
Capturing gradience in long-distance phonology using probabilistic
tier-based strictly local grammars

Connor Mayer
Department of Linguistics

University of California, Los Angeles
Los Angeles, CA 90046, USA
connormayer@ucla.edu

Abstract

Phonological processes often exhibit gradi-
ence, both in response frequencies and in ac-
ceptability judgments. This paper presents
a variation of tier-based strictly local gram-
mars, probabilistic tier-based strictly local
(pTSL) grammars, which calculate the con-
ditional probability that a given input string
has some grammatical projection. pTSL gram-
mars are well-suited to modeling gradience,
particularly for long-distance processes, and
naturally extend categorical tier-based strictly
local grammars by probabilizing the projec-
tion function. After describing the formal
properties of pTSL, I illustrate its application
using data from Hungarian and Uyghur. pTSL
is able to capture distance-based decay in these
languages without an explicit notion of dis-
tance, and provides a unified account of gra-
dient blocking and distance-based decay. I
finish by outlining some of the limitations of
pTSL, and how further extensions may over-
come these.

1 Introduction

Subregular phonology attempts to find proper
subclasses of the finite-state languages and trans-
ductions that are sufficiently powerful to model
natural language phenomena (see Heinz, 2018).
These models provide a strong mathematical foun-
dation for phonological analysis, establish tighter
bounds on the range of observed cross-linguistic
variation, and have implications for theories of
phonological learning (e.g., Lai, 2015; McMullin,
2016; McMullin and Hansson, 2019).

The class of tier-based strictly local languages
(TSL; Heinz et al., 2011) has proven useful for
modeling long-distance phonotactic phenomena

Companion software to this paper can be found at
https://github.com/connormayer/pTSL.

that more restricted classes like the strictly local
languages (SL) cannot. Grammars that generate
the TSL languages remove all symbols from input
strings that do not belong to a specified subset of
the alphabet before identifying phonotactic viola-
tions, allowing non-local dependencies to be reg-
ulated in a local manner.

Long-distance phonology frequently exhibits
gradience, both in response frequencies and in
speaker acceptability judgments (e.g., Albright
and Hayes, 2003; Daland et al., 2011; Zuraw and
Hayes, 2017, a.o.). This gradience often manifests
as distance-based decay, where long-distance de-
pendencies hold less strongly as the amount of
irrelevant material between relevant segments in-
creases. While several accounts of distance-based
decay (e.g., Kimper, 2011; Zymet, 2014) have
been presented in the framework of Optimality
Theory (Prince and Smolensky, 1993/2004), to my
knowledge none have been presented using mod-
els from subregular phonology.

This paper presents probabilistic tier-based
strictly local (pTSL) grammars, a natural exten-
sion of TSL that probabilizes the projection func-
tion used to construct tier representations. This
allows the conditional probability of any gram-
matical projection given an input string to be as-
signed in a way that permits gradience in long-
distance patterns to be captured without an ex-
plicit notion of distance (see McMullin, n.d., for
a similar observation) and presents a unified ac-
count of distance-based decay with other types of
blocking. This method of probabilizing the pro-
jection function may also be applied with minimal
modifications to other extensions of TSL, such as
MTSL and SS-TSL/IO-TSL (e.g., De Santo and
Graf, 2017; Graf and Mayer, 2018).

The paper is structured as follows. Section 2
provides background on the SL and TSL classes.
Section 3 defines pTSL and discusses some of its
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properties, including its relationship to TSL. Sec-
tions 4 and 5 apply pTSL models to vowel har-
mony in Hungarian and Uyghur, demonstrating
that these models can effectively capture speaker
judgments and production frequencies in an inter-
pretable way, while also discussing some short-
comings of the model. Section 6 summarizes the
paper and proposes several natural extensions of
pTSL that overcome its limitations.

2 Background

2.1 Strictly local languages
ε denotes the empty string and S∗ the Kleene clo-
sure of the set S. Sk denotes the proper subset of
S∗ that only contains strings of length k, and sk

represents a string consisting of k occurrences of
the symbol s.

Let Σ be some fixed alphabet and s ∈ Σ∗.
The set fk(s) of k-factors of s consists of all the
length-k substrings of ok−1snk−1, where o,n /∈
Σ and k ≥ 1. For example, f2(ababac) =
{oa, ab, ba, ac, cn}.
Definition 1. A strictly k-local grammar is a
set G ⊆ (Σ ∪ {o,n})k. A stringset L ⊆
Σ∗ is strictly k-local (SL-k) iff there is some
strictly k-local grammar G such that L =
{s ∈ Σ∗ | fk(s) ∩G = ∅}.

Intuitively, G defines a grammar of forbidden
substrings that no well-formed string may con-
tain. The class SL of strictly local stringsets is⋃
k≥1 SL-k.

Example 1. Consider a language with the follow-
ing stress pattern: (a) words must have primary
stress on the final syllable; (b) words must contain
exactly one syllable with primary stress.

Assuming Σ := {σ́, σ}, this pattern can
be generated using the SL-2 grammar G :=
{σ́σ́, σ́σ, σn,on}, and thus is SL-2. For exam-
ple, the string σ́σ is illicit because f2(σ́σ) ∩ G =
{σ́σ, σn} 6= ∅, whereas the string σσ́ is licit be-
cause f2(σσ́) ∩G = ∅.

