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University of California, Berkeley

begus@berkeley.edu

Abstract

This paper proposes a framework for modeling sound change that combines deep convolu-
tional neural networks and iterative learning. Acquisition and transmission of speech across
generations is modeled by training generations of Generative Adversarial Networks on unanno-
tated raw speech data. The paper argues that several properties of sound change emerge from
the proposed architecture. Generative Adversarial Networks (Goodfellow et al., 2014; Donahue
et al., 2019) are uniquely appropriate for modeling language change because the networks are
trained on raw unsupervised acoustic data, contain no language-specific devices and, as argued
in Beguš (2020b), encode phonetic and phonological representations in their latent space and
generate innovative data that are linguistically highly informative. Four generations of Genera-
tive Adversarial Networks were trained on an allophonic distribution in English where voiceless
stops are aspirated word-initially before stressed vowels except if preceded by [s]. The first
generation of networks is trained on the relevant sequences in human speech from the TIMIT
database. The subsequent generations are not trained on TIMIT, but on generated outputs from
the previous generation and thus start learning from each other in an iterative learning task.
The initial allophonic distribution is progressively being lost with each generation, likely due to
pressures from the global distribution of aspiration in the training data that resembles phono-
logical pressures in natural language. The networks show signs of a gradual shift in phonetic
targets characteristic of a gradual phonetic sound change. At endpoints, the networks’ outputs
superficially resemble a phonological change — rule loss — driven by imperfect learning. The
model features signs of stability, one of the more challenging aspects of computational models of
sound change. The results suggest that the proposed Generative Adversarial models of phonetic
and phonological acquisition have the potential to yield new insights into the long-standing
question of how to model language change.

keywords: artificial intelligence, deep convolutional neural networks, generative adversarial
networks, speech, phonetic learning, phonological learning, historical linguistics, sound change

1 Introduction

Sound change is one of the most widely studied phenomena of human language and behavior in gen-
eral (Hansson, 2008; Garrett, 2015). It has long been established that languages change constantly
on all levels: phonetic, phonological, morphological, syntactic, and semantic. For example, Modern
French developed from (Vulgar) Latin. The two languages differ in phonemic inventories and their
phonetic realizations, morphology, word order, and in individual words meanings. Language change
on the phonetic/phonological level (i.e. sound change) is arguably the most systematic and well-
studied. Despite the relatively long history of scientific inquiry into the topic (Paul, 1880), many
open questions remain regarding the causes of sound change and language change in general. Even
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its definition is problematic, as Garrett (2015) notes: “[d]espite its ubiquity, there is no generally
accepted definition of sound change.”

The primary source of uncertainty in what causes sound change is that sound change is usually
observed as a completed event, where only the endpoints are accessible to researchers: the initial
stage A of a language with some phonemic inventory and its distribution and the end stage B with
the completed sound change. For example, Latin [k] surfaces as [s] in French when it appears before
front vowels: Latin [ke:ra] > French [siK] (for a recent treatment, see Tifrit and Voeltzel 2016).
Based on comparative evidence and general typology of sound change, we can reconstruct that this
change proceeded through an intermediate stage where [k] developed to [

>
ts] first and only later to

[s], but often direct evidence for such stages are lacking. The study of sound change is additionally
complicated by the fact that in many cases, stage A is only reconstructed and not directly attested.
Even if attested, stage A is rarely accessible to researchers in other form than in written records
that are less informative and reliable than recordings: to be sure, no acoustic data exist for the
Latin word [ke:ra].

From a global viewpoint that concerns primarily the outcomes of sound changes, typology and
directionality of sound change are well-studied and understood. For example, we know which types
of sound changes are possible, which sound changes are more frequent than others (Kümmel, 2007),
and which sound changes are unattested or even impossible (Honeybone, 2016; Beguš, 2018b).
Furthermore, frequencies of sound changes can also be quantified (Bell, 1970, 1971; Cathcart, 2015;
Beguš, 2018a). What is less well understood, however, is what exactly causes language to change
and how changes spread across the speech community. The exact mechanisms of sound change
are difficult to study directly because observing sound changes in progress is a challenging task:
with the exception of rare cases (e.g. van de Velde et al. 1996), we lack long-term acoustic data of
segments that change with generations of speakers.

Several factors have been identified that contribute to sound change, such as variation caused by
articulatory tendencies, motor control, perception of sounds, language acquisition and learnability,
word frequency, contact between languages, and social factors (Garrett and Johnson, 2013; Garrett,
2015; Bybee, 2017). Empirical evidence exists for many of these proposals, yet because sound change
has not been studied in progress, it is difficult to establish which factors cause sound change and how
they interact. Particularly complex is the discussion on whether sound change is primarily driven by
(i) language-specific grammatical, (ii) domain-general cognitive mechanisms (such as learnability),
or (iii) is sound change emergent from articulatory and perceptual tendencies in transmission of
language over generations of speakers.

If grammatical constraints or cognitive mechanisms in general disfavor a particular phonological
process, learners might not acquire it and over generations the process would be lost. The learning
dispreference can be grammatical, i.e. language-specific (domain-specific) or part of general cog-
nitive mechanisms (Kapatsinski, 2018), i.e. domain-genaral. For example, it is possible that some
phonological processes are difficult to learn for only domain-specific linguistic reasons. One such
case would be final voicing (where voiced stops such as [b, d, g] devoice to [p, t, k] word-finally,
e.g. /pad/ → [pat]). Final voicing is predicted to be marked and dispreferred by the grammar
(Kiparsky, 2006, 2008), yet there is no general cognitive (non-phonetic) reason for final voicing
to be any more difficult to learn than its counterpart final devoicing. On the other hand, behav-
ioral experiments show that featurally more complex processes are more difficult to learn than less
complex processes (Moreton and Pater, 2012), which is directly explainable with domain-general
cognitive mechanisms (Moreton et al., 2017). For example, infants learn to restrict [b, d, g] to
the syllable-final position, but fail to learn to restrict [b, t, g] to the same position: the latter
group requires at least one feature more to be described and is therefore more complex (Saffran
and Thiessen, 2003).
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In addition to the domain-general cognitive and domain-specific grammatical influences, sound
change is traditionally viewed as being driven by phonetic factors: articulatory and perceptual bi-
ases that operate in transmission of language in space and time (Garrett and Johnson, 2013). Sound
changes that are common across world’s languages usually have clear and well-understood phonetic
motivations (Ohala, 1981; Blevins, 2004; Hansson, 2008; Garrett and Johnson, 2013). Human ar-
ticulatory forces and perceptual biases operate in speech production and perception. Furthermore,
phonetic data is highly variable and variation often operates directionally. For example, voice-
less stops between vowels (e.g. [apa]) and after nasals (e.g. [ampa]) have more voicing into closure
than in other positions (Davidson, 2016). High airflow and nasal leakage that operate in these
positions promote gradually higher degrees of voicing. When these tendencies change from being
automatic (not controlled by speakers) to non-automatic (actively controlled by speakers), we get
a sound change that introduces a phonological rule. The process is described as phonologization
(Hyman, 1976, 2013). Since strong phonetic forces (precursors) lead to common sound changes, it
is reasonable to assume phonetic forces cause sound change.1

1.1 Prior work

Due to the lack of direct empirical evidence on how exactly sound changes arises, computational
simulations have been used as substitutes to distinguish between different proposals. Several com-
putational models have been proposed that simulate agents (speakers) learning some linguistic
input and interacting with other agents. Typically, over the course of generations of such agent-
based learning, a change in some phonetic feature occurs which replicates sound change in progress
(Baker, 2008). For example, peripheral vowels [a], [i], and [u] reduce to a central vowel [@] when
agents with a bias for reduction interact in an iterative learning task (de Boer, 2003). By compar-
ing computational models with properties of sound change that are empirically observed, we can
evaluate models and the degree to which they approximate reality. If the model matches observed
behavior in sound change, it can be argued that the assumed architecture of the model is respon-
sible for the match, which means that the relevant mechanisms likely influence the actual sound
change.

