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Abstract Buccola & Haida (2019) explore the consequences of a semantic-pragma-
tic theory in which relevance is closed under speaker belief. A primary consequence
of this closure condition, they show, is that the Maxim of Quantity commits speakers
to expressing their epistemic state about every relevant proposition. We argue that
this commitment, dubbed Strong Epistemic Transparency, explains the contrast in
ignorance inferences exhibited by non-strict comparative expressions like at least
vs. strict ones like more than (hence the class A/B distinction of Nouwen 2010). We
also discuss how our analysis might be extended to account for the observations of
Cummins, Sauerland & Solt (2012) and Émile Enguehard (2018) that the modifier
more than does not block scalar inferences of round numerals.

Keywords: ignorance inferences, scalar implicatures, Gricean maxims, relevance, obligatory
irrelevance, exhaustivity, modified numerals, universal density of measurement

1 Introduction

Relevance considerations determine, in part, what inferences an utterance by a
speaker can give rise to. Specifically, they delimit the range of scalar inferences (SIs)
and (speaker-oriented) ignorance inferences (IIs) of assertions. The outcome of such
considerations, i.e. the set of relevant propositions, is subject to certain constraints
called closure conditions. Typically, these conditions reflect that the set of relevant
propositions is conceived of as an exhaustive set of possible answers to a question
under discussion (QUD). For instance, if, as we assume, QUDs partition the logical
space (Groenendijk & Stokhof 1984), then the set of relevant propositions must be
closed under conjunction and negation (if φ and ψ are relevant propositions, then so
are φ ∧ψ as well as ¬φ and ¬ψ ; Lewis 1988; von Fintel & Heim 1997).1 However,

* For helpful discussions, we thank Emmanuel Chemla, Liz Coppock, Luka Crnič, Danny Fox,
Bernhard Schwarz, and Benjamin Spector, as well as the audiences of SALT 30, the workshop
‘The Meaning of Numerals’ at ZAS, the colloquium series at the University of Amsterdam, and the
LINGUAE seminar series at the École Normale Supérieure.

1 The reason is that partitions are closed under intersection and complementation of their subsets: if Q
is a partition of W , then for all A,B⊆ Q, A∩B⊆ Q and A,B⊆ Q, where (nonempty proper) subsets
of Q represent possible complete or partial answers to Q.
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Fox (2016) proposes a closure condition of a different kind, viz. closure of relevance
under (speaker) belief, stated in (1).

(1) Closure of relevance under belief
If φ is relevant, then it’s also relevant whether the speaker believes φ .

Obviously, this condition cannot be justified by reference to formal properties of
QUDs. Rather, its justification lies in the empirical observation that “silence is
uncooperative”, i.e. that ignorance about a subject matter doesn’t warrant remaining
silent when asked about that matter; rather, ignorance must be expressed, arguably
because it’s relevant (see Fox 2016; Buccola & Haida 2019 for discussion). As may
be easily seen, the condition in (1) interferes, possibly with major consequences,
with the Maxim of Quantity (according to which, the speaker should utter a sentence
that entails every relevant proposition that the speaker believes to be true): both
state a condition with reference to what is relevant and to what the speaker believes.
Indeed, adopting (1) entails accepting a quite radical view of how the Gricean
conversational maxims interact with linguistic meanings. Specifically, the Maxim
of Quantity no longer enriches linguistic meanings (Fox 2016); rather, it commits
speakers to make their epistemic state about every relevant proposition explicit
(Buccola & Haida 2019). What this means, in more detail, is that SIs and IIs can
only be derived in grammar, often via covert operators, and that speakers are bound
to obey the condition in (2), where K is the belief operator of S5 (Hintikka 1962)
and Iφ abbreviates ¬Kφ ∧¬K¬φ , i.e. ignorance about φ .2

(2) Strong Epistemic Transparency (SET) — a consequence of (1)
An utterance S must entail the speaker’s epistemic state about every relevant
proposition φ . Epistemic states about φ are: (i) Kφ , (ii) K¬φ , and (iii) Iφ .