2.2 Tier-based strictly local languages
For every T ⊆ Σ, a simple tier projection πT is a
transduction that deletes all symbols not in T :

πT (ε) := ε

πT (σu) :=

{
σπT (u) if σ ∈ T
πT (u) otherwise

where σ ∈ Σ and u ∈ Σ∗.

Definition 2. A tier-based strictly k-local (TSL-
k) grammar over an alphabet Σ is a tuple (T,G),
where T ⊆ Σ andG ⊆ (T∪{o,n})k. A stringset
L ⊆ Σ∗ is TSL-k iff there exists a TSL-k grammar
such that L = {s ∈ Σ∗ | fk(πT (s)) ∩G = ∅}. It
is TSL iff it is TSL-k for some k.

In other words, TSL languages are string lan-
guages that are SL once one masks out all irrele-
vant symbols or, alternatively, languages that are
SL over a tier to which a subset of relevant sym-
bols are projected (cf. Goldsmith, 1976).

Example 2. Consider a language over the alpha-
bet Σ := {σ́, σ} such that no word may contain
more than one primary stress (i.e., more than one
σ́). This language cannot be characterized by any
SL-k grammar: for example, for any value of k we
can produce strings of the form σ́σk−1σ́, which
violate the restriction on multiple primary stresses
but cannot be prohibited by a SL-k grammar be-
cause the window of length k is not large enough
to “see” both stresses at the same time.

We can define a TSL-2 grammar that accepts
this language. Let T := {σ́} andG := {on, σ́σ́}.
Any illicit string of the form σ́σ∗σ́, for instance,
will first be projected to σ́σ́. This projection will
be rejected because f2(σ́σ́) ∩G = {σ́σ́} 6= ∅.

3 Probabilistic tier-based strictly local
languages

3.1 Probabilistic tier projection functions

Definition 3. A discrete probabilistic function f :
X → (Y → [0, 1]) assigns to each x ∈ X a condi-
tional probability distribution over the set Y . For
a particular x,

∑
y∈Y f(x)(y) = 1.

The simple tier projection function πT dis-
cussed in the previous section can be generalized
to a probabilistic tier projection function πP :
Σ∗ → (Σ∗ → [0, 1]). This is a discrete probabilis-
tic function that, given a string, returns a probabil-
ity distribution over projections of that string to a
tier. πT can be thought of as a special case of πP
where a single output has a probability of 1 and all
other outputs have a probability of 0.

The distribution over outputs given an input is
calculated based on probabilities associated with
projecting individual symbols. Let Pproj : Σ →
[0, 1] represent the probability that a symbol in Σ
is projected to the tier: for example, Pproj(a) :=
0.5 indicates that there is a 50% chance that each
a symbol will be projected.



We may notate a sequence of symbols x as
(xn)n∈I where I is the index set of the sequence.
A sequence y that is a subsequence of x can be
written (yn)n∈J where J ⊆ I . Using this nota-
tion, we can define the probability of projecting a
particular subsequence y = (yn)n∈J from the in-
put x = (xn)n∈I as follows:

πP (x)(y) :=
∏
k∈J

Pproj(xk)·
∏
k∈I\J

[1− Pproj(xk)]

That is, the probability of projecting the output y
given the input x is the product of the probabilities
associated with projecting each symbol that is pro-
jected and with not projecting each symbol that is
not projected. Any projection that is not a subse-
quence of x will receive a probability of zero.

The probabilities of all possible projections for
an input string x sum to one:∑

y∈Σ∗

πP (x)(y) = 1

Example 3. Let Σ := {a, b, c}, and assume that
πP is defined using the following projection prob-
abilities:

Pproj(a) := 1.0

Pproj(b) := 0.5

Pproj(c) := 1.0

For the input abbc the probability of projecting ac,
πP (abbc)(ac), is

= Pproj(a)[1− Pproj(b)][1− Pproj(b)]Pproj(c)
= 1.0 · 0.5 · 0.5 · 1.0
= 0.25

The complete distribution over possible projec-
tions of abbc is:

πP (abbc)(abbc) = 0.25

πP (abbc)(abc) = 0.5

πP (abbc)(ac) = 0.25

All other projections have probabilities of zero.

3.2 Probabilistic tier-based strictly local
grammars

Definition 4. A probabilistic tier-based strictly k-
local (pTSL-k) grammar over an alphabet Σ is a
tuple (πP , G), where πP is a probabilistic projec-
tion function with specified projection probabili-
ties for each s ∈ Σ and G ⊆ (Σ ∪ {o,n})k is a
set of prohibited k-factors.

Definition 5. The function val(πP ,G) computes
the probability that is assigned to a input
string x by the corresponding pTSL-k grammar.
val(πP ,G)(x) is defined as∑

y:fk(y)∩G=∅

πP (x)(y)

In other words, the probability computed by
val(πP ,G)(x) is the sum of the probabilities of all
possible subsequences (or projections) of the in-
put string x that do not contain a prohibited k-
factor. Note that val does not constitute a prob-
ability distribution over input strings: in general∑

x∈Σ∗ val(πP ,G)(x) 6= 1. Instead, val may be
interpreted as the conditional probability of any
well-formed tier projection given the input.

