Testing MaxEnt with sound symbolism:
A stripy wug-shaped curve in Japanese Pokémon names®

Abstract

One issue that is actively explored in the contemporary linguistics literature is how to ac-
count for probabilistic generalizations, for which there are currently various competing theo-
ries. To bear on this debate, Hayes|(2020) proposes that we examine a grammatical framework
in terms of its quantitative signature, which is typical probabilistic patterns that the frame-
work is predicted to generate. In this paper, I zoom in on the quantitative signature of Maxi-
mum Entropy Harmonic Grammar (MaxEnt HG), because this framework has proven to be a
useful tool to model probabilistic generalizations across different linguistic domains. Given a
linear scale of violations of one constraint, MaxEnt yields a sigmoid curve. When another con-
straint is relevant and can be violated multiple times, this sigmoid curve can be shifted, yielding
multiple sigmoid curves, which results in a stripy wug-shaped curve. Extending upon a pre-
vious study (Kawaharal[2020b), the current experiment demonstrates that we observe a stripy
wug-shaped curve in a particularly clear manner in patterns of sound symbolism, systematic
associations between sounds and meanings. Concretely, the experiment with Japanese speak-
ers shows that the judgment of Pokémons’ evolution status is affected by the mora counts of
nonce names, resulting in a sigmoid curve, and that this sigmoid curve is shifted according
to the number of voiced obstruents contained in the names. The overall results suggest that
MaxEnt is a useful tool to model systematic sound-meaning correspondences.

1 Introduction

1.1 General theoretical background

Traditional generative analyses tended to focus on the dichotomous distinction between gram-
matical and ungrammatical forms. In the syntax research, this thesis was made clear from its
outset: “[t]he fundamental aim in the linguistic analysis of a language L is to separate the gram-
matical sequences which are the sentences of L from the ungrammatical sequences which are not
sentences of L’ (Chomsky| 1957: p.2, emphasis in the original). One of the aims of the early
generative phonology research was also to model the distinction between possible words and im-
possible words (Halle||[1978): e.g. in English, brick and blick are possible words, while bnick is an
impossible word. A common assumption had been that grammar—or competence—only makes a
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dichotomous distinction between grammatical forms and ungrammatical forms (Neeleman [2012;
Sprouse 2007). In the words of |Pierrehumbert (2001: 195), “[t]he classical generative models are
non-probabilistic. Any given sequence is either well-formed under a grammar, or it is completely
impossible.”

However, an accumulating body of evidence shows that probabilistic generalizations are just
as important as categorical generalizations for linguistic inquiry. In the sociolinguistics research,
for which variation has been the central topic of investigation (Labov|2004), it has been long
noted that variation shows systematic probabilistic patterns, which are influenced by both linguistic
and non-linguistic considerations. To take a well-studied example of English #/d-deletion, the
probability of this process has been shown to be systematically affected by various morphological,
phonological and socio-linguistic factors (Coetzee & Kawahara |2013} \Guy & Boberg/|1997). As
such, in this research tradition, various grammatical models have been formulated to account for
such probabilistic generalizations (Cedergren & Sankoff|1974; Johnson|2009; Rousseau & Sankoff’
1978).

Recent generative phonology research has also started paying serious attention to stochastic
generalizations, recognizing that phonological knowledge is fundamentally stochastic (Pierrehum-
bert|[2001). One piece of evidence comes from the observation that many sound sequences are
neither completely phonotactically legal nor illegal, but instead are intermediate (Daland et al.
2011). Another influential finding is that some “exceptional” phonological alternation patterns can
be just as systematic as “regular” phonological patterns, being susceptible to various phonological
constraints (Anttila | 1997; Ernestus & Baayen|[2003}; Zuraw|2000). Thus, there is a rise of interest
in formal, generative grammatical models which can account for such probabilistic generalizations
(Coetzee & Pater|2011). The three most widely discussed frameworks in the contemporary phonol-
ogy research are (1) Stochastic Optimality Theory (Boersmal/1998; Boersma & Hayes|2001)), (2)
Noisy Harmonic Grammar (Boersma & Pater2016; Coetzee & Kawahara|2013) and (3) Maximum
Entropy Harmonic Grammar (Goldwater & Johnson|2003}; Hayes & Wilson|2008]). Which model
is best suited to account for the probabilistic aspects of our linguistic knowledge has been one
topic that is actively discussed in the contemporary linguistics literature (Anttila & Magri [2018;
Breiss||2020; Breiss & Albright 2020} Ernestus & Baayen|2003; (Goldrick & Daland|2009; |[Hayes
2017, 2020; Jager & Rosenbach!|2006; Jager 2007; Magri et al.|[2020; Smith & Pater|2020; Zuraw
& Hayes|[2017, among many others).

To address this general question, Hayes| (2020) proposes that we examine the grammatical
model of interest in terms of its quantitative signature. The quantitative signature refers to typical
probabilistic patterns that a particular framework is predicted to generate. Inspired by this proposal,
the current paper zooms in on Maximum Entropy Harmonic Grammar (henceforth, MaxEnt HG)
(Goldwater & Johnson|2003; Smolensky| 1986)), and examines its quantitative signature. This paper
focuses on MaxEnt HG, because as extensively reviewed by Hayes (2020), its quantitive signature
may be observed across different areas of linguistic patterns, and can thus be considered to be a
useful tool to model various aspects of linguistic knowledge. MaxEnt (or something akin to it)
has indeed been applied to model data from a wide variety of linguistic domains, including but
not limited to, phonetics (Lefkowitz/[2005), phonology (Zuraw & Hayes|2017)), syntax (Bresnan
et al.[|2007), semantics/pragmatics (AnderBois et al.[2012), historical changes (Kroch/[1989)), and
sociolinguistics (Rousseau & Sankoff| 1978)) (again, see Hayes|2020).