Note that, according to (2), ¬Kφ on its own is not an epistemic state.3, 4 This will
turn out to be crucial for the analysis presented in this article. This article is about the
contrast in IIs exhibited by non-strict comparative expressions like at least vs. strict
ones like more than (hence the class A/B distinction of Nouwen 2010). Specifically,
we argue that SET explains why numerals modified by more than cannot, on their
own, induce IIs, while numerals modified by at least can.

2 Buccola & Haida (2019) call this condition simply Epistemic Transparency. Thus, it is named
identically to a weaker counterpart in an earlier work, viz. Meyer 2013. We realize that this is
unfortunate and henceforth distinguish the two conditions nominally, even though the weaker version
plays no role in this article.

3 The reason is that ¬Kφ is compatible with both K¬φ and ¬K¬φ . Thus, ¬Kφ doesn’t entail the
speaker’s epistemic state about ¬φ , which is a relevant proposition given that φ is relevant and that
relevance is closed under negation.

4 This is why SET is a stronger condition than its counterpart in Meyer 2013.

2



How obligatory irrelevance, symmetric alternatives, and dense scales conspire

Our article is structured as follows. In §2, we discuss empirical observations that
establish the above-noted contrast between at least and more than for a special case,
viz. numerals that are mapped onto an intuitively dense scale. §3 shows how SET
explains this contrast. §4 refines the empirical picture we started out with and argues
that recently discovered empirical phenomena provide additional support for our
analysis. §5 extends the proposed analysis to intuitively non-dense scales. In §6, we
discuss the observation that more than does not block SIs with round numerals and
how this fact might be integrated with our analysis.

2 Empirical background

In this section, we consider numerals that, by their occurrence context, are mapped
onto the weight scale. We thereby establish that the contrast in IIs exhibited by
at least and more than, discovered by Geurts & Nouwen (2007) with respect to
intuitively non-dense scales, also holds for intuitively dense scales. The motivation
for considering intuitively dense scales first is that SET makes immediate predictions
for these (see §3), while an amendment is required for the others (see §5). The
contrast of interest is exemplified by the sentences in (3) and (4). Sentence (3)
implies that the speaker is ignorant about whether Bella weighs exactly 8 kg or more
than 8 kg (see also Büring 2008; Nouwen 2010, 2015; Schwarz 2016), while (4)
doesn’t imply that the speaker is ignorant about whether Bella weighs exactly 9 kg
or more than 9 kg (or about any other proposition).

(3) Bella weighs at least 8 kg. (4) Bella weighs more than 8 kg.

We will use the term unenriched meaning to refer to the meaning of a sentence in
disregard of any and all SIs or IIs that it may be able to convey. The unenriched
meaning of (3) and (4) is given in (5) and (6), respectively.

(5) The unenriched meaning of (3)
[λw.Bella’s weight in w≥ 8 kg]

(6) The unenriched meaning of (4)
[λw.Bella’s weight in w > 8 kg]

These propositions are abbreviated as given in (7) and (8), respectively, and likewise
for similar propositions.

(7) [≥ 8] := (5) (8) [> 8] := (6)

Thus, we can characterize the contrast between (3) and (4) in the following way:

(9) (3) I[> 8], (3) I[= 8] (10) (4) 6 I[> 9], (4) 6 I[= 9]

We’ll present a more nuanced discussion of these empirical claims in §4. In
the meantime, we note, building on an argument in Nouwen 2010, that the contrast
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in IIs between at least vs. more than helps explain the intuitive contrast between
sentences like ??This 10 kg weight weighs at least 8 kg vs. This 10 kg weight weighs
more than 8 kg: the former is odd (even as a response to a question like Do we have
anything that weighs at least 8 kg?) because it obligatorily implies ignorance about
how much the 10 kg weight weighs, whereas the latter (e.g. as a response to Do we
have anything that weighs more than 8 kg?) is not odd (it’s just plain true).