Example 4. Assume a pTSL-2 grammar defined
over the alphabet Σ := {a, b, c}. Let πP
be defined as in Example 3 and G := {ac}.
val(πP ,G)(abbc) = 0.75, because the sum of the
probabilities of all projections of abc that do not
contain the 2-factor ac is 0.25 + 0.5 = 0.75.

3.3 Some properties of pTSL

A stringset L ⊆ Σ∗ is pTSL-k iff there is
some pTSL-k grammar (πP , G) such that L ={
w ∈ Σ∗|val(πP ,G)(w) > 0

}
. Alternatively, we

may say that L is accepted by this grammar. The
set of pTSL stringsets is the union of all pTSL-k
stringsets where k > 0.

It is straightforward to show that for every L
that is TSL, it is possible to define a pTSL gram-
mar that accepts L. This relationship does not
hold in the opposite direction: given a pTSL
stringset L, it is not always possible to construct a
TSL grammar that accepts L, though certain sub-
classes of pTSL will always have corresponding
TSL grammars. Thus TSL is a proper subset of
pTSL. See Appendix A for additional discussion.

3.4 Relating pTSL probabilities to
production frequencies

Studies of gradience in phonology typically use
as empirical data either speaker ratings of individ-
ual forms (e.g., Albright and Hayes, 2003; Daland
et al., 2011) or response frequencies of particu-
lar word forms (Hayes and Londe, 2006; Zuraw
and Hayes, 2017). To model empirical data us-
ing pTSL, we must be explicit about how the con-
ditional probabilities assigned to inputs relate to
these measurements. In the case of word ratings,



it seems sensible to suggest that assigned probabil-
ities should be positively correlated with ratings.
The case of response frequencies is more difficult.
Consider a case where a particular word occurs in
two forms: y1 or y2 (for example, with the front
or back form of a suffix under a vowel harmony
system). It will not in general be the case that
val(πP ,G)(y1) + val(πP ,G)(y2) = 1, so the proba-
bilities supplied by the model cannot be treated as
response frequencies.

For a pTSL grammar (πP , G), I relate probabil-
ities assigned by val(πP ,G) to response frequencies
as follows:

P (y1) :=
val(πP ,G)(y1)

val(πP ,G)(y1) + val(πP ,G)(y2)

P (y2) := 1− P (y1)

The next two sections provide some empirical jus-
tification for this assumption and use pTSL to an-
alyze two cases of gradient, long-distance phono-
logical processes.

4 Gradient transparency in Hungarian
vowel harmony

The Hungarian vowel harmony system requires
suffix vowels to match the backness of the final
front (/y y: ø ø:/; Table 1) or back (/u u: o o: O a:/;
Table 2) vowel in the stem (e.g., Hayes and Londe,
2006; Hayes et al., 2009).

ySt-nEk/*-nOk ‘cauldron-DAT’
sEmøltS-nEk/*-nOk ‘wart-DAT’
Sofø:r-nEk/*-nOk ‘chauffeur-DAT’

Table 1: Simple front harmonizing forms (Hayes et al.,
2009, p. 829)

OblOk-nOk/*-nEk ‘window-DAT’
bi:ro-nOk/*-nEk ‘judge-DAT’
glyko:z-nOk/*-nEk ‘glucose-DAT’

Table 2: Simple back harmonizing forms (Hayes et al.,
2009, p. 829)

The front unrounded vowels /i i: e: E/ are trans-
parent to harmony, meaning that they do not serve
as harmony triggers for suffixes, but allow the
harmonic values of preceding segments to “pass
through” them. Stems with only transparent vow-
els generally take front suffixes (Table 3), but a
small set takes back suffixes (Table 4). Stems with

front vowels followed by transparent vowels in-
variably take front suffixes (Table 5), while stems
with back vowels followed by transparent vowels
vary in whether they take front or back suffixes
(Table 6).

kErt-nEk/*-nOk ‘garden-DAT’
tsi:m-nEk/*-nOk ‘address-DAT’
rEpEs-nEk/*-nOk ‘splinter-DAT’

Table 3: Transparent forms that take front suffixes
(Hayes et al., 2009, p. 830)

hi:d-nOk/*-nEk ‘bridge-DAT’
Si:p-nOk/*-nEk ‘whistle-DAT’
dEre:k-nOk/*-nEk ‘waist-DAT’

Table 4: Transparent forms that take back suffixes
(Hayes et al., 2009, p. 830)

fysEr-nEk/*-nOk ‘spice-DAT’
ø:rizEt-nEk/*-nOk ‘custody-DAT’

Table 5: Front harmonizing forms with transparent
vowels (Hayes et al., 2009, p. 829)

dome:n-nOk/-nEk ‘domain-DAT’
bohe:m-nOk/-nEk ‘easy going-DAT’
honve:d-nOk/-nEk ‘Hungarian soldier-DAT’
poe:n-nOk/-nEk ‘punch line-DAT’

Table 6: Back harmonizing forms with transparent
vowels (Hayes et al., 2009, p. 830)

The variation in forms like those in Table 6 is
sensitive to the height and count of transparent
vowels: harmony from the back trigger is more
likely to be blocked (and a front suffix attached) if
the intervening transparent vowels are lower (i.e.,
/i/ and /i:/ are less likely to block than /e:/, which is
less likely to block than /E/), and as their number
increases (Hayes and Londe, 2006; Hayes et al.,
2009).