One of the prominent frameworks in computational simulations of sound change is the exemplar
theory model (Johnson, 1997; Pierrehumbert, 2001; Wedel, 2006; Kirby and Sonderegger, 2015; Du-
ran et al., 2017) which assumes speakers store some perceived phonetic information (such as targets
for vowel formants F 1–F4) as “remembered tokens” or exemplars. Phonetic categories consist of
a set of such exemplars, grouped by “similarity across any salient dimension” (Wedel, 2006). Cat-
egories are updated with each new token and each new production samples from this distribution,
creating a range of possible values within the exemplar, which thus introduces phonetic variation in
speech production. Several agent-based simulations of sound change have been proposed in which
agents interact and learn from each other some abstract and extracted phonetic representation
(de Boer, 2003; Kirby and Sonderegger, 2015).

The existing computational simulations of sound change require strong assumptions about learn-
ability and a high level of abstraction of phonetic features. First, the models need to assume a
simplified representation of learning: agents are already assumed to be able to learn and store

1Additionally, sound change is an umbrella term for several distinct processes, which further complicates the
study behind mechanisms of sound change. Each of these interrelated processes (e.g. gradual phonetic vs. analogical
vs contact-induced change) is likely influenced by different factors. The most well-studied change is the gradual
phonetic change of the Neogrammarian type that affect some phonetic property in speech of a given community of
speakers (Garrett and Johnson, 2013). This type of change is considered to be influenced primarily by articulatory
and perceptual forces and less by speaker’s phonological knowledge, although arguments have been made arguing
that phonology affects the gradual phonetic change too (Fruehwald, 2016).
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phonetic features and values. Second, the models are not trained on raw acoustic inputs, but
on items that only tangentially represent linguistic reality2 or are extracted and reduced forms of
the phonetic signal. For example, learning of vowels is usually modeled with absolute values of
formats F1–F4. When an agent observes or learns a vowel, it stores the representation reduced
to the four dimensions. Occasionally, noise and bias are added, but the learning in the model is
still highly abstracted and does not closely resemble acquisition in language learning infants or
even speech perception in adults. Recently, more elaborate models operate with some extracted
phonetic features, but the dimensions that the agents learn are still highly abstracted; for example,
absolute formant values (Wedel, 2006; Kirby and Sonderegger, 2015; Stevens et al., 2019). Hearing
language-acquiring children need to learn articulatory targets for vowels and other sounds from raw
acoustic inputs and not from already extracted simplified dimensions.

Neural network architectures have long influenced computational models of language. The
majority of neural network approaches to modeling language data operate on a morphological or
syntactic levels with fewer applications in phonetics and phonology. Nevertheless, neural networks
have been widely use to model phonetic learning both in the earlier works (McClelland and Elman,
1986; Gaskell et al., 1995; Plaut and Kello, 1999; Kello and Plaut, 2003) as well as more recently
with autoencoder and other deep learning architectures (Räsänen et al., 2016; Eloff et al., 2019;
Shain and Elsner, 2019).

Populations of neural networks have also been used to model language change in the earlier
development of neural network research (for an overview, see Baker 2008). For example, Hare
and Elman (1995) models morphological change with populations of neural networks. Training is
stopped early in the model to simulate imperfect learning. After generations of networks, the first
of which is trained on Old English data (whereby subsequent generations start learning from each
other), the morphological system becomes more regular, reflective of Modern English (Hare and
Elman, 1995; Baker, 2008). Likewise Livingstone (2002) trains fully connected two-layer neural
networks to model emergence of dialects. However, these models require highly abstracted repre-
sentations, are not trained on raw acoustic data, and are not fully generative in the sense that the
networks would output innovative data. To the author’s knowledge, none of the proposals within
the deep neural network framework model sound change in an iterative learning setting trained on
raw speech.

1.2 Goals

This paper models language change with deep convolutional neural networks within the Generative
Adversarial Networks framework (Goodfellow et al., 2014) that are trained on raw acoustic inputs.
Beguš (2020b) argues that acquisition of phonetics and phonology can be modeled as a dependency
between latent space and generated data in the GAN framework and proposes a technique to identify
the network’s internal learning representations that are phonetically and phonologically meaningful.
To model sound change, we introduce GANs to the iterative learning paradigm: agents in the model
are individual Generative Adversarial Networks (as implemented for audio data in Donahue et al.
2019 based on Deep Convolutional Generative Adversarial Networks by Radford et al. 2015), which
learn to output acoustic data that resembles speech of the raw acoustic data they are trained on.

The following iterated learning architecture is proposed: the initial input for the first generation
of neural networks (a single GAN) are sequences of sounds from the TIMIT database (Garofolo
et al., 1993). The network is trained on this input and after some number of epochs, generates
data that closely resemble the input speech. The next generation of networks is trained on the

2Earlier simulations operated with fully abstract symbols, such as p and q that represent two variants in Nettle
(1999).
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generated data from the previous generation. This is iterated as long as the networks output
data that can be modeled with the standard acoustic methodology for speech data. This iteration
between generations of networks superficially simulates the transmission of speech between actual
language learners providing the opportunity to study sound change in progress through a process
that mirrors real language learning and transmission.

We tests the development of an allophonic distribution based on English primary data. In
English, stops [ph, th, kh] are generally aspirated — produced with a long VOT or puff of air
— before stressed vowels in absolute word-initial position (when no other consonant precedes the
stop) and unaspirated [p, t, k] if an [s] precedes (Lisker, 1984; Iverson and Salmons, 1995; Vaux,
2002; Vaux and Samuels, 2005; Davis and Cho, 2006; Ahmed et al., 2020), e.g. ["pIt] ‘pit’ and
["spIt] ‘spit’). English L1 learners thus need to acquire long VOT (aspiration) and shorten it
if an [s] precedes. Regardless of how we formalize this process (in symbolic rewrite rules as in
Chomsky and Halle 1968 or connectionist constraints in Prince and Smolensky 1993/2004), the
learner needs to acquire a conditional distribution: short VOT if [s] precedes, otherwise long VOT.
If the acquisition is imperfect, the learner fails to shorten the VOT in the [s]-condition and extends
the unmarked elsewhere variant — long VOT — into the more restricted [s]-condition. This stage is
confirmed by language acquisition research: children acquiring English as L1 produce longer VOT
and occasionally very long VOT durations in the s-condition compared to the adult population
(Bond and Wilson, 1980; Bond, 1981; McLeod et al., 1996), likely because they fail to acquire
the distribution perfectly. Similarly, patients with speech impairments produce long VOT in the
[s]-condition because they fail to apply the phonological rule (Buchwald and Miozzo, 2012).

By training generations of GANs on a minimal allophonic distribution, we test which predictions
of language change can emerge in deep convolutional neural networks. First, we test whether GANs
that learn from each other can output linguistically analyzable data. We illustrate that acoustic
phonetic analysis of both the duration (Section 3.2) and spectral properties (Section 3.3) can be
performed on the generated outputs and that such an analysis yields informative results. Second,
we test whether generations of GANs are able to represent properties of the data with the same
frequencies as in the original training distributions (Section 3.1). For example, we analyze how well
the less frequent #sTV sequences are represented relative to TIMIT. As already mentioned, both
language-learning children and convolutional neural networks show evidence of imperfect learning
of the aspiration rule in English — they occasionally fail to apply the rule. We test the effects of
such imperfect learning on outputs of deep convolutional networks in iterative learning tasks. In
other words, can failure to fully acquire a rule accumulate in the loss of a rule? Imperfect acquisition
predicts that the more general #TV condition will remain unchanged, while the restricted #sTV
condition will undergo loss of a distribution. We argue that appearance of such a loss indeed
emerges in GANs trained iteratively and that gradual shifts of phonetic targets underlie the loss of
a distribution (Section 4).