3 Our explanation in a nutshell

We now show that SET predicts that (4) cannot induce IIs while (3) can.5 To
follow our argument, it’s helpful to keep in mind that according to the assumptions
we adopted in §1, a speaker is ignorant about a proposition φ , Iφ , iff she is not
certain that φ , ¬Kφ , but considers φ possible, ¬K¬φ . As already mentioned, the
pragmatic-semantic theory we explore in this article requires SIs and IIs to be derived
in grammar. In the absence of overt expressions like only and I’m (un)certain that,
we assume that SIs and IIs are invoked by syntactic occurrences of covert operators,
specifically the exhaustification operator exh of Fox 2007 and the belief operator K
of Meyer 2013. With respect to the latter, we assume that it denotes (a Ty2 variant
of) the belief operator of S5 (designated by the same symbol).

First, we turn to (3). Let’s assume a context in which [≥ 8], [= 8], and [> 8] are
all relevant propositions. How can a speaker convey in such a context (that she is
certain about) [≥ 8] while obeying SET with respect to the other two propositions?
We claim that a speaker can do so by uttering the structure in (11).

(11) [γ exhD [β K [α Bella weighs at least 8 kg]]]

In (11), a constituent α , which denotes the unenriched meaning of (3), i.e. [≥ 8],
forms a constituent β with an occurrence of the K operator, which itself forms
a constituent γ with an occurrence of the exh operator. For the domain of exh,
i.e. the set D, we assume that it contains K[≥ 8], K[> 8], and K[= 8] and no other
proposition.6 To prove our claim, we note that β denotes K[≥ 8]. By the semantics
of exh, γ denotes the conjunction of the denotation of β with the negation of all
members of D whose negation is consistent with the denotation of β and bears
no logical implications for the other members of D. Hence, γ denotes K[≥ 8]∧

5 We believe that it’s for independent reasons that, outside of echoic contexts (see §4), at least always
comes with IIs. See Spector 2015 for an account that we hope might be integrated with ours.

6 The domain of exh is restricted by two sets, viz. the set of relevant alternatives and the set of formal
alternatives (Fox & Katzir 2011). We hence assume that K[> 8] and K[= 8] are denotations of formal
alternatives of the constituent β in (11). We will discuss this assumption in §6. We can ignore all
other alternatives because they’re either entailed by β or they turn out to be ‘obligatorily irrelevant’
(Buccola & Haida 2019), as the discussion in this section will allow the reader to infer.
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¬K[> 8]∧¬K[= 8], since K[≥ 8]∧¬K[> 8] is consistent and logically independent
of K[= 8], and likewise K[≥ 8]∧¬K[= 8] is consistent and logically independent of
K[> 8] (while K[≥ 8]∧¬K[≥ 8] is inconsistent). See (12) for a summary.

(12) The denotations of the labeled constituents in (11)

JαKg = [≥ 8]

Jβ Kg = K[≥ 8]

JγKg = K[≥ 8]∧¬K[> 8]∧¬K[= 8]
for g(D) = {K[≥ 8],K[> 8],K[= 8]}

What remains to be shown is that the denotation of γ logically entails I[> 8] and
I[= 8]. That this is indeed the case follows from the logical facts noted in (13).

(13) K[≥ 8] ∧
{
¬K[> 8] ⇒ ¬K¬[= 8]
¬K[= 8] ⇒ ¬K¬[> 8]

Overall, in using (11), the speaker expresses K[≥ 8]∧ I[= 8]∧ I[> 8]. Thus, she can
convey [≥ 8] while being transparent about [= 8] and [> 8], namely by expressing
her ignorance about the latter.

Turning to (4), we start out by making parallel assumptions as with the foregoing
example. Specifically, we assume that the propositions [> 8], [> 9], and [= 9] are
all relevant, and that the speaker utters the structure in (14), where D is the set
{K[> 8],K[> 9],K[= 9]}.

(14) [γ exhD [β K [α Bella weighs more than 8 kg]]]

We claim that by uttering (14) the speaker fails to obey SET with respect to [> 9]
and [= 9]. Here is the reason why. The labeled constituents in (14) have analogous
denotations to their counterparts in (11), see (15).