In the context of current linguistic theorization, there are two ways to understand MaxEnt HG.
One is to consider it as application of logistic regression modeling for linguistic analyses (Jurafsky



& Martin|[2019). The other is to consider it as a stochastic version of Optimality Theory (OT)
(Prince & Smolensky|1993/2004). MaxEnt HG, just like OT, consists of inputs and outputs as well
as CON, the set of constraints that regulate the mapping between these two levels of representa-
tions. Unlike OT, however, in MaxEnt HG, the constraints are weighted rather than ranked, and
MaxEnt assigns a probability distribution over a set of output candidates, rather than deterministi-
cally choosing one output candidate as a winner, as OT does. §5|presents the mathematical details
for how the probability distribution over the candidates is calculated, but following Hayes| (2020),
here let us focus on the general prediction that the theory makes—i.e. its quantitive signature—
without going into the mathematical details.

1.2 The quantitative signature of MaxEnt

To reiterate, the quantitative signature is typical probabilistic patterns that a particular grammat-
ical framework generates. This subsection describes that quantitative signature of MaxEnt HG,
as demonstrated by Hayes| (2020). To do so, suppose that there is a scalar constraint .S, whose
violation can be assessed on a linear numerical scale (e.g. 1, 2, 3...etc). Further suppose that there
is a binary constraint, B, whose constraint violation directly conflicts with that of S. When we
plot the number of violations of the constraint .S on the x-axis and the probability of the candidate
that violates S being selected as a winner on the y-axis, it results in a sigmoid curve, as shown in
Figure[I[a). The linear violation scale (i.e. the x-axis) is converted to a sigmoidal curve in MaxEnt,
because it involves a logistic transformation (mﬁ) in calculating the probability distribution of
output candidates.
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Figure 1: (a) A sigmoid curve generated by MaxEnt. The function is defined as f(x) = Hﬁ
where N is linearly correlated with z, the number of violation marks assigned by S. The weight
of the constraint B functions as an intercept term for —N. (b) Multiple sigmoid curves, shifted by
multiple violations of P, resulting in a stripy wug-shaped curve.

When another constraint—call it P for “Perturber”—is at play, this sigmoid curve can be
shifted horizontally on the x-axis, yielding another sigmoid curve, which results in what Hayes
(2020) refers to as a wug-shaped curve. When this third constraint is violated twice, it yields
yet another sigmoid curve. Together, this whole scenario results in a stripy wug-shaped curve,
which is schematically shown in Figure[I[b). AsHayes|(2020) demonstrates, a stripy wug-shaped



curve is commonly observed in probabilistic phonological alternation patterns (Ernestus & Baayen
2003; McPherson & Hayes [2016} Zuraw & Hayes|2017), categorical perception of speech (Klu-
ender et al.||1988), diachronic changes in syntax (Kroch| 1989; Zimmermann|2017), and possibly
other linguistic domains Hayes| (2020) further demonstrates that these wug-shaped curves are
difficult to derive in another widely-used stochastic grammatical model, namely, Stochastic OT
(Boersmal [1998; Boersma & Hayes 2001). Hayes| (2020) thus concludes that to the degree that
wug-shaped curves are omnipresent in various linguistic patterns, support is provided for MaxEnt
being a useful tool to model linguistic knowledge that lies behind these probabilistic patternsE]

1.3 The current study

The current paper demonstrates that this quantitive prediction of MaxEnt holds in a particularly
clear manner in the domain of sound symbolism, systematic associations between sounds and
meanings (Hinton et al.[1994). The current experiment builds upon an earlier experiment reported
in Kawahara| (2020b), who manipulated the mora counts and the presence of a voiced obstruent in
nonce names. |[Kawahara (2020b) asked native speakers of Japanese whether each name is better
suited for a pre-evolution Pokémon character or a post-evolution character, the latter of which is
generally heavier and larger. The results of this experiment showed that varying the mora count of
nonce names increases the post-evolution responses in a sigmoidal manner. The experiment also
showed that the presence of a name-initial voiced obstruent horizontally shifts the entire sigmoid
curve, resulting in a wug-shaped curve. Expanding upon Kawahara (2020b)), the current experi-
ment varies the number of voiced obstruents from O to 2, which is fully crossed with mora count
differences, in order to examine whether this new manipulation results in a stripy wug-shaped
curve, illustrated in Figure [T[b).

To preview the results, this manipulation indeed results in what looks to be three separate sig-
moid curves, yielding a stripy wug-shaped curve. The Bayesian modeling analysis shows that we
can conclude, with a reasonable amount of confidence, that the three sigmoid curves are identical
and separated from one another (§3]and §4). A MaxEnt-based phonological analysis of the sound
symbolic connections found in the experiment shows that the sound symbolic patterns can indeed
be nicely modeled by MaxEnt HG, when we posit that MaxEnt HG mediates the mapping from
sound to meaning, with the sort of constraints that are used in the OT research tradition (§5). Over-
all, this paper provides further support to the recent proposal that MaxEnt HG is a useful tool to
model sound symbolic patterns (Kawahara et al.|[2019; Kawahara/2020b). Some intriguing paral-
lels between sound symbolic patterns and probabilistic phonological patterns are discussed at the
end of the paper (§0).

Before I proceed, I would like to highlight the novel contributions that the current paper makes
beyond Kawaharal (2020b). First, [Kawahara (2020b) only tested a distinction between the pres-
ence and absence of a voiced obstruent, and as such, the work was unable to address the question
of whether we would observe a stripy wug-shaped curve. The current experiment overcomes that

'See the website accompanying Hayes| (2020): https://linguistics.ucla.edu/people/hayes/
GalleryOfWugShapedCurves/index.htm. See also |[Harrison et al. (2002) and references cited therein for
sigmoidal curves in phonological diachronic changes.

2Noisy Harmonic Grammar (Noisy HG) can derive stripy wug-shaped curves as well, given certain assumptions
about how noise is added to the calculation of overall harmony (Hayes|2017)). Noisy HG, therefore, can be a viable
alternative to MaxEnt. Following Hayes| (2017, 2020), I will not attempt to tease apart these two theories, because the
difference in quantitative predictions that these two theories make can be very subtle.
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limitation by varying the number of voiced obstruents from O to 2. Second, as detailed below
(§3] and §4), a stripy wug-shaped curve entails that the slopes of all sigmoidal curves are identi-
cal. Whether this holds true or not cannot be addressed by a frequentist statistical analysis, which
Kawaharal (2020b)) adapted, because it cannot be used to “prove the null effect” (Gallistel |2009).
The current paper overcomes this limitation by making use of Bayesian analyses, which can quan-
tify the evidence for the null effect. Third, this paper used a better controlled stimulus set, thereby
removing some ambiguity in interpretation that Kawahara (2020b) was unable to resolve.

