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Abstract

In the linguistics literature, the derivation of scalar implicatures has often been
handled in a relatively modular way, using computations that are sensitive to log-
ical relations among alternatives such as entailment but are blind to other notions
such as the probabilities that participants in a conversation might associate with
these alternatives (or with related propositions). In recent years, a family of models
that we refer to as iterated rationality models (IRMs) have offered an interestingly
different perspective on such alternative-sensitive processes in terms of multiple it-
erations of probabilistic reasoning. Our paper investigates what at first sight seems
like a very interesting argument for IRMs coming from the conjunctive interpreta-
tion of disjunctive sentences. We then outline challenges for the argument based
on a theoretical comparison with the grammatical theory of scalar implicatures.
The comparison focuses on the full distribution of conjunctive interpretation, on
the question of sensitivity to priors, and on other results achieved within the gram-
matical theory that the IRM literature does not engage with.

1 Introduction
Work on scalar implicatures (SIs) has grown significantly over the past fifteen years,
leading to new empirical generalizations and a rich body of competing theoretical per-
spectives. One approach to the problem, which has recently gained popularity, is em-
bodied in a set of models involving iterated steps of probabilistic reasoning, taken
separately by a speaker and an addressee, each making specific assumptions about the
workings of the other, and eventually converging on an enriched meaning of an utter-
ance. Our goal in this paper is to contribute toward the evaluation of such models,
which we will call iterated rationality models (IRMs), and which include the propos-
als in Franke 2009, 2011, Goodman and Stuhlmüller 2013, Franke and Jäger 2014,
and Bergen et al. 2016, among others.1 We will work toward the evaluation of IRMs
as theories of SIs against the background of a very specific alternative, the so-called

*Acknowledgments: To be added.
1For a recent overview of this literature and its broader game-theoretic context see Benz and Stevens

2018.
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grammatical approach (see Chierchia 2004) and in particular a variant of this approach
where SIs are derived using a covert operator, sometimes notated as Exh, that is akin
to ‘only’ in its semantics and that derives SIs in much the same way that ‘only’ derives
its entailments (see Fox 2007 and Chierchia et al. 2012).2,3

With this goal in mind, we will attempt to identify the best arguments in favor of
IRMs as accounts of SIs. This, as we will explain in the rest of this introduction, leads
us to Franke (2009, 2011), which, in our mind, is unique in attempting to derive a rich
set of SIs that are outside the reach of many theories, and thus has the potential to
yield an important argument. Elaborating on an observation already in Franke 2011,
however, we will conclude that the argument fails, and that a theory based on a modular
computation of SIs within grammar is at present superior. Our second conclusion will
be that Franke (2011)’s theory, to the extent it can be made successful, will require
a modular architecture and will thus share important architectural properties with the
grammatical theory, somewhat unexpectedly, perhaps.

The arguments in favor of IRMs that we will extract from Franke (2009, 2011)
will be empirical. But before we get there, we think we should put aside a possible
conceptual argument in favor of IRMs – one that we feel might contribute to the recent
popularity of the approach – namely the hope that they could serve as a step toward a
unified theory of language interpretation and other aspects of human action and thought
(as suggested, e.g., in Goodman and Stuhlmüller 2013). It is our feeling that a hope of
this sort can be turned into an argument only with concrete unified proposals that can
be evaluated. Since such proposals do not exist, to the best of our knowledge, we will
put this aside and focus on other considerations.

One such consideration that we would like to reject as well is based on correla-
tions between the distribution of SIs and the nature of probabilistic epistemic states
(i.e., the prior probabilities that participants in the conversation assign to various states
of affairs). Correlations have indeed been reported and sometimes been presented as
favoring IRMs and their use of probabilities in the derivation of SIs. However, as far as
we can tell, the attested correlations are irrelevant for theoretical adjudication, as they
have no bearing on the nature of the systems that enter into the computations of SIs.

Consider, for example, the potential inference from “Some of the students did their
homework” to “It is not the case that many of the students did their homework”. Pre-
sumably, the likelier the speaker is to know and care about the truth of the alternative
“Many of the students did their homework”, the likelier the inference is to be made.
See Fox 2007, Goodman and Stuhlmüller 2013, and Chemla and Singh 2014a,b for
discussion, including experimental evidence supporting this assessment.

However, this kind of correlation is expected by all major approaches to SIs, in-
cluding those that are modular and non-proababilistic. To see this, take the variant

2Specifically, Exh(A)(p) asserts that p is true and that a certain subset of alternatives from the set A
are false. This subset is chosen in a way that avoids contradictions and arbitrary choices from among the
alternatives. In a more recent development (Bar-Lev and Fox 2017; Bar-Lev 2018),Exh also affirms various
alternatives, again while avoiding contradictions and arbitrary choices.

3IRMs have been proposed for purposes other than the derivation of SIs. Among many other things,
there is recent work that reinterprets IRMs – in particular, developments of the lexical uncertainty model of
SIs (Bergen et al. 2016) – as theories of disambiguation, presupposing a grammatical derivation of SIs (see
Champollion et al. 2019 and Franke and Bergen 2019). This paper does not bear on such proposals and is in
fact totally compatible with them.
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of the grammatical approach mentioned above, where SIs are derived from syntactic
representations in which a silent operator Exh is present. Under this approach the cor-
relation can be derived through the probability that the potential alternative “Many of
the students did their homework” will be used, i.e., that it will end up being a member
of the restrictor argument of Exh (and perhaps even the probability that a parse with
Exh will be used in the first place), while the computation of SIs itself remains modular
and probability-free. This is analogous to the observation that, while considerations of
likelihood can affect how structural ambiguity is resolved in examples such as “Kim
saw the student with the telescope”, this does not constitute an argument for incorpo-
rating probabilities into the syntax.4 We therefore put aside this putative argument as
well.5

What remains at the moment, in our opinion, are empirical facts pertaining to the
family of SIs that can be derived from a given sentence. Given our current state of
knowledge, this is the only area where important considerations exist that can bear
on theory choice. And since, in general, arguments must involve theory comparison,
we will have to ask whether there are facts in this domain that favor IRMs relative to
prominent alternatives, and in particular relative to the grammatical theory which we
will use as our frame of reference.

Most work on IRMs focuses on the simplest kinds of exhaustivity inferences (e.g.,
the strengthening of ‘some’ to ‘some but not all’) and since such inferences are captured

4For this reason, we fail to see the relevance of the following quote from Goodman and Stuhlmüller
(2013): “This interaction between language understanding and general knowledge is not predicted by
strongly modular theories that place scalar implicature within a semantics module (Chierchia et al. 2012).
We show further that the interaction of knowledge and implicature is fine grained: The details of a speaker’s
belief distribution affect the details of an implicature.” (p. 174). Theories of SIs, like theories of other lin-
guistic phenomena, will of course have to interact with theories of disambiguation, and these are very likely
to be probabilistic in nature. So the interatcion that Goodman and Stuhlmüller (2013) refer to is not pre-
dicted by many theories of SIs in exactly the same way that parallel interactions are not predicted in the case
of structural ambiguities, but this can hardly be viewed as relevant for the evaluation of non-probabilistic
grammars. This matter becomes particularly clear when one discusses explicit theories of disambiguation
(as in the recent reinterpretation of IRMs as theories of disambiguation that help choose between parses that
differ in the distribution of Exh; see Champollion et al. 2019 and Franke and Bergen 2019).

5Somewhat separately from the present point, one of Goodman and Stuhlmüller (2013)’s results raises
an interesting challenge for the grammatical approach, as noted by Irene Heim (in a class taught at MIT,
Fall 2013). This challenge concerns an asymmetry between SIs and ‘only’, which, on the grammatical view,
are almost identical. To see this asymmetry, consider a speaker who has seen the contents of exactly two
out of three envelopes and says “One of the three envelopes contains a check”. The inference drawn from
this utterance is typically that at least one of the three envelopes contains a check and that at most two of
them do (the 1 ≤ n ≤ 2 inference). With ‘only’, on the other hand, the corresponding sentence (“Only one
of the three envelopes contains a check”) entails that exactly one of the three envelopes contains a check.
This challenge for the grammatical theory is not related to correlations with probabilistic assessments, as
it is dealt with straightforwardly by approaches that are blind to probabilistic considerations, such as that
of Sauerland (2004). Furthermore the challenge for the grammatical theory is met if, as argued by Meyer
(2013, 2014, 2015) and further defended by Fox (2016) and Buccola and Haida (2018), the grammar contains
a covert assertion operator, K, which can only attach close to the root and therefore always outscopes ‘only’
but can be outscoped by Exh. If that is the case, the sentence “One of the envelopes contains a check”
can have a strengthened meaning paraphraseable as “I only know/assert that one of the envelopes contains
a check” (Exh � K), while the variant with overt only can only be read as “I know/assert that only
one of the envelopes contains a check” (K � Exh). The Exh � K parse contextually entails the
1 ≤ n ≤ 2 inference: from the fact that the speaker saw the contents of two of the envelopes, it follows that
if n were greater than 2, the speaker would have known that n is at least 2, contrary to a logical inference of
Exh� K. So while the challenge is interesting, it is separate from our point regarding probabilities.
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straightforwardly by many competitors, they are not likely to be useful. We will thus
focus on Franke (2009, 2011) who develops a particular view on run-of-the-mill SIs
that can be extended, as he shows, to capture an intricate set of inferences that do not
follow under many existing alternatives.6

Assuming that Franke (2011)’s proposal is successful, we will want to ask which
assumptions of IRMs are crucial for this success. In order to address this question,
we think it is useful to derive the results with a primitive version of Franke (2011)’s
proposal, which highlights those assumptions that are crucial for the model’s success.
This will allow us to appreciate the results of the model along with its limitations.

We will see, through our primitive version, how Franke (2011)’s insights yield
an account for a large set of places where disjunctive sentences are strengthened to
yield a conjunctive meaning. This gives it an edge over many approaches to SIs, but a
very serious limitation becomes apparent. This limitation was already noted by Franke
(2011); here we highlight its significance by drawing an explicit comparison with the
grammatical approach, which does not suffer from this limitation. This comparison,
together with a brief reminder of key results of the grammatical approach that the IRM
literature has yet to engage with, present important arguments, we think, in favor of the
grammatical approach.7

So our first conclusion will be that, at present, there is no argument that favors
IRMs over alternative approaches to SIs. In fact, if we are right, the best IRM is
inferior to existing alternatives. But assuming that the limitations we will bring to
light can be dealt with, we can ask which component of IRMs might be supported by
Franke (2011)’s results. We will see, through our primitive model, that Franke (2011)’s
achievements depend on iterated probabilistic considerations. This might lead to the
impression that Franke (2011)’s system could end up arguing that the computation of
SIs is dependent on the prior probabilities that speakers and hearers bring with them to
the interpretive task. This impression – which, we wish to stress, is not made in Franke
(2009, 2011)’s own work – is incorrect. In fact, the opposite is true. As we will see
the system gives correct results only if priors are flat. That priors in his system should
not faithfully reflect speaker’s beliefs has already been pointed out by Franke (2009).
We will add to this the novel observation that the situation is much more dramatic in

6Again, our focus here is exclusively the adequacy of IRMs for SIs. This paper does not attempt to
evaluate the ability of IRMs to handle other phenomena such as disambiguation, hyperbole, and other cases
that have been discussed in the IRM literature. We think the case of so called reference games (Frank
and Goodman 2012) is potentially very interesting in that it provides what at first sight might look like
an argument for IRMs. However, as far as we can see, the basic results can be captured by a variety of
approaches to SIs. In work in progress (Asherov, Fox, and Katzir 2020) we build on the logic of cell
identification discussed below to uncover cases where the predictions of an exhaustivity based theory and
those of existing IRMs diverge in this domain.

7A reviewer suggests that earlier work in Bidirectional Optimality Theory (Blutner 1998, 2000; Jäger
2002) can be reinterpreted as an IRM that is similar in many ways to the one that we develop here and that
this interpretation allows one to see that it not only matches Franke (2011)’s results but in fact surpasses
them (accounting for the simple case of three-place disjunction in (13) below). This reconstructed IRM, as
far as we can see, still does not derive the correct pattern of conjunctive readings of disjunctions (as it does
not account for 2-place disjunction in the presence of a third alternative; see our discussion of (17a)). It also
does not, at present, offer responses to the arguments in the literature in favor of the grammatical approach.
It therefore does not affect the analysis in the present paper or the – largely negative – conclusions that we
reach. We therefore set it aside in what follows.
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the area that constitute his most important achievement, namely disjunctive sentences,
the only area we are aware of that provides a potential argument that probabilistic
considerations might be relevant for the computation of SIs. If Franke (2009, 2011)’s
approach is correct and, for that matter, if there are any reasons at all to believe that
probabilistic considerations enter into the computation of SIs, then the system that
computes SIs would have to be blind to actual priors. We will discuss the significance
of this point to debates about the modularity of SI computation.

2 Cell identification (first attempt)

2.1 General assumptions
The following idealization, modeled on assumptions made by current IRMs, will be
assumed throughout the discussion:

(1) Idealization of conversational setting:
a. The context set (the set of worlds consistent with whatever is common

belief) is partitioned into cells
b. It is common belief that the epistemic state of the speaker entails one of

the cells (the assumption of an opinionated speaker, sometimes called the
speaker competence assumption)

c. It is common belief that the goal of the speaker is to convey that cell (the
speaker’s cell) to the hearer

d. It is common belief that the speaker is truthful – that is, they only say what
they believe to be true in accordance with Grice’s Maxim of Quality

Throughout the discussion, the partition of the context set, Π, will be induced by a
set of alternatives, M . We will consider the elements of M to be syntactic objects and
refer to them as messages.8,9

2.2 Scalar alternatives (the finite case)
In the scalar case, the set of alternatives is linearly ordered by entailment. We start
with the simplest of the scalar cases, where there is only one alternative other than

8The cells in the partition reflect all the consistent ways to assign truth values to the different alternatives
in M . These can be characterized by defining an equivalence relation∼ over the context set C such that for
any w,w′ ∈ S, w ∼ w′ if for every m ∈ M , [[ m ]](w) = [[ m ]](w′). The partition of the context set is
then the quotient set of the context set by ∼, Π = C/ ∼.

9As has been discussed in detail in the literature, SIs cannot be derived if the alternatives are the set of
all possible messages (all sentences of the language) and if there is no further way to differentiate between
them. (This is so because of the so-called symmetry problem.) One common method of differentiation,
which we adopt here, is to offer a restrictive definition of alternatives (see Horn 1972, Katzir 2007, Fox and
Katzir 2011, Trinh and Haida 2015, and Trinh 2018 for concrete proposals). This is convenient in the current
context also in providing the basis for the partition of the context set. We note, however, that some of the
literature on IRMs, such as Bergen et al. 2016, prefers to allow all possible messages to serve as alternatives
and to differentiate between them in terms of costs. On this view, which we do not adopt here, the partition
of the context set must come from some other source.
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the assertion itself. Consider, for example, an assertion of ‘some’ with just ‘all’ as an
alternative. Given these alternatives, the context set is partitioned into three cells: ¬∃,
∃ ∧ ¬∀, ∀.10 The cell ¬∃ is inconsistent with the assertion (and with its alternative) so
it will never be conveyed by any of the messages in the set of alternatives {some, all}
(given (1d)); consequently, we will be able to set aside ¬∃ for the discussion and focus
on the cells in {∃ ∧ ¬∀,∀}.

Here is a possible strategy for the speaker to convey their cell:

• Step I: Suppose that the speaker’s cell is ∀. In this case, the speaker can say ‘all’,
and the hearer will easily be able to identify the correct cell. The hearer can do
so since only the cell ∀ is consistent with the assertion and since the speaker is
assumed to be truthful.

• Step II: Suppose now that the speaker’s cell is ∃ ∧ ¬∀. In this case, the speaker
cannot meet their goal directly. Suppose, however, that the speaker can rely on
the hearer’s knowledge of Step I above (namely, that if the speaker’s cell were ∀
they would have uttered ‘all’) to rule out the cell ∀ upon an utterance of ‘some’.
This leaves the hearer with cell ∃ ∧ ¬∀ for ‘some’, as desired.

In other words, the first step allowed the conversational participants to pair the mes-
sage ‘all’ and the cell ∀ and in effect peel them off. Following this step, the participants
remain with just the message ‘some’ and the cell ∃ ∧ ¬∀ which can now be paired as
well.11

Note that in the reasoning above, the speaker was assumed to follow the Maxim of
Quality but was not explicitly assumed to follow the Maxim of Quantity. Elimination
and iteration were able to derive what Quantity is typically used for (e.g., in Horn
1972).

The above generalizes to all SIs that rely on finite scales (as well as certain addi-
tional cases, some of which we will briefly mention below). Take, for example, the
case where ‘some’ has not just ‘all’ but also ‘many’ as an alternative. The induced
partition in this case is {¬∃,∃ ∧ ¬many,many ∧ ¬∀,∀}.

We can reason as before, adding one further step of peeling:

• Step I: If the speaker’s cell is ∀, they will utter ‘all’, which will directly lead the
hearer to the correct cell (since the message is inconsistent with any other cell).
The cell (and possibly the message) are now peeled off.

• Step II: If the speaker’s cell is many∧¬∀, they will utter ‘many’, which – given
Step I – will lead the hearer to the correct cell (since the message is inconsistent

10Concretely, ‘some’ might stand for an assertion of “John did some of the homework”, with “John did
all of the homework”, notated as ‘all’ as its sole alternative. In this case, ∃ ∧ ¬∀ stands for the cell in which
John did some but not all of the homework (with analogous interpretations for the remaining cell labels). For
ease of presentation, we will stick with schematic shorthand such as ‘some’ and ∃ ∧¬∀ where no confusion
is likely to arise.

11Note that what matters for the process just described is that the cell ∀ be peeled off after the first step.
The message ‘all’ would do no damage if it stayed for the second step: that message is not true in any of
the remaining cells (it was only true in the cell ∀, and that cell is now removed), so it cannot affect the
identification of any other cell. For convenience, however, and for uniformity with a different notion of
identification that we will see in (4) below, we will keep talking about peeling off both cells and messages.
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with any of the remaining cells). The cell (and possibly the message) are now
peeled off.

• Step III: If the speaker’s cell is ∃ ∧ ¬many, they will utter ‘some’, which –
given Steps I, II – will lead the hearer to the correct cell (since the message is
inconsistent with any of the remaining cells). The cell (and possibly the message)
are now peeled off.

• Thanks to Step III, ‘some’ obtains its reading of ‘some and not many’

To be able to refer to iterative peeling more easily, both using the current idea of
cell identification and with certain variants thereof, we state the current criterion for
cell identification in (2) and a general recipe for iterative peeling in (3).