(15) The denotations of the labeled constituents in (14)

JαKg = [> 8]

Jβ Kg = K[> 8]

JγKg = K[> 8]∧¬K[> 9]∧¬K[= 9]
for g(D) = {K[> 8],K[> 9],K[= 9]}

However, unlike before, the denotation of γ does not support the possibility infer-
ences ¬K¬[= 9] and ¬K¬[> 9] to complement the uncertainty entailments ¬K[> 9]
and ¬K[= 9] to yield the ignorance inferences I[> 9] and I[= 9], see (16).

(16) K[> 8] ∧
{
¬K[> 9] 6⇒ ¬K¬[= 9]
¬K[= 9] 6⇒ ¬K¬[> 9]
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The reason is that K[> 8]∧¬K[= 9]∧¬K[> 9] is compatible with e.g. K[= 8.5],
which entails K¬[= 9] and K¬[> 9]. This means that a speaker cannot convey [> 8]
while being epistemically transparent about [> 9] and [= 9].7 The same argument
can be replicated for any pair of alternatives [> n] and [= n] with n > 8 given that
the weight scale is dense. What this means is that [> 8] can only be conveyed in
contexts in which all of these stronger alternatives are irrelevant. This is the property
called obligatory irrelevance by Buccola & Haida (2019), and we submit that this
explains why more than cannot induce IIs.

4 Empirical support

Two recent experimental studies (Westera & Brasoveanu 2014; Cremers, Coppock,
Dotlačil & Roelofsen 2017) found that the contrast in IIs between at least and more
than is to a certain extent context dependent. Specifically, explicit context questions
seem to modulate the propensity of hearers to draw IIs from sentences like (3)
and (4). We argue that these findings support the SET approach. We begin with
presenting (3) and (4) in the context of indirect polar questions, which brings out the
contrast of interest in an unobstructed way (Cremers et al. 2017).8

(17) {Choppi is food for dogs
that weigh less than 8 kg}

Q: Is Choppi suitable for Bella?
A: Bella weighs at least 8 kg.

(So the answer is no.)

(18) {Choppi is food for dogs
that weigh at most 8 kg}

Q: Is Choppi suitable for Bella?
A: Bella weighs more than 8 kg.

(So the answer is no.)

In (17) and (18), the text in curly brackets provides information about the common
knowledge of the interlocutors. On the background of these pieces of information,
the question in (17/18-Q) asks different polar questions about Bella’s weight: in
the case of (17), it provides the answer set {[< 8], [≥ 8]}, and in the case of (18)
the answer set {[≤ 8], [> 8]}. The two questions differ so that either one is settled
by the unenriched meaning of its respective answer: the unenriched meaning of
(17-A), i.e. [≥ 8], is compatible with just one member of the former answer set,
and the unenriched meaning of (18-A), i.e. [> 8], with just one member of the
latter one. Nevertheless, we observe, supported by quantitative data in Cremers
et al. 2017, that the two answers differ in what they convey about the speaker’s
beliefs: (17-A) implies ignorance about [> 8] and about [= 8], while no ignorance

7 Recall that according to SET, ¬Kφ (without ¬K¬φ ) is not an epistemic state (see note 3).
8 Both Westera & Brasoveanu 2014 and Cremers et al. 2017 are concerned with sentences involving

intuitively non-dense scales. Based on our own judgments, we believe that the variation reported in
these studies is independent of this feature. Therefore, we continue using examples with intuitively
dense scales.
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is implied by (18-A). As the discussion in §3 shows, the SET account predicts two
crucial components of this contrast: it predicts that (17-A) can be associated with
truth conditions that have the observed IIs as entailments, while (18-A) cannot be
associated with ignorance-entailing truth conditions.

Two points should be noted about the contexts just considered. First, the answer
set specified in (17), i.e. {[< 8], [≥ 8]}, cannot be equated with the QUD from
which the set of relevant propositions is derived: obviously, [> 8] and [= 8] are not
(disjunctions of) members of this answer set; hence, if we equated the QUD with
this answer set (or rather its closure under belief), we would falsely predict no IIs to
arise from (17-A). Second, it’s crucial to express the polar questions of interest in an
indirect way, as will become clear immediately.