2 Methods

2.1 Background

The current experiment is a case study of Pokémonastics, a general research paradigm in which
researchers explore the nature of sound symbolic patterns in natural languages using Pokémon
names. I refer the readers to Kawahara & Breiss|(2021)) for recent overviews of the several research
advantages of this research program; here it suffices to note that Pokémon characters can undergo
evolution, and when they do so, they are called by a different name. The first Pokémonastics study,
which analyzed the existing Pokémon names in Japanese (Kawahara et al. 2018), pointed out that
the names of evolved characters tend to be longer, and are more likely to contain voiced obstruents;
for example, Anopusu evolves into Aamarudo, the latter of which is longer (4 moras vs. 5 moras)
and contains a voiced obstruent, [d].

The first sound symbolic principle is arguably an instance of what has been known as “the
iconicity of quantity” in the literature on sound symbolism, in which larger words tend to de-
note larger quantity (Dingemanse et al.[2015}; Haiman |1980), which may have a domain-general
cognitive basis (Marks||1978]). The second observation is perhaps rooted in the well-known ob-
servation in Japanese that voiced obstruents denote larger quantities (Hamano| 1998)). This sound
symbolic connection itself may be grounded in the expansion of the oral cavity which occurs dur-
ing the production of voiced obstruents (Ohala |1983)), or in the low frequency energy of voiced
obstruents (Kingston & Diehl/|1994), which is known to be associated with large images (via a
mechanism often referred to as the “Frequency Code”: |Ohala|[1994). Several experimental stud-
ies using nonce names have confirmed the productivity of these two sound symbolic patterns in
Japanese (Kawaharal[2020bj; Kawahara & Kumagai 2021)), as well as in other languages including
Brazilian Portuguese (Godoy et al. 2020) and English (Kawahara & Breiss|[2021) . The current
experiment makes use of these sound symbolic patterns in order to address the specific prediction
that MaxEnt makes, which was illustrated in Figure [I(b).

2.2 Stimuli

The current experiment heavily draws upon |Kawahara (2020b), who manipulated the mora counts
and the presence of a word-initial voiced obstruent in nonce names. Table (1| lists the stimuli of
the current experiment, in which dots represent mora boundaries. The experiment manipulated
both the number of moras and the number of voiced obstruents. Mora counts were varied from 2
to 6, which each corresponds to the minimum and maximum lengths that are allowed in the real
Japanese Pokémon names. Since the stimuli contained no heavy syllables, the mora boundaries and
syllable boundaries always coincided with each other in the current stimulus set. This is one aspect
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in which the current study improves upon Kawahara (2020b), whose stimuli included diphthongs
(e.g. [doiwanu]), failing to control for the syllable counts.

Table 1: The list of the stimuli used in the experiment. Dots represent mora boundaries, which
coincide with syllable boundaries.

0 ved obs 1 ved obs 2 ved obs

2 moras [su.tsu] [za.mu] [bu.zu]
[no.¢i] [gu.ka] [zi.da]
[jo.ni] [gi.ke] [da.za]
[ho.mu] [ba.ru] [ge.bu]
[ni.mi] [go.¢u] [go.de]

3 moras [ku.gci.me] [bu.ro.se] [da.bu.so]
[jo.ru.so] [go.se.he] [do.da.no]
[se.sa.ri] [bo.ma.sa] [ga.da.to]
[mu.su.ha] [gu.ne.ju] [bu.ge.ru]
[ri.to.no] [da.su.ro] [zi.de.mi]

4 moras [ku.ki.me.se] [bi.to.re.ni] [ba.de.ju.du]
[so.ha.ko.ni] [za.ni.te.ja] [bu.ga.so.ja]
[ra.¢i.no.ro] [ga.ci.ke.ro] [ze.ga.ki.¢u]
[ko.te.nu.ne] [da.ka.ni.ri] [ga.de.ha.wa]
[a.mo.¢i.ni] [do.ki.ra.nu] [gi.do.ke.he]

5 moras [ha.ku.te.¢i.no] [bi.so.¢u.sa.ta] [gi.ze.mi.ke.me]
[ro.ta.ra.na.to] [da.ra.su.to.ki] [ba.go.ki.ru.ke]
[so.ka.ne.ni.re] [de.mu.sa.te.he] [de.gu.mu.ra.tsu]
[ru.ri.ha.me.ke] [gi.a.so.ta.e] [do.gu.ha.ra.mu]
[sa.na.ci.ta.ni] [de.nu.ra.so.me] [bo.ga.to.he.ra]

6 moras [ju.ro.ka.mu.mo.ja] [gu.se.u.ci.ra.mo] [bo.da.ro.pu.so.¢u]
[mu.ku.ho.ro.ho.te] [go.na.pu.to.ko.so] [zu.ga.¢i.ne.te.so]
[ra.ha.ri.tei.ru.tsu] [doja.to.sa.mi.ta] [da.ga.su.me.ta.ra]
[ne.nu.he.mo.sa.nu] [da.na.ri.no.mi.ki] [be.ga.he.ra.ka.ro]
[ru.no.nu.ro.te.tgi] [zo.te.he.so.ju.ra] [gi.go.na.ke.to.sa]

In the current stimulus set, the mora count manipulation was fully crossed with another factor,
the number of voiced obstruents, varying from O to 2. Voiced obstruents, when they were present,
were placed either word-initially or in the first two syllables. The positions of voiced obstruents
were therefore consistent across all the mora count conditions.