As part of a broader study, Hayes et al. (2009)
administered an online wug test (Berko, 1958) to
131 Hungarian speakers. Participants were pre-
sented with 13 wug words from a set of about
1600 wug words embedded in frame paragraphs
and asked to choose the form of the dative suffix
to attach (front [-nEk] or back [-nOk]). Participants
were then asked to rate each form and suffix com-
bination on a scale of 1-7, with 7 being the best.



Each wug word belonged to one of the following
templates: BN, BNN, and N, where each B and N
were sampled from the set of back and transpar-
ent vowels respectively according to their lexical
frequencies. For simplicity, I treat consonants as
completely transparent, ignoring the effects of fi-
nal consonant on suffix choice observed by Hayes
et al. (2009).

To test whether the equation relating word rat-
ings to response frequencies given in Section 3.4
holds for real data, I calculated the predicted pro-
portion of back suffixes per stem type based on
speakers’ ratings of front and back suffixed forms.
The correlation between the proportion of back re-
sponses predicted using this method and the pro-
portion observed was extremely high (r = 0.99),
suggesting that this method is a good character-
ization of the link between ratings and response
frequencies.

To test whether pTSL can adequately model this
data, I defined a pTSL-2 grammar (πP , G) over
Σ := {B, I, e:, e, Sf , Sb}, where I := {i, i :},
e = E and Sf and Sb are front and back suf-
fixes. Note that although TSL (and hence pTSL,
for the same reasons discussed in de Santo and
Graf, 2017) is not in general closed under relabel-
ing, it is closed if no segment corresponds to more
than one abstract symbol. This is the case here,
and hence the relabelings used here and in the next
section do not influence the expressiveness of the
models.

The set of prohibited 2-factors G was de-
fined to be {BSf , ISb, e:Sb, eSb}. Pproj was
fixed to 1 for {F,B, Sf , Sb}. Maximum likeli-
hood optimization was used to calculate the val-
ues of Pproj for the remaining symbols using
the minimize function from the Python library
scipy.optimize (Virtanen et al., 2020). Op-
timization was performed 100 times with random
starting probabilities. The difference in maximum
log likelihood between the best and worst fits was
less than 10−6, and the differences between opti-
mal projection probabilities similarly small, indi-
cating that the search space is largely convex.

The optimal values were approximately:

Pproj(I) = 0.39

Pproj(e:) = 0.66

Pproj(e) = 0.82

These probabilities directly reflect the tendencies
of these segments to act as harmony blockers.

Figure 1: Probability distribution over projections of
BIeSf . Ungrammatical projections are colored red.
val(πP ,G)(BIeSf ) = 0.895, which is the sum of the
probabilities of the grammatical projections. Note that
the probability of a particular projection is independent
of whether or not it is grammatical: here, ungrammat-
ical BSf has a higher probability of being projected
than grammatical BISf .

Fig. 1 shows the probability distribution over pro-
jections of the input form Be:ISf , demonstrating
how val(πP ,G) calculates its probabilities.

Fig. 2 plots the proportion of back suffix re-
sponses predicted by the model against the ob-
served proportions in wug tests. The correlation
between the two is strong (r = 0.83). The correla-
tion between probabilities assigned to each word
by the model and human ratings is also strong
(r = 0.88). Note that although the predicted fre-
quencies of the model differ somewhat from the
observed responses, it captures the observed ef-
fects of height and count on responses. Direct
comparison between the maximum entropy Opti-
mality Theory models fit to wug test data in Hayes
et al. (2009) and this model is difficult for several
reasons: Hayes et al. fit their data to individual
forms rather than averages over templates, include
constraints that model stem-final consonant effects
on vowel harmony, and do not present predicted
frequency data. I note, however, that the authors
report a correlation of r = 0.575 between pre-
dicted and observed frequencies, which suggests
this model may be more successful in capturing
height and count effects on vowel harmony.

Note that the pTSL model has the least suc-
cess predicting the frequency of neutral forms with
back suffixes: it predicts they should be more com-
mon than they are. The final section of this paper
discusses how pTSL may be extended to capture
this phenomenon.



Figure 2: Observed against predicted proportion of
back responses by stem template.

5 Gradient judgments in Uyghur
backness harmony

Like Hungarian, Uyghur (Turkic: China) displays
backness harmony (e.g., Lindblad, 1990; Hahn,
1991a,b; Abdulla et al., 2010).

The basic characterization of this process is that
suffixes must agree in backness with the final front
(/æ ø y/; Table 7) or back (/u o A/; Table 8) harmo-
nizing stem vowel.

tyr-dæ/*-dA ‘type-LOC’
pæn-lær/*-lAr ‘science-PL’
munbær-gæ/*-KA ‘podium-DAT’

Table 7: Simple front harmonizing forms

pul-KA/*-gæ ‘money-DAT’
top-qA/*-kæ ‘ball-DAT’
ætrAp-tA/*-tæ ‘surroundings-LOC’

Table 8: Simple back harmonizing forms

The vowels /i e/ are transparent to harmony (Ta-
bles 9 and 10).

mæsÙit-tæ/*-tA ‘mosque-LOC’
ymid-lær/*-lAr ‘hope-PL’
mømin-gæ/*-KA ‘believer-DAT’