Quantitative data presented by Westera & Brasoveanu (2014) suggest that context
questions can obviate IIs of at least. Specifically, in the context of the polar question
in (19-Q), the use of (3)/(19-A) does not imply speaker ignorance. In particular,
(19-Q) specifies the same polar question as the context question in (17) but does so
in a direct way.

(19) Q: Does Bella weigh at least 8 kg? A: Bella weighs at least 8 kg.

The obviation of IIs in echoic contexts is predicted by the theory our account is based
on. As Buccola & Haida (2019) show, the assumption that relevance is closed under
speaker belief (from which SET follows) forces the adoption of exh, in order for
speakers to be able to obey SET. Crucially, a proposition can only be in the domain
of exh if it’s a focus alternative of its prejacent (see §6.2.2 and Katzir 2007; Fox
& Katzir 2011). In the context of (19), every constituent of (3) is given and hence
unfocused (with the possible exception of constituents representing the assertive
force of this sentence). Specifically, the modified numeral at least 8 is unfocused.
Consequently, K[= 8] and K[> 8] aren’t focus alternatives of K[≥ 8] and hence not
in the domain of exh. Therefore, no IIs can be derived.

We now turn to contexts that evoke a reponse by means of a degree question,
specifically the question in (20-Q). First, we consider the case of a speaker responding
with the more than sentence in (4), see (20-A).

(20) Q: How much does Bella weigh? A: Bella weighs more than 8 kg.

Westera & Brasoveanu (2014) and Cremers et al. (2017) report that experimental
subjects draw an inference of speaker ignorance when being exposed to question-
answer sequences such as (20). We contend that this inference is not grammatically
induced in the way explained for at least sentences. Rather, it’s a pragmatic inference
of sorts which arises because of the following properties of (20). The degree question
in (20-Q) denotes the answer set {[= d] : d ∈Q} (including e.g. the proposition that
Bella weighs exactly 8.5 kg; see Spector 2018). Consequently, (20-A) provides an
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answer to (20-Q), however, only a partial one: it eliminates the subset {[= d] : d ∈
Q∧d ≤ 8} from the answer set, but it’s compatible with all of its other members.
Moreover, as shown in §3, (20-A) renders all stronger alternatives [> n] and [= n]
with n > 8 obligatorily irrelevant because a speaker cannot convey [> 8] and be
epistemically transparent about these alternatives. This means that (20-A) as a
response to (20-Q) renders every compatible member of the answer set of (20-Q)
irrelevant. That is, it dodges (a big chunk of) the question. We believe that this is
why one might draw the reported inference of speaker ignorance, since one reason
for dodging a question is (to convey) ignorance. To see that there is a difference
between the inferences induced by at least vs. more than in the context of a degree
question, note the contrast between A1 and A2 as a response to Q in (21): A1 is odd
since it entails ignorance about one’s own age (cf. Nouwen 2010); A2, in contrast,
isn’t odd since it doesn’t entail ignorance, and since there are other reasons for
dodging a question (like not wanting to disclose one’s actual age).

(21) Q: How old are you? A1: #I’m at least 40. A1: I’m more than 40.

The last case study of this section is concerned with at least sentences in the
context of a degree question, see below.

(22) Q: How much does Bella weigh? A: Bella weighs at least 8 kg.