Five items were included in each cell, resulting in a total of 75 items (5 mora conditions x 3
voicing conditions x 5 items). All the stimulus names were created using an online nonce name
generator, which combines Japanese moras randomly to create new names Since [p] is known to
have its own salient sound symbolic values, such as cuteness (Kumagai|2019)), this segment was

3http://sei-street.sakura.ne.jp/page/doujin/site/doc/tool_genKanaName.html
(last access, September 2020). Using a random generator is important, because it precludes the bias that the
experimenter may have prior to the design of the experiment (Westbury||2005). The items in the first two columns in
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not used in the current stimuli. Another potential factor is vowel quality, which was not controlled
in the experiment for two reasons. One is that [Kawahara et al. (2018) did not find a substantial
impact on vowel quality in the existing Pokémon names in Japanese; the other is that an attempt
to control for vowel quality, for example by using the same vowel in the whole names, resulted in
very artificial names, especially in long names.

2.3 Procedure

The experiment was distributed online using SurveyMonkey. The first page of the experiment
presented a consent form, which has been approved by the author’s institute. The instructions
stated that the participation in this experiment is completely voluntary, and that it requires some
basic familiarity with Pokémon. The participants were reminded that in the Pokémon universe,
there are pre-evolution characters and post-evolution characters, and that post-evolution characters
tend to be larger and stronger.

Within each trial, the participants were provided with one nonce name and were asked to judge
whether each name is better suited for a pre-evolution character or a post-evolution character. The
order of the stimuli was uniquely randomized for each participant. They were asked to make their
judgment based on their intuitions rather than thinking about “right” or “wrong” answers. The
stimuli were presented in the Japanese katakana orthography, which is used for real Pokémon
names. They were asked to read each name in their head before answering the questions.

2.4 Participants

The call for participation was primarily advertised on Twitter. A total of 144 native speakers of
Japanese completed the online experiment. Six participants reported that they had studied sound
symbolism. Four participants reported that they had participated in another Pokémonastics ex-
periment. The data from these ten participants were excluded. The data from the remaining 134
participants entered into the subsequent statistical analysis.

2.5 Statistical analyses

The result of the experiment was statistically assessed with a Bayesian mixed effects logistic re-
gression model, using the brms R package (Biirkner2017). For accessible introductory books to
Bayesian modeling, see Kruschke (2014) and McElreath (2020), the former of which is rather suc-
cinctly summarized in |[Kruschke & Liddell (2018]). Nicemboim & Vasishth|(2016) and Franke &
Roettger (2019) offer shorter tutorials on Bayesian analyses using linguistic examples. The paper
by Vasishth et al. (2018) provides a slightly more advanced overview of Bayesian analyses using
phonetic data.

Bayesian logistic regression analyses yield, for each estimated parameter, a posterior distribu-
tion, given our prior belief about the estimate and the data that are being analyzed. These posterior
distributions can be interpreted as directly reflecting our updated (un)certainty about the estimate,
after the data are observed. As a useful heuristics, for each estimate that we are interested in, we

Table were largely adapted from |Kawahara| (2020b)), who used the same online name generator. Some items, which
involved diphthongs (i.e. vowel sequences with falling sonority: | Kubozono|2015), were “hand-corrected” by inserting
a consonant, in order to control for the number of syllables in addition to the number of moras.



can examine the middle 95% of the posterior distribution, called the 95% Credible Interval (ab-
breviated as “95% CI”). One rule of thumb, which is roughly analogous to significance testing in
a more traditional frequentist approach, is that if the 95% CI does not include 0, we can be 95%
certain that that effect meaningfully impacts the responses. If the 95% CI includes 0, on the other
hand, we can examine its posterior distribution in closer detail and test how confident we can be
regarding its null effect (see §3|for further details).

In the current model, the dependent variable was the binary response obtained in the exper-
iment (0 = pre-evolution, 1 = post-evolution). The fixed predictor variables were mora counts
and the number of voiced obstruents, both of which were numerical, and hence centered (Winter
2019). The interaction between the two fixed factors was included, for reasons detailed below.
Random factors included free-varying random intercepts for participant and item, as well as ran-
dom slopes for both of the fixed effects as well as their interaction by participants. Four chains of
3,000 iterations were run, and the last 1,000 samples from each chain were analyzed. The default,
weakly-informative priors were used. All the R value was 1.00, indicating that the chains mixed
successfully.

Since the current model is based on logistic regression, a positive slope coefficient () indicates
that that factor increases post-evolution Pokémon responses. In the spirit of open science initiative
in linguistics (Winter|2019), the raw data as well as the analysis R code and all Bayesian posterior
samples are made available at the osf repositoryﬂ Interested readers are welcome to examine the
posterior samples in further detail.

Taking a Bayesian approach has two advantages for the current experiment. First, this method
makes it possible to fit the complex model with an interaction term together with a complex random
effect structure without convergence issues. Second, perhaps more importantly, the Bayesian ap-
proach allows us to gather evidence for the null results, rather than merely failing to reject the null
hypothesis (e.g. Gallistel| 2009; Kruschke 2014; [Kruschke & Liddell 2018). Examining whether
the interaction term plays a meaningful role or not is particularly important in the current experi-
ment for the following reason. A stripy wug-shaped curve consists of three identical wug-shaped
curves, which means that the interaction term between the mora count and the voiced obstruent
must be “null”, since the interaction term functions as a slope adjustment term (Winter|2019). In
order to be confident that we observe a (stripy) wug-shaped curve, it is necessary to show the null
effect of an interaction term, but this is possible only in a Bayesian framework, not in a frequentist
framework.

This is one clear limitation of Kawahara (2020b), who was unable to address this question,
because the analysis deployed by Kawahara/(2020b) was a frequentist analysis—the best that could
be concluded based on that analysis was that the interaction term was non-significant. The lack of
significance, however, only means that we cannot reject the null hypothesis that the slopes were
not identical. The Bayesian analysis presented in the current paper overcomes this limitation.

3 Results

Figure [2(a) plots “post-evolution response ratios” for each item, averaged over all the participants.
Red circles represent items which contain no voiced obstruents, green triangles show the results
of the items which contain one voiced obstruent, and blue rectangles show the results for the

4https://osf.io/tn6cu/?view_only=e3f71a5d09e54ca3a7e6191d969£023b
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condition which contains two voiced obstruents. The ggplot2 package (Wickham 2016) was
used to superimpose a logistic curve for each voicing condition. The three logistic curves appear
to be well separated from one another, just like the schematic stripy wug-shaped curve shown in

Figure[I|(b).