(2) CELL IDENTIFICATION (first version; further versions to be stated in (4) and
(8)): Message m identifies a cell t given a set of cells Π if m is true in t and
there is no distinct t′ ∈ Π such that m is true in t′

(3) PEELING STRATEGY: Given a set of messagesM , a partition Π, and a criterion
C for cell identification, we build a set X of message-cell pairings as follows:
a. Initialize X = ∅, as well as M ′ = M and Π′ = Π

b. Collect all message-cell pairs where the message identifies the cell accord-
ing to C into a temporary set U . That is, U = {< m, t >∈ M ′ × Π′ :
m identifies t according to C}

c. If U = ∅, break and return X
d. Otherwise:

i. Update X with U . That is, X = X ∪ U
ii. Remove from M ′ every message m that appears in the left-hand side

of some pair in U
iii. Remove from Π′ every cell t that appears in the right-hand side of

some pair in U
iv. Go to step (3b)

The reasoning described in the scalar examples above follows the use of the recipe
in (3) with the identification criterion in (2). The same reasoning extends to some non-
scalar cases. For example, suppose that the set of messages is {A, B, A and B}, which
induces the partition {¬A ∧ ¬B,A ∧ ¬B,¬A ∧B,A ∧B}.

• Step I: The message ‘A and B’ identifies the cell A∧B, so the cell (and possibly
the message) can be peeled off. (Note that neither ‘A’ nor ‘B’ identifies a cell in
this step.)

• Step II: Given Step I, the message ‘A’ identifies the cellA∧¬B, and the message
‘B’ identifies the cell ¬A ∧B

Crucially, the presence of the conjunctive alternative ‘A and B’ allowed the peeling
process to start. As we will shortly see, when such an alternative is absent, peeling can-
not start, and this challenge could be taken as motivation for introducing probabilities
into the system.
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3 Infinite scales, back-and-forth reasoning, and a first
motivation for probabilities

We defined cell identification in terms of a message that guarantees a particular cell.
Imagine we approached cell identification from the opposite direction as well, by look-
ing for a cell that guarantees a particular message. In the ‘some’/‘all’ case, for example,
the hearer can reason that if a speaker is in cell ∃ ∧ ¬∀, the only message they can use
is ‘some’. This reasoning might result in ‘some’ identifying the cell ∃ ∧ ¬∀, and both
message and cell will be peeled off, which allows the remaining messages and cells to
be paired in the next step. We could state this new (reverse) sense of identification as
follows (using the same peeling strategy defined in (3) as before):12

(4) MIRROR-IMAGE CELL IDENTIFICATION (to be revised in (8)): Message m
mirror-identifies a cell t given a set of messages M if m is true in t and there
is no distinct message m′ ∈M that is true in t

The motivation for our first notion of cell identification, as stated in (2) was quite
straightforward: if m identifies t then, by definition (along with the assumption in (1d)
that the speaker is truthful), a hearer who receives m knows that the speaker’s cell is
t. The motivation for the mirror-image notion in (4) seems less obvious: why should
it matter if the speaker can use only m in a particular cell t? After all, if the same m
is also true in a different cell t′, the hearer will not be able to use m (without further
assumptions) as a reliable indicator that the speaker’s cell is t.

To see a potential conceptual motivation for (4) in terms of the goal of indicating
the speaker’s cell to the hearer, we might propose thinking of the hearer’s inference
about the speaker’s cell in terms of a best guess about that cell rather than full certainty
(perhaps because a message that conveys a cell with full certainty is not available, as
will be the case in an example we will consider shortly). This, in turn, invites thinking
about inference within a probabilistic setting, the informal idea being that if m is the
only message true in cell t then (on certain assumptions) hearing m will make t more
probable than any other cell in which additional messages are true. Consider again the
case of ‘some’/‘all’, and suppose that the hearer has received the message ‘some’. The
hearer’s goal is to identify the speaker’s cell. Assuming, as we do, that the speaker is
truthful, this cell is either ∃∧¬∀ or ∀. The hearer can use Bayes’ Rule to compare how

12Note that (4) makes it possible in principle for a message to identify multiple cells. Consider, as a
schematic example, a partition Π = {1, 2, 3, 4} induced by M = {A,B,C}, where [[ A ]]= 1 ∪ 2,
[[ B ]]= 2 ∪ 3, and [[ C ]]= 3 ∪ 4. (To see that Π is induced by M , note that 1 = [[ A ]] ∩ [[ B ]]c ∩ [[ C ]]c,
2 = [[ A ]] ∩ [[ B ]] ∩ [[ C ]]c, 3 = [[ A ]]c ∩ [[ B ]] ∩ [[ C ]], 4 = [[ A ]]c ∩ [[ B ]]c ∩ [[ C ]], and that all other
attempts to assign truth values to the different alternatives inM are inconsistent.) In Step I, ‘A’ mirror-image
identifies 1 (since it is the only message true in that cell) and, similarly, ‘C’ mirror-image identifies 4. Then,
in Step II, message ‘B’ mirror-image identifies both cell 2 and cell 3, since for each of them, this is the only
remaining message that is true in that cell. This is a somewhat counter-intuitive state of affairs, and it is
potentially problematic for communication, but we will not attempt here to explore its possible impact on
the conversational setting or potential modifications that could avoid the issue. (For the original notion of
cell identification in (2), a parallel issue can arise with multiple messages identifying the same cell. That,
however, seems more natural and less problematic.) With our final statement of identification, in (8) below,
this issue does not arise, as explained in footnote 19.

8



likely each cell is given the message:13

P (∃ ∧ ¬∀|‘some’) =
P (‘some’|∃ ∧ ¬∀)P (∃ ∧ ¬∀)

P (‘some’)

P (∀|‘some’) =
P (‘some’|∀)P (∀)

P (‘some’)

The denominator on the right-hand side of both cases is identical and does not affect
the comparison.14 As to the numerator, let us start by making the assumption that the
prior probability of the two relevant cells is the same: P (∀) = P (∃ ∧ ¬∀). This can
follow from a general assumption of flat priors:

(5) Flat priors (tentative): The prior distribution is uniform, so that if Π is finite,
for any t ∈ Π, P (t) = 1

|Π| .

The assumption of a uniform prior distribution cannot hold if (as in an example
we will consider immediately below) the partition is countably infinite. There might
also be other reasons to abandon (5), such as connecting priors to actual probabilistic
assessments (that might be part of the common ground), a possibility that we discuss
in section 6 below (though we will see an empirical argument against such a move).
In the case of ‘some’/‘all’, however, flat priors have the advantage of allowing us to
focus entirely on the likelihood component for the purpose of the comparison of the
two probabilities under consideration, and we will tentatively make this assumption
here.

With both the denominator and the priors out of the way, the comparison of P (∃ ∧
¬∀|‘some’) andP (∀|‘some’) boils down to a comparison of the likelihoods, P (‘some’|∃∧
¬∀) and P (‘some’|∀). And it is here that the number of messages that are true in a
given cell can become relevant. More specifically, (4) would be explained as a conse-
quence of probabilistic reasoning if we can assume that the conditional probability of
a message given a cell is maximal whenever this message is the only one that is true in
the cell.

Here is a way to justify this assumption. Recall from (1d) that we are assuming
that the speaker is always truthful. If we further assume that the speaker always sends
some message, as stated in (6a), then P (‘some’|∃ ∧ ¬∀) = 1, since ‘some’ is the
only message that is true in the cell ∃ ∧ ¬∀. If we also assume that every message
that is true in a cell has a positive probability of being sent, as stated in (6b), then

13According to Bayes’ Rule, P (t|m) can be written as

P (t|m) =
P (m|t) · P (t)

P (m)

Of the two factors in the numerator, P (m|t) is referred to as the likelihood, and P (t) is the prior. The
denominator P (m) can be ignored if, as in the discussion below, we are only interested in comparing the
probability of various cells given the same message. If the denominator cannot be ignored (for example, if we
wish to compute the actual probability of a cell given a message and not just make the relevant comparisons),
it can be rewritten again as

∑
t′∈Π P (m|t′) · P (t′).

14If it needs to be computed explicitly it can be done in the usual way by writing it as P (‘some’) =
P (‘some’|∃ ∧ ¬∀)P (∃ ∧ ¬∀) + P (‘some’|∀)P (∀).
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P (‘some’|∀) < 1, since in the cell ∀ there are two true messages, ‘some’ and ‘all’ (so
if each message has a positive probability, neither can have probability 1).

(6) Additional conversational assumptions:
a. The speaker always sends a message (and cannot remain silent)
b. If the speaker’s cell is t and m is true in t, the speaker has a positive prob-

ability of uttering m

From the above, we obtain P (‘some’|∃ ∧ ¬∀) > P (‘some’|∀), which in turn (on
our current assumptions) means that P (∃ ∧ ¬∀|‘some’) > P (∀|‘some’). So, on the
assumptions above, a hearer who receives ‘some’ can conclude that it is most probable
that the speaker’s cell is ∃ ∧ ¬∀. Consequently, if it is reasonable to take a message m
as indicating the cell that m makes most probable (when such a cell exists), something
like (4) can serve as a sensible criterion for cell identification.15

This kind of probabilistic reasoning, then, can motivate adopting something like
(4).16 But is there also an empirical reason to think that (2) is insufficient and that
something like (4) needs to be added to the system (perhaps supporting a system that
goes back and forth between the two notions of identification)? Relevant cases would
be SIs in which at some point during iterative peeling the following hold: (a) there is no
alternative that is true in just one cell (otherwise (2) could be used); and (b) there is a
cell in which just one message is true (so (4) holds). We discuss two potential cases of
this kind, though we conclude that neither provides strong support for (4). We present
these cases as an illustration of the type of consideration that might support (4) and as
a way of indicating that we were unable to find stronger support (though in the next
section we will consider potential support for a probabilistic variant of (4)).

As a first example, suppose that the set of messages is {A,B}, which – assuming
thatA andB are logically independent – induces the partition {¬A∧¬B,A∧¬B,¬A∧
B,A∧B}. Clearly, an utterance of ‘A’ does not identify any cell: it is compatible with
two distinct cells, A ∧ ¬B and A ∧ B. Similarly for an utterance of ‘B’. And in the
absence of a cell identifier, peeling using (2) cannot start. The situation changes when
mirror-image identification in (4) is available: ‘A’ is the only message that is true in
the cell A ∧ ¬B, and similarly for the message ‘B’ and the cell B ∧ ¬A, so mirror-
image identification succeeds. The problem with using this case to support (4) is that
it is not obvious that SIs based on the relevant sets of alternatives are ever computed.
Specifically whenever an utterance of ‘A’ identifies the cell A ∧ ¬B there are other
plausible ways of accounting for this: either the conjunctive alternative is present as
well or the common-ground already excludes A ∧ B (see Fox 2019); in either case
peeling can proceed using (2).

For our second example, consider the possibility of infinite scales (a matter of some
debate in the literature). One central candidate is expressions denoting the natural

15The idea of maximizing the probability of a cell given a message is very similar to Franke (2011)’s
proposal. One difference between the two notions is that Franke’s proposal maximizes also the speaker’s
probabilities of messages given a cell.

16Note, however, that while the motivation for (4) is probabilistic, its statement is not. Empirical evi-
dence in favor of (4), then, might suggest a role for probabilistic reasoning in conventionalizing the non-
probabilistic (4), but it will not necessarily support a role for probabilities within the IRM itself. In later
sections we will consider revising this so as to give probabilities an actual role in the computation of SIs.
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numbers. For example, for an assertion of “John has three children”, the alternatives,
one might claim, are all the sentences of the form “John has n children”, [[ n ]] ∈ N.
This set does not have a strongest element, so the peeling process based on (2) cannot
start. On the other hand, the mirror-image notion of cell identification, as stated in (4),
straightforwardly allows for peeling:17

• Step I: the message “John has one child(ren)” mirror-identifies the cell exactly-
one (since in that cell no other alternative is true)

• Step II: the message “John has two children” mirror-identifies the cell exactly-
two (since after peeling off the message “John has one child(ren)” in Step I,
there is no message other than “John has two children” that is true in the cell
exactly-two)

• Step III: the message “John has three children” mirror-identifies the cell exactly-
three (for the same reasoning as in Step II), and the SI for the assertion is com-
puted

So for cases such as the above, the original (2) fails and (4) succeeds. For natural
numbers in a downward-entailing context, on the other hand, it is the original (2) that
succeeds and (4) that fails. For example, “If John has three children, he is eligible for a
tax break” has a strongest alternative (namely, “If John has one child(ren), he is eligible
for a tax break”), from which peeling using the original (2) can start. However, there
is no cell in which just one alternative is true, so peeling using the mirror-image notion
in (4) has no starting point.

Given the above, it might seem reasonable to use both (2) and (4), perhaps going
back and forth between the two. As mentioned briefly in the introduction, the idea of
going back and forth between the perspective of the speaker and that of the hearer is
central to the IRMs in the literature. Based on our present discussion, we suggest infi-
nite scales as a possible empirical motivation for this choice. And since, as discussed
above, mirror-image identification can be motivated through probabilistic reasoning,
we can take infinite scales to also indirectly support a role for probabilities in IRMs.
However, since it remains unclear whether SIs are ever truly based on infinite scales
– numeric scales such as the above, for example, might be based on finite scales re-
sulting from truncation of infinite ones – the support for both back-and-forth reasoning
and for probabilities based on such scales is weak. For probabilities, we will see poten-
tially stronger motivation below. As with the motivation for probabilities in the current
section, what we will see will be at best an argument for formal probabilistic compu-
tations: in both cases, actual probability assessments about states of the world will not
play a role. We will discuss the significance of this distinction in section 6.

17Above we illustrated a probabilistic motivation for the notion of mirror-image identification in (4) using
the case of ‘some’/‘all’ and assuming flat priors. For the countably infinite case we are currently considering,
a uniform distribution over cells is of course not possible. As mentioned in note 16, however, (4) itself makes
no mention of probabilities and does not depend on there being any particular kind of distribution over the
cells in the partition.
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4 Non-scalar alternatives, conjunctive readings of dis-
junction, and a second motivation for probabilities

4.1 Conjunctive readings of disjunction
In the cases of SI discussed earlier, there was always either a message that was true
in just one cell or a cell in which just one message was true, so peeling could always
proceed using at least one of (2) or (4). In other cases, however, neither of the two no-
tions of identification above are of help. A particularly relevant configuration in which
no message is true in just one cell (so the original notion of cell identification fails)
and in which mirror-image identification is unhelpful as well is that of disjunctions in
the absence of a conjunctive alternative. In this case, the alternatives are {A or B, A,
B}, and the induced partition is the same as in the case of {A and B, A, B} and of
{A, B} discussed earlier: {¬A ∧ ¬B,A ∧ ¬B,¬A ∧ B,A ∧ B}. Instantiations of
this schematic setting have been argued to exist and to give rise to conjunctive read-
ings for disjunctive sentences, with examples including Warlpiri connectives (Bowler
2014), ‘or-else’ disjunction (Meyer 2015), and disjunctions in child language (Singh
et al. 2016). Somewhat more broadly, conjunctive reading of disjunctions has been ob-
served for embeddings under particular environments such as existential operators, as
in so-called Free Choice disjunctions: a sentence such as “You may eat the ice cream
or the cake” has the implication that you may eat the ice cream and you may eat the
cake. Moreover, this implication has been argued to be an SI (see Kratzer and Shi-
moyama 2002, Alonso-Ovalle 2005, and Fox 2007) and to be generated by a general
mechanism that also derives the conjunctive SI in the case of {A or B, A, B} (see Fox
2007, Franke 2011, and Bar-Lev and Fox 2017). Other cases that have been argued to
follow a similar logic include the further embedding of Free Choice disjunction under
a universal operator (argued to be an SI in Bar-Lev and Fox 2017) and the embedding
of disjunction in the antecedent of conditionals (see van Rooij 2010 and Franke 2011).
Based on these works, we can formulate the following desideratum (which we will
generalize in (14) below) for theories of Scalar Imlicatures:18

(7) DESIDERATUM FOR THEORIES OF SCALAR IMPLICATURES: In certain cases
(depending on the properties of φ), when a disjunction of the form φ(A or B)
has φ(A) and φ(B) as alternatives but not [φ(A) and φ(B)], the theory must
provide the means for generating [[ φ(A) ]] ∧ [[ φ(B) ]] as an SI.

However, the procedures of iterative peeling that we have seen fail to account for
such conjunctive interpretations of disjunction. The reason for this is that no message
is true in just one cell, so no message will identify a cell by the simple notion of cell
identification in (2). And the same holds for mirror-image identification since there is
also no cell in which just one message is true.

18We will not attempt here to characterize either the kinds of environments φ in which such strengthening
occurs or the precise sets of alternatives that are involved. Different proposals in the literature make different
predictions based on the choices of φ and the alternatives, and we will frame the discussion in terms of cases
such as the simple {A or B, A, B} and Free Choice disjunction where both φ and the alternatives seem
straightforward.
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4.2 A role for probabilities in cell identification
To see how the challenge of conjunctive readings of disjunctions might be addressed
within an IRM, imagine that there was a way for ‘A’ and for ‘B’ to be strengthened
so that they would each identify a different cell. Suppose, more specifically, that ‘A’
identified A ∧ ¬B, and ‘B’ identified B ∧ ¬A (as in the simpler case discussed above
that involves just the two messages {A,B}). If that were possible, ‘A or B’ (after peel-
ing) would identify the third cell in which it is true, namely A ∧ B, thus accounting
for the conjunctive reading of disjunction in this case. The question, of course, is how
to strengthen the messages ‘A’ and ‘B’ in the first place so that they can identify the
relevant cells. Franke (2011)’s insight is that this can be done through the use of prob-
abilities. In particular, while we just saw that the notion of mirror-image identification
in (4) does not solve the problem of strengthening ‘A’ and ‘B’, the probabilistic com-
ponents that we used to provide the motivation for (4) do allow the relevant messages
to be strengthened once one further assumption is made, as we now show.

To facilitate the discussion, we start by restating the probabilistic motivation for (4)
as an actual probabilistic criterion for cell identification. Recall that in the probabilistic
setting under consideration, the hearer asks if there is a t that is more likely than every
other cell t′ given the message m: P (t|m) > P (t′|m) for all t′ 6= t. Using Bayes’
Rule, this amounts to comparing P (m|t)P (t)

P (m) and P (m|t′)P (t′)
P (m) , which, since the denomi-

nator is the same for both elements, amounts to comparing the numerators P (m|t)P (t)
and P (m|t′)P (t′). The criterion, then, can be stated as follows:19

(8) MIRROR-IMAGE CELL IDENTIFICATION (final version, revised from (4)): Mes-
sage m probabilistically mirror-identifies a cell t given a set of cells Π and
messages M if for every other t′ in Π, P (t|m) > P (t′|m) (or, using Bayes’
Rule, P (m|t)P (t) > P (m|t′)P (t′)).

The original notion of cell identification in (2) corresponds to certainty: when a
message m is only true in cell t, the hearer who receives m knows (on the assumption
of truthfulness, (1d)) that the speaker’s cell is t. From the current probabilistic perspec-
tive, this means that P (t|m) = 1 and that for any t′ 6= t, P (t′|m) = 0. Mirror-image
cell identification in (4) does not rely on certainty but still guarantees, once various
additional assumptions were made (in particular, (6a), (6b), and flat priors), that for
any t′ 6= t, P (t|m) > P (t′|m) in cases where (a) only m is true in t, and (b) there is
no other cell t′ in which only m is true. For the case of conjunctive readings of dis-
junction, these assumptions are insufficient, since none of the speaker’s probabilities is
1, as summarized in the following table (where ? stands for an unknown value that is
greater than 0 but less than 1):

19While (8) and (4) are conceptually related, neither is stronger than the other, even if we assume flat
priors. Below we will focus on cases in which a message m identifies a cell t according to (8) but not
according to (4). But in principle there can be cases in which a message m identifies a cell t in the sense
of (4) but not in the sense of (8). This is so since there might be another cell t′ in which only m is true. In
this case, m identifies both t and t′ according to (4), but it identifies neither according to the probabilistic
(8) (since P (m|t) = P (m|t′) = 1, so on the assumption of flat priors P (m|t)P (t) = P (m|t′)P (t′)).
One can bring the two notions closer by demanding only P (m|t)P (t) ≥ P (m|t′)P (t′), as done by Franke
(2011), but this complicates the empirical derivation of conjunctive readings of disjunction, so we do not
adopt this move here.
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(9) Speaker’s probability assignment (A/B/A or B):
P (m|t) ‘A’ ‘B’ ‘A or B’
¬A ∧ ¬B 0 0 0
A ∧ ¬B ? 0 ?
¬A ∧B 0 ? ?
A ∧B ? ? ?

There is a simple way to ensure that P (‘A’|A∧¬B) > P (‘A’|A∧B) (so that, with
the assumption of flat priors, we will have P (A ∧ ¬B|‘A’) > P (A ∧ B|‘A’), and ‘A’
will be strengthened to A ∧ ¬B as desired) and that P (‘B’|¬A ∧B) > P (‘B’|A ∧B)
(so that ‘B’ will be strengthened to ¬A ∧ B). This way involves counting: of the two
states that make ‘A’ true, A ∧B makes three messages true while A ∧ ¬B makes only
two messages true; similarly for the cells that make ‘B’ true. On its own, this does not
give us enough information to compare P (‘A’|t) for its two relevant cells (or P (‘B’|t)
for its two cells), but it does if we make the further assumption that the speaker has
no preference among the messages that are true in their cell, so that each is used with
equal probability. That is, we add the following assumption, which following the IRM
literature we refer to as that of a naive speaker and which subsumes (1d), (6a), and
(6b):20

(10) Naive speaker: if cell t makes n different messages true, the speaker will
choose each of them with probability 1

n .21

With (10), the unhelpful table in (9) becomes the following:

(11) Naive speaker’s probability assignment (A/B/A or B):
P (m|t) ‘A’ ‘B’ ‘A or B’
¬A ∧ ¬B 0 0 0
A ∧ ¬B 1

2 0 1
2

¬A ∧B 0 1
2

1
2

A ∧B 1
3

1
3

1
3

Table (11) allows us to obtain the desired conjunctive reading of disjunction. Thanks
to (10), P (‘A’|A ∧ ¬B) = 1

2 >
1
3 = P (‘A’|A ∧ B). On our earlier assumption of flat

priors, this means that, according to (8), ‘A’ is an identifier for the cell A ∧ ¬B (ulti-
mately, since P (A∧¬B|‘A’) > P (A∧B|‘A’)). Similarly, ‘B’ becomes an identifier for

20As in our earlier discussion of (4), we could treat the probabilistic setting – now also including (10) –
as motivating background but state a non-probabilistic identification criterion for the actual peeling process.
In the present case, we would need to incorporate the idea of comparing how many messages each relevant
cell makes true. We could do so by saying that m identifies t if it is true in t and if every other t′ that
makes m true makes more additional messages true than t does. Note, however, that differently from (4),
such a statement makes reference within the IRM itself to a comparison of cardinalities, a notion that is quite
different from those typically used in accounts of SIs in the literature. For space considerations, we have
chosen to omit a cardinality-based statement and to state the discussion here and below directly in terms of
probabilities.

21As mentioned in fn. 9, the IRM literature sometimes assumes that messages are associated with costs
(for example, correlating with phonetic effort) and that these costs can affect the speaker’s choice. Such
assumptions are not necessary for the present derivation, so we do not make them here. We were also not
able to see places where costs would affect our conclusions in the discussion below.
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the cell ¬A∧B. No further identification is possible in the first stage.22 However, after
peeling, we have only the message ‘A or B’ and the cells ¬A∧¬B and A∧B, so ‘A or
B’ becomes an identifier for the cell A ∧ B as desired. The same holds in appropriate
environments φ such as embedding under an existential operator or in the antecedent
of a conditional. We can conclude that (8) allows our IRM to meet the desideratum in
(7).

Before proceeding, note that the move to probabilistic identification in (8) sup-
ports simpler identification in various cases that could already be handled with non-
probabilistic identification. For example, consider again the case of M = {‘some’,
‘many’, ‘all’}, where the partition is Π = {¬∃,∃ ∧ ¬many,many ∧¬∀,∀}. We have
the following probabilities for the naive speaker:

(12) Naive speaker’s probability assignment (some/many/all):
P (m|t) ‘some’ ‘many’ ‘all’
¬∃ 0 0 0
∃ ∧ ¬many 1 0 0
many ∧ ¬∀ 1

2
1
2 0

∀ 1
3

1
3

1
3

Given the probabilities in (12), and assuming flat priors (that is, P (t) = 1
4 for all t),

we can see that ‘some’ identifies ∃ ∧ ¬many, ‘many’ identifies many ∧ ¬∀, and ‘all’
identifies ∀. Note that, while the earlier notions of identification in (2) and (4) require
three steps to complete cell identification in the present case, (8) accomplishes this in
a single step and does not require peeling.

4.3 Interim discussion
As mentioned, the use of probabilistic IRMs to derive conjunctive readings of dis-
junctions (when a conjunctive alternative is absent) is due to Franke (2009, 2011) and
originally presented within his particular system (see also van Rooij 2010). And as
we just saw, the same solution is available within our simplified IRM.23 To our knowl-
edge, the literature does not provide derivations of conjunctive readings of disjunctions
within other kinds of IRMS (including those of the Rational Speech Act family; in par-
ticular, the specific system of Bergen et al. 2016 does not yield these readings). Given

22This is so since (8) requires P (t|m) > P (t′|m), using the strict >, rather than requiring P (t|m) ≥
P (t′|m). Choosing ≥ would have made ‘A or B’ identify both A ∧ ¬B and ¬A ∧B, an incorrect result.

23As stated, the procedure for strengthening disjunctions to conjunctions overgenerates (both as stated by
us and Franke). For example, assuming that artists can be musicians or painters (possibly both), strengthening
along the lines just discussed incorrectly predicts that “John is an artist” will be strengthened to imply that
John is both a musician and a painter. However, this prediction is shared among all current proposals that can
derive conjunctive meanings of disjunctions in cases where this is needed. Moreover, similar ways seem to
be open to all such proposals to avoid the overgeneration problem, for example by making SIs blind to world
knowledge (as has been argued in Fox and Hackl 2006 and Magri 2009 for reasons that are independent of
the current matter). If the computation of SIs cannot see the contextual relations between ‘artist’, ‘painter’,
and ‘musician’, all the relevant theories of SIs will be able to avoid the empirically unattested strengthening
of ‘artist’ to mean both painter and musician. (We note, however, that a solution in terms of blindness does
seem at odds with an interpretation of IRMs in terms of general, non-modular reasoning, along the lines
suggested in works such as Goodman and Stuhlmüller 2013.)
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the evidence in the literature that these readings are SIs, the challenge for such IRMs is
to either find a modification that succeeds in deriving the relevant readings or to offer
an argument against the analysis of these readings as SIs and in favor of an alternative
account of them.

5 Theory comparison
By deriving conjunctive interpretations of disjunction, Franke (2009) provides a non-
trivial accomplishment for IRMs that could serve as part of an argument in favor of the
overall approach. The question, of course, is how well Franke’s results fare compared
to non-IRM alternatives. The present section provides a preliminary comparison of this
kind, pitting the IRM we have developed above against a specific non-IRM alternative,
and arrives at the conclusion that the IRM solution does not compare favorably with
the non-IRM one.

The non-IRM alternative we will focus on is the grammatical approach, and be-
fore proceeding, let us briefly review how this approach derives conjunctive readings
of disjunctions.24 On this approach, as mentioned briefly in the introduction, SIs are
derived via a covert exhaustivity operator, akin to ‘only’ and sometimes written as Exh,
that can attach to various positions in the parse tree.25 Here we will focus on the recent
variant of the grammatical approach in Bar-Lev and Fox 2017, where the SIs discussed
in the current paper are derivable using a single instance of Exh attached at the root and
where exhaustification follows a two-step procedure. In the first step, those alternatives
that can be safely negated while affirming the assertion are negated. This is done using
the notion of innocent exclusion (Fox 2007): an alternative m is innocently exclud-
able given an assertion S and a set of alternatives M if m is in all maximal sets of
alternatives that can be negated without contradicting S. This ensures that alternatives
that are negated do not lead to arbitrary entailments. In the case of M = {A or B, A,
B}, for example, if S=‘A or B’ then negating ‘A’ would entail that ‘B’ is true, which
seems arbitrary; similarly, negating ‘B’ would entail ‘A’, which again seems arbitrary.
Innocent exclusion formalizes this sense of arbitrariness: the maximal sets of alterna-
tives that can be negated consistently with an affirmation of the assertion are {A} and
{B}, and no alternative is a member of both, so no alternative is innocently excludable
in this case. After the negation of some or all of the innocently excludable alterna-
tives, a second step of innocent inclusion (Bar-Lev and Fox 2017) determines which of
the remaining alternatives can be affirmed consistently with the assertion, again while
avoiding arbitrary choices (which here, too, is done by considering maximal sets of
alternatives that can be affirmed consistently and choosing those that appear in all such
sets). In our current example, both ‘A’ and ‘B’ can be asserted consistently with the
assertion ‘A or B’, so both are affirmed, and the result is the desired conjunctive read-

24For other (non-probabilistic, non-IRM) proposals for the derivation of conjunctive readings of disjunc-
tions see Klinedinst 2007 and Chemla 2009.

25See Fox 2007, Magri 2011, and Fox and Spector 2018 for proposals regarding the distribution of Exh,
with roots going back to Chierchia (2004).
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ing.26,27

5.1 More than two disjuncts
We have now seen how conjunctive readings of disjunction can be derived both in an
IRM and in a non-IRM, focusing on cases in which there are two disjuncts. We now
turn to what should, to our mind, be a simple extension: in all cases where a conjunctive
interpretation arises for a disjunctive construction with two disjuncts it also arises for
a minimally different construction in which more than two disjuncts are involved. The
following illustrates:

(13) You are allowed to eat the cake, the ice cream, or the fruit
(Possible reading: You may choose between the three)

We can state this as a number-independent variant of (7):

(14) NUMBER INDEPENDENCE OF CONJUNCTIVE READINGS OF DISJUNCTION:
If φ(·) is an environment that gives rise to conjunctive readings in the case of
φ(A1 or A2), it also does so in the case of φ(A1 or A2 or . . . or An).

Under the grammatical approach, the relevant inference for (13) is derived straight-
forwardly (as is the broader generalization in (14)) by the same system that was de-
signed to handle two disjuncts. Using the proposal of Bar-Lev and Fox 2017, strength-
ening proceeds as follows. First, none of the alternatives to ‘A or B or C’ is innocently
excludable (there is no alternative that is in all maximal sets that can be negated consis-
tently with ‘A or B or C’), so none are excluded and all remain as possible alternatives
for inclusion. Next, the alternatives are all innocently includable – that is, they can

26The definition of Exh in terms of the two steps of innocent exclusion and innocent inclusion can be
seen as a grammatical way to support the speaker’s goal of conveying a cell in the partition, as stated in (1c)
above: assuming, as we do here, that the partition is induced by the set of alternatives, the cells are defined
by the different consistent truth-value assignments to the alternatives; Exh provides a non-arbitrary way to
set the truth value of a large number of alternatives, thus attempting to take an assertion close to a cell in the
partition.

27In earlier variants of the grammatical approach, Exh was defined in terms of innocent exclusion alone.
In the case of M = {A or B, A, B}, as we saw, no alternative is innocently excludable given S =‘A or
B’. That is, ExhM (A or B) = A ∨ B. For the other two alternatives we have ExhM (A) = A ∧ ¬B
and ExhM (B) = B ∧ ¬A. To obtain the conjunctive reading, a second occurrence of Exh is attached.
Assuming that for this higher Exh the alternatives are M ′ = {ExhM (A or B), ExhM (A), ExhM (B)},
we now have both ExhM (A) and ExhM (B) as innocently excludable alternatives to ExhM (A or B),
so when ExhM′ (ExhM (A or B)) is computed, both alternatives can be negated while ExhM (A or B)
is affirmed, which in turn amounts to the conjunctive reading. This accounts for conjunctive readings of
disjunctions in a variety of cases (see Fox 2007, Bowler 2014, Meyer 2015, and Singh et al. 2016), and it
does so in a way that resembles the direction followed earlier for cell identification: the first occurrence of
Exh provides a way to identify the cells A ∧ ¬B and B ∧ ¬A; and while this first occurrence does not
directly identify a cell for ‘A or B’, a second occurrence can eliminate the cells that were identified using
the first occurrence and leave only the conjunctive cell for the disjunction. In most of the cases discussed in
the present paper the choice between the two variants of the grammatical theory does not make a difference.
However, the variant that relies on innocent inclusion straightforwardly derives conjunctive readings for
disjunctions in the antecedent of a conditional (see Bar-Lev 2018), a case that, as Franke (2011) notes, is not
derived by the earlier variant that relies on innocent exclusion alone. See Bar-Lev and Fox 2017 for further
arguments in favor of innocent inclusion.
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all be affirmed together consistently with ‘A or B or C’ – so all of them are affirmed,
which yields the conjunctive reading that A, B, and C are all true.28

While the generalization to more than two disjuncts is handled by the grammati-
cal approach without any modification, the same is not true for the IRM approaches
discussed above. When there are more than two disjuncts, both Franke (2011)’s IRM
and our own fail to derive conjunctive readings of disjunctions.29 Consider the set of
messages {A or B or C, A or B, A or C, B or C, A, B, C}, and the induced partition
{¬A∧¬B∧¬C,A∧¬B∧¬C,¬A∧B∧¬C,¬A∧¬B∧C,A∧B∧¬C,A∧¬B∧
C,¬A∧B ∧C,A∧B ∧C}.30 On the assumption of a naive speaker, as stated in (10),
we have the following speaker probabilities:

(15) Naive speaker’s probability assignment (three disjuncts):
P (m|t) ‘A’ ‘B’ ‘C’ ‘A or B’ ‘A or C’ ‘B or C’ ‘A or B or C’
¬A ∧ ¬B ∧ ¬C 0 0 0 0 0 0 0
A ∧ ¬B ∧ ¬C 1

4 0 0 1
4

1
4 0 1

4

¬A ∧B ∧ ¬C 0 1
4 0 1

4 0 1
4

1
4

¬A ∧ ¬B ∧ C 0 0 1
4 0 1

4
1
4

1
4

A ∧B ∧ ¬C 1
6

1
6 0 1

6
1
6

1
6

1
6

A ∧ ¬B ∧ C 1
6 0 1

6
1
6

1
6

1
6

1
6

¬A ∧B ∧ C 0 1
6

1
6

1
6

1
6

1
6

1
6

A ∧B ∧ C 1
7

1
7

1
7

1
7

1
7

1
7

1
7

Using the probabilities in (15), we can try to proceed by iterations of peeling as
before, but as we will now show, the process does not yield the desired results.

• Step I. Assuming (8), message ‘A’ probabilistically identifies the cell A ∧ ¬B ∧
¬C, and both are peeled off. This is so since P (‘A’|A ∧ ¬B ∧ ¬C) = 1

4 , which
is greater than P (‘A’|t′) for all t′ 6= A ∧ ¬B ∧ ¬C, so assuming flat priors
we obtain P (‘A’|A ∧ ¬B ∧ ¬C)P (A ∧ ¬B ∧ ¬C) > P (‘A’|t′)P (t′) for all
t′ 6= A ∧ ¬B ∧ ¬C. Similarly, message ‘B’ probabilistically identifies the cell
B∧¬A∧¬C and both are peeled off, and message ‘C’ probabilistically identifies
the cell C∧¬A∧¬B and both are peeled off. No further messages identify cells
at this step. This leaves (16) as the relevant part of the table for the rest of the
peeling process.

(16) The portion of (15) that is relevant after the first round of peeling:
P (m|t) ‘A or B’ ‘A or C’ ‘B or C’ ‘A or B or C’
A ∧B ∧ ¬C 1

6
1
6

1
6

1
6

A ∧ ¬B ∧ C 1
6

1
6

1
6

1
6

¬A ∧B ∧ C 1
6

1
6

1
6

1
6

A ∧B ∧ C 1
7

1
7

1
7

1
7

28The correct result is obtained also if we use the proposal of Fox 2007, in which exhaustification uses
only the negation of innocently excludable alternatives and in which conjunctive readings of disjunction are
derived using the recursive application of the exhaustivity operator.

29As mentioned, some IRMs in the literature fail already with two disjuncts.
30Note that the same partition can also be induced by a smaller set of messages (in particular, any subset

that includes ‘A’, ‘B’, and ‘C’). This, however, will not help with cell identification.
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• Step II. At this point, as seen in (16), all remaining messages are compatible
with all remaining cells, so no further identification is possible, and the process
of identification stops. The remaining messages – {A or B or C, A or B, A or
C, B or C} – can perhaps be treated as indicating uncertainty, or they might just
lead to an anomaly. In any event, these messages do not get strengthened to
conjunctive readings.

The inability of the peeling process to derive a conjunctive reading for ‘A or B or
C’ is clearly problematic given examples such as (13) and the broader generalization
in (14). We presented the problem within our simplified system, but as Franke (2011)
notes, a similar problem holds for his version of IRM.31

The peeling process cannot derive the conjunctive meaning for three disjuncts be-
cause the extra disjunct creates a situation where there are too many cells that cannot
be peeled off. The same problem arises already for two disjuncts in the presence of
additional alternatives (and consequently additional cells):

(17) Which of these three desserts (cake, ice cream, and fruit) are we allowed to
eat?
a. You are allowed to eat the cake or the ice cream

In the given context, the answer in (17a) leads to the inference that we are allowed
to eat the cake, we are allowed to eat the ice cream, and we are not allowed to eat the
fruit. Within the peeling system, this – seemingly straightforward – extension of the
basic free-choice case is not derived: the message in (17a) fails to identify a cell for the
same reasons as in the discussion of three disjuncts above. Again, the problem carries
over also to Franke (2011)’s system.32

Comments by a reviewer highlight the significance of considering the case of (17a)
above, rather than just the basic conjunctive reading of 3-way disjunctions. The re-
viewer observes that a certain kind of modification of existing IRMs can yield the con-
junctive reading of 3-way disjunctions. The implementation of this modification can
vary between frameworks, but the general idea is as follows. There are various criteria
that one can introduce that would favor the alternatives in the cases we are dealing with
which contain fewer disjuncts. Single disjuncts will be best where possible, and as in

31While both IRMs fail to obtain the correct strengthening of ‘A or B or C’, the actual outcome in the two
systems is different. In our system, as we just saw, ‘A or B or C’ does not get strengthened at all. In Franke
(2011)’s system, the outcome depends on whether the back-and-forth iterations start with a naive hearer or
a naive speaker: for the former, ‘A or B or C’ becomes a surprise message that a speaker is expected not to
use (and that a hearer can interpret as compatible with any of the different cells), while for the latter it gets
strengthened to mean that two of the three disjuncts are true but not all three.

32In this case, the same incorrect prediction is made in Franke’s system regardless of whether iterations
start with a naive speaker or a naive hearer: in both cases, a disjunction such as ‘A or B’ is incorrectly
predicted to be strengthened to mean that two of the three disjuncts are true (any two) but not all three. As
before, the problem does not arise with the grammatical approach, where the case of two disjuncts in the
presence of an additional alternative is derived straightforwardly using the same mechanism that derived the
basic cases. Referring back to the steps in the derivation listed above, the only difference is that in the first
step, the third alternative – for example, ‘C’ if ‘A or B’ is asserted – is innocently excludable and is therefore
negated. The other alternatives remain innocently includable, which yields the reading that A and B are true
(because of inclusion) but C is false (because of exclusion in the first step).
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our IRM they will identify their respective exactly-1-positive cells (with ‘A’ identify-
ing A ∧ ¬B ∧ ¬C, and so on). At this point, the 2-way disjunctions will all be better
than the full 3-way disjunction, but the 2-way disjunctions will still not be paired with
the appropriate states for the reasons discussed in reference to the table in (16) during
step II. However, if we now also adopt a notion of cell identification that allows for
many-to-many pairings, each of the 2-way disjunctions can be paired with all of the
exactly-2-positive cells A ∧ B ∧ ¬C, A ∧ ¬B ∧ C, and ¬A ∧ B ∧ C.33 This leaves
just the 3-way disjunction ‘A or B or C’ and the 3-positive cell A∧B ∧C, which leads
to the correct pairing for the 3-way disjunction, thus avoiding the impasse we ran into
in our peeling process above and directly addressing the challenge posed by cases like
(13). We note, however, that regardless of what one thinks of the criteria that need to be
introduced, the approach leads to failure in the 2-out-of-3 disjunct case: it incorrectly
pairs a message such as ‘A or B’ with all three of the exactly-2-positive cells rather
than just with A ∧B ∧ ¬C.

We certainly do not mean to imply that these problems cannot be addressed. We
note, however, that under the grammatical approach, the problem does not arise in the
first place: the same system that was designed to handle two disjuncts also derives the
case of more than two disjuncts.

5.2 A broader comparison
In the previous sections, we presented the most interesting argument we found in the
literature that IRMs might offer adequate accounts of SIs. We saw that an initially
promising theory of SIs runs into non-trivial challenges, not generalizing in the way it
should beyond the simplest cases. But, of course, the conjunctive meaning of disjunc-
tion is just one point of comparison among different theories of SI. The question of
theory comparison needs to be be much broader in scope, taking into account, as usual,
any observation, empirical or theoretical, that might bear on theory choice.

Though we will not attempt to go into the various issues involved in any detail here,
we would like to mention the growing body of observations that have been presented
in favor of the grammatical approach. Probably the most discussed are observations
pertaining to the distribution of SIs, and in particular to the presence of strengthening
in embedded positions (see Cohen 1971, Landman 2000, Chierchia 2004, Chierchia,
Fox, and Spector 2012, among other work). Strenghtening in embedded positions is
expected if SIs result from a grammatical representation containing an occurrence of
Exh, but not if strengthening is the result of attempts to retrieve the intentions of a
speaker given certain assumptions about the nature of the common ground, as in the
derivation of SIs within IRMs or other Gricean approaches.34

33To see why this might be a reasonable mapping note that each of the 2-way disjunctions receives a higher
probability given the exactly-2-positive cells ( 1

6
) than it does given the 3-positive cell ( 1

7
). So if we have a

criterion that favors the 2-way disjunctions, we can appeal to probabilities to map these disjunctions to the
exactly-2-positive cells.

34Initially it was thought that strengthening in embedded positions could be derived within an extension
of IRMs that involves lexical uncertainty, as proposed by Bergen et al. (2016). As mentioned in fn. 3,
however, more recent work has pointed out empirical shortcomings of this approach and moved toward a
reinterpretation of IRMs as a disambiguation framework that reasons about Exh and is thus very much in
line with the grammatical approach (see Champollion et al. 2019 and Franke and Bergen 2019).
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But, although these observations about embedded exhausitification have received
some attention in literature on IRMs, the body of pertinent work is much broader,
including arguments that Exh plays a role in grammar: that it has the properties of
a focus associating particle (see Fox and Katzir 2011 and Katzir 2014) and that it is
relevant for polarity phenomena (see Chierchia 2006, 2013 and Crnič 2013, 2020), for
the semantics of questions (see Groenendijk and Stokhof 1984 and Fox 2019), and
for the licensing of ellipsis (see Crnič 2017, 2018), arguments for modularity in the
computation of SIs (see Fox and Hackl 2006 and Magri 2009, 2011), and arguments
that SIs can persist even in conversational situations that do not satisfy the assumptions
about the common ground needed for their computation within IRMs or other Gricean
approaches (see Fox 2014). It seems to us that the this body of observations needs to
be part of the conversation.

6 Probabilities and modularity
Suppose, however, that the challenges discussed for IRMs in the previous section can
be overcome and that a variant of the IRMs under consideration becomes a leading con-
tender in the account of SIs. Given the crucial reliance of current IRMs on probabilistic
reasoning, we would then have an argument in favor of incorporating probabilities into
the mechanisms that derive SIs. Since probabilistic reasoning is often bundled together
with representations of world knowledge and beliefs of discourse participants, it might
seem that such an argument for probabilities will also become an argument for a non-
modular system in which the computation of SIs is aware of various aspects of world
knowledge and probability assessments about states of affairs.

As we show in the present section, however, this is not the case: when the proba-
bilities in IRMs are allowed to reflect general cognitive probabilistic assessments, they
lead to the incorrect prediction that as the prior probability of the cells varies, so do the
SIs of various messages. We will argue that if IRMs of the kind discussed above turn
out to provide the correct account of SIs, the probabilities involved should probably be
thought of as formal constructs, internal to the mechanism that computes SIs, rather
than an external input that reflects actual beliefs about the world.

6.1 Do priors affect SIs?
Consider again the case of M = {‘some’, ‘many’, ‘all’}, where the partition is Π =
{¬∃,∃ ∧ ¬many,many ∧ ¬∀,∀}. Earlier we showed how probabilistic cell identi-
fication as stated in (8) derives the correct results in this case on the assumption of
flat priors. If priors are a real input to the system, however, we need to examine other
possibilities.

First, recall the naive speaker’s probabilities from (12), repeated here:

(18) Naive speaker’s probability assignment (some/many/all):
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P (m|t) ‘some’ ‘many’ ‘all’
¬∃ 0 0 0
∃ ∧ ¬many 1 0 0
many ∧ ¬∀ 1

2
1
2 0

∀ 1
3

1
3

1
3

Suppose now that, differently from our earlier discussion of this example, the cell
many ∧ ¬∀ is more than twice as likely as any of the other cells, all of which have the
same prior probability. That is, P (¬∃) = P (∃∧¬many) = P (∀) < 1

5 and P (many∧
¬∀) > 2

5 . If those are the priors, ‘some’ will identify the incorrect many ∧ ¬∀ rather
than the correct ∃ ∧ ¬many. To see why, recall that we are looking for the cell t that
maximizes P (t|‘some’), or, equivalently (given Bayes’ Rule) the cell that maximizes
P (‘some’|t) · P (t). Recall further that we are assuming naive speaker’s probabilities,
as summarized in (18). Suppose now a sufficiently biased prior such as P (¬∃) =
P (∃∧¬many) = P (∀) = 1

6 and P (many∧¬∀) = 1
2 . Then P (‘some’|many∧¬∀) ·

P (many∧¬∀) = 1
2 ·

1
2 = 1

4 while P (‘some’|∃∧¬many)·P (∃∧¬many) = 1· 16 = 1
6

(and P (‘some’|∀) · P (∀) = 1
3 ·

1
6 = 1

18 ). In other words, while the assumption of
naive speaker gives an advantage in the case of ‘some’ to the correct cell, ∃ ∧ ¬many,
over the alternative cells, this advantage is too small to overcome a sufficiently biased
prior such as the one considered here. Other biased priors lead to additional incorrect
identifications. For example, if P (¬∃) = P (∃∧¬many) = P (many∧¬∀) < 1

6 , both
‘some’ and ‘many’ will incorrectly identify ∀. Clearly these are incorrect predictions.
For example, if John says “I like some of my children,” you will be justified in thinking
that he does not like all of his children; the fact that parents usually like all their children
is entirely irrelevant.35

A possible response to the problem just noted might be to say that when simple,
non-probabilistic identification (or mirror-image identification) is possible, that is the
notion that is used rather than the probabilistic one in (8). This would be useful for
M = {‘some’, ‘many’, ‘all’} since, as we saw earlier, this case is handled straightfor-
wardly by non-probabilistic identification. But biased priors are a problem for prob-
abilistic identification also in the case of conjunctive readings of disjunctions, where
non-probabilistic notions of identification are of little help. In fact, the problem posed
by biased priors is particularly striking in this case. Consider again the naive speaker’s
probabilities for this case, repeated here from (11):

(19) Naive speaker’s probability assignment (A/B/A or B):
P (m|t) ‘A’ ‘B’ ‘A or B’
¬A ∧ ¬B 0 0 0
A ∧ ¬B 1

2 0 1
2

¬A ∧B 0 1
2

1
2

A ∧B 1
3

1
3

1
3

If P (A ∧ ¬B) = P (¬A ∧ B) < 2
3 · P (A ∧ B), both ‘A’ and ‘B’ will incorrectly

be strengthened to mean A∧B. More dramatically, the slightest bias in favor of either
35To see that the inference from ‘some’ to ‘not all’ holds in this case and that no similar inference from

‘some’ to ‘all’ is available, note that you may respond to John’s assertion with “That can’t be true–I’m
convinced you like all of them” but not with “That can’t be true–I’m convinced you like just some of them”.
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A ∧ ¬B or B ∧ ¬A can lead to an incorrect strengthening of ‘A or B’ to mean the
favored cell. For example, if P (A ∧ ¬B) = P (A ∧ B) and each was just a little bit
smaller than P (¬A∧B) – perhaps P (A∧¬B) = P (A∧B) = 0.9999 ·P (¬A∧B) –
the message ‘A or B’ will be strengthened to mean ¬A ∧ B. This is a blatantly wrong
prediction. If Mary tells her daughter Kim “You may take the Ford or the Porsche
tonight”, Kim will be justified in thinking that she can choose; the fact that permission
to take the Ford but not the Porsche is somewhat likelier than permission to take the
Porsche is simply irrelevant. Additional examples illustrating this problem are readily
constructed. In (20a), for example, we can conclude that we can buy Italian newspapers
and that we can buy English newspapers, even if the latter is likelier than the former
(for example, if the store is in Boston). In (20b) we can conclude that if we ignore our
neighbor we will regret it and that if we ignore our best friend we will regret it, even
though the latter might seem likelier than the former. And in (20c) we can conclude
that if we do the reading we will get an A and that if we answer all of the questions
correctly we will get an A, again despite an imbalance between the likelihoods.

(20) a. In this store you can buy Italian or English newspapers
b. If you ignore your neighbor or your best friend, you are going to regret it
c. If you do the reading or answer all of the questions correctly you will get

an A

6.2 Approaches to biased priors in the IRM literature
Above we illustrated the problem of sensitivity to priors faced by the IRM we devel-
oped. The exact same problem arises in Franke’s system. Specifically, like our sim-
plified IRM it makes wrong predictions in the scalar case (such as ‘some’/‘all’) when
heavily skewed priors are allowed. And likewise it makes wrong predictions for dis-
junctive sentences even when the slightest deviation from flat priors is permitted. Here
we would like to discuss ideas entertained in the IRM literature for issues of this sort
and explain why we do not think they provide a satisfactory answer to the questions
that arise, at least not at present.

Franke (2009, 2011), who noted the problem in the scalar case, considers various
responses. In one place (Franke 2009, p. 75), noting that the problem in the scalar case
is confined to heavily skewed priors, he writes “I am not worried if a theory makes un-
intuitive predictions for unnatural, non-occurring parameter settings, as long as there
is some sufficient margin around natural parameter settings in which predictions are
robust.” We disagree with this approach as will become evident in the next section,
but in any event it is not helpful in the case of the conjunctive meaning of disjunc-
tion.36 In this case, as we mentioned, the slightest skew in the prior distribution leads

36If a new theoretical proposal makes new and unique predictions for certain situations, the correct ap-
proach, we would think, is to figure out ways of bringing about these situations (by an appropriate experi-
mental setup, formal or informal). Simply asserting that the situations are “non-occuring” is unhelpful. The
question one needs to ask, we think, is whether the situations can be made to occur. If not, this is of course
an unfortunate situation – a missed opportunity to test what is unique about the new theoretical approach.
But demonstrating that the situations cannot be made to occur in principle is not going to be simple, and it is
completely irrelevant to observe that they do not occur in run-of-the-mill circumstances.
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to unattested results, and since slightly skewed priors are ubiquitous, the problem is
quite dramatic in this domain, as observed by the examples above.

Franke (2009, pp. 75–6) also considers a “technical solution” to the problem in
the scalar case based on the idea that “the sender considers it very unlikely, but still
possible, that the priors are not heavily skewed”.37 This technical solution will not be
helpful in the case of disjunction, where as we have seen priors need to be perfectly flat
rather than simply not heavily skewed. We conclude that Franke 2011’s claim (fn. 20,
p. 27) that flat priors are just a convenience and not a necessity is incorrect.

The extreme sensitivity to priors in the case of conjunctive readings of disjunctions
is important because, as discussed in the previous section, these readings provide us
with the only argument that probabilistic reasoning plays any role in the computation
of SIs. If we only had the scalar case, we could live happily with the simple, non-
probabilistic version of cell identification. Likewise, if the problem of biased priors
arose only in the scalar case, there would be numerous ways to avoid the problem. In
addition to Franke’s proposals we could also simply assume that the non-probabilistic
version of cell-identification applies whenever it works (as entertained briefly above).
It is precisely because the conjunctive interpretation might require probabilistic iden-
tification that the problem of biased priors in this domain is so pressing. We therefore
conclude that if there is any evidence that probabilistic considerations enter into the
computation of SIs, the system needs to be al priors. This possibility is in line with yet
another possibility that Franke (2009) entertains (p. 132).

6.3 Modularity
In the previous section we have discussed the problem of prior sensitivity that arises
if one assumes that the priors in an IRM reflect actual probability assessments. We
have considered various responses to this problem and their inapplicability to the most
important case, namely the conjunctive interpretation of disjunction – the only area
where a simple non-probabilistic IRM fails. We are, of course, not claiming that there
cannot be a way out of this problem. For example, we think that it is possible to identify
a property of the computation that yields a conjunctive interpretation and to assert that
whenever a hearer encounters this property they stipulate flat priors. But proposals of
this sort are plainly excuses for an inability to corroborate an expectation of anyone who
believes in sensitivity to actual priors, namely that this sensitivity could reveal itself. In
other words, it seems to us that a theory that assumes sensitivity to actual priors should
be supported by areas where this sensitivity is attested rather than defended against
counter-examples by various band-aid solutions. The fact that the relevant literature is
full of the latter, but lacks any of the former calls for an explanation.

We believe that there is one very natural explanation that should be taken seriously.
It is possible that we haven’t found any evidence for sensitivity to actual priors because
such sensitivity does not exist. Specifically, it is possible that the system is modular and

37A different technical fix is considered in Degen et al. 2015, who present their idea within an IRM
that does not at present account for the conjunctive readings of dijunction. Checking whether it can be
incorporated within Franke’s IRM or our own requires investigating various decision points and will have to
be left for some other occasion, though we think the general comments made in the next section will remain
relevant.
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if it makes any probabilistic computations – a questionable premise given the empirical
challenge discussed in section 5 – the priors involved are formal constructs defined
internally to the system. This conclusion should be taken particularly seriously given
independent evidence for modularity in the computation of SIs even in domains that do
not involve probabilistic considerations (see Fox and Hackl 2006 and Magri (2009)).

7 Conclusion
We considered what to our mind is the strongest argument for the viability of IRMs
as accounts of SIs: their ability to derive certain conjunctive readings of disjunction.
Upon closer inspection, we saw that the current IRMs that accomplish this result –
Franke (2011)’s and ours – do not compare well to the grammatical approach. In
particular, they struggle with extending the basic result to cases with more than two
disjuncts (which the grammatical approach does without modification), and we also
noted a broader comparison with established results of the grammatical approach that
remains to be made. As far as we can see, this currently leaves the grammatical ap-
proach as the front-runner as an account of SIs. We further noted that, even if one sets
aside the problems, current IRMs furnish no argument for a non-modular architecture.
In fact, the reverse is true: the lack of evidence for a role of belief assessments in the
computation of SIs and the extreme sensitivity of the derivation of conjunctive interpre-
tations of disjunctions to biased priors suggest a highly modular computation in which
probabilities, if needed, are a purely formal construct.
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