Cremers et al. (2017) report that question-answer discourses like (22) evoke different
behavior from experimental subjects than question-answer discourses like (17):
subjects draw a stronger inference of speaker ignorance from (22). Again, we
believe that the key in explaining this fact is the observation that (22-A) gives
an incomplete answer to (22-Q) and that it renders all but one of the compatible
members of the answer set of (22-Q) obligatorily irrelevant. More precisely, (22-A)
eliminates the subset {[= d] : d ∈Q∧d < 8} from the answer set and is compatible
with all of its other members. Furthermore, (22-A) renders all stronger alternatives
except for [> 8] and [= 8] obligatorily irrelevant. Thus, it renders every compatible
proposition in the answer set of (22-Q) irrelevant, except for the proposition [= 8],
which is a proposition that (22-A) entails ignorance about. Again, this means that
the response in (22) is dodging the question. Therefore, a subject encountering
the question-answer discourse in (22) has two reasons to infer that the answerer is
ignorant: first, because of the ignorance entailments of (22-A), and second, because
the answerer is dodging the question. We submit that this explains the observation of
Cremers et al. (2017). Thus, we agree with these authors that there are ‘two routes to
ignorance’, and that cases involving both routes induce an additive effect. However,
we submit that the two routes are (i) grammatically induced IIs and (ii) pragmatic
inferences that give an interpretation to question-dodging behavior.
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5 Adapting the SET account to non-dense scales

The argument presented in §3 relies on the intuitive assumption that the weight scale
is dense. The counting scale, in contrast, is intuitively discrete. Still, we observe the
same contrast between (23) and (24) as we do between (3) and (4): only (23) implies
ignorance.

(23) Ann owns at least two dogs. (24) Ann owns more than two dogs.

Without further assumptions, however, (24) is wrongly predicted, under our account,
to be able to induce IIs. To see this, consider (25), which, as we did in §3, we
hypothesize to be a parse of (24) with D being the set {K[> 2],K[> 3],K[= 3]}.

(25) [γ exhD [β K [α Ann owns more than 2 dogs]]]

The denotation we derive for (24) is provided in (26), where [> 2] is the proposition
[λw. the number of dogs owned by Ann in w > 2] (and likewise for [> 3] and [= 3]):

(26) The denotations of the labeled constituents in (25)

JαKg = [> 2]

Jβ Kg = K[> 2]

JγKg = K[> 2]∧¬K[> 3]∧¬K[= 3]
for g(D) = {K[> 2],K[> 3],K[= 3]}

On the intuitive assumption that (25) involves the counting scale, the logical facts in
(27) are supported. As a consequence, the denotation of γ logically entails I[> 3]
and I[= 3], so that we incorrectly predict that (24) can induce IIs.

(27) K[> 2] ∧
{
¬K[> 3] ⇒ ¬K¬[= 3]
¬K[= 3] ⇒ ¬K¬[> 3]

The situation we face here for (4) and (24) with respect to IIs mirrors what Fox
& Hackl (2006) observe with respect to SIs: there is an explanation for why (4)
cannot be used to convey that Bella weighs exactly 9 kg (or exactly 8.5 kg, 8.25 kg,
. . . ), which relies on the weight scale being dense.9 However, despite the intuitive
difference in granularity between the weight scale and the counting scale, (24) cannot
be used to convey that Ann owns exactly three dogs either. Fox & Hackl (2006) solve
this puzzle by hypothesizing that measurement scales needed for natural language
semantics are always dense. This so-called universal density of measurement (UDM)

9 The explanation is that there is no smallest degree greater than 8: for every degree d > 8, there is a
degree greater than 8 but smaller than d (since the weight scale is dense). Thus, [> 8] has no weakest
stronger alternative [> d]. However, the exclusion of all stronger alternatives contradicts [> 8]. As a
consequence, exhaustification cannot apply (relative to the dense alternative set).
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hypothesis solves our puzzle in a similar fashion: with the UDM in place, the logical
entailments in (27) no longer hold, and so the denotation in (26) no longer supports
the IIs I[> 3] and I[= 3] as logical entailments. In fact, the alternatives [> 3], [= 3],
and all [> n] and [= n] for n > 2 are obligatorily irrelevant, in complete parallel to
what we demonstrated for (4) in §3, and that’s why (24) cannot induce IIs.

This is the desired result. However, we also need to take care of the following
observation, which has the potential to obviate the desired result: on the intuitive
assumption that the proposition [> 2] is contextually equivalent to the proposition
[≥ 3], we derive the contextual entailments in (28), where c is a context such that
[> 2]≡c [≥ 3].

(28) K[> 2] ∧
{
¬K[> 3] ⇒c ¬K¬[= 3]
¬K[= 3] ⇒c ