-evolution character or a post-evolution character. The
order of the stimuli was uniquely randomized for each participant. They were asked to make their
judgment based on their intuitions rather than thinking about “right” or “wrong” answers. The
stimuli were presented in the Japanese katakana orthography, although they were asked to read
each name in their head before answering the questions.

2.4 Participants

The call for participation was primarily advertised on Twitter. A total of 144 native speakers of
Japanese completed the online experiment. Six participants reported that they had studied sound

2http://sei-street.sakura.ne.jp/page/doujin/site/doc/tool_genKanaName.html
(last access, September 2020). The items in the first two columns in Table 1 were largely adapted from Kawahara
(2020b), who used the same online name generator. Some items, which involved diphthongs (i.e. vowel sequences
with falling sonority: Kubozono 2015), were “hand-corrected” by inserting a consonant, in order to control for the
number of syllables in addition to the number of moras.
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Table 1: The list of the stimuli used in the experiment. Dots represent mora boundaries, which
coincide with syllable boundaries.

0 vcd obs 1 vcd obs 2 vcd obs
2 moras [su.tsu] [za.mu] [bu.zu]

[no.çi] [gu.ka] [ýi.da]
[jo.ni] [gi.ke] [da.za]
[ho.mu] [ba.Ru] [ge.bu]
[ni.mi] [go.Fu] [go.de]

3 moras [ku.Ci.me] [bu.Ro.se] [da.bu.so]
[jo.Ru.so] [go.se.he] [do.da.no]
[se.sa.Ri] [bo.ma.sa] [ga.da.to]
[mu.su.ha] [gu.ne.ju] [bu.ge.Ru]
[Ri.to.no] [da.su.Ro] [ýi.de.mi]

4 moras [ku.ki.me.se] [bi.to.Re.ni] [ba.de.ju.Fu]
[so.ha.ko.ni] [za.ni.te.ja] [bu.ga.so.ja]
[Ra.Ci.no.Ro] [ga.çi.ke.Ro] [ze.ga.ki.Fu]
[ko.te.nu.ne] [da.ka.ni.Ri] [ga.de.ha.wa]
[a.mo.çi.ni] [do.ki.Ra.nu] [gi.do.ke.he]

5 moras [ha.ku.te.çi.no] [bi.so.Fu.sa.ta] [gi.ze.mi.ke.me]
[Ro.ta.Ra.na.to] [da.Ra.su.to.ki] [ba.go.ki.Ru.ke]
[so.ka.ne.ni.Re] [de.mu.sa.te.he] [de.gu.mu.Ra.tsu]
[Ru.Ri.ha.me.ke] [gi.a.so.ta.e] [do.gu.ha.Ra.mu]
[sa.na.çi.ta.ni] [de.nu.Ra.so.me] [bo.ga.to.he.Ra]

6 moras [ju.Ro.ka.mu.mo.ja] [gu.se.Fu.çi.Ra.mo] [bo.da.Ro.Fu.so.Fu]
[mu.ku.ho.Ro.ho.te] [go.na.Fu.to.ko.so] [zu.ga.çi.ne.te.so]
[Ra.ha.Ri.tCi.ru.tsu] [do.ja.to.sa.mi.ta] [da.ga.su.me.ta.Ra]
[ne.nu.he.mo.sa.nu] [da.na.Ri.no.mi.ki] [be.ga.he.Ra.ka.Ro]
[Ru.no.nu.Ro.te.tCi] [zo.te.he.so.ju.Ra] [gi.go.na.ke.to.sa]

symbolism. Four participants reported that they had participated in another Pokémonastics ex-
periment. The data from these participants were excluded. The data from the remaining 134
participants entered into the subsequent statistical analysis.

2.5 Statistical analyses

The result of the experiment was statistically assessed with a Bayesian mixed effects logistic re-
gression model, using the brms R package (Bürkner 2017). The dependent variable was the binary
response obtained in the experiment (0 = pre-evolution, 1 = post-evolution). The predictor vari-
ables were mora counts and the number of voiced obstruents, both of which were numerical, and
hence centered (Winter 2019). The interaction between the two fixed factors was included, for
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reasons detailed below. Random factors included free-varying random intercepts for participant
and item, as well as random slopes for both of the fixed effects as well as their interaction by
participants. The random slopes and intercepts were uncorrelated, because there were no theo-
retical reasons to expect that there should be a correlation. Four chains of 2,000 iterations were
run, and the last 1,000 samples from each chain were analyzed. The default, weakly-informative
priors were used. The highest R̂ value was 1.01, indicating that the chains mixed successfully. The
experimental data file and the R markdown syntax are available as Supplementary Material A.