1.00 1.00+

i} A Rad i)
T“. 'A "(-“' A
£ 0.75 A OA £ 0.75- A
) Y % )
2] A [2]
5 % g
= ! vcdobs 2 vcdobs
2 0.50 it 0 ved obs 2 0.50 0 ved obs
s o = 1vcd obs S -4 1vcd obs
E i 2 ved obs E 2 ved obs
o o A
> > o
¢ A Q
4 0.254 % 4 0.25- ;
o '\ . o A
o8 - a P
S
0.00 1 0.001
2 3 4 5 6 2 3 4 5 6
mora counts mora counts

() (b)

Figure 2: (a) The by-participant averages for each item. To avoid overlap, the points were horizon-
tally jittered by 0.1. Logistic curves are superimposed using ggplot 2 for each voicing condition.
(b) The line-plots with grand averages for each voicing condition.

Figure [2(b) illustrates the overall results by presenting grand averages for each condition. This
analysis, unlike Figure 2[a), does not presuppose that sigmoid curves would fit the observed data
points well. Despite this, the general pattern looks like a stripy wug-shaped curve, consisting
of three separate sigmoid curves. For each curve, the slope is evidently steepest between the 3-
mora condition and 5-mora condition; on the other hand, the change from 2-mora to 3-mora or
the change from the 5-mora to 6-mora do not seem to impact the judgment as much. These are
characteristics of sigmoid curves, as observed in Figure [I{a). The slogan that Hayes| (2020) uses
to describe this observation is “certainty is evidentially expensive.” It requires very convincing
evidence to be certain that a particular name is for a pre-evolution character or for a post-evolution
character.

The model summary of the Bayesian mixed effects logistic regression analysis appears in Table
The intercept is negative; since both mora counts and the effects of voiced obstruents were cen-
tered, this negative intercept indicates that for names that are 4-mora long containing one voiced
obstruent, the post-evolution responses are lower than 50%. The slope of mora count was posi-
tive and its 95% CI does not include 0, which shows that increase in mora counts meaningfully
increased the probability of the names assigned to a post-evolution character. The slope of voiced
obstruents was also positive, and its 95% CI does not include 0. These results suggest that voiced
obstruents meaningfully increased post-evolution responses as well.

The 95% CI for the interaction term on the other hand includes 0. Addressing whether the
interaction term should be considered to be null is important, because if all the curves involve
the identical slope, as predicted by MaxEnt, then the interaction term should play no meaningful



Table 2: Summary of the Bayesian mixed effects logistic regression model.

£ error 95% CI
intercept -0.56 0.08 [-0.72,-0.40]
mora count 1.32  0.09 [1.14,1.51]
ved obs 0.49 0.08 [0.34,0.66]
mora count X vcdobs | 0.03 0.05 [-0.07,0.13]

role. To address this question, in this paper I make use of a ROPE analysis (Region Of Practical
Equivalence) (Kruschke & Liddell 2018; Makowski et al.[|2019). The basic idea is that we define
a range that is “close enough” to 0. A general rule of thumb is that if the 95% CI is contained in
that ROPE, then we can accept that null hypothesis to be true. Following |Makowski et al.| (2019),
I take the ROPE to range from -0.1 to 0.1 of a standardized parameter (= negligible effect size, as
defined by Cohen [1988). In logistic model, a standardized parameter can be approximated as \/ig
(Makowski et al.[[2019). The ROPE that is of interest therefore ranges from [-0.18, 0.18].

Since the 95% CI of the interaction term of the model (=[-0.07, 0.13]) is fully contained in
this ROPE, it is safe to conclude that the slopes between the three curves in Figure 2] are identical.
Moreover, we can calculate how many of the posterior samples are contained in this ROPE, using
the bayestestR package (Makowski et al.|2020). The result shows that 99.8% of the whole
posterior samples are contained in the ROPE—we are thus 99.8% certain that the three curves in
the current results are identical.

4 Discussion

I would like to first discuss in some detail whether the current experimental results shown in Fig-
ure |2 should indeed be considered to instantiate a stripy wug-shaped curve. The stripy wug-shaped
curve—as discussed by Hayes| (2020) and also as predicted by MaxEnt—has three defining fea-
tures: (1) it consists of multiple sigmoid curves, (2) they are separated from one another, and (3)
slopes of the sigmoid curves are identicalE]

The discussion at the end of §3|already shows that the current results satisfy the third require-
ment: the ROPE analysis shows that we can be 99.8% certain that the interaction term is null;
i.e. the slopes between the three curves should be treated as identical.

The second requirement is satisfied by the current data, since the 95% CI for the effect of
voicing does not contain 0; changes in the number of voiced obstruent meaningfully impacts the
post-evolution responses. One may still wonder whether all three curves are separated from one
another. This question is addressed by an additional analysis presented in the appendix, which

>Technically speaking, MaxEnt can generate a set of sigmoid curves whose slopes differ from each other, as long
as it admits a meaningful interaction term. Whether MaxEnt offers a suitable grammatical framework is one question,
but whether it should allow for meaningful interaction terms maybe a different, albeit related, question. In the context
of linguistic analyses (for which see §5), the second question can be restated as a question regarding whether we
should allow for a locally conjoined constraint in a MaxEnt grammatical model (Shih|2017). See Hayes| (2020) for
further discussion on this point. For now, I assume that different sigmoid curves should have the same slope in stripy
wug-shaped curves.
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shows that all three curves are indeed separated from each other.

The first feature—whether the data would be best fit with a sigmoidal curve—is the most
challenging aspect to defend. Linguistic data obtained in an experiment always involve some
natural variability, and they therefore never perfectly fit the mathematical definition of sigmoids.
Moreover, there are many mathematical functions that can be potentially fit to the data. We can
go so far as to fit a mathematical function which intersects every observed data point, but such a
function with high mathematical complexity would suffer from the general problem of overfitting
(Good & Hardin/[2006). For the current experiment, I maintain that it is a reasonable conjecture
that sigmoid functions fit the current data well, since there is a steeper increase in the middle range,
compared to the low and high ends of the x-axis continuum.

An obvious alternative candidate is a linear function, which is not suitable to model the current
results for two reasons. First, since we are dealing with the probability space, the y-axis needs to be
bound between 0 and 1, but there is nothing in a linear function that guarantees that this restriction
is met (Jaeger|2008). Second, a linear function does not capture the observation that the slope in
the middle range is steeper than the slopes in the low and high ends of the x-axis continuum.

It is not possible to examine every possible mathematical function here. However, generally
speaking, which mathematical function can and should be used to model linguistic data is a topic
that should be explored by cross-linguistic considerations. The current state of the field is that
we can be reasonably confident that sigmoids, generated by MaxEnt, are suited to model various
linguistic patterns (Breiss|2020; Breiss & Albright 2020; Hayes| 2020; Hayes & Wilson| 2008;
McPherson & Hayes 2016} Zuraw & Hayes|2017). With this, we turn to a full MaxEnt analysis of
the current experimental results in the next section.

Before proceeding, one additional note about the current results is in order. Unlike the idealized
mathematical shapes of stripy wug-shaped curves in Figure [I[b), the current wug-shaped curves
do not cap out at 1 or 0; i.e. even the most extreme conditions do not show 100% pre-evolution
responses or 100% post-evolution responses. This feature may be related to the nature of sound
symbolism, which is inherently stochastic (Kawahara et al. 2019). Given that a language is a
system that can associate sounds and meanings in arbitrary ways (Saussure |1916), it is unlikely
that all forms with particular phonological structures behave in the same way so that they are
deterministically associated to a particular meaning. Alternatively, it is possible that the current
experiment is simply tapping only the subset of the whole sigmoidal curves. This possibility can be
addressed by a new experiment using more extreme phonological properties (e.g. longer names).
A final possibility is that this feature is merely an artifact of noise that is unavoidable in any
behavioral tasks and/or due to uncontrolled factors like vowel quality.

5 A MaxEnt analysis

This section develops a MaxEnt analysis of the sound symbolic connections found in the experi-
ment, using the sort of constraints that have been used in the Optimality Theory research (Prince
& Smolensky|1993/2004). Before we proceed, I note at this point that mathematically, MaxEnt
is equivalent to multinomial logistic regression (Jurafsky & Martin/2019), and therefore there is
some conceptual overlap between the statistical analysis presented in §3and the MaxEnt analysis
presented in this section. However, the former was used to explore what we can conclude based
on the experimental results; on the other hand, the MaxEnt analysis presented in this section is a
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generative phonological analysis that is meant to model the knowledge that lies behind the patterns
observed in the experiment (see Breiss & Hayes| 2020 for useful discussion on this difference)ﬁ
I particularly find it important to show that we can build a generative phonological analysis of
sound symbolism, because sound symbolism had been a topic that was almost never seriously
addressed in the generative tradition (Alderete & Kochetov|2017; Kawahara|2020a)). To highlight
the fact that the analysis in this section builds on the generative phonological research tradition,
the set of constraints used below are those that are formulated using a constraint schema proposed
by McCarthy| (2003)).

Since there are already a number of papers that explain how MaxEnt works for linguistic anal-
yses (e.g.[Breiss & Hayes|2020; Hayes|2020; Hayes & Wilson|2008; | Kawahara|2020b; McPherson
& Hayes 2016;|Zuraw & Hayes|2017), I only provide a brief explanation in this paper. Just like OT,
output candidates are evaluated against the set of constraints, each of which is assigned a particular
weight. Each candidate receives a harmony score (), which is the weighted sum of constraint
violations: H = Y w;C;(x), where w; represents the weight of the i-th constraint and C;(x) rep-
resents how many times a candidate violates the i-th constraint. The harmony score is negatively
exponentiated (e~ or equivalently, eLH), which is proportional to the probability of each candi-
date. The more constraint violations a particular candidate incurs, the higher the harmony score
H, the lower e~ | and hence the lower the probability of that candidate. The e~# values for all the
candidates are summed into Z; i.e. Z = > (e );. The predicted probability of each candidate
25, p(x;), is 2,

The general idea that lies behind the analysis developed below is that we can understand sound
symbolism—mappings from sounds to meanings—just like phonological input-output mappings,
which is evaluated by a set of constraints that are familiar from traditional phonological research
(Kawahara et al. 2019} Kawahara 2020b). The set of constraints that were proposed by Kawahara
(2020b) can actually be directly applied to model the current results, which are shown in

(D) Constraints deployed in the current analysis, adapted from Kawahara (2020b)

a. *LONGPRE: Assign a violation mark for each mora in a pre-evolution character name.

b. *VCDPRE: Assign a violation mark for each voiced obstruent in a pre-evolution char-
acter name.

c. *POST: Assign a violation mark for each post-evolution name.

®Moreover, there are subtle but important differences between purely statistical logistic regression analyses and
linguistic MaxEnt analyses. For example, in logistic regression analyses, there is nothing that prevents slope coeffi-
cients to be negative or positive; in MaxEnt analyses, on the other hand, constraints are formulated so that they only
penalize—but not reward—particular structures or particular mappings between two representations. Whether or not
we can reward a constraint violation is at best a contended issue (Kaplan|2018)). Perhaps more strikingly, in logistic
regression analyses, it is recommended that we center a continuous variable (Winter|2019), as we did in Directly
translating this practice into linguistic MaxEnt analyses amounts to admitting constraints to reward some constraint
violations and penalize other violations. To the best of my knowledge, no such proposals have been put forward within
a constraint-based analysis of linguistic patterns. Finally, several researchers proposed to impose particular formal re-
strictions on the set of constraints admitted by UG (McCarthy| 2003} |Potts & Pullum|2002)); statistical analyses on the
other hand do not have such limits on the choice of predictor variables. Overall, linguistic MaxEnt analyses are more
restrictive than purely logistic regression analyses. Exploring this difference may be a way to address the question of
how UG is different from a purely statistical learning device.

