
Proceedings of SALT 30: 000–000, 2020

Montague Grammar Induction*

Gene Louis Kim
University of Rochester

Aaron Steven White
University of Rochester

Abstract We propose a computational modeling framework for inducing combina-
tory categorial grammars from arbitrary behavioral data. This framework provides
the analyst fine-grained control over the assumptions that the induced grammar
should conform to: (i) what the primitive types are; (ii) how complex types are
constructed; (iii) what set of combinators can be used to combine types; and (iv)
whether (and to what) the types of some lexical items should be fixed. In a proof-
of-concept experiment, we deploy our framework for use in distributional analysis.
We focus on the relationship between s(emantic)-selection and c(ategory)-selection,
using as input a lexicon-scale acceptability judgment dataset focused on English
verbs’ syntactic distribution (the MegaAcceptability dataset) and enforcing standard
assumptions from the semantics literature on the induced grammar.
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1 Introduction

Semantic theories aim to capture two kinds of facts about languages’ expressions:
(i) their distributional characteristics; and (ii) their inferential affordances. The
descriptive adequacy of any such theory is evaluated in terms of its coverage of these
facts—an evaluation that is commonly carried out informally on a relatively small
number of test cases. While this approach to theory-building and evaluation has
yielded deep insights, it also carries significant risks: generalizations that appear
unassailable based a small number of high-frequency examples (and theories built
on them) can collapse when evaluated on a more diverse range of expressions
purportedly covered by the generalization (see White accepted for recent discussion).

Ameliorating these risks requires developing scalable methods for building and
evaluating semantic theories. Until recently, a major obstacle to developing such
methods was that sufficiently large-scale behavioral datasets were not available. This
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situation has changed with the advent of lexicon-scale acceptability and inference
judgment datasets, such as the MegaAttitude datasets (White & Rawlins 2016, 2018,
accepted; White, Rudinger, Rawlins & Van Durme 2018; An & White 2020; Moon
& White 2020). Concomitant advances in computational modeling have cleared
the way for automating distributional and inferential analysis for the purposes of
theory-building and evaluation. The remaining challenge is one of integration.
On the one hand, powerful methods for learning structured representations from
corpus data and (to some extent) behavioral data now exist (Le & Zuidema 2014,
2015; Williams, Drozdov & Bowman 2018; Shen, Lin, Huang & Courville 2018;
Kim, Rush, Yu, Kuncoro, Dyer & Melis 2019; Drozdov, Verga, Chen, Iyyer &
McCallum 2019a; Drozdov, Verga, Yadav, Iyyer & McCallum 2019b), but the
relationship between these models’ representations and grammars posited under
standard frameworks (Montague 1973 et seq) assuming some form of (combinatory)
categorial grammar (Steedman 2000) remains unclear.1 On the other hand, powerful
methods for inducing such grammars now exist (Zettlemoyer & Collins 2005,
2007, 2009; Kwiatkowksi, Zettlemoyer, Goldwater & Steedman 2010; Kwiatkowski,
Zettlemoyer, Goldwater & Steedman 2011; Bisk & Hockenmaier 2012a,b, 2013,
2015), but they do not straightforwardly generalize to the full range of behavioral
data of interest in experimental semantics.

To address these limitations, we propose a general deep learning-based, com-
putational modeling framework for inducing full-fledged combinatory categorial
grammars from multiple distinct types of behavioral data. Beyond providing the
ability to synthesize arbitrary distributional and inferential data within a single
model, our framework provides the analyst fine-grained control over the assumptions
that the induced grammar should conform to: (i) what the primitive types are (e.g.
e, s, t, etc.); (ii) how complex types are constructed (e.g. that ⟨t1, t2⟩ is a type if t1
and t2 are types); (iii) what set of combinators can be used to combine types (e.g.
application, composition, etc.); and (iv) whether (and to what) the types of some
lexical items should be fixed. As a proof of concept, we deploy our framework
for use in distributional analysis. We focus, in particular, on the relationship be-
tween s(emantic)-selection and c(ategory)-selection, using as input a lexicon-scale
acceptability judgment dataset focused on English verbs’ syntactic distribution (the
MegaAcceptability dataset; White & Rawlins 2016, accepted) and enforcing standard
assumptions from the semantics literature on the induced grammar. As a case study,
we analyze the typing that the induced grammar infers for clausal complements.
Clausal complements are useful in this regard, since their syntactic complexity
provides a rigorous test of our framework’s ability to recover interpretable types.

1 Other systems assume prior knowledge of some, often quite exquisite, structure (see Baroni, Bernardi
& Zamparelli 2014 and references therein). We focus here on systems that learn said structure.
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Montague Grammar Induction

We begin with some brief background on the deep learning-based approach to
grammar induction that we build on (§2). We then describe how we extend that
approach to learn full-fledge combinatory categorial grammars (§3) before turning to
our proof-of-concept experiments with the MegaAcceptability dataset (§4) and the
results of these experiments (§5). We conclude with a discussion of future directions
for our framework (§6).

2 Deep learning-based approaches to grammar induction

Our framework fits within the broader context of grammar induction (or gram-
matical inference; see Heinz & Sempere 2016 for recent reviews)—in particular,
distributional learning-based approaches (see Clark & Yoshinaka 2016 for a recent
review). The goal of a grammar induction system is to produce a grammar for some
language based on a dataset containing (at least) well-formed expressions of that
language. These datasets may simply be (multi)sets or sequences of such expressions
or they may further associate labels with expressions or sequences thereof—e.g.
associating a (possibly malformed) expression with its acceptability or a pair of
expressions with a label indicating whether the first entails the second. We focus
specifically on supervised grammar induction, wherein some labeling of expressions
is assumed, since most behavioral datasets fit this description.

The grammars (or weightings thereon) output by such a system can take a variety
of forms. Here, we build on grammar induction systems that learn to encode both
expressions and grammars in a vector space, treating the problem as one of training
the parameters of a machine learning model to predict the labels in some dataset—
e.g. to predict acceptability or entailment. A major benefit of using such a system
is that it is straightforward to train on arbitrary behavioral data (see Potts 2019 for
further discussion): given a way of mapping expressions to vectors, those vectors
can be input to standard regression models from the experimental literature and
off-the-shelf optimization routines employed to jointly train the grammar induction
system and regression model (see Goldberg 2017 for a technical review).

We specifically build on recently developed methods that generalize the inside-
outside algorithm (Baker 1979) for training probabilistic syntactic parsers to vector
space syntactic parsers. These methods recursively construct vector representations
of expressions aimed at capturing their syntactic features and/or semantic properties.
These methods have two interlocking components: (i) a generalization of the inside
algorithm, which constructs a vector representation for an expression based on the
vector representations of its subexpressions; and (ii) a generalization of the outside
algorithm, which constructs a vector respresentation for an expression based on
the vector representations of surrounding expressions (Le & Zuidema 2014, 2015;
Drozdov et al. 2019a,b). The former can be thought of very roughly as implementing
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a parameterized version of Minimalism’s MERGE (or similar “bottom-up” opera-
tions); and the latter can be thought of (again, very roughly) as implementing a
parameterized version of Minimalism’s AGREE (or similar “top-down” operations).

Both the inside and outside algorithms compute probabilities relative to a string
and a probabilistic context free grammar (see Manning & Schütze 1999 for an
in-depth discussion). But for understanding the relevance of these algorithms here, it
is possible to ignore the probabilistic aspects, starting by assuming a vanilla context
free grammar (CFG) in Chomsky Normal Form—i.e. with rules of the form A→ B C
or A→ w, where A, B, and C nonterminals and w a terminal—and then generalizing.

In this non-probabilistic context, the inside algorithm is analogous to the CKY
algorithm for recognition and parsing (Younger 1967): given a grammar G and a
sentence S consisting of a sequence of words w0...w∣S∣−1, the algorithm computes,
for each subsequence of words wi∶ j = wi...w j−1 in S (where 0 ≤ i < j ≤ ∣S∣), the set
Ni j of nonterminals that could yield wi∶ j—i.e. the nonterminals for which some
sequence of rewrites would result in wi∶ j. These sets are computed recursively: let

Ni(i+1) ≡ UNARYG(wi) for 0≤ i< ∣S∣ and Ni j ≡⋃ j−1
k=i+1 COMBINEG(Nik,Nk j) for 0≤

i < j−1 < ∣S∣, where UNARYG(w) = {A ∣ (A→ w) ∈ G} and COMBINEG(N,N ′) =
⋃⟨B,C⟩∈N×N ′{A ∣ (A→ B C) ∈ G} (see Shieber, Schabes & Pereira 1995).

Defined in this way, Ni j specifies what kinds of constituent wi∶ j could be (e.g.
a noun phrase, a verb phrase, etc.), ignoring the rest of the sentence. The non-
probabilistic analogue of the outside algorithm computes Oi j: what kinds of con-
stituent wi∶ j could be considering only the parts of the sentence outside wi∶ j. The
intersection Ni j∩Oi j then indicates all and only the kinds of constituents wi∶ j could
be in the context of the entire sentence. Like Ni j, Oi j is computed recursively: assume

a fixed O0∣S∣ and let Oi j ≡⋃∣S∣
m= j+1 SPLIT

R
G(Oim,N jm)∪⋃i−1

m=0 SPLIT
L
G (Om j,Nmi) for

0 ≤ i < j− 1 < ∣S∣, where SPLIT
R
G(O,N) =⋃⟨A,C⟩∈O×N{B ∣ (A→ B C) ∈ G} and

SPLIT
L
G(O,N) =⋃⟨A,B⟩∈O×N{C ∣ (A→ B C) ∈ G}.

Importantly for our purposes, this algorithm does not require the grammar
to be a CFG or even a probabilistic generalization thereof. For example, with
straightforward modifications to UNARY, COMBINE, SPLIT

L, and SPLIT
R, it can be

adapted to arbitrary combinatory categorial grammars (CCGs) and therefore the
sorts of type grammars familiar in semantic theory. UNARY returns the set of types
listed for (the denotation of) a word; and given some set of combinators C—e.g.
APPLICATION, COMPOSITION, etc.—COMBINEG(N,N ′)=⋃⟨t,t ′⟩∈N×N ′{c(t, t ′) ∣ c∈

C∧⟨t, t ′⟩∈ dom(c)} (with SPLIT
L and SPLIT

R analogously defined). This possibility
becomes important for our framework, discussed in detail in §3.

The generalization of these algorithms to vector spaces involves four main
changes: (i) substituting terminals with vectors in Vlex = RMlex and sets Ni j,Oi j with

4



Montague Grammar Induction

vectors in Vnode = RMnode ; (ii) substituting the function UNARY with a parameterized
function from Vlex to Vnode and the functions COMBINE, SPLIT

R, and SPLIT
L with

parameterized functions from V2
node to Vnode; (iii) substituting unions with weighted

vector sums; and (iv) substituting intersections and products with vector concatena-
tions.2 The analogue to the symbolic grammar G is then the mapping from terminals
to vectors and the parameterization of these functions.