Bayesian models yield a posterior distribution of possible values for each parameter, which
can be interpreted by examining the middle 95% of these values, called the 95% Credible Inter-
val (abbreviated as “95% CI”). Since the current model uses logistic regression, a positive slope
coefficient (β) indicates that that factor increases post-evolution Pokémon responses.

Taking a Bayesian approach has two notable advantages for the current experiment. First,
this method makes it possible to fit the complex model with an interaction term together with a
complex random effect structure without convergence issues. Second, perhaps more importantly,
the Bayesian approach allows us to gather evidence for the null results, rather than merely failing
to reject the null hypothesis (Gallistel 2009). Examining whether the interaction term plays a
meaningful role or not is particularly important in the current experiment for the following reason.
A stripy wug-shaped curve consists of three identical wug-shaped curves, which means that the
interaction between the mora count and the voiced obstruent should not play a substantial role in
the model, since the interaction term functions as a slope adjustment term (Winter 2019). If the
interaction term turns out to be a meaningful predictor in the model, it means that the slopes differ
between the multiple curves.3

3 Results

Figure 2(a) plots “post-evolution response ratios” for each item, averaged over all the participants.
Red circles represent items which contain no voiced obstruents, green triangles show the results
of the items which contain one voiced obstruent, and blue rectangles show the results for the
condition which contains two voiced obstruents. The ggplot2 package (Wickham 2016) was
used to superimpose a logistic curve for each voicing condition. The three logistic curves appear
to be well separated from one another, just like the schematic stripy wug-shaped pattern shown in
Figure 1(b).

3This was one clear limitation of Kawahara (2020b), who was unable to address this question, because the analysis
deployed by Kawahara (2020b) was a frequentist analysis—the best that could be concluded based on that analysis
was that the interaction term was non-significant. The lack of significance, however, only means that we cannot reject
the null hypothesis that the slopes were not identical; i.e. it does not provide evidence that the slopes between the
curves are likely to be identical. The Bayesian analysis presented in the current paper overcomes this limitation.
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Figure 2: (a) The by-participant averages for each item. To avoid overlap, the points were horizon-
tally jittered by 0.1. Logistic curves are superimposed using ggplot2 for each voicing condition.
(b) The line-plots with grand averages for each voicing condition.

Figure 2(b) illustrates the overall results by presenting grand averages for each condition. This
analysis does not presuppose that sigmoid curves would fit the observed data points well. Despite
this, the general pattern looks like a stripy wug-shaped curve, consisting of three separate sigmoid
curves. For each curve, the slope is evidently steepest between the 3-mora condition and 5-mora
condition; on the other hand, the change from 2-mora to 3-mora or the change from the 5-mora
to 6-mora do not seem to impact the judgment as much. These are characteristics of sigmoid
curves, as observed in Figure 1(a). The slogan that Hayes (2020) uses to describe this observation
is “certainty is evidentially expensive” (p.3). It requires very convincing evidence to be certain
that a particular name is for a pre-evolution character or for a post-evolution character. A logistic
transformation, which underlies MaxEnt, serves to model this observation.

The model summary of the Bayesian mixed effects logistic regression analysis appears in Ta-
ble 2. The intercept is negative; since both mora counts and the effects of voiced obstruents were
centered, this negative intercept means that for names that are 4-mora long containing one voiced
obstruent, the post-evolution responses are lower than 50%. The slope of mora count was posi-
tive and its 95% CI does not include 0, which means that increase in mora counts meaningfully
increased the probability of the names assigned to a post-evolution character. The slope of voiced
obstruents was also positive, and its 95% CI does not include 0. These results suggest that voiced
obstruents meaningfully increased post-evolution responses as well. The 95% CI for the interac-
tion term on the other hand includes 0, which means that the effects of mora counts and those of
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voiced obstruents were independent of one another.

Table 2: Summary of the Bayesian mixed effects logistic regression model.

β error 95% CI
intercept -0.42 0.07 [-0.56, -0.28]
mora count 1.10 0.09 [0.92, 1.29]
vcd obs 0.45 0.07 [0.30, 0.59]
mora count × vcd obs 0.03 0.04 [-0.05, 0.12]

4 Discussion

4.1 A stripy wug-shaped curve

I would like to first ponder upon whether the current experimental results shown in Figure 2 should
indeed be considered to instantiate a stripy wug-shaped curve. The stripy wug-shaped curve—as
discussed by Hayes (2020) and also as predicted by MaxEnt—has three defining features: (1) it
consists of multiple sigmoid curves, (2) they are separated from one another, and (3) slopes of the
sigmoid curves are identical.4

The third requirement is satisfied by the current result, because the interaction term did not
meaningfully impact the post-evolution responses. Recall that the Bayesian analysis allows us to
gather evidence for the null effects, and therefore we can be reasonably confident that the three
sigmoidal curves have the same slope.

The second requirement is satisfied by the current data, since the 95% CI for the effect of
voicing does not contain 0; changes in the number of voiced obstruent seem to have meaningfully
impacted the post-evolution responses. One may be concerned that the Bayesian analysis reported
in §3 alone may not show that all three curves are separated from one another, because the voicing
condition was coded as a numerical variable. An additional analysis addressing this concern is
offered in the Appendix.

The first feature—whether the data would be best fit with a sigmoidal curve—is the most
challenging aspect to defend. Linguistic data obtained in an experiment always involve some
natural variability, and they therefore never perfectly fit the mathematical definition of sigmoids.

4MaxEnt can generate a set of sigmoid curves whose slopes differ from each other, as long as it admits a meaningful
interaction term. Whether MaxEnt offers a suitable grammatical framework is one question, but whether it should
allow for meaningful interaction terms maybe a different, albeit related, question. In the context of linguistic analyses,
the second question can be restated as a question regarding whether we should allow for a locally conjoined constraint
in a grammatical model with weighted constraints (Shih 2017). See §5 for further discussion on this point. For now, I
assume that different sigmoid curves should have the same (or comparable) slope in (stripy) wug-shaped curves.
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Moreover, there are many mathematical functions that can be potentially fit to the data. We can
go so far as to fit a mathematical function which intersects every observed data point, but such a
function with high mathematical complexity would suffer from the general problem of overfitting
(Good & Hardin 2006). For the current experiment, I maintain that it is a reasonable conjecture
that sigmoid functions fit the current data well, since there is a steeper increase in the middle range,
compared to the low and high ends of the x-axis continuum.

An obvious alternative candidate is a linear function, which is not suitable to model the current
results for two reasons. First, since we are dealing with the probability space, the y-axis needs to be
bound between 0 and 1, but there is nothing in a linear function that guarantees that this restriction
is met (Jaeger 2008). Second, a linear function does not capture the observation that the slope in
the middle range is steeper than the slopes in the low and high ends of the x-axis continuum.

It is not possible to examine every possible mathematical function here. However, generally
speaking, which mathematical function can and should be used to model linguistic data is a topic
that should be explored by cross-linguistic considerations. The current state of the field is that
we can be reasonably confident that sigmoids, generated by MaxEnt, are suited to model various
linguistic patterns (Breiss 2020; Hayes 2020; Hayes & Wilson 2008; McPherson & Hayes 2016;
Zuraw & Hayes 2017). See §5 for a MaxEnt analysis of the current experimental results.

4.2 Cumulativity

In addition to showing that we observe a stripy wug-shaped pattern in sound symbolic patterns,
the current experiment also bears on a different—albeit related—issue that is of theoretical interest
for some contemporary phonological/linguistic theories; namely, cumulativity. Whether linguis-
tic patterns show cumulative properties or not is actively debated in the literature, because it may
bear on the question of whether a linguistic optimization system should be based on lexicographic
ranking (as in OT) or numeric weightings (as in HG) (e.g. Breiss 2020; McPherson & Hayes 2016;
Prince & Smolensky 1993/2004; Zuraw & Hayes 2017; Tesar 2007). The latter framework predicts
that cumulativity is the norm, whereas the former framework explicitly prohibits it. The current
experiment shows that sound symbolic effects are generally cumulative, just like previous exper-
imental studies on Pokémon names (Kawahara 2020b; Kawahara & Kumagai 2021; Kawahara &
Breiss 2020).

More specifically, Japanese speakers are sensitive to each step in the mora count scale. This
effect of mora count instantiates a case of counting cumulativity (Jäger 2007; Jäger & Rosenbach
2006) in sound symbolism, in that the effects of multiple tokens of the same structure (=mora)
additively contributes to the judgment of evolvedness. The number of voiced obstruents increased
the post-evolution responses as well, which is also a case of counting cumulativity. Moreover,
the effects of mora counts and those of voiced obstruents added up, which instantiates ganging-up
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cumulativity, in which the effects of two different factors add up (Jäger 2007; Jäger & Rosen-
bach 2006). Overall, the current experiment shows that both counting cumulativity and ganging-
up cumulativity can coexist within a single sound symbolic system (Kawahara 2020b; Kawahara
& Breiss 2020), drawing a parallel to a recent observation in probabilistic phonological patterns
which suggest the co-existence of counting and ganging-up cumulativity (Breiss 2020; McPherson
& Hayes 2016; Zuraw & Hayes 2017).

5 A MaxEnt analysis

This section develops a MaxEnt analysis of the experimental results, using the sort of constraints
that have been used in the Optimality Theory research (Prince & Smolensky 1993/2004). Since
there are already a number of papers that explain how MaxEnt works for linguistic analyses
(e.g. Breiss & Hayes 2020; Hayes & Wilson 2008; Kawahara 2020b; McPherson & Hayes 2016;
Zuraw & Hayes 2017), I only provide a brief explanation in this paper. Just like OT, output can-
didates are evaluated against the set of constraints, each of which is assigned a particular weight.
Each candidate receives a harmony score (H), which is the weighted sum of constraint viola-
tions: H =

∑
wiCi(x), where w represents the weight of the i-th constraint and Ci(x) represents

how many times a candidate violates the i-th constraint. The harmony score is negatively expo-
nentiated (e−H), which is proportional to the probability of each candidate. The more constraint
violations a particular candidate incurs, the higher the harmony score H , the lower e−H , and hence
the lower the probability of that candidate. The e−H values for all the candidates are summed into
Z; i.e. Z =

∑
(e−H)j . The predicted probability of each candidate xj, p(xj), is e−H(xj)

Z
.

Before we proceed, I note at this point that MaxEnt is mathematically equivalent to (multino-
mial) logistic regression (Jurafsky & Martin 2019), and therefore there is some conceptual overlap
between the statistical analysis presented in §3 and the MaxEnt analysis presented in this section.
However, the former was used to explore what we can conclude based on the experimental results;
on the other hand, the MaxEnt analysis presented in this section is a generative phonological anal-
ysis that is meant to model the knowledge that lies behind the patterns observed in the experiment
(see Breiss & Hayes 2020 for relevant discussion). To highlight the fact that the analysis in this
section builds on the generative phonological research tradition, the set of constraints used below
are those that are formulated with a constraint schema proposed by McCarthy (2003).

The general idea that lies behind the analysis developed below is that we can understand sound
symbolism—mappings from sounds to meanings—just like phonological input-output mappings,
which is evaluated by a set of constraints that are familiar from traditional phonological research
(Kawahara et al. 2019; Kawahara 2020b). The set of constraints that were proposed by Kawahara
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(2020b) can actually be directly applied to model the current results, which are shown in (1).5

(1) Constraints deployed in the current analysis, adapted from Kawahara (2020b)

a. *LONGPRE: Assign a violation mark for each mora in a pre-evolution character name.
b. *VCDPRE: Assign a violation mark for each voiced obstruent in a pre-evolution char-

acter name.
c. *POST: Assign a violation mark for each post-evolution name.

The first constraint is a formal expression of “the iconicity of quantity” (Haiman 1980), which
prefers long names to be used for post-evolution characters. This constraint corresponds to the
scalar constraint S that was used to schematically illustrate a stripy wug-shaped curve in Fig-
ure1(b). The second constraint prefers that names with voiced obstruents be used for post-evolution
character names, and this corresponds to the perturber constraint P that was used in Figure1(b).
The last constraint penalizes post-evolution character names in general, which corresponds to the
binary constraint B. This constraint serves as a “baseline” constraint, determining the general
preference for pre-evolution characters.