"One may object that constraints used in OT/MaxEnt analyses should not refer to arguably Pokémon-specific
notions such as “evolution.” An alternative formulation is to replace the notion of evolution with size, because size is
a semantic dimension that is signaled by sound symbolism in various languages (Sidhu & Pexman|2018))).
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The first constraint is a formal expression of “the iconicity of quantity” (Haiman||1980), which
prefers long names to be used for post-evolution characters. This constraint corresponds to the
scalar constraint S' that was used to schematically illustrate a stripy wug-shaped curve in Fig-
urdI|(b). The second constraint prefers that names with voiced obstruents be used for post-evolution
character names, and this corresponds to the perturber constraint P that was used in FigurdI|(b).
The last constraint penalizes post-evolution character names in general, which corresponds to the
binary constraint 5. This constraint serves as a “baseline” constraint, determining the general
preference for pre-evolution characters.

The MaxEnt tableaux for all the conditions are shown in The leftmost column shows
the input forms (i.e. the phonological forms), and the second column shows the outputs (i.e. the
two semantic meanings, pre-evolution character names vs. post-evolution character names). The
constraint violation profiles are shown in the next three columns. The observed percentages of each
condition are shown in the rightmost column, which were taken from the grand averages obtained
in the experiment.

2) The MaxEnt Tableaux

w=0.93 w =0.40 w=4.55
m
£ £
g z %
3 S e
Input Output * * * Harmony (H) el Predicted Observed
2 moras, vls Pre 2 1.86 0.155 93.65 94.18
Post 1 4.55 0.011 6.35 5.82
3 moras, vls Pre 3 2.79 0.061 85.32 86.42
Post 1 4.55 0.011 14.68 13.58
4 moras, vls Pre 4 3.72 0.024 69.60 75.97
Post 1 4.55 0.011 30.40 24.03
5 moras, vls Pre 5 4.66 0.010 47.44 39.10
Post 1 4.55 0.011 52.56 60.90
6 moras, vls Pre 6 5.59 0.0037 26.24 30.45
Post 1 4.55 0.011 73.76 69.55
2 moras, 1 ved | Pre 2 1 2.27 0.104 90.77 84.48
Post 1 4.55 0.011 9.23 15.52
3 moras, 1 ved | Pre 3 1 3.20 0.041 79.49 81.49
Post 1 4.55 0.011 20.51 18.51
4 moras, 1 ved | Pre 4 1 4.13 0.016 60.43 64.93
Post 1 4.55 0.011 39.57 35.07
5 moras, 1 ved | Pre 5 1 5.06 0.006 37.58 26.87
Post 1 4.55 0.011 62.42 73.13
6 moras, 1 ved | Pre 6 1 5.99 0.0025 19.18 21.94
Post 1 4.55 0.011 80.82 78.06
2 moras, 2 ved | Pre 2 2 2.67 0.069 86.77 85.82
Post 1 4.55 0.011 13.23 14.18
3 moras, 2 ved | Pre 3 2 3.60 0.027 72.10 75.52
Post 1 4.55 0.011 27.90 24.48
4 moras, 2 ved | Pre 4 2 4.53 0.011 50.46 55.82
Post 1 4.55 0.011 49.54 44.18
5 moras, 2 ved | Pre 5 2 547 0.004 28.65 22.54
Post 1 4.55 0.011 71.35 77.46
6 moras, 2 ved | Pre 6 2 6.40 0.002 13.66 15.82
Post 1 4.55 0.011 86.34 84.18

Based on the constraint profiles and the observed percentages of each output form, the optimal
weights of the three constraints were calculated using the Solver function of Excel (Fylstra et al.
1998) so as to maximize the log-likelihood of the data with respect to the model. The Excel sheet
used to calculate the optimal weights and the predicted values is available at the osf repository
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mentioned aboveﬂ The weights were not allowed to be negative or higher than 50. The weights
that were obtained by this analysis are shown at the top row of the tableaux, from which we
can calculate the predicted values using the procedure that is outlined at the beginning of this
section. The values that are predicted by the MaxEnt analysis are shown in the penultimate column.
Comparing the last two columns of these tableaux, the match between the observed percentages
and predicted percentages generally seems to be very good.

Before closing this section, some remarks on Stochastic Optimality Theory (Stochastic OT)
are in order. Stochastic OT is an alternative framework which has been used to model probabilistic
phonological patterns (Boersma| 1998, Boersma & Hayes 2001} |[Zuraw| 2000). It is no different
from Classical OT at each time of evaluation. However, constraints are assigned ranking values,
and these values can be perturbed by a Gaussian noise, which derives probabilistic variations.
One challenge that this framework faces in modeling the current dataset is that it cannot handle
counting effects in general (Hayes|2020; Jager 2007; McPherson & Hayes|2016; [Zuraw & Hayes
2017). The problem is that since each evaluation trial proceeds as in Classical OT with strict
domination (Prince & Smolensky|1993/2004), if *POST dominates *LONGPRE at a particular
time of evaluation, a pre-evolution character wins no matter how long the name under evaluation
is. Similarly, if *VCDPRE dominates *POST, a post-evolution character wins regardless of how
many voiced obstruents that name contains. Stochastic OT therefore does not handle the effects of
different mora counts or voiced obstruents. In Stochastic OT, therefore, it is necessary to expand
*LONGPRE and *VCDPRE into sets of multiple constraints (Boersmal|1998; McPherson & Hayes
2016)): i.e. *!LONGPRE3MORA, *LONGPRE4MORA, *LONGPRESMORA , *LONGPRE6MORA,
*ONEVCDPRE and *TWOVCDPRE (see |Kawahara 2020b for a full implementation of an analysis
of his data using a set of *LONGPREXMORA constraints). All in all, then, Stochastic OT requires
four additional free parameters than MaxEnt (i.e. seven free parameters vs. three free parameters).
See |[Hayes| (2020), Kawahara (2020b)) and Zuraw & Hayes|(2017) for further discussion on some
challenges that Stochastic OT faces in modeling wug-shaped curves.

6 Conclusion

The descriptive findings of the current experiments can be summarized as follows: (1) the numbers
of mora count affect the judgment of evolvedness in Pokémon names, (2) the numbers of voiced
obstruents also affect the judgment of evolvedness, and (3) these two effects are additive, which re-
quires no meaningful interaction term when modeling the data. The effects of mora count resulted
in what looks to be sigmoidal functions. The three sigmoidal curves together result in what|Hayes
(2020) refers to as a stripy wug-shaped curve. Since a stripy wug-shaped curve is a quantitative
signature that MaxEnt is predicted to generate, it provides support for the thesis that MaxEnt is a
useful tool to model sound symbolic patterns, and perhaps more broadly, linguistic patterns.