More specifically, we define inside vectors h△i j , analogous to Ni j, and outside
vectors h▽i j , analogous to Oi j. Assuming some mapping from w0...w∣S∣−1 to a
sequence of vectors x0...x∣S∣−1 and that h△i(i+1) = UNARY(xi) for 0 ≤ i < ∣S∣:

h△i j =

j−1

∑
k=i+1

αi jkCOMBINE(h△ik ⊕h△k j) where ααα i j = ATTEND
⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h△i(i+1)⊕h△(i+1) j
. . .

h△i( j−1)⊕h△( j−1) j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

where ⊕ denotes vector concatenation and ααα i j is a vector of non-negative weights

such that∑ j−1
k=i+1 αi jk = 1.3 These weights can be thought of as probabilities, serving

to indicate which subexpressions wi∶k and wk∶ j likely form the expression wi∶ j.
The outside vectors are analogously defined:

h▽i j =

∣S∣
∑

m= j+1

αim jSPLIT
R (h▽im⊕h△jm)+

i−1

∑
m=0

αm jiSPLIT
L (h▽m j⊕h△mi)

On analogy with Ni j∩Oi j providing a complete picture of wi∶ j in the context of S,
we then take the concatenation h⋄i j = h△i j ⊕h▽i j as the representation for wi∶ j, using it
to predict arbitrary labels on wi∶ j. In §4, we describe how we train w0∶∣S∣ to predict
the acceptability of S. But our aim is to go beyond merely predicting acceptability:
we furthermore aim to induce a coherent symbolic typing on all nodes.

3 Integrating symbolic types

Building on the model described in §2, we propose a framework for jointly inferring
a sentence’s syntactic structure and a coherent mapping from that syntactic structure
to semantic types from arbitrary behavioral data. To the vector space syntactic parser

2 Unless otherwise specified, we implement parameterized functions as multi-layer perceptrons with
a single LeakyReLU hidden layer of the same size as the output (Maas, Hannun & Ng 2013):
MLP(x)=W1LeakyReLU(W2x+b2)+b1, where the Ws and bs are the parameters to be optimized.

3 ATTEND is implemented with additive attention (Bahdanau, Cho & Bengio 2015), a standard deep-
learning method of modeling weighted judgments with parameterized functions, ATTEND(X) =
σ(v⊤tanh(XW)), where σ is the softmax function, σ(x) = [ ex1

Σ je
x j ,

ex2

Σ je
x j , ...].
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described in §2, we add two components: (i) a vector space interpretation function
that implements J⋅K as a parameterized function INTERPRET from the syntactic
parser space Vnode to a denotation space Vinterp =RMinterp ; and (ii) a vector space type
grammar that takes vector representations produced by the interpretation function
and returns the associated symbolic type (or a distribution thereon).

The high-level idea behind our framework is to train the parser, the interpretation
function, and the type grammar to produce an assignment of types to expressions
that is coherent in the sense that some type (possibly, but not necessarily, a specific
type, like ⟨s, t⟩) can be derived for the entire sentence from the types assigned to its
subexpressions. We first describe the type grammar (§3.1) and then describe how we
enforce type coherence during training (§3.2). Throughout, we assume a standard
recursive definition for the set of types T , given primitive types P—e.g. e, s, and t.

T0 ≡ P Ti ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

i−1

⋃
j=0

T j

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×D×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

i−1

⋃
j=0

T j

⎤⎥⎥⎥⎥⎥⎥⎥⎦
T ≡

∞

⋃
i=0

Ti

where the set of type constructors D is a singleton here, but could be straightfor-
wardly extended—e.g. for representing directed types, as in standard and modal
syntactic CCG (Steedman 2000; Baldridge 2002), or more exotic types, as in gener-
ative lexicon theory (Asher 2011; Pustejovsky 2013; Asher & Pustejovsky 2013).

Throughout this section, we focus only on structural aspects of our framework,
specifying how its components hang together. We defer discussion of how we train
the parameters of each component to carry out its intended function to §4.

3.1 Type grammar

The type grammar consists of four components: (i) a set of primitive type embed-
dings xt for primitive types t ∈ P and type constructor embeddings xd for d ∈D; (ii)
a type encoder (§3.1.1), which maps symbolic types t ∈ T to their vector space type
embeddings τττ t ; (iii) type decoders (§3.1.2), which implement vector space combina-
tors and map from the type embeddings corresponding to the combinator arguments
to (a distribution over) the resulting types; and (iv) a combinatory controller (§3.1.3),
which determines which combinator to use for combining a pair of types.4

4 Our actual implementation of the type encoder uses a stacked binary tree long-short term memory
network (binary tree bi-LSTMs; Le & Zuidema 2015; Tai, Socher & Manning 2015; Miwa & Bansal
2016) and the implementation of the type decoders uses a unidirectional variant. We give a somewhat
simplified treatment below that ignores bidirectionality, stacking, and the distinction between hidden
states and cell states because they are not relevant to understanding the core ideas.
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3.1.1 Type encoder

The type encoder views types as binary trees—e.g. ⟨e,⟨e, t⟩⟩ and ⟨⟨e,e⟩, t⟩ are
viewed as right-branching and left-branching trees, respectively, both with leaves e,
e, and t. It recursively maps these binary type trees to type embeddings by defining
the embedding τττ t of complex type t = [d t0 t1] in terms of embeddings of its (possibly
complex) constituent types t0 and t1 and the type constructor d using parameterized
functions WRAP and CONSTRUCT.

τττ t = {WRAP (xt) if t ∈ P
CONSTRUCT (xd,τττ t0 ⊕ τττ t1) if t = [d t0 t1]

3.1.2 Type decoders

Type decoders implement combinators of M arguments (here, M is always 1 or 2)
by taking M type embeddings and outputting a probability distribution over output
types. For instance, a type decoder implementing the identity combinator should
take τττ t and yield a probability distribution that assigns a probability to t of approx-
imately 1, while a type decoder implementing the application combinator should
take τττ⟨t0,t1⟩ and τττ t0 and yield a probability distribution that assigns a probability
to t1 of approximately 1. The reason that we need these combinators to produce
probability distributions rather than types, is that multiple types may be compatible
with a certain expression—e.g. because it is ambiguous—and so, when we apply
these decoders to the vector space interpetation of an expression, we need to allow
for multiple types—even if, when applied to a type embedding, we only want the
decoder to yield the single correct type.

Type decoders can be thought of as the reverse of encoders, “reading” a distribu-
tion over symbolic types off of a vector space embedding. Each decoder consists of
three parameterized functions: (i) STRUCTURE, which determines the probability
that the decoder produces a primitive type v. a complex type; (ii) PRIMITIVE, which
determines which primitive type to select if the decoder chooses to produce a prim-
itive type; and (iii) FACTOR, which determines how to update the decoder’s state
based on its previous state (by “factoring out” the previous decision to recurse from
the state).5 The start state of the decoder is always the input type embedding(s).

For ease of exposition, we describe how a single type would be sampled from
the distribution defined by STRUCTURE, PRIMITIVE, FACTOR, and the input type
embedding(s), though it is also possible to determine the probability of particular
types as well as the most likely types using related procedures. Starting with the
input embedding(s) τττ , the SAMPLE(τττ) procedure chooses to generate a complex type

5 When D is a non-singleton, a fourth parameterized function is required for selecting the constructor.
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with probability θcomplex = STRUCTURE(τττ) and a primitive type with probability
1− θcomplex. If it chooses to generate a primitive type, it chooses that primitive
type based on primitive type probabilities θθθ primitive = PRIMITIVE(τττ) and returns it;
otherwise, it returns ⟨SAMPLE(τττ

′
0), SAMPLE(τττ

′
1)⟩, where ⟨τττ ′0,τττ ′1⟩ = FACTOR(τττ).

3.1.3 Combinatory controller

When types are represented symbolically, it is straightforward to determine whether
they are in the domain of a combinator and, if not, whether type raising one of the
types—i.e. mapping t ∈ T to ⟨⟨t, t ′⟩, t ′⟩ for some t ′ ∈ T —would make them so.
When types are represented as vectors, this is not the case (except in the case of the
identity combinator, which can apply to any type embedding).

To deal with this issue, we need some way of selecting (i) which combinator to
use for decoding the input; (ii) whether to type-raise one of the children; and (iii) if
a particular child is to be raised, which type to raise that child to. In addition, we
need to define how raising is carried out in a vector space.

These decisions are made based on a set of combinatory action types A, which
are triples specifying which combinator to use and whether to raise the left type, right
type or neither, as well as two parameterized functions: (i) ACTION, which selects an
action type from A for τττ and τττ

′ based on φφφ
(action)

= ACTION (τττ,τττ
′); and (ii) RAISE,

which selects a type with which to raise τττ with probability φφφ
(raise)

= RAISE(τττ)
(e.g. if t is selected to raise τττe, τττ⟨⟨e,t⟩,t⟩ should result).6 To implement type raising
of τττ t with t ′, we run the type encoder on a type embedding tree [xd[xd τττ τττ t ′] τττ t ′]
corresponding to the raised type, as though τττ t were a primitive type embedding.

3.2 Optimizing type coherence

In order to learn an interpretation function from the syntactic parser space to the
denotation space that produces coherent types, we minimize what we term a type
coherence loss between the type assigned to the interpretation of an expression by
the identity combinator with the type produced by combining its children using
the combinatory action selected by the combinatory controller. To compute the
type coherence loss for the vector space interpretation λλλ i j = INTERPRET(h⋄i j) of
expression wi∶ j and the vector space interpretations λλλ ik = INTERPRET(h⋄ik) and
λλλ k j = INTERPRET(h⋄k j) (with i < k < j) for a pair of subexpressions ⟨wi∶k,wk∶ j⟩

6 We only consider raising with primitive types. There are multiple way one might extend vector space
type raising to complex types. We take this issue to be somewhat unimportant: it is unclear whether
there is a real need for vector space type raising, since the same result might already be achievable by
the model by positing ambiguity.
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of wi∶ j, we compute the probability distribution over types P(parent) produced by
applying the identity decoder to λλλ i j and the probability distributions over types
P(children)

a produced by conducting combinatory action a ∈A on λλλ ik and λλλ k j. The
agreement between P(parent) and P(children)

a is computed using cross-entropy H.7 The
contribution to this agreement score from action a is then weighted by the action
probabilities φφφ

(action)
i jk = ACTION(λλλ ik,λλλ k j) assigned by the combinatory controller.

L(pair)
type (i, j,k) = ∑

a∈A
φ

(action)
i jka H (P(parent)(⋅ ∣ λλλ i j),P(children)

a (⋅ ∣ λλλ ik,λλλ k j))

= −∑
a∈A

φ
(action)
i jka ∑

t∈T
P(parent)(t ∣ λλλ i j) logP(children)

a (t ∣ λλλ ik,λλλ k j)

This value is small when P(children)
a assigns probabilities to types that are similar

to those assigned by P(parent). The type coherence for an expression wi∶ j is then
computed by summing over all possible pairs of subexpressions ⟨wi∶k,wk∶ j⟩, weight-
ing by the likelihood αi jk that the syntactic parser assigns to that particular pair:

L(expr)
type (i, j) =∑ j−1

k=i+1 αi jkLtype(i, j,k). This value is small when the type coherence
loss for high probability pairs is small. Finally, the type coherence loss for an entire
sentence is computed by summing over the type coherence loss for all expressions:
L(sent)

type =∑∣S∣−2
i=0 ∑∣S∣

j=i+2Ltype(i, j). This value is small when the type coherence loss
for all expressions is small, and thus, our aim is to find parameterizations for the
syntactic parser, type grammar, and interpretation function that drive L(sent)

type down.

4 Deploying the framework

As a proof-of-concept experiment using our framework, we fit a model that simul-
taneously aims to predict sentence acceptability and find a coherent typing for the
expressions contained in those sentences. Our framework allows us to specify the
that grammar has an arbitrary number of primitive types P and type constructors
D as well as arbitrary combinators C. For these experiments, we follow standard
treatments building on Montague 1973 in assuming three primitive types (e, s,
and t) and a single type constructor. For the set of combinators C, we assume
(undirected) application—where APPLY(t0,⟨t0, t1⟩) = APPLY(⟨t0, t1⟩, t0) = t1—and
(first-order undirected) composition—where COMPOSE(⟨t0, t1⟩,⟨t1, t2⟩) = COM-
POSE(⟨t1, t2⟩,⟨t0, t1⟩) = ⟨t0, t2⟩. We first describe the acceptability dataset that we
train the model on (§4.1) and then discuss how we train the model to simultaneously
predict acceptability and coherent types (§4.2).

7 We approximate this value by computing the probability distribution over type trees of at most a
certain depth (here, depth 4). Alternative methods for comparing probability distributions—e.g.
Kullback-Leibler divergence—could be used in place of cross-entropy.
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4.1 The MegaAcceptability dataset

We train our model to predict the acceptability judgments in the MegaAcceptability
dataset (White & Rawlins 2016, accepted). This dataset contains acceptability
judgments for 1,000 clause-embedding verbs—including a variety of cognitive verbs
(e.g. believe, forget, doubt), communicative verbs (e.g. say, claim, explain), emotive
verbs (e.g. upset, disgust, anger), among many other classes—in 50 different
syntactic frames. These frames include simple intransitives (NP ), transitives
(NP NP), and ditransitives (NP NP NP) as well as a large variety of frames
including subordinate clauses either with or without a direct object or prepositional
phrase (always headed by to). These subordinate clauses vary in terms of their
complementizer (∅, that, for, whether, and constituent question), the presence of an
embedded subject, and embedded tense (past, future, tenseless, to-infinitival, bare
infinitival, and present participial). (See White & Rawlins for a full list of frames.)

A sentence is constructed for each verb-frame pair by instantiating all lexical
category words with bleached terms to minimize the effects of lexical idiosyncrasies
in the acceptability judgments. All noun phrases are instantiated as either someone or
something, all untensed verb phrases as either do something or have something and
tensed verb phrases as happened, and sentences as something (would) happen(ed).

(1) a. believe + NP that S→ Someone believed that something happened.
b. ask + NP whether S→ Someone asked whether something happened.
c. force + NP NP to VP→ Someone forced someone to do something.
d. tell + NP NP which thing to VP→ Someone told sm. which thing to do.

Each sentence is rated by 5 participants on a 1-7 scale. We use the normalized
variant of these judgments provided by White & Rawlins (accepted), which adds
seven verbs not in the original data and maps each sentence to a single real-valued
acceptability value in a way that accounts for annotator bias and annotator quality.

4.2 Training the model

Our model is trained using the Adam optimizer in three stages: (i) syntactic parser
training, (ii) type grammar training, and (iii) interpreter training.

4.2.1 Syntactic parser training

The parameters of the syntactic parser—i.e. the parameters of UNARY, COMBINE,
SPLIT

R, and SPLIT
L discussed in §2—are trained to predict the normalized accept-

ability judgments found in MegaAcceptability, minimizing the mean-squared error
(as in standard linear regression). The RoBERTa system (Liu, Ott, Goyal, Du,
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Joshi, Chen, Levy, Lewis, Zettlemoyer & Stoyanov 2019) is used to map w0...w∣S∣−1
to input vectors x0...x∣S∣−1. The acceptability prediction is done by passing the
vector representation h⋄0∣S∣ for the entire sentence into a parameterized function
ACCEPTABILITY, whose parameters are jointly trained with those of the parser.

4.2.2 Type grammar training

The parameters of the type grammar—i.e. the parameters of the encoder’s WRAP

and CONSTRUCT, the decoders’ STRUCTURE, PRIMITIVE, and FACTOR, and the
combinatory controller’s ACTION and RAISE—are trained in three stages.

Encoder and identity decoder. First, the type encoder and identity combinator
are trained as an autoencoder—i.e. so that the probability distribution over types
produced by encoding t as τττ t then applying the identity combinator to τττ t assigns
high probability to t. This training is carried out on randomly sampled types.

Application and composition decoders. The remaining combinators in the
grammar are similarly trained. For each combinator, pairs of types are randomly
sampled and automatically processed so that they are viable inputs to the corre-
sponding combinator—e.g. ensuring that only pairs of the form ⟨t0, t1⟩ and t0 (or the
reverse) are input to application and only pairs of the form ⟨t0, t1⟩ and ⟨t1, t2⟩ (or the
reverse) are input to composition. To train each combinator, the correct outputs for
each of these pairs is first determined symbolically based on the combinator—e.g.
for application, the output for the pair ⟨t0, t1⟩ and t0 (or the reverse) is t1—then
each element of the pair is encoded using the type encoder. The parameters of the
combinator are then trained to produce a high probability for the correct output when
applied to the concatenation of the encoded pair.

Combinatory controller. The combinatory controller is trained with a similar
sampling procedure to the decoder training. The sampling procedure is extended
so that when processing the type pairs into viable inputs, we include the possibility
of type-raising one of the inputs with respect to a primitive type before combinator
application. Viable combinator action types are symbolically determined for each
input pair—e.g. ⟨t0, t1⟩ and t0 could be combined with application and no type
raising or with application and type raising t0 to ⟨⟨t0, t1⟩, t1⟩. The parameters of
the combinatory controller are then trained to produce a high probability for viable
combinatory action types when applied to the concatenation of the input pair.

4.2.3 Interpreter training

The parameters of INTERPRET are trained to minimize the type coherence loss
L(sent)

type (§3.2) and a type constraint loss. The type constraint loss encodes standard
assumptions about the types that particular lexical items map to. Here, we enforce
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that sentence denotations have proposition types ⟨s, t⟩, quantificational noun phrase
denotations (someone, something) have quantifier types ⟨⟨e,⟨s, t⟩⟩,⟨s, t⟩⟩, and verb
phrases do something, have something, happen, and happened denote properties
of individuals ⟨e,⟨s, t⟩⟩.8 To enforce these constraints, we train the interpretation
function so that applying the identity combinator to the denotation embedding vector
λλλ i j of a span matching one of these expressions assigns high probability to the
corresponding type. This training procedure is only applied to the subset of the data
where the normalized acceptability value is in the 90th percentile or greater, so that
we do not attempt to derive ⟨s, t⟩ for sentences that should not have such a type.
This threshold is fairly stringent—the least acceptable sentence above the threshold
is (2)—and likely removes acceptable sentences.

(2) Someone distrusted someone that something happened.

Removing acceptable sentences is fine for our purposes, since it is more important
to avoid forcing the model to produce coherent types for unacceptable sentences.

4.3 Predicting types

To find the most likely type for each subexpression of a sentence, we use a proba-
bilistic parsing algorithm based on the standard supertag-factored A* CCG parsing
algorithm (Lewis & Steedman 2014; Lewis, Lee & Zettlemoyer 2016). The specific
details of this algorithm are not relevant for current purposes.

5 Results

We will first take a look at how well the parser does in predicting acceptability and
explore some of the syntactic representations it learns. This is mainly to show that
the parser is learning something that could reasonably be thought of as a syntactic
representation. Then, we will dive into the types that are learned by our model,
drawing two contrasts: (i) what the model infers for both declarative and interrogative
complement clauses and (ii) what it infers for finite and infinitival complements.

5.1 Acceptability

We use k-fold cross-validation to evaluate our model’s ability to predict the nor-
malized acceptability of sentences it has not seen. In cross-validation (see Hastie,

8 Without these constraints, we found that the model would learn a trivial grammar—e.g. every
constituent denotes ⟨t, t⟩ and the combinatory controller assigns composition a high probability.
Crucially, we do not enforce that particular clausal complements decode to particular types, since we
aim to induce those types.
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Figure 1 The UMAP visualization for the parser’s representation for different
expressions colored by coarse-grained expression types. Labels show
the mean location of the particular expression.

Tibshirani & Friedman 2009: §7), the data is partitioned into k parts (here, k = 5), and
for each of the cells, a model is trained on all but that cell and then its performance
is evaluated on that cell. Averaging across five validation folds, our model obtains a
Pearson correlation of ρ = 0.71 (95% CI=[0.69, 0.73]). This correlation is extremely
close to the one reported by White & Rawlins (accepted): trained linguists agree on
a subset of the MegaAttitude sentences with a Spearman correlation of 0.70 (95%
CI=[0.62,0.78]). This result suggests that the models agrees with the normalized
scores at about the same level that trained linguists agree with each other.

5.2 Syntactic Representations

Next, we investigate the vector representations for particular constituents. To do this,
we run the syntactic parser on all sentences in MegaAcceptability and extract the
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vector representations for various nominal, prepositional, and clausal expressions
in all contexts they appear. This yields as many vectors for an expression as it has
unique tokenings across the dataset—e.g. whether something happened appears once
in each of 6 frames and so, across 1,007 verbs, we obtain 6,042. It is important to
extract a vector for every context in which a particular constituent appears because the
outside embedding h▽i j differs for the same expression wi∶ j depending on w0∶i,w j∶∣S∣.

To visualize how these vectors are arranged, we apply the UMAP dimension-
ality reduction technique (McInnes, Healy & Melville 2018) to map them to two
dimensions in a way that preserves the relationships between vectors in the high
dimensional space. Figure 1 plots the results. We see a broad split between clausal
expressions on the left and nominal and prepositional expressions on the right. The
cluster in the upper left contains finite clauses with a future modal as well as infini-
tival interrogatives and for-to clauses. The absence of other infinitivals from this
cluster—e.g. subjectless infinitivals and bare infinitivals with and without subjects,
which are tightly grouped in a separate cluster—may suggest that the model is
formally representing some combination of having a overt subject (or perhaps a
complementizer) and containing a modal—in this case, would or to (Bhatt 1999;
Wurmbrand 2014: cf. Stowell 1982; Ogihara 1996; Martin 2001; Katz 2001; Pearson
2016; and see also Grano 2012, 2017; Williamson 2019).

The cluster next to that contains finite clauses—both declarative and interrogative—
and tenseless that clauses in the upper portion and subjectless and bare infinitivals in
the lower portion. The fact that the tenseless that clause clusters with the finites may
suggest that this grouping is mainly determined by the presence of an overt comple-
mentizer. This is bolstered by the fact that the finite clause without a complementizer
is contained within its own long thin region just to the right.

5.3 Types

Having established that the syntactic representations our parser learns are reasonable,
we now turn to the semantic types our model assigns to different expressions within
the high acceptability set used to train the type coherence loss (90th percentile
acceptability or above). To obtain these types, we apply the decoding algorithm (see
§4) to the vector for an expression in each context in which it is found—i.e. the
same vectors analyzed in 5.2—in order to obtain the most likely type(s).9

For reasons of space, we focus in particular on the types assigned to expressions
along two axes of variation: interrogative v. declarative and finite v. infinitival.
Figure 2 shows the proportion of tokenings of a particular expression (y-axis) that

9 An alternative, more computationally intensive method is to decode the type for the expression in the
context of the entire sentence. We leave this for future work.
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Figure 2
The types most frequently decoded for each expression across verbs.

are assigned particular types (x-axis) in a particular context (facets) across verbs.10

In intransitive contexts (NP Ved ), declaratives (that something happened),
finite interrogatives (whether something happened, which thing happened), and in-
finitival polar interrogatives (whether to do something) all heavily favor the ⟨s,⟨s, t⟩⟩
type, suggesting that our model infers that they denote questions represented as the
set of their complete answers (see Hamblin 1958; Groenendijk & Stokhof 1984
among others; cf. Uegaki 2015). Less frequently, declaratives and finite polar
interrogatives are assigned the proposition type ⟨s, t⟩, and constituent interrogatives
are assigned the ⟨e,⟨s, t⟩⟩ type, suggesting a functional question type (Krifka 2011)
where the entity argument denotes the “missing piece” corresponding to the WH-
phrase (Hintikka 1976; Berman 1991). Interestingly, polar interrogative that are
assigned ⟨s,⟨s, t⟩⟩ tend to be complements of responsive predicates—i.e. predicates

10 Indicative of how stringent the 90th percentile threshold is, some rows for some contexts are blank
because the relevant expression does not show up in that context within the set of items we investigate.
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that take both declaratives and interrogatives, like know, discover, find out, and real-
ize—while polar interrogatives that are assigned the proposition type ⟨s, t⟩ tend to
be rogative predicates (Lahiri 2002)—i.e. predicates that only take interrogatives (or
are at least marginal with declaratives), like wonder and ask. There are potentially
interesting exceptions to this generalization, though: doubt is responsive, but its
polar question complement is assigned a proposition type—possibly related to the
intuitive equivalence between doubt whether and doubt that (Karttunen 1977).

In contrast to finite constituent interrogatives, infinitival constituent interrogatives
(which thing to do) tend to favor the type corresponding to properties of relations
between individuals ⟨e,⟨e,⟨s, t⟩⟩⟩, with the type corresponding to intensionalized
properties of individuals ⟨s,⟨e,⟨s, t⟩⟩⟩ a close second. At least, one of the entity types
in both might be understood as the missing subject, and in the case of ⟨e,⟨e,⟨s, t⟩⟩⟩,
the second might correspond to the WH-phrase, as in a functional question. It may
be that this distinction is a real one—between representing constituent interrogatives
as functional questions with a missing argument or as partition questions with a
missing argument—but in analyzing the distribution over types for particular verbs’
complements, we found that there are very few examples where our model assigns
⟨s,⟨e,⟨s, t⟩⟩⟩ for its highest probability prediction but not ⟨e,⟨e,⟨s, t⟩⟩⟩ as one of
the runner-up predictions and vice-versa. This pattern may indicate uncertainty in
the decoder as to which is the correct analysis or it may be that the decoder has
trouble distinguishing between the two analyses because they are so close to each
other in terms of tree edits—differing by a single primitive type. One potential
argument against this possibility is that the decoder appears to be sensitive to the
context (and/or the verbs that appear in said context) when deciding between these
types: it slightly prefers ⟨e,⟨e,⟨s, t⟩⟩⟩ in intransitive contexts but strongly prefers
⟨s,⟨e,⟨s, t⟩⟩⟩ in passivized transitive contexts (NP was Ved NP ).

Finally, the distribution over types for the non-interrogative subjectless infini-
tivals (to do something, to have something) shows a more diffuse distribution on
types, relatively evenly weighting the proposition type ⟨s, t⟩, the type corresponding
to properties of individuals ⟨e,⟨s, t⟩⟩, and the type corresponding to properties of re-
lations between individuals ⟨e,⟨e,⟨s, t⟩⟩⟩.11 The proposition type is expected under
theories that posit a covert pronoun in subject position of the infinitival (Rosenbaum
1967 et seq) and tends to be associated with verbs of appearance (e.g. raising verbs:
appear and seem), verbs of claiming and pretense (e.g. claim, pretend), verbs of
choice (e.g. decide, choose), and emotives (e.g. like, love).12 The property-of-
individuals type is expected under theories that do not assume such a covert pronoun

11 As for infinitival constituent interrogatives, we suspect that the other types ⟨e,⟨e,⟨t, t⟩⟩⟩ and
⟨e,⟨e,⟨e, t⟩⟩⟩ may be hard for the decoder to distinguish from ⟨e,⟨e,⟨s, t⟩⟩⟩.

12 Indeed, many (though not all) of the verbs that are assigned the proposition type are exactly those
that would be full tense phrases in Wurmbrand’s (2014) theory of infinitival complements.
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(Bach 1979; Chierchia 1984; Dowty 1985) and tends to be associated with comple-
ments of aspectual verbs (e.g. start, stop), intention verbs (e.g. try, intend, plan),
desire verbs (e.g. want, wish), and some cognitive verbs (e.g. remember, forget).

The interpretation of the property-of-relations-between-individuals type is less
clear but its assignment appears to correlate with whether the selecting verb can take
direct object or PP arguments that can go unexpressed—e.g. say, argue, advise, look
(for), long (for)—and so the model may be learning to “pack” those unexpressed
arguments into the clause. This possibility is bolstered by the pattern seen in the
transitive (NP Ved NP , NP was Ved NP ) and preposition phrase (NP Ved
to NP ) contexts, where the possible types for the declarative and finite polar
interrogative remain largely the same, though the proportions shift somewhat toward
types that have an “extra” e. This additional e might suggest a content individual
(Kratzer 2006; Moulton 2009, 2015; Bogal-Allbritten 2016)—i.e. an entity whose
content is constrained by the content of the clause—though this would be surprising
in light of the correlation with direct object- and preposition-taking behavior. More
likely, we suspect, is that the model treats clauses as polysemous between relational
and non-relational variants, where the relational variant takes the denotation of a
direct object or prepositional phrase as an argument and relates it to the content
of the clause via some free relation (Partee 1983/1997) that is further constrained
by the verb. This possibility seems perverse until noting that, like the two noun
phrase internal arguments in ditransitives, the noun phrase-clause complex can be
“non-constituent” coordinated.

(3) a. Jo told Bo that Mo left and Mo that Bo left.
b. Jo told Bo to leave and Mo to stay.

The main difference between standard CCG analyses (see Steedman 2000) and
what the model appears to be doing is that, unlike standard analyses, where the
coordinated constituent is combined via type-raising followed by composition, the
model appears to be imbuing the clause with argument-taking behavior. As such,
an alternative take is that the model is attempting to approximate something like
a neo-Davidsonian analysis (see Parsons 1990) without primitive event types or a
predicate modification rule (see Heim & Kratzer 1998) for ensuring compositional
interpretation. Future work might test this possibility within our framework by
adding an additional primitive type for events (with concomitant alteration of the
type constraints) as well as an additional type decoder for predicate modification.

6 Conclusion

We have presented a computational modeling framework for inducing combinatory
categorial grammars from arbitrary behavioral data. This framework provides the
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analyst fine-grained control over the assumptions that the induced grammar should
conform to: (i) what the primitive types are; (ii) how complex types are constructed;
(iii) what set of combinators can be used to combine types; and (iv) whether (and
to what) the types of some lexical items should be fixed. As a proof-of-concept
experiment, we deployed our framework for use in distributional analysis. We
investigated the induced grammar, finding that it assigns a highly interpretable
system of types—even for complex clausal expressions of various forms.

This work is only the tip of the iceberg in terms of how our framework might be
used in semantic theory-building and evaluation. There are at least three promising
areas for future investigation.

Jointly training on multiple distinct datasets. A major benefit of our frame-
work is that it can be used with arbitrary behavioral data. This means not only
fitting models to particular datasets, but also using our framework to synthesize
multiple datasets into a single induced grammar. In preliminary experiments, we
have used our framework to jointly predict acceptability using the syntactic parser
representations h⋄0∣S∣ (as in this paper) as well as veridicality judgments from the
MegaVeridicality data (White & Rawlins 2018; White et al. 2018)—e.g. that Jo
proved that Bo left entails that Bo left, while Jo suggested that Bo left does not—
using the denotation representations λλλ 0∣S∣. We have found that it is possible to jointly
predict veridicality and acceptability judgments at native speaker levels, though the
types we induce are less interpretable than those presented here.

Beyond behavioral data, it is also possible to use our framework to jointly
train on corpus data, building on existing deep learning-based grammar induction
methods using only the syntactic parser component of our framework (Drozdov et al.
2019a,b). We are currently experimenting with joint syntactic and semantic CCG
induction from corpus data by expanding the set of type constructors and combinators
from undirected to directed variants and enforcing additional constraints to capture
combinatory type transparency (see Steedman 2000).

Alternative grammatical assumptions. Another major benefit of our frame-
work is that primitive types, type constructors, combinators, and type constraints
are highly tunable: the analyst need merely specify the set of primitive types, set
of constructors, type constraints, and combinator behavior they are interested in.
As noted in §5, one potentially interesting direction is to investigate the grammars
induced under neo-Davidsonian assumptions. A note of caution is warranted here:
we have not presented experiments probing the limits of our frameworks capabilities
in terms of the sorts of grammars they can reliably induce. Further work is necessary.

Inducing logical form. Finally, our framework opens up the possibility of not
only assigning types to expressions, but also potentially full logical forms. As for
types, this induction might be set up as a problem of decoding symbolic expressions
conforming to the syntax of some logic from the interpretation vectors λλλ i j.
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