The MaxEnt tableaux for all the conditions are shown in (2). The leftmost column shows
the input forms (i.e. the phonological forms), and the second column shows the outputs (i.e. the
two semantic meanings, pre-evolution character names vs. post-evolution character names). The
constraint violation profiles are shown in the next three columns. The observed percentages of each
condition are shown in the rightmost column, which were taken from the grand averages obtained
in the experiment.

Based on the constraint profiles and the observed percentages of each output form, the optimal
weights of the three constraints were calculated using the Solver function of Excel. The weights
were not allowed to be negative or higher than 50. The weights that were obtained by this analysis
are shown at the top row of the tableaux, from which we can calculate the predicted values using
the procedure that is outlined at the beginning of this section. The values that are predicted by
the MaxEnt analysis are shown in the penultimate column. The Excel sheet used to calculate the
optimal weights and the predicted values is available as Supplementary Material B.

5One may object that constraints used in OT/HG-analyses should not refer to arguably culture-specific notions such
as “evolution.” An alternative formulation is to replace the notion of evolution with size, because size is a semantic
dimension that is signaled by sound symbolism in various languages (see e.g. Sidhu & Pexman 2018). For the sake of
expositional clarity, however, I continue using constraints which refer to evolution status.
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(2) The MaxEnt Tableaux
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Observed  
2 moras, vls Pre 2   1.86 0.155 93.65 94.18 
 Post   1 4.55 0.011 6.35 5.82 
3 moras, vls Pre 3   2.79 0.061 85.32 86.42 
 Post   1 4.55 0.011 14.68 13.58 
4 moras, vls Pre 4   3.72 0.024 69.60 75.97 
 Post   1 4.55 0.011 30.40 24.03 
5 moras, vls Pre 5   4.66 0.010 47.44 39.10 
 Post   1 4.55 0.011 52.56 60.90 
6 moras, vls Pre 6   5.59 0.0037 26.24 30.45 
 Post   1 4.55 0.011 73.76 69.55 
2 moras, 1 vcd Pre 2 1  2.27 0.104 90.77 84.48 
 Post   1 4.55 0.011 9.23 15.52 
3 moras, 1 vcd Pre 3 1  3.20 0.041 79.49 81.49 
 Post   1 4.55 0.011 20.51 18.51 
4 moras, 1 vcd Pre 4 1  4.13 0.016 60.43 64.93 
 Post   1 4.55 0.011 39.57 35.07 
5 moras, 1 vcd Pre 5 1  5.06 0.006 37.58 26.87 
 Post   1 4.55 0.011 62.42 73.13 
6 moras, 1 vcd Pre 6 1  5.99 0.0025 19.18 21.94 
 Post   1 4.55 0.011 80.82 78.06 
2 moras, 2 vcd Pre 2 2  2.67 0.069 86.77 85.82 
 Post   1 4.55 0.011 13.23 14.18 
3 moras, 2 vcd Pre 3 2  3.60 0.027 72.10 75.52 
 Post   1 4.55 0.011 27.90 24.48 
4 moras, 2 vcd Pre 4 2  4.53 0.011 50.46 55.82 
 Post   1 4.55 0.011 49.54 44.18 
5 moras, 2 vcd Pre 5 2  5.47 0.004 28.65 22.54 
 Post   1 4.55 0.011 71.35 77.46 
6 moras, 2 vcd Pre 6 2  6.40 0.002 13.66 15.82 
 Post   1 4.55 0.011 86.34 84.18 

Comparing the last two columns of these tableaux, the match between the observed percentages
and predicted percentages generally seems to be very good. To visualize this success, Figure 3
plots the correlation between the observed percentages in the experiment on the x-axis and the
percentagse predicted by the MaxEnt analysis on the y-axis, which shows a good fit between the
two measures.
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Figure 3: The correlation between the observed percentages in the experiment (the x-axis) and the
percentages predicted by the MaxEnt analysis (the y-axis).

Since a MaxEnt analysis is a statistical model (Jurafsky & Martin 2019), we can assess the
necessity of each constraint (i.e. factor) using a log-likelihood ratio test (Winter 2019). To do so,
we compare the full model with the three constraints and smaller models with two of the three
constraints. By removing one of the three constraints, we obtain three simpler models with two
remaining constraints. We then compare their log-likelihood values by taking their ratios, which
addresses the question of whether the full model fits the data better than the simpler models to a
statistically significant degree. The results of these log-likelihood ratio tests are summarized in
Table 3, which demonstrates that all three constraints are statistically justified to be included in the
MaxEnt analysis. In other words, each of the three constraints plays a role in the explanation of
the data, in addition to what is explained by the other two constraints. See the Appendix in Breiss
& Hayes (2020) for related discussion.

Table 3: The results of the log-likelihood ratio tests. The log-likelihood of the best fitting model
with the three constraints is -784.6. See Supplementary File B.

∆likelihood χ2(1) p
*LONGPRE 228.3 456.6 < .001
*VCDPRE 14.2 28.4 < .001
*POST 247.4 494.8 < .001

In addition, a more complex model was tested by adding the fourth constraint which represents
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the interaction term between *LONGPRE and *VCDPRE, which is equivalent to the locally con-
joined version of these two constraints (Shih 2017). The Solver assigned a weight that is close to 0
(=0.005) to the conjoined constraint, and addition of this constraint did not improved the model fit
at all. This is a welcome result, since the interaction of the effects of voiced obstruents and those
of mora counts followed directly from the architecture of MaxEnt itself, obviating the need to posit
a specific constraint to capture the interaction between the two factors (see Zuraw & Hayes 2017
who reached the same conclusion in their phonological analyses; though see Shih 2017 who argued
that a locally-conjoined constraint may be necessary even in a MaxEnt grammar). The result here
nicely aligns with the Bayesian logistic regression modeling presented in §3.

Before closing this section, some remarks on Stochastic Optimality Theory (Stochastic OT)
(Boersma 1998; Boersma & Hayes 2001) are in order. Stochastic OT is an alternative framework
which has been used to model probabilistic phonological patterns. It is no different from Classical
OT at each time of evaluation. However, constraints are assigned ranking values, and these values
can be perturbed by a Gaussian noise, which derives probabilistic variations. One challenge that
this framework faces in modeling the current dataset is that it cannot handle counting cumulativity
in general (Hayes 2020; Jäger 2007; McPherson & Hayes 2016; Zuraw & Hayes 2017). The prob-
lem is that since each evaluation trial proceeds as in Classical OT with strict domination (Prince &
Smolensky 1993/2004), if *POST dominates *LONGPRE at a particular time of evaluation, a pre-
evolution character wins no matter how long the name under evaluation is. Similarly, if *VCDPRE

dominates *POST, a post-evolution character wins regardless of whether a name contains one
voiced obstruent or two voiced obstruents. Stochastic OT therefore does not handle the effects of
different mora counts or voiced obstruents. In Stochastic OT, therefore, it is necessary to expand
*LONGPRE and *VCDPRE into sets of multiple constraints (Boersma 1998; McPherson & Hayes
2016): i.e. *LONGPRE3MORA, *LONGPRE4MORA, *LONGPRE5MORA , *LONGPRE6MORA,
*ONEVCDPRE and *TWOVCDPRE (see Kawahara 2020b for a full implementation of an analysis
of his data using a set of *LONGPREXMORA constraints). All in all, then, Stochastic OT requires
four additional free parameters than MaxEnt. See Kawahara (2020b) and Zuraw & Hayes (2017)
for further discussion on some challenges that Stochastic OT faces in modeling wug-shaped curves.

6 Conclusion

The descriptive findings of the current experiments can be summarized as follows: (1) mora count
cumulatively affects the judgment of evolvedness in Pokémon names, (2) voiced obstruents also
cumulatively affect the judgment of evolvedness, and (3) these two effects are additive, which re-
quires no complex interaction term when modeling the data. The effects of mora count and voiced
obstruents instantiate counting cumulativity in sound symbolism. The fact that two separate effects
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interacted cumulatively suggests that we observe ganging-up cumulativity in sound symbolism as
well.

The effects of mora count resulted in what looks to be sigmoidal functions. The three sigmoidal
curves, which arose due to the ganging-up cumulativity, together result in what Hayes (2020)
refers to as a “stripy wug-shaped curve.” Since a stripy wug-shaped curve is a typical quantitative
signature that MaxEnt is predicted to generate, it provides support for the thesis that MaxEnt is a
useful tool to model linguistic patterns.

The coexistence of counting cumulativity and ganging-up cumulativity, which manifests itself
as a stripy wug-shaped pattern in sound symbolism, draws an intriguing parallel to the recent ob-
servation made in the analyses of probabilistic phonological alternation patterns, including vowel
harmony in Tommo So (McPherson & Hayes 2016) as well as liaison in French, nasal substitution
in Tagalog, and vowel harmony in Hungarian (Zuraw & Hayes 2017). The coexistence of counting
and ganging-up cumulativity has also recently been shown to hold in an artificial language learning
experiment of phonotactic learning with native speakers of English (Breiss 2020).

Traditionally, sound symbolism has been viewed to reside outside the purview of phonological
analyses, although some recent proposals argue that sound symbolic principles should be inte-
grated with the “core” phonological grammar (Alderete & Kochetov 2017; Jang 2020; Kumagai
2019). In line with these arguments, the current results may suggest that there is a meaning-
ful parallel between sound symbolic patterns and other phonological patterns (Kawahara 2020a).
Suppose that the current proposal—that MaxEnt HG equipped with OT-style constraints is a useful
tool to model sound symbolism—is on the right track, and also suppose that MaxEnt is suited to
model phonological, and perhaps other linguistic patterns as well, as many previous studies have
shown. Taken together, then, it points to a conclusion that the same mechanism may be regulating
sound symbolic mappings and phonological patterns. I submit that this is an interesting hypothesis
that can and should be explored more extensively in future research, especially given that sound
symbolism did not receive much attention from theoretical phonologists in the past.

Appendix

One question that may be raised regarding the conclusion that the three sigmoid curves are all
separated from one another in the current experiment (§4) is that the current Bayesian regression
analysis coded the effects of voiced obstruent as a numerical variable, rather than a three-level
categorical variable. This numerical coding was theoretically motivated, because we are interested
in how the number of voiced obstruents affected the post-evolution responses, and it was the count
of voiced obstruents that was of interest. This is reflected in the way the *VCDPRE constraint is
formulated in §5 as well—it assigns a violation mark for every instance of a voiced obstruent in a
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pre-evolution character name.
With this said, in order to more directly address this concern, the Bayesian logistic regression

model was rerun with the effect of voicing treated as an unordered categorical factor with “1 voiced
obstruent” as the reference level (coded as 0 because this variable was centered). Since Bulk ESS
and Tail ESS were too high with 2,000 iterations with 1,000 warmups, this new analysis ran 5,000
iterations with 2,000 warmups. All the R̂ values were 1.00. See Supplementary Material A.

The results, summarized in Table 4, show that the difference between 0 vs. 1 voiced obstru-
ent and the difference between 1 vs. 2 voiced obstruents both meaningfully impacted the post-
evolution responses. Neither of the interaction terms were meaningful, because their 95% CIs
contain 0. These results show that the three sigmoidal curves are separated from one another, even
if we consider the three different voicing conditions as three manifestations of an unordered cate-
gorical factor, and under that assumption too, we can conclude that the three slopes are likely to be
identical.

Table 4: Summary of the Bayesian mixed effects logistic regression model, in which the voicing
effect is coded as an unordered categorical variable.

β error 95% CI
intercept -0.31 0.10 [-0.51, -0.12]
mora count 1.03 0.10 [0.83, 1.23]
vcd obs (0 vs. 1) -0.65 0.13 [-0.90, -0.39]
vcd obs (1 vs. 2) 0.27 0.12 [0.02, 0.51]
vcd obs (0 vs. 1) × mora 0.10 0.09 [-0.07, 0.28]
vcd obs (1 vs. 2) × mora 0.16 0.09 [-0.01, 0.33]

Additionally, this new analysis shows that the difference between the 0 voiced obstruent con-
dition and the 1 voiced obstruent condition seems to be larger than the difference between the 1
voiced obstruent condition and the 2 voiced obstruent condition. To visualize, Figure 4 shows
the distributions of posterior samples of the two relevant slope coefficients, which play a role in
characterizing the log-odds of post-evolution responses. Since all the poster samples for the first
difference were negative, I took the absolute values to compare the differences in magnitude. This
analysis shows that the slope for the shift from 0 voiced obstruent to 1 voiced obstruent generally
shows posterior samples that are larger in magnitude than the slope for the shift from 1 voiced
obstruent to 2 voiced obstruents. Only less than 3.7% of the time (i.e. 448 out of 12,000) was the
second slope larger in magnitude than the first slope. One way to understand this observation is to
consider this as a case of non-linear (more specifically, sub-linear) counting cumulativity in sound
symbolism (Kawahara & Breiss 2020).
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