Table 9: Front stems with transparent vowels

student-lAr/*-lær ‘student-PL’
uniwersitet-tA/*-tæ ‘university-LOC’
Amil-KA/*-gæ ‘element-DAT’

Table 10: Back stems with transparent vowels

If a stem contains no harmonizing vowels, the
front dorsals /k g/ (Table 11) and back dorsals /q
K X/ (Table 12) may serve as harmony triggers.

kishi-lær/*-lAr ‘person-PL’
negiz-gæ/*-KA ‘basis-DAT’

Table 11: Front dorsal stems that take front suffixes

qiz-lAr/*-lær ‘girl-PL’
jiKin-dA/*-dæ ‘meeting-LOC’
Xiris-qA/*-kæ ‘grimace-DAT’

Table 12: Back dorsal stems that take back suffixes

There are a small number of stems with front
dorsals that take back suffixes (Table 13). The op-
posite case (stems with only back dorsals that take
front suffixes) does not appear to occur.

ingliz-lAr ‘English person-PL’
etnik-lAr ‘ethnic group-PL’
rentgen-KA ‘x.ray-DAT’
gips-qA ‘plaster-DAT’

Table 13: Front dorsal stems that take back suffixes

When a stem contains a harmonizing vowel
with a following dorsal that conflicts in backness,
the final vowel generally takes precedence (Ta-
ble 14), although there are a small number of
stems containing front vowels with following uvu-
lars that take back suffixes (Table 15).

mæntiq-qæ ‘logic-DAT’
æqil-gæ ‘intelligence-DAT’
rAk-lAr ‘shrimp-PL’
pAkit-lAr ‘fact-PL’

Table 14: Conflicting vowels and dorsals, vowel takes
precedence

The uvular consonants may thus be character-
ized as gradient blockers: they generally allow the
backness of the preceding vowel to pass through to
the suffix, but will occasionally impose their own,
blocking harmony with the vowel. See Mayer and
Major (2018) for a discussion of the challenges of
modeling this pattern using TSL.

5.1 Wug-testing backness harmony

Mayer et al. (2019, 2020) present results from wug
tests performed on 23 speakers of Uyghur living in
Kazakhstan. These tests included nonce words of
the templates shown in Table 16, where C, K, and
Q are transparent, velar, and uvular consonants,
and N , F , and B are transparent, front, and back
vowels respectively.



tæstiq-qa ‘approval-DAT’
tæSwiq-lAr ‘publicity-PL’
tætqiq-lAr ‘research-PL’

Table 15: Conflicting vowels and dorsals, dorsal takes
precedence

F stems CFC, CFCNC, CFCNCNC
B stems CBC, CBCNC, CBCNCNC
FQ stems CFQ, CFCNQ, CFCNCNQ
BK stems CBK, CBCNK, CBCNCNK

Table 16: Stem templates used in the wug task.

These templates vary the distance between final
harmonizing vowel and suffix, as well as the pres-
ence or absence of a conflicting dorsal between
the two. Participants produced four words from
each template (48 words total) in unsuffixed and
suffixed form in paragraphs designed to provide
a naturalistic context. Suffixed forms were coded
for whether they contained a back or a front suffix.
See Mayer et al. (2019, 2020) for more detail.

The proportion of back responses is shown in
Fig. 3. These results indicate that (a) disharmonic
suffix forms become more likely as the distance
between the final harmonizing vowel and the suf-
fix increases, and that this effect is significantly
stronger for front stems, and (b) an intervening
uvular between a front vowel and suffix skews re-
sponses towards back, but an intervening velar be-
tween a back vowel and a suffix does not.

5.2 Modeling wug test data using pTSL

I defined a pTSL grammar (πP , G) over
Σ := {C,K,Q,N, F,B, Sf , Sb}, with
G := {FSb, BSf ,KSb, QSf , NSf}. The
first four k-factors prohibit backness clashes

Figure 3: Wug word responses from Mayer et al.
(2019). Error bars are +/- one standard deviation.

Figure 4: Predicted responses by the optimal pTSL
model.

between suffixes and stem vowels and consonants.
The final k-factor captures the overall tendency
towards back suffixes as the distance between the
harmonizing vowel and suffix increases. Note that
in Uyghur the neutral vowels behave as gradient
triggers for back harmony, while in Hungarian
they trigger front harmony.
Pproj was fixed to 1 for {F,B, Sf , Sb}. Maxi-

mum likelihood optimization on the remaining pa-
rameters was performed in the same manner as for
the Hungarian data.

The optimal values were approximately:

Pproj(C) = 0.08

Pproj(K) = 0.07

Pproj(Q) = 0.24

Pproj(N) = 0.30

Fig. 4 shows the proportion of back responses pre-
dicted by the model.

The model captures both the gradient blocking
displayed by uvulars and the distance-based decay
over transparent vowels. Although the model as-
signs virtually identical frequencies to back stems
with and without blockers, this is perhaps not a
major shortcoming, since the observed differences
in the wug tests are fairly small and difficult to
account for in a principled way. More worry-
ing is that the model incorrectly predicts the rate
of distance-based decay introduced by transparent
vowels. The wug test responses for front stems in
Fig. 3 show a smaller decrease in front responses
between 1 and 2 syllables, followed by a larger
decrease between 2 and 3 syllables. The predic-
tions of the model shown in Fig. 4 display a larger
decrease in front responses between 1 and 2 syl-
lables than between 2 and 3. This is an unavoid-
able consequence of the mathematical properties



Figure 5: Predicted responses for front stems by mod-
els with different projection probabilities.

of pTSL: as independent probabilities are multi-
plied together to form a joint probability, the rate
of change of the joint probability slows with each
multiplication (see Fig. 5).