The advantage of the proposed model is that the networks are fully generative and unsupervised:
they need to learn speech data from noise in the latent space based on raw acoustic inputs in the
training data, replicating the conditions of infant language acquisition. The model does not require
any level of abstraction; the only data manipulation that the models require is slicing acoustic inputs
into sequences of sounds. No assumptions about learning are necessary and no language-specific
features are assumed in the model.

Additionally, neural networks in the GAN architecture do not access the training data directly:
they need to learn to output data from noise. Beguš (2020b) argues that GANs produce innovative
outputs that are structured, highly informative, and consistent with linguistic behavior in language
acquisition, speech impairments, and speech errors. Beguš (2020b) also argues that the networks
learn to use the random space as an approximation to phonetic and phonological features. Several
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parallels between phonetic and phonological learning in language-acquiring children and neural
networks are thus observed. This paper tests whether similarities emerge also when Generative
Adversarial Networks learn from each others in an iterative learning architecture.

The proposed experiment also has implications for the discussion on distinguishing different in-
fluences on sound change. While the proposed model does not include any articulatory or perceptual
phonetic forces, diverging from modeling reality, it is in fact a desirable property for computational
tests of different hypothesis about sound change. A model without articulatory information can
provide evidence for changes that do not require articulatory bias, thus controlling for one factor in
the set of possible influences on sound change. The Generative Adversarial Neural network archi-
tecture also lacks any domain-specific linguistic elements. This means that the proposed model can
test which properties of sound change can be derived with domain-general cognitive mechanisms in
absence of language-specific or articulatory phonetic influences. Combining iterative learning with
deep convolutional networks trained on raw audio data is also part of a broader goal to test which
properties of language and language acquisition can be derived with deep convolutional networks
in the GAN setting.

2 Materials

2.1 Background: Generative Adversarial Phonology

The GAN architecture first proposed by Goodfellow et al. (2014) involves two networks, a Gen-
erator network (G) and a Discriminator network (D). The Generator is trained to map latent
random variables (z) to data, while the Discriminator is trained on distinguishing real data (x)
from generated data (x̂). The Generator is trained to maximize the Discriminator’s error rate, and
the Discriminator is trained to minimize its own error rate. This minimax training results in a
Generator network that outputs data that are increasingly difficult to distinguish from real data.

Radford et al. (2015) introduce deep convolutional networks to the GAN architecture (DCGAN).
The DCGAN model has recently been transformed from modeling two-dimensional visual data to
one-dimensional time-series audio data in a proposal called WaveGAN (used in this experiment)
by Donahue et al. (2019). The architecture includes the Generator network as a five-layer deep
convolutional network that takes as its input 100 latent z-variables distributed uniformly on the
interval z1−100 ∼ U(−1, 1) and outputs 16,384 data points that constitute over 1 s of audio file
(sampled at 16 kHz). The Discriminator similarly takes as an input 16,384 data points of either
generated (G(x)) or real (x) data and estimates Wasserstein distance according to the proposal in
Arjovsky et al. (2017). For a detailed description of the hyperparameters, see Radford et al. (2015);
Donahue et al. (2019).

Beguš (2020b) argues that deep convolutional networks in the GAN setting learn to encode
phonetic and phonological representations in the latent space. The network is trained on the same
allophonic distribution as in this paper (using the same data), but only for one generation. Beguš
(2020b) showed that the network can successfully learn a simple allophonic distribution, such as the
English aspiration distribution (["phIt] ∼ ["spIt]). The advantage of modeling speech acquisition with
GANs is that the networks not only replicate data, but generate innovative outputs. The innovative
outputs are highly informative and linguistically interpretable. For example, the Generator learns to
recombine phonetic units into unobserved novel combinations that can be analyzed as linguistically
valid. A model trained on #TV and #sTV sequences (such as ["thæ] and ["stæ]) can output #TTV
or #sV sequences that were not part of the training data (Beguš, 2020b). Similarly, in a model
architecture for lexical learning fiwGAN (proposed in Beguš 2020a), the Generator outputs start
["stAôt], although ["stAôt] was not part of training data: the network is only trained on dark, suit
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Steps Epochs Training data Source of data

Gen1 12,255 717 5,463 TIMIT
Gen2 12,239 687 5,700 Gen1
Gen3 12,249 687 5,700 Gen2
Gen4 12,246 687 5,700 Gen3

Table 1: Generations of trained networks, their training steps, number of data points in training

and six other unrelated words.
The Generator also learns to use a subset of latent variables to represent approximates of

phonological concepts such as presence of [s]. Beguš (2020b) proposes a technique to identify
latent variables that correspond to some phonetic or phonologically meaningful representation and
argues that the relationship between the variables and presence of the representation in the output
is near linear. By manipulating individual variables to values well outside the training interval
(Beguš, 2020b), we can actively force presence or absence of a segment such as [s] in the output.
Interpolating a single variable results in gradual increase or decrease of frication noise of [s] (Beguš,
2020b). While manipulating internal representations of the trained networks is highly informative
for probing tasks, no variables are manipulated in the iterative learning experiments presented here
— the objective of the paper is to test what types of changes emerge in an iterative learning setting
without any active manipulations to the networks.

2.2 Model

The computational experiment is performed on a model in Donahue et al. (2019) called WaveGAN,
which is an implementation of the DCGAN architecture (Radford et al., 2015) for audio data with
few modifications. Figure 1 illustrates the training procedure. The first network (Gen1) is trained
on data from the TIMIT database (Garofolo et al., 1993). The training data consists of 4,930
sequences with the structure #TV and 533 sequences with the structure #sTV (5,463 total). The
training is stopped after 12,255 steps. At this point, 5,700 outputs are generated from Gen1. No
manipulations are performed on the latent space. These 5,700 data points constitute the training
data for the second network: Gen2. Gen2 is thus trained exclusively on the generated outputs of
the first network, Gen1. After 12,239 steps, the training is stopped, at which point the Generator
network outputs 5,700 data points that are fed to the next network. Altogether four generations of
networks were thus trained (Gen1, Gen2, Gen3, Gen4). All networks are trained on approximately
equivalent number of training steps and data points. Because the training is stopped at a relatively
small number of training steps, noise arises with each generation of networks to induce imperfect
learning. For this reason, we only trained four generations. Table 1 lists training steps and details
about data points of the four networks. The networks were trained at an approximate pace of 25
steps per 300 s on an NVIDIA Tesla M10 GPU unit.

2.3 Data

The data used for training in the first generation (Gen1) are sliced from the TIMIT database
(Gen0). (Garofolo et al., 1993). TIMIT is one of the largest hand-annotated corpora currently
available that involves spoken language in a controlled environment with a high level of audio
quality. The database includes 10 sentences per each of the 630 speakers (total 6,300 sentence)
from 8 dialectal groups, which provides a relatively diversified corpus. For the purpose of training
the networks on an allophonic distribution, sequences with the structure #TV and #sTV were
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Figure 1: A diagram of generations of Generative Adversarial Networks as trained in this paper
(each network is trained on the proposal in Donahue et al. 2019). Gen 4 is omitted from the figure.
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Figure 2: Waveforms and spectrograms (0–8,000 Hz) of a typical #TV and a #sTV sequence ([phæ]
and [spæ]) from the TIMIT databased used for training. The networks are trained on waveforms
exclusively: spectrograms are given here only for illustration. Waveforms are additionally padded
with silence until they reach 16,384 datapoints.

sliced from the database.3 In other words, the networks are trained on TIMIT sequences of a
voiceless stop /p, t, k/ (represented by T) at the beginning of a word (represented by #), followed
by a vowel (represented by V)4 and optionally preceded by a sibilant fricative [s] (represented by
s). The training data are limited to vowels and do not include any other segments after the vowel
in order to control for unwanted effects of other potential conditional distributions (Beguš, 2020b).
Vowels are distributed approximately equally across the two conditions: #TV and #sTV.

The sequences are raw acoustic waveform files, sampled at 16 kHz and fed to the model (which
pads them with silence into exactly 16,384 data points that constitute the waveform). The training
data are raw waveform files and include no segmentation or any other information. The only
supervision in the model is the fact that data is sliced into sequences of the structure #TV and
#sTV. Figure 2 illustrates two typical training sequences sliced from TIMIT, one for each of the
two conditions.

3 Results

3.1 Proportion of #sTV sequences

To analyze learning of the allophonic distribution across generations in deep neural networks, we
first generate 2,000 outputs from the Generator network for each of the four generations of networks
(8,000 outputs total) and test how the proportion of #sTV sequences changes with each generation.

The TIMIT training data for Gen1 contains altogether 5,463 sequences, 533 of which are of
the #sTV structure. In other words, 9.76% of the initial training data are #sTV sequences. This
ratio appears slightly lower in the next generations, but not substantially so. Of the 2,000 outputs
examined per each generation, the number of #sTV sequences range from 119 to 157 (or 5.95% to
7.85% see Table 2).

To test whether the differences in the proportion of #sTV sequences across the four generations

3The data and the first network (Gen1) are the same as in Beguš (2020b).
4TIMIT uses the ARPABET convention. The following vowels are included in the analysis (in ARPABET and

IPA transcriptions): aa = A, ae = æ, ah = 2, ao = O, aw = aU, ax = @, ax-h = @
˚

, axr = Ä, ay = aI, eh = E, er = Ç,
ey = eI, ih = I, ix = 1, iy = i, ow = oU, oy = oI, uh = U, uw = u, ux = 0.
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All sequences #sTV #TV %of #sTV #TV annotated

(TIMIT) Gen0 5,463 533 4,930 9.76% 4,930
Gen1 2,000 151 1,849 7.55% 157
Gen2 2,000 153 1,847 7.65% 157
Gen3 2,000 157 1,843 7.85% 157
Gen4 2,000 119 1,881 5.95% 157

Table 2: Counts of analyzed data and proportion of #sTV in the output data across the generations.
Gen0 represents the TIMIT database.

and the TIMIT initial training data are significantly different, we fit the counts of #sTV and #TV
sequences from Table 2 to a negative binomial regression model. The dependent variable is the
count of the sequences; the independent variables are Generations (treatment-coded with Gen1
as the reference level) and Structure (#sTV vs. #TV, treatment-coded with #TV as reference)
with the interaction.5

Overall, the proportion of #sTV sequences in the output is significantly smaller in the first
generation (Gen1) compared to the training data from TIMIT (Gen0) (β = 0.28, z = 2.84, p =
0.005) and slightly smaller in Gen 4 than in Gen1 (β = −0.26, z = −1.98, p = 0.048). The
differences between Gen1 and Gen2 and Gen3 are not significant (full model in Table 3). Figure
3 illustrates the distribution (estimates are from a logistic regression model). It appears that the
proportion of the #sTV sequences compared to the #TV sequences is relatively stable across the
generations of networks.

Estimate Std. Error z value Pr(>|z|)
(Intercept) = Gen1, #TV 7.5224 0.0259 290.4652 < 0.0001

Gen0 0.9807 0.0317 30.9598 < 0.0001
Gen2 -0.0011 0.0366 -0.0295 0.9764
Gen3 -0.0033 0.0366 -0.0887 0.9293
Gen4 0.0172 0.0365 0.4701 0.6383

#sTV -2.5051 0.0862 -29.0761 < 0.0001
Gen0:#sTV 0.2805 0.0988 2.8395 0.0045
Gen2:#sTV 0.0142 0.1215 0.1172 0.9067
Gen3:#sTV 0.0422 0.1208 0.3494 0.7268
Gen4:#sTV -0.2553 0.1289 -1.9806 0.0476

Table 3: Coefficients of a negative binomial regression model of counts of #sTV sequences in the
generated data across the four generations and the TIMIT database (Gen0).

3.2 VOT duration

To evaluate how learning of the allophonic distribution changes with each generation, we compare
VOT durations in #TV and #sTV sequences across the four generations and TIMIT. The author
annotated all #sTV sequences in the 8000 generated outputs (4 generations × 2000) and a number
of #TV sequences that equaled the highest number of #sTV sequences in the outputs per genera-

5The regression is performed with the gam() function in mgcv (Wood, 2011) in R statistical software (R Core
Team, 2018).
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Figure 3: Proportion of #sTV sequences in the output across generations of trained network when
data is fitted to a linear logistic regression model (not a negative binomial model). Gen0 represents
the proportion in the TIMIT database on which the first generation (Gen1) is trained.

tion, i.e. 157.6 Measurements of VOT durations in the TIMIT database used for training the first
generation, are taken from the 5,463 TIMIT-internal hand-annotations.

Identifying #sTV sequences and especially boundaries between aspiration duration and clo-
sure/onset of the vowel in the generated outputs is a challenging task. Since automatic speech
tagging systems are still underperforming trained human phoneticians even for acoustically cleaner
and less ambiguous data, human annotation is necessary for data annotations for the current levels
of audio quality in the generated data. The author manually inspected all 8,000 data points. In
order to keep annotation criteria constant across the generations, the entire dataset (8,000 outputs)
were inspected four times.

The generated outputs are not recordings of actual human speech, which is why finding bound-
aries between the release of the following stop and onset of the vowel is particularly challenging.
Two example waveforms and spectrograms with annoatations are given in Figure 4. The main
criteria for phonetic annotation were consistency across generations and finding acoustic equiva-
lents of closure, stop release, aspiration noise, and vowel onset. Borderline cases analyzed as either
#sTV (and therefore included in the analysis) or #sV/#TV (and therefore excluded) were decided
based on consistency of criteria across generations. Guidelines for data annotations as described in
Ladefoged (2003) were used.7

The main question of the present experiment is whether the difference in aspiration between
the two conditions changes significantly across generations of deep convolutional neural networks.
While the most prominent phonetic correlate of aspiration is VOT duration and spectral properties
of burst and aspiration noise (Klatt, 1975; Hussain and Mielke, 2020), the duration of aspiration

6The annotated #TV sequences for VOT duration measurements were chosen from the beginning of the 2,000
generated data samples in order to represent the durations of #TV sequences consistently across the generations and
to reduce selection bias.

7Generated data and annotations are available here: https://osf.io/5kbef/?view_only=

b5fddd6ffcfa4a538e658bb99c02ab89.
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Figure 4: Waveforms and spectrograms (0-8000 Hz) of two generated outputs from Gen4 with
corresponding annotations.

(VOT) is influenced by many other phonetic factors (such as place of articulation or vowel quality).
However, in the Generated data, even VOT durations, which are phonetically prominent, are
occasionally challenging to annotate. Vowel quality and place of articulation are very difficult to
reliably analyze. For this reason, we analyze VOT durations and the spectral properties of the
aspiration noise (Section 3.3). To control for other influences, we analyze duration and spectral
properties in the #sTV condition relative to the #TV condition. Given that we do not expect
distributional differences in other phonetic parameters across the generations, the results should
not be substantially impacted by other phonetic features. Additionally, the spectral analysis of
frication noise in Section 3.3 suggests that no substantial changes in spectral properties occur
across the four generations.

The raw data suggest that the difference in VOT durations between the two conditions, #TV
and #sTV, becomes increasingly smaller with every generation of trained Generative Adversarial
Networks and that this smaller difference results primarily from VOT in the #sTV sequences
gradually becoming longer. Table 4 gives raw means of VOT durations across the generations;
Figure 5 illustrates the distribution. While it appears that the average duration of VOT in the
#TV condition does not change substantially across the generations, VOT duration in the #sTV
condition substantially lengthens: it reaches 43.31ms in Gen4 (compared to 25.36ms in TIMIT).

VOT in ms
#TV #sTV

Mean SD Mean SD

Gen0 59.33 20.97 25.36 8.76
Gen1 61.83 24.76 38.85 18.44
Gen2 58.42 22.44 40.40 19.74
Gen3 58.88 24.52 42.56 20.63
Gen4 62.41 26.36 43.31 18.30

Table 4: Means of VOT durations in ms with standard deviation across the two conditions (#TV
and #sTV) four generations (Gen1–4) and TIMIT (Gen0).

The data distribution in the first generation of networks, Gen1, suggest that the network does
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Figure 5: Violin and boxplot of VOT duration in ms across the four generations of trained networks
and TIMIT.

learn the conditional distribution, but imperfectly so, as the network outputs data in which the
VOT duration in the #sTV condition is longer than any VOT duration in this condition in the
training data (see also Beguš 2020b). Figure 6 illustrates two outputs of Gen1 with short VOTs
(20.2 ms in the left and 27.1 ms in the right sequence) and two outputs in which the VOTs are
longer than any in the training data (82.4 ms in the left and 84.2 ms in the right).

By Gen4, outputs with short VOT become exceedingly rare, while outputs with long VOT,
longer than in the TIMIT training data from Gen0, become very frequent. Figure 7 illustrates this
distribution with two examples of #sTV sequences. The VOT duration at this point is long and
the closure is almost entirely absent from the output.

To test the significance of the difference in VOT durations across different generations, the data
is fit to a Gamma regression model with log link (in R Core Team 2018).8 The dependent variable
is duration of VOT in ms. The model has two predictors: Structure (treatment-coded with
#sTV as the reference level) and Generation (treatment-coded with Gen1 as the reference level)
and an interaction between the two predictors. The AIC value of the model with the interaction
is higher compared to the model without the interaction (−33142 vs. −32760), which is why the
interaction and the two predictors are kept in the final model.

The model reveals several distributions in the data that are relevant to the questions posed
by this paper. First, the model suggests that the difference in VOT duration between the #TV
and #sTV conditions are significant for Gen1: β − 0.465, z = −11.03, p < 0.0001. In other words,
the network learns to output shorter VOT in Gen1 in the #sTV condition compared to the #TV
condition, which means that the network learns the conditional distribution of VOT duration (see
also Beguš 2020b).

While the network learns to output shorer VOT in the #sTV condition, the learning is im-
perfect. This is suggested by the interaction term Structure:Generation which is a significant
predictor (AIC = −33011 vs. −32764). Crucially, the difference in VOT duration between the two
conditions (#TV and #sTV) is significantly greater in the TIMIT database compared to Gen1
(trained on TIMIT): β = −0.385, z = −8.44, p < 0.0001. Similarly, this difference is significantly
greater in Gen1 compared to Gen3: β = 0.14, z = 2.36, p = 0.018 (for other coefficients, see Table
5). These results suggest that the Generator learns the allophonic distribution imperfectly with
each generation. The difference in VOT duration between the two conditions is substantially and

8Gamma regression provides a better fit than an inverse Gaussian model (AIC = −33010.92 vs. −31925.08).
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Figure 6: Waveforms and spectrograms (0-8,000 Hz) of four #sTV sequences from Gen1, two
with short VOT (upper row) and two with long VOT (lower row). The generator only outputs
waveforms, spectrograms are provided only for the analysis.
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Figure 7: Waveforms and spectrograms (0–8,000 Hz) of two #sTV sequences with typically long
VOTs from Gen4. The network outputs only waveforms: spectrograms and annotations are given
here for analysis.
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significantly smaller in the first generation (Gen1) compared to human training data (TIMIT), but
this difference gets even smaller when further generations learn from each other. In other words,
the iterative learning results in increasingly smaller distinction in VOT duration between the #TV
and #sTV conditions.

The absolute VOT durations in the #sTV condition are significantly longer in the first gener-
ation trained on TIMIT (Gen1) compared to TIMIT (Gen0) and significantly longer in the third
and fourth generations that are trained on outputs of previous GAN networks (Gen3 and Gen4)
compared to the first (Gen1). The differences between Gen1 and Gen3/Gen4 are smaller com-
pared to the difference between Gen0 and Gen1: β = 0.091, z = 2.17p = 0.030 for Gen3, and
β = 0.109, z = 2.40, p = 0.016 for Gen4. In other words, there is a trend for the difference in
VOT duration between the #TV and #sTV sequences to become smaller with each generation and
especially for VOT in the #sTV condition to become longer. Figure 8 shows a clear pattern: while
the VOT duration in the #TV condition remains relatively constant across the generations, the
VOT duration in the #sTV condition rises steadily with each generation.

Not only are the VOT durations of #TV relatively stable across generations, they also do not
differ from the original distribution in the training data (TIMIT). Post-hoc tests of the difference
in the absolute VOT duration in the #TV condition across the four generations suggest that VOT
remains stable across generations. None of the pairwise comparisons between Gen0 (TIMIT), Gen1,
Gen 2 and Gen3 and Gen4 are significant (see Table 6). This suggests that the first generation of
the Generator networks (as well as the subsequent generations) learn the VOT durations in the
#TV condition from the training data relatively faithfully and that this duration remains stable
in subsequent generations (unlike in the #sTV condition).

Estimate Std. Error t value Pr(>|t|)
(Intercept)=Gen1,#sTV -3.248 0.030 -107.95 0.0000

#TV 0.465 0.042 11.03 0.0000
Gen0 -0.426 0.034 -12.39 0.0000
Gen2 0.039 0.042 0.92 0.3567
Gen3 0.091 0.042 2.17 0.0304
Gen4 0.109 0.045 2.40 0.0164

#TV:Gen0 0.385 0.046 8.44 0.0000
#TV:Gen2 -0.096 0.059 -1.61 0.1073
#TV:Gen3 -0.140 0.059 -2.36 0.0182
#TV:Gen4 -0.099 0.062 -1.61 0.1065

Table 5: Coefficients of the Gamma regression model.

Even more informative for modeling sound change are density plots of VOT durations in the
#sTV condition in Figure 9. They reveal a clear trend, not only in overall duration, but that the
peak VOT distribution is gradually increasing with each generation. VOT in the TIMIT database
(Gen0) is substantially shorter than in all other generations. The highest density of Gen1 remains
around the peak of TIMIT Gen0, while the distribution has substantially longer right tail with
several data points in which the VOT is longer than any VOT duration in the training data. This
suggests that the distribution in Gen1 is learned, but imperfectly. The next generations (Gen2,
Gen3, and Gen4) show a gradual shift of the peak of the distribution towards longer VOT and
additionally a trend towards a bimodal distribution. In all three generations, the outputs appear
to have the majority distribution in what would be considered a long VOT that increasingly shifts
towards even longer values. At the same time, the outputs also feature a lower peak around the
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Figure 8: Predicted values based on the Gamma regression model in Table 5.

original shorter VOT duration (closer to the TIMIT database). This sub-peak appears smaller in
Gen4 compared to Gen3. In the #TV condition, the peaks are relatively stable across the four
generations and TIMIT.

3.3 Spectral properties

As already mentioned, spectral properties of aspiration noise can differ across aspirated and unaspi-
rated stops (Hussain and Mielke, 2020). To test whether the change of VOT durations also entails
changes of spectral properties of aspiration, we perform spectral analyses of the VOT duration. We
are primarily interested whether spectral properties change significantly across the four generations
of iteratively trained networks when duration of the VOT is controlled for.

To test the stability of the aspiration’s spectral properties across the four generations of neural
networks, we perform spectral analysis of the aspiration noise measured at 10 intervals (from 10%
to 100%. of the duration). All 1,208 analyzed VOT durations (Table 2) across the four generations
were thus analyzed for a total of 12,080 observations. For each annotated period of aspiration in
the #TV and #sTV condition, we analyze Center of Gravity (COG), Standard Deviation, Skew,
and Kurtosis of power spectra with 750-8,000 Hz filter (100Hz smoothing) using script by Rentz
(2017) in Praat (Boersma and Weenink, 2015). Four generalized additive mixed effects models
were fit for each of the four measured spectral properties (using the mgcv package; Wood 2011;
Sóskuthy 2017). The models include structure as a parametric term (reference #sTV vs. #TV)
and thin-plate difference smooths for Percent of VOT duration (10–100% in 10% incremets),
absolute Duration (full VOT duration in seconds), and Generation of neural networks (1-4,
limited to 4 knots) and all two-way tensor product interactions. The model also includes random
smooths for each trajectory (1,208 total).

In addition to the change of VOT duration, the tensor product interaction between Duration of
VOT and Generation is the most informative test for the question of whether spectral properties
significantly change across the four generations. Figure 10 plots the four spectral properties over
the four generations and the various durations of VOT at 10% and 50% of VOT duration. All
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Contrast Ratio SE df z.ratio p.value

Structure = #TV
gen1 / gen0 1.0422 0.0312 Inf 1.381 0.6402
gen1 / gen2 1.0584 0.0442 Inf 1.360 0.6537
gen1 / gen3 1.0501 0.0438 Inf 1.171 0.7680
gen1 / gen4 0.9907 0.0413 Inf -0.223 0.9994
gen0 / gen2 1.0155 0.0304 Inf 0.512 0.9862
gen0 / gen3 1.0075 0.0302 Inf 0.250 0.9991
gen0 / gen4 0.9506 0.0285 Inf -1.692 0.4391
gen2 / gen3 0.9922 0.0414 Inf -0.189 0.9997
gen2 / gen4 0.9361 0.0391 Inf -1.583 0.5084
gen3 / gen4 0.9435 0.0394 Inf -1.394 0.6313

Table 6: Post-hoc comparison of VOT duration in the #TV condition across the generations with
Tukey adjustment based on the Gamma regression model.

estimates of the four models are given in Tables 7, 8, 9, 10. None of the estimates for the tensor
product interaction Duration:Generation in the #sTV condition are significant in the four
models that measure COG, Skew, Kurtosis, and SD. The plots illustrate relatively constant values
of the spectral values across the four generations. In other words, for the same levels of Duration,
spectral properties do not change substantially across the iteratively trained generations of neural
networks.

4 Discussion

Training deep convolutional networks in the GAN architecture in iterative learning tasks reveal
several superficial similarities between language change and changes in acoustic outputs of the deep
convolutional networks. First, the networks show relative stability in the proportion of #TV and
#sTV sequences that they output. Human subjects extend frequencies of phonological properties
of the lexicon to novel test items in behavioral experiments (Hayes and Londe, 2006; Zymet, 2018).
This phenomenon is usually called frequency matching. In Hungarian, for example, some roots can
take a dative morpheme with the back vowel [-nOk], while others roots take the same morpheme, but
containing a front vowel [-nEk]. In a subclass of nouns, [-nOk] appears in 7.8% cases in Hungarian
lexicon. When speakers are asked to choose between [-nOk] and [-nEk] in novel unobserved words
that resemble the actual class of nouns in which [-nOk] appears in 7.8% cases, they closely match
this frequency: they choose [-nOk] in 6.3% of outputs in a behavioral experiment (Hayes and Londe,
2006).

Traces of such behavior are observed in our model: the proportion of [s]-initial sequences in the
Generator’s outputs is relatively stable across the four generations. This means that the network’s
output distribution closely matches training data. While the first network (Gen1) outputs slightly
fewer #sTV sequences compared to their representation in the TIMIT training data, two subsequent
generations (Gen2 and Gen3) do not diverge significantly in proportions of #sTV sequences from
their training data (see Figure 3). The proportion is slightly, but significantly lower in Gen4, but
5.95% of sequences stlll contain an [s]. The networks are thus relativesly successful in matching
frequencies of the training data in the generated outputs, especially considering the fact that we
do not train the individual generations to convergence, but stop training after relatively few steps.
While this result might seem trivial, it is conceivable that the considerably less frequent #sTV
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Figure 9: Density plots with data points of VOT duration in the #sTV (a) and #TV (b) conditions
across the four generations and TIMIT (Gen0). The red dashed line indicates the longest VOT
duration in the #sTV condition in the training data (TIMIT).
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Figure 10: Plots of nonlinear interactions between Generation and Duration of VOT for the
four dependent variables, COG, Skew, Kurtosis, and Standard deviation at 10% of VOT duration
(upper row) and 50% of VOT duration (lower row).
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sequences would be lost earlier with generations of networks — parallel to the loss of the durational
distribution of VOT (see below).

The networks also learn to output data that resembles speech and learn the conditional al-
lophonic distribution in English — deaspiration after [s] (["phIt] ∼ ["spIt]). In the first generation
(Gen1) trained on TIMIT, the difference in VOT duration between the #TV and #sTV sequences is
significant (see also Beguš 2020b). The distribution peak of VOT durations in the #sTV condition
is in the first generation well-aligned with the original TIMIT distribution (Figure 9). Neverthe-
less, the distribution has a substantially longer right tail and the mean duration of VOT in Gen1
is significantly longer than in TIMIT, as suggested by the Gamma regression model in Table 5.

By Gen4, long VOT durations become so frequent that the distribution might be considered
as not featuring the allophonic distribution at all. Plots of VOT distributions across generations
(Figure 9) show that the distribution peaks gradually moves towards long VOT with each genera-
tion. While VOT is still shorter in the #sTV compared to the #TV condition in Gen4, the peak
of VOT distribution is sufficiently long that most phonological analyses would likely analyze such
a distribution as not involving an allophonic process. The slightly shorter VOT duration would
likely be ascribed to the fact that the stop T is part of a consonant cluster (sT) and therefore
automatically shorter. While VOT durations get increasingly longer with each generation, VOT
durations in the more frequent #TV condition remain stable and do not change significantly.

The generated outputs thus resemble both a phonetic gradual sound change and a phonological
change — loss of a phonological rule. Peak distribution of VOT durations in the experiment
gradually changes with each generation. This can be analyzed as superficially parallel to shifts in
articulatory targets in a gradual phonetic sound change in natural language. The endpoint result,
on the other hand, can be analyzed as a phonological rule loss. Rule loss in phonology (Kiparsky,
1965; Bermúdez-Otero and Hogg, 2003) is a process whereby a language at stage A features a
phonological rule and looses that rule at stage B. When a distribution becomes automatic and
does not require active control of the speakers, it is assumed that a process is part of an automatic
phonetic distribution and not part of phonological computation. It is difficult to assess how actively
the Generator controls VOT durations in Gen4, but it is likely the case that most linguistic analyses
would treat such a minor difference in VOT duration as part of a phonetic rather than phonological
shortening. So at least superficially, a phonological rule loss emerges in the deep convolutional
neural networks trained in iterative learning tasks: TIMIT (Gen0) features an allophonic rule of
deaspiration of [s]-initial sequences, while at the stage of Gen3 or Gen4, such rule is likely lost.

The reason why the VOT duration in the [s]-condition gets gradually longer with imperfect
learning whereas VOT durations in the #TV sequences remain stable is parallel to phonological
pressures in natural language. In our training data, #TV sequences are significantly more frequent
than #sTV sequences: 4,930 vs. 533. This distribution actually reflects English lexicon: all se-
quences of the shape #TV and #sTV were sliced from TIMIT for the training data, but because
#TV is substantially more frequent in English lexicon, it is also more represented in TIMIT. The
more frequent sequence in the training data is thus #TV and therefore long VOT is the more gen-
eral, less restricted variant (or in linguistic terms the “unmarked” elsewhere variant; see also Figure
5). This difference in training distributions affects the acquisition of shorter VOT durations in the
#sTV condition both in natural language acquisition as well as in deep convolutional networks
trained in iterative learning tasks. However, while the property of the data — the lower frequency
of one condition — is a linguistic property, the fact that imperfect learning in iterative tasks results
in an apparent loss of a distribution is not linguistic (domain-specific) because the models that
undergo learning have no pre-assumed linguistic information.

The acquisition of VOT durations in human language learners undergoes several stages: first,
VOT durations in voiceless stops are shorter than in adult targets in the #TV condition, because

19



long VOTs are more difficult to acquire (Gilbert, 1977; Macken and Barton, 1980; Lowenstein and
Nittrouer, 2008; Yang, 2018). Later, however, children produce long VOTs in #TV sequences and
in some cases even longer VOTs compared to the adult targets (Macken and Barton, 1980). The
development of VOT durations in the #sTV condition is even more intriguing. Crucially, children
output substantially longer VOT durations compared to adult language in the #sTV condition
(Bond and Wilson, 1980) despite the fact that long VOTs are generally more difficult to acquire
(Gilbert, 1977; Lowenstein and Nittrouer, 2008; Yang, 2018). In other words, children extend the
long VOTs in the #TV condition to the #sTV condition and then need to acquire the shortening
of VOT in the #sTV condition. In fact, they often fail to shorten VOTs in the #sTV condition
which results in long VOTs in #sTV sequences (Bond and Wilson, 1980). Just like in training
data, #sTV sequences are less frequent, which is likely the reason for the unexpected long VOTs
in the #sTV condition during acquisition.

Both deep convolutional networks and language-acquiring children thus need to acquire the
shortening of VOT in the more limited and less frequent [s]-condition. Failure to do so results in
a long VOT duration in the #sTV sequences. Imperfect learning that results in long VOT in the
#sTV sequences is attested in both language-acquiring children, as suggested by Bond and Wilson
(1980), and deep convolutional networks, as suggested by the computational simulations in this
paper. Imperfect acquisition over time can accumulate in gradual shifts in phonetic targets (Baker,
2008) which, at the endpoints, results in a phonological rule loss. Peaks of distributions of VOT
duration in the four generations gradually move from short towards long VOT, and the end-result
contains predominantly long VOT durations in the #sTV conditions. Imperfect acquisition in the
GAN networks is catalyzed by the fact that we train the networks for a relatively few training
steps (less than 13,000). The magnitude of imperfect acquisition is likely smaller in language-
acquiring children. This is likely the reason for why appearance of rule loss emerges only after
four generations of deep convolutional Generator networks in our model, but substantially more
speakers are usually needed for emergence of sound change. With less imperfect learning, the deep
convolutional networks would likely take longer to achieve the same effect. The principle behind
the change nevertheless remains even if the acquisition is less imperfect than in our computational
model.

In addition to measuring VOT durations, we performed spectral analyses of aspiration noise that
included COG, SD, skew, and kurtosis measured at every 10% of aspiration duration. The results of
non-linear regression models suggest that for equal VOT durations, spectral properties of frication
noise do not change significantly across the generation. In other words, when VOT duration is
controlled for, the aspiration noise does not change significantly, which suggests that lengthening of
the VOT is the primary change operating in the four generations of deep convolutional networks.

The author is unaware of any English varieties where such a rule loss would occur in this
particular allophonic distribution. Other parallels, however, have been recorded in the literature on
sound change in progress. For example, vowels in American English are nasalized before nasal stops.
In a word like pen ["phẼn], the vowel /E/ is often produced with nasalization ([Ẽ]), although this
distribution is allophonic rather than contrastive (parallel to our allophonic rule of deaspiration).
This nasalization results from coarticulation of nasalization: the gesture that causes nasality (raising
of the velum) onsets early during the production of the vowel in anticipation of the nasal target of
the following nasal stop. Like in our training data, the nasal variant of the vowel (e.g. [Ẽ]) is less
frequent and more contextually limited compared to the oral vowel (e.g. [E]). In some varieties,
in fact, a sound change in progress has been reported, whereby nasalization coarticulation gets
progressively shorter with generations of speakers (Zellou and Tamminga, 2014; Tamminga and
Zellou, 2015) (Zellou and Tamminga 2014 also report a reversal of sound change). In other words,
the targets for nasalization during the vowels onset gradually later with younger generations of
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speakers, which results in an oral [E] rather than nasal [Ẽ] in words like ["phEn]. While this change
is hypothesized to be driven by social factors (Tamminga and Zellou, 2015), it is just as likely that
phonological pressures in the form of the oral vowels being the more common variant play a role
in the initiation of the change.

5 Conclusion

The framework presented in this paper has several advantages for modeling language change. The
networks are trained on raw acoustic inputs with no levels of abstraction or pre-extracted features.
Deep convolutional network in the GAN framework need to learn to produce data from random
noise and they never fully replicate the data, but produce innovative linguistically interpretable
data. This means their output data are not replicates, but innovative original outputs. As argued
elsewhere (Beguš, 2020b,a), the innovative outputs of the Generator are highly informative and often
replicate stages in language acquisition. In this paper we additionally argue that the innovative
outputs can result in phonetic and phonological changes when trained in iterative learning tasks.

The current model contains no articulatory information. While this is generally unideal, because
human speech acquisition is highly influenced by articulators, it allows us to model language change
as if only cognition-general mechanisms were involved in language acquisition and production.
The results from the computational experiment suggest that both gradual change of targets that
resembles phonetic change as well as phonological rule loss can emerge when deep convolutional
networks are trained in iterative learning tasks without any articulatory information and without
language-specific parameters in the model. In future work, we should be able to compare results
of the articulation-free model with models containing articulatory information to get a better
understanding of which properties of sound change can be derived from domain-general cognitive
mechanisms and which properties of sound change require articulatory forces.

The current paper offers an initial step in a broader goal of modeling language’s cultural evolu-
tion based on generations of deep convolutional networks trained on raw speech. Far more complex
interactions between agents can be conceived in future work. For example, GANs can be set to
communicate with and learn from each other in interactive ways already during the training. Fur-
ther modeling of this kind should shed light onto one of the most widely studied but still poorly
understood phenomenon in language — sound change.
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(Eds.), 5th International Congress of Phonetic Sciences, Barcelona, Spain, August 3-9, 2003. pp. 297–300.
URL http://www.internationalphoneticassociation.org/icphs/icphs2003

Kiparsky, P., 1965. Phonological change. Ph.D. thesis, Massachusetts Institute of Technology.

Kiparsky, P., 2006. Amphichronic program vs. Evolutionary Phonology. Theoretical Linguistics 32 (2), 217–
236.

Kiparsky, P., 2008. Universals constrain change, change results in typological generalizations. In: Good, J.
(Ed.), Linguistic universals and language change. Oxford University Press, Oxford, pp. 23–53.

Kirby, J., Sonderegger, M., Jul. 2015. Bias and population structure in the actuation of sound change. arXiv
e-prints, arXiv:1507.04420.

Klatt, D. H., 1975. Voice onset time, frication, and aspiration in word-initial consonant clusters. Journal of
Speech and Hearing Research 18 (4), 686–706.
URL https://pubs.asha.org/doi/abs/10.1044/jshr.1804.686
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A Appendix

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) = #sTV 2851.0891 21.9554 129.8580 < 0.0001
#TV 110.3979 29.9005 3.6922 0.0002

B. smooth terms edf Ref.df F-value p-value

s(Generation) = #sTV 2.5277 2.5652 8.0885 0.0006
s(Generation):#TV 1.0006 1.0007 2.4167 0.1201
s(Percent) = #sTV 4.1403 5.0016 58.7212 < 0.0001
s(Percent):#TV 5.6734 6.7431 21.2203 < 0.0001
s(Duration) = #sTV 3.0980 3.1985 13.7967 < 0.0001
s(Duration):#TV 4.1206 4.2611 2.2167 0.0624
ti(Percent,Generation) = #sTV 5.6734 7.3919 1.3457 0.2180
ti(Percent,Generation):#TV 9.5814 12.3519 1.7253 0.0563
ti(Duration,Generation) = #sTV 10.3210 10.8199 1.7353 0.0767
ti(Duration,Generation):#TV 1.0038 1.0042 0.1402 0.7096
ti(Duration,Percent) = #sTV 11.3020 12.4611 8.9140 < 0.0001
ti(Duration,Percent):#TV 5.8098 6.8613 4.9689 < 0.0001
s(Percent,Trajectory,bs = “fs”,m=1) 3166.1177 10864.0000 1.2998 < 0.0001

Table 7: Estimates of the generalized additive mixed effects model with COG as the dependent
variable. The model includes the parametric term structure (treatment-coded with #sTV as the
reference level) and thin plate smooths for absolute Duration, Percent of VOT duration, and
Generation, limited to 4 knots and random smooths for each trajectory. The model includes all
two-way tensor product interactions.
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A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) = #sTV 1.0995 0.0222 49.6085 < 0.0001
#TV -0.0753 0.0300 -2.5134 0.0120

B. smooth terms edf Ref.df F-value p-value

s(Generation)= #sTV 1.0001 1.0001 0.7932 0.3732
s(Generation):#TV 1.0000 1.0000 0.2621 0.6087
s(Percent) = #sTV 3.5668 4.3585 45.4869 < 0.0001
s(Percent):#TV 4.0558 4.9625 19.2470 < 0.0001
s(Duration) = #sTV 3.3745 3.5492 11.0218 < 0.0001
s(Duration):#TV 3.0015 3.1647 0.7124 0.5352
ti(Percent,Generation) = #sTV 1.0001 1.0001 3.8582 0.0495
ti(Percent,Generation):#TV 4.8661 6.3659 2.4462 0.0264
ti(Duration,Generation) = #sTV 1.0001 1.0001 0.4104 0.5218
ti(Duration,Generation):#TV 1.0002 1.0002 0.0277 0.8679
ti(Duration,Percent) = #sTV 11.8866 13.3683 10.9157 < 0.0001
ti(Duration,Percent):#TV 4.0359 5.0538 1.4901 0.1627
s(Percent,Trajectory,bs = “fs”,m=1) 2364.7832 10864.0000 0.6582 < 0.0001

Table 8: Estimates of the generalized additive mixed effects model with Skew as the dependent
variable. The model includes the parametric term structure (treatment-coded with #sTV as the
reference level) and thin plate smooths for absolute Duration, Percent of VOT duration, and
Generation, limited to 4 knots and random smooths for each trajectory. The model includes all
two-way tensor product interactions.

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) = #sTV 1.7897 0.0804 22.2580 < 0.0001
#TV 0.1426 0.1057 1.3487 0.1775

B. smooth terms edf Ref.df F-value p-value

s(Generation)= #sTV 2.7896 2.8498 9.8579 < 0.0001
s(Generation):#TV 1.7272 1.8634 0.7376 0.4462
s(Percent)= #sTV 4.5849 5.6104 10.9902 < 0.0001
s(Percent):#TV 1.6770 2.0465 19.0525 < 0.0001
s(Duration)= #sTV 4.1470 4.5475 7.7653 < 0.0001
s(Duration):#TV 1.0000 1.0000 0.7506 0.3863
ti(Percent,Generation)= #sTV 1.9587 2.2062 6.0669 0.0017
ti(Percent,Generation):#TV 1.0002 1.0004 5.5611 0.0184
ti(Duration,Generation)= #sTV 1.0004 1.0005 2.5465 0.1106
ti(Duration,Generation):#TV 1.0002 1.0003 0.3882 0.5333
ti(Duration,Percent)= #sTV 11.7809 13.5848 11.1060 < 0.0001
ti(Duration,Percent):#TV 1.7229 1.9216 0.4682 0.5861
s(Percent,Trajectory,bs = “fs”,m=1) 1543.5132 10864.0000 0.2827 < 0.0001

Table 9: Estimates of the generalized additive mixed effects model with Kurtosis as the dependent
variable. The model includes the parametric term structure (treatment-coded with #sTV as the
reference level) and thin plate smooths for absolute Duration, Percent of VOT duration, and
Generation, limited to 4 knots and random smooths for each trajectory. The model includes all
two-way tensor product interactions.
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A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) = #sTV 1506.5772 5.3036 284.0665 < 0.0001
#TV -58.5769 6.9805 -8.3915 < 0.0001

B. smooth terms edf Ref.df F-value p-value

s(Generation)= #sTV 2.9165 2.9493 54.3544 < 0.0001
s(Generation):#TV 1.9670 2.1560 10.5145 < 0.0001
s(Percent) = #sTV 6.5730 7.6910 9.5337 < 0.0001
s(Percent):#TV 3.4464 4.2477 5.0991 0.0003
s(Duration)= #sTV 5.1565 5.7368 24.4827 < 0.0001
s(Duration):#TV 1.0003 1.0004 5.2345 0.0222
ti(Percent,Generation)= #sTV 14.1105 17.9717 2.6478 0.0002
ti(Percent,Generation):#TV 1.3648 1.5431 1.4046 0.1664
ti(Duration,Generation)= #sTV 1.0005 1.0007 1.9439 0.1634
ti(Duration,Generation):#TV 2.0627 2.3099 1.1559 0.4356
ti(Duration,Percent)= #sTV 6.4038 8.2036 6.0598 < 0.0001
ti(Duration,Percent):#TV 1.9721 2.2224 1.1459 0.3054
s(Percent,Trajectory,bs = “fs”,m=1) 1226.7901 10864.0000 0.1875 < 0.0001

Table 10: Estimates of the generalized additive mixed effects model with SD as the dependent
variable. The model includes the parametric term structure (treatment-coded with #sTV as
the reference level) and thin plate smooths for absolute Duration, Percent of VOT duration,
and Generation, limited to 4 knots and random smooths for each trajectory. The model includes
all two-way tensor product interactions.
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