The stripy wug-shaped pattern in sound symbolism found in the current experiment draws an
intriguing parallel to the recent observation made in the analyses of probabilistic phonological
alternation patterns, including devoicing pattern in Dutch (Ernestus & Baayen/2003)), vowel har-
mony in Tommo So (McPherson & Hayes||2016) as well as liaison in French, nasal substitution in
Tagalog, and vowel harmony in Hungarian (Zuraw & Hayes 2017)—see [Hayes| (2020) for other
potential cases. Traditionally, sound symbolism has been viewed to reside outside the purview

8The supplementary material also contains a tutorial video on how to calculate optimal weights using Excel.
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of phonological analyses, although some recent proposals argue that sound symbolic principles
should be integrated with the “core” phonological grammar (Alderete & Kochetov|2017}; Kuma-
gai|2019). In line with these arguments, we can echo Kawahara’s (2020b) claim that there may
be a meaningful parallel between sound symbolic patterns and other phonological patterns. Sup-
pose that the current proposal—that MaxEnt HG equipped with OT-style constraints is a useful
tool to model sound symbolism—is on the right track, and also suppose that MaxEnt is suited to
model phonological, and perhaps other linguistic patterns as well, as many previous studies have
shown. Taken together, then, it points to a conclusion that the same mechanism may be regulating
sound symbolic mappings and phonological patterns. I submit that this is an interesting hypothesis
that can and should be explored more extensively in future research, especially given that sound
symbolism did not receive much attention from theoretical phonologists in the past.

Appendix

One question that may be raised regarding the conclusion that the three sigmoid curves are all
separated from one another in the current experiment (§4)) is that the current Bayesian regression
analysis coded the effects of voiced obstruent as a numerical variable, rather than a three-level
categorical variable. This numerical coding was theoretically motivated, because we are interested
in how the number of voiced obstruents affected the post-evolution responses. This is reflected in
the way the *VCDPRE constraint is formulated in the MaxEnt analysis (§3) as well—it assigns a
violation mark for every instance of a voiced obstruent in a pre-evolution character name.

Nevertheless, recall that one major difference between the current experiment and Kawahara
(2020Db)) is the addition of the contrast between 1 voiced obstruent and 2 voiced obstruents. There-
fore, it would be informative to more directly show that the difference that arises from this new
experimental manipulation is credible. In order to address this issue, the Bayesian logistic regres-
sion model was rerun with the effect of voicing treated as an unordered categorical factor with “1
voiced obstruent” as the reference level (coded as O because this variable was centered). Since
Bulk ESS and Tail ESS were too high with 3,000 iterations with 1,000 warmups, this new analysis
ran 5,000 iterations with 2,000 warmups. Other aspects of the analysis were the same as the one
reported in the main body of the paper. All the R values were 1.00. See Supplementary Material
A for complete details.

The results, summarized in Table [3] show that the difference between 0 vs. 1 voiced obstruent
and the difference between 1 vs. 2 voiced obstruents both meaningfully impacted the post-evolution
responses. These results show that the three sigmoidal curves are separated from one another,
even if we consider the three different voicing conditions as three manifestations of an unordered
categorical factor. In short, the difference between 1 voiced obstruent and 2 voiced obstruents,
which [Kawahara! (2020b)) was unable to test, credibly affected Japanese speakers’s responses.

Neither of the interaction terms were at first sight very credible, because their 95% ClIs contain
0. However, the 95% Cls for the interaction terms are not fully contained in the ROPE of the
hypothesis that they should indeed be treated as null (=[-0.18, 0.18]). Thus I further examined the
posterior distributions of these two interaction terms using bayestestR (Makowski et al.[2020),
and found that 75% and 70% of the whole posterior distributions are contained in this ROPE. This
result indicates that we can be at least 70% certain that the slopes between the three slopes are
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Table 3: Summary of the Bayesian mixed effects logistic regression model, in which the voicing
effect is coded as an unordered categorical variable.

B error 95% CI
intercept -041 0.11 [-0.63,-0.19]
mora count 1.25 0.11 [1.05,1.47]
ved obs (0 vs. 1) -0.74 0.15 [-1.03,-0.45]
vcd obs (1 vs. 2) 0.28 0.14 [0.01, 0.55]
vedobs (Ovs. 1) x mora | 0.11 0.10 [-0.09, 0.31]
ved obs (1 vs.2) x mora | 0.13 0.10 [-0.06, 0.32]

identical in this analysis[]

Additionally, this new analysis shows that the difference between the 0 voiced obstruent con-
dition and the 1 voiced obstruent condition seems to be larger than the difference between the 1
voiced obstruent condition and the 2 voiced obstruent condition. To visualize, Figure [3 shows the
distributions of posterior samples of the two relevant slope coefficients, which play a role in char-
acterizing the log-odds of post-evolution responses. Since all the posterior samples for the first
difference were negative, I took the absolute values to compare the differences in magnitude. This
analysis shows that the slope for the shift from O voiced obstruent to 1 voiced obstruent generally
shows posterior samples that are larger in magnitude than the slope for the shift from 1 voiced
obstruent to 2 voiced obstruents. Only less than 2.8% of the time (i.e. 340 out of 12,000) was the
second slope larger in magnitude than the first slope. One way to understand this observation is to
consider this as a case of non-linear (more specifically, sub-linear) counting cumulativity in sound
symbolism (Kawahara & Breiss|[2021} see also |Breiss & Albright 2020).

comparison

[ zeroOne
] oneTwo

density

04

0.0 05 10
Posterior samples of slope coefficients

Figure 3: The distributions of posterior samples of the two voicing differences.

Following suggestions by Makowski et al.[(2019, 2020), I tested several ranges of CIs: 79% and 73% of the 89%
CIs are included in the ROPE, and 77% and 71% of the 95% CIs are included in the ROPE.
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