The failure of the model to represent this pat-
tern should not be seen as a significant shortcom-
ing, however. Zymet (2014) identifies decay rates
for a range of phonological patterns, and finds that
all of them exhibit the kinds of exponential prop-
erties that pTSL can represent. Thus the Uyghur
wug test results present an interesting exception
to general rates of distance-based decay. I discuss
this issue in more detail in the next section, and
show how pTSL can be extended to cope with it.

6 Conclusion

pTSL grammars allow conditional probabilities to
be assigned to stringsets in ways that capture gra-
dient effects in long-distance phonological pat-
terns, and without exceeding the generative capac-
ity of the class of TSL grammars. The parameters
of these grammars have a simple and intuitive in-
terpretation from the perspective of autosegmen-
tal phonology: the set of prohibited k-factors G
corresponds to a set of inviolable local marked-
ness constraints, and the probabilistic projection
function πP defines how likely each segment is to
be projected to the tier on which these violations
are evaluated. This allows superficially disparate
effects such as distance-based decay and gradient
blockers to be treated uniformly.

McMullin (n.d.) observed independently that
the idea of modeling distance-based decay as a
function of probabilities associated with interven-
ing material, as pTSL does, is similar to the de-
cay functions used in Kimper (2011) and Zymet
(2014). For example, he shows that the decay

function in Zymet (2014), 1
kx , where k is a con-

stant and x is the number of transparent segments
between trigger and target, can be implemented by
assigning all intervening segments a probability 1

k
of serving as a blocker. A detailed comparison of
these optimality theoretic models with pTSL is be-
yond the scope of this paper: however, I note that
the decay functions proposed in the literature treat
all intervening segments alike, while pTSL allows
individual projection frequencies for each segment
(though this is complicated by the effects of con-
straint definitions and weights in the OT models).
In addition, pTSL lends itself to natural extensions
that overcome the limitations of both pTSL and
decay functions, while extensions of OT models
with decay functions are less straightforward.

6.1 Extending pTSL to handle contextual
projection and biases

Generalizations of TSL where the projection func-
tion is sensitive to input context (e.g., De Santo
and Graf, 2017), output (or tier) context (e.g.,
Mayer and Major, 2018), or both (e.g., Graf
and Mayer, 2018) may be probabilized in a
way similar to what has been presented here.
This will allow projection probabilities to be
conditioned on context. For example, in-
stead of Pproj(xi), we may use Pproj(xi|xi−1),
Pproj(xi|yj−1) (where yj−1 is the previously pro-
jected symbol), Pproj(xi|xi−1, yj−1), etc.

This extension is useful to address two short-
comings of pTSL observed in the Hungarian and
Uyghur examples above. In Hungarian, the pTSL
model assigns substantially higher ratings to NSb
forms than speakers do. These ratings are simply
1 − Pproj(N): if the transparent vowel projects,
the form will contain an illicit k-factor, while if it
does not project, the stem will be licit. A better fit
for these forms could be achieved by conditioning
on the preceding vowels: that is, transparent vow-
els are more likely to project when not preceded
by a back vowel. pTSL may also be extended to
capture lexically-specific phonology (e.g., Pater,
2000) such, as the differences in the effect of uvu-
lars on suffix form between the Uyghur stems in
Tables 14 and 15, by conditioning projection prob-
abilities on word identity rather than local context.

The pTSL model of Uyghur wug test data suc-
cessfully captures distance-based decay and gra-
dient blocking effects of uvular consonants. It
fails, however, to predict the correct rate of de-



cay: specifically, the observed productions show
a small increase in back responses when a sin-
gle transparent vowel intervenes between a front
vowel and suffix and a larger increase when an ad-
ditional transparent vowel is added. The model
predicts the opposite (see also Mayer et al. (2019),
where a similar result emerges from the use of de-
cay functions). The correct rate can be achieved
by conditioning the projection probability of neu-
tral vowels on the preceding vowel: neutral vowels
after a harmonizing vowel are less likely to project
than those after a neutral vowel.

Finally, biases towards particular constraint
weights have been employed in previous opti-
mality theoretic models of phonology to explore
how biased learning differs from simpler opti-
mization methods like maximum likelihood esti-
mation (e.g., Wilson, 2006). It is straightforward
to incorporate similar biases into pTSL models by
defining priors over projection probabilities and
incorporating them into the learning process. Ad-
ditionally, it may be interesting to explore pTSL
modeling of feature-based representations. I leave
these as interesting areas for future research.

A Relating TSL and pTSL grammars

Recall that a stringset L ⊆ Σ∗ is TSL if there
is some TSL-k grammar (T,G) such that L =
{s ∈ Σ∗|fk(πT (s)) ∩G = ∅} (Section 2.2), and
that a stringset L′ ⊆ Σ∗ is pTSL if there
is some pTSL-k grammar (πP , G

′) such that
L′ =

{
w ∈ Σ∗|val(πP ,G′)(w) > 0

}
(Section 3.3).

This appendix demonstrates that the class of
TSL stringsets is a proper subclass of the pTSL
stringsets. It also describes algorithms that are
successful for converting certain subclasses of
pTSL grammars to equivalent TSL grammars.

Theorem 1. TSL ( pTSL

To prove this theorem, we must show that TSL
⊆ pTSL and TSL 6= pTSL.

First, we show that TSL ⊆ pTSL. Consider an
arbitrary TSL grammar (T,G) over Σ that accepts
the stringset L. In order to define a pTSL grammar
(πP , G

′) that also accepts L, we define the projec-
tion probabilities for each s ∈ Σ as follows

Pproj(s) :=

{
1 if s ∈ T
0 otherwise

and set G′ := G. Under this definition of πP ,
each input will have exactly one possible projec-

tion, and this input will receive a non-zero prob-
ability only if this projection contains none of the
prohibited k-factors in G′. This evaluation proce-
dure is identical to that used by the corresponding
TSL grammar.
Example 5. Consider the TSL-2 grammar (T,G)
presented in Example 2. The corresponding
pTSL-2 grammar (πP , G

′) has G′ := G, and de-
fines the projection probabilities as:

Pproj(σ) = 0

Pproj(σ́) = 1

Next, we show that TSL 6= pTSL. This can be
demonstrated by counterexample.

Consider a pTSL-2 grammar (πP , G) over Σ :=
{a, b, c}. Let πP be defined such that b and c
always project, a sometimes projects, and G :=
{ba, bc, cc}. Table 17 shows a number of inputs,
their possible projections, and whether they are ac-
cepted by the grammar.

Block Input Projections Accepted?
1 b b 3

c c 3

bc bc 7

2 cc cc 7

cac cc, cac 3

3 ba b, ba 3

ac c, ac 3

bac bc, bac 7

Table 17: Sample inputs to the pTSL grammar. Prohib-
ited 2-factors are underlined.

Now suppose that there is some correspond-
ing TSL-2 grammar (T,G′) that accepts the same
stringset. At the very least, this grammar must as-
sign the same acceptability judgments to the in-
puts in Table 17 as those shown in the rightmost
column. What remains to be worked out is which
symbols such a grammar would need to (determin-
istically) project and which 2-factors it would need
to prohibit in order to do this.

To correctly handle the inputs in Block 1 of Ta-
ble 17, this grammar must project both b and c:
if b were not projected, the projections of c and
bc would be identical, meaning either both would
be accepted or both would be rejected. Similarly,
c must be projected to differentiate between the
projections of b and bc. Finally, G′ must contain
the prohibited 2-factor bc, since this is the only 2-
factor of the projection of bc that is not contained
in the projections of b or c.



The inputs in Block 2 of Table 17 demonstrate
two facts: first, the corresponding TSL-2 gram-
mar must project a: otherwise, the projections of
the inputs cc and cac will be identical. Because all
symbols are projected, this effectively means the
corresponding TSL-2 grammar is an SL-2 gram-
mar. Second, G′ must contain cc, since this is
the only 2-factor of the projection of cc not also
present in the projection of cac.

The inputs in Block 3 of Table 17 dash any
hopes for an equivalent TSL-2 grammar. Consider
the 2-factors of the projections of each of these in-
puts:

f2(πT (bac)) = {ob, ba, ac, cn}
f2(πT (bab)) = {ob, ba, ab, bn}
f2(πT (ac)) = {oa, ac, cn}

Note that every 2-factor of the projection of the
ungrammatical input bac is present in the 2-factors
of the projections of the grammatical inputs ba
or ac: there is no 2-factor we can use to reject
bac without rejecting either ba or ac, and thus our
TSL-2 grammar cannot accept the same stringset
as the pTSL-2 grammar defined above (this can
also be demonstrated using suffix substitution clo-
sure; Rogers and Pullum, 2011).

We can also demonstrate that there is no TSL-k
grammar for k > 2 that accepts the same stringset
as this pTSL-2 grammar (the case of k = 1 is triv-
ially true). Note that the considerations of which
symbols to project exemplified by Blocks 1 and 2
in Table 17 still apply regardless of our choice of
k, so the question becomes whether we can define
k-factors for k > 2 that produce the correct be-
havior.

Input Projections Accepted?
baa∗ b, ba, baa, . . . 3

aa∗c c, ac, aac, . . . 3

baa∗c bc, bac, baac, . . . 7

Table 18: Additional sample inputs to the pTSL gram-
mar. Prohibited 2-factors are underlined.

Consider a generalization of the input forms in
Block 3 of Table 17, shown in Table 18. The orig-
inal pTSL-2 grammar will accept all inputs of the
form baa∗ and aa∗c, and will reject all inputs of
the form baa∗c. For any value of k > 2 we might
choose for an equivalent TSL-k grammar, every k-
factor of the projection of the input baak−2c will
be present in the projections of the inputs baak−2

or aak−2c, and so the former input cannot be re-
jected without also rejecting one of the latter two.
Thus there is no value of k for which a TSL-k
grammar will reject the set baa∗c while accepting
the sets baa∗ and aa∗c.

Thus no TSL grammar can be defined that ac-
cepts the same stringset as the pTSL-2 grammar
described above, and so TSL 6= pTSL.

A.1 Algorithms for converting subclasses of
pTSL to TSL

There are at least two subclasses of pTSL for
which equivalent TSL grammars can always be
constructed. The first is the trivial subclass of
pTSL where every prohibited k-factor contains
only symbols whose projection probabilities are
< 1. This means that every input will have at
least one possible projection that contains none of
the prohibited k-factors, and thus all inputs will be
accepted. Accordingly, the equivalent TSL gram-
mar will contain no prohibited k-factors (and so
the choice of T is unimportant).

A more interesting subclass of pTSL for which
equivalent TSL grammars can always be con-
structed consists of pTSL grammars where every
prohibited k-factor contains only symbols that are
always projected. In these cases, I conjecture that
the following algorithm will always generate an
equivalent TSL grammar, though I do not provide
a formal proof here.

Consider an arbitrary pTSL grammar (πP , G)
such that all k-factors in G contain only symbols
with a projection probability of 1. This can be con-
verted to an equivalent TSL grammar (T,G′) by
performing two steps:

1. G′ := G

2. T := {s ∈ Σ|Pproj(s) > 0}

Recall that an input will only receive a proba-
bility of 0 if all of its possible projections contain
prohibited k-factors. Consider an input that does
not contain a prohibited k-factor, but where one
may be created if certain symbols are deleted. If
any of these symbols have projection probabilities
greater than 0, there will be at least one possible
projection where they are not deleted, and the pro-
hibited k-factor is not produced. Hence this input
will not receive a probability of zero. Defining T
to be the set of all symbols with non-zero projec-
tion probabilities ensures that such strings will be
accepted by the corresponding TSL grammar.



Example 6. Consider the pTSL-2 grammar de-
fined in Example 4, which meets the criterion de-
scribed above. The corresponding TSL-2 gram-
mar hasG := {ac} and T := {a, b, c}. This gram-
mar accepts all input strings over {a, b, c} except
those that contain the substring ac. This is exactly
the set to which the original pTSL-2 grammar will
assign non-zero probabilities.

Example 7. The pTSL-2 grammar used as a coun-
terexample in the previous section does not meet
the criterion for this algorithm to be applied:
the prohibited 2-factor ba contains the symbol a,
which does not have a projection probability of
1. The TSL grammar generated by this algorithm
will erroneously reject the class baa∗.

The trouble in Example 7 arises because always
projecting a can both prevent a prohibited k-factor
from being formed (as for the input cac) and re-
tain a prohibited k-factor present in the input (as
for the input ba). In the pTSL grammar we con-
sider simultaneously the cases where a does and
does not project, while in the corresponding TSL
grammar we must choose one or the other. This
will produce the incorrect output for one of these
forms, and we have seen above that no choice of
k-factors can mitigate this conflict without produc-
ing incorrect results for other forms.

For pTSL grammars where k-factors contain
only symbols with projection probabilities of 1 (as
in Example 6), choosing to project, in the corre-
sponding TSL grammar, all symbols that some-
times project in the pTSL grammar can only have
the effect of preventing the formation of prohib-
ited k-factors. The projection of a given input
where all sometimes-projecting symbols are pro-
jected will never contain more prohibited k-factors
than projections where some or none of these sym-
bols project. Thus choosing to project such sym-
bols in the corresponding TSL grammar determin-
istically generates the “most grammatical” projec-
tion: if this projection contains no prohibited k-
factors, the input will be accepted by both the orig-
inal pTSL grammar and its corresponding TSL
grammar, and so the two will behave equivalently.

It may be the case that there are additional sub-
classes of pTSL for which equivalent TSL gram-
mars may always be constructed. I leave this as an
interesting area for future research.

Acknowledgments

I would like to thank Bruce Hayes, Tim Hunter
and Kevin McMullin for their helpful feedback,
Kie Zuraw for providing the Hungarian data,
Travis Major and Mahire Yakup for collecting the
Uyghur data, and Dakotah Lambert and Jonathan
Rawski for useful discussions about the relation-
ship between TSL and pTSL. Thanks as well to
two anonymous reviewers. This work was sup-
ported by the Social Sciences and Humanities Re-
search Council of Canada.

References
Arslan Abdulla, Yari Ebeydulla, and Abduréhim Rax-
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ductive learning of locality relations in segmental
phonology. Laboratory Phonology: Journal of the
Association for Laboratory Phonology, 10:14.

Joe Pater. 2000. Non-uniformity in English secondary
stress: the role of ranked and lexically specific cos-
ntraints. Phonology, 17:237–274.

Alan Prince and Paul Smolensky. 1993/2004. Op-
timality theory: Constraint interaction in genera-
tive grammar. Blackwell, Cambridge, MA. Tech-
nical Report CU-CS-696-93, Department of Com-
puter Science, University of Colorado at Boulder,
and Technical Report TR-2, Rutgers Center for Cog-
nitive Science, Rutgers University, New Brunswick,
NJ, April 1993.

James Rogers and Geoffrey K. Pullum. 2011. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Infor-
mation.

Aniello de Santo and Thomas Graf. 2017. Structure
sensitive tier projection: Applications and formal
properties. Ms., Stony Brook University.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,
Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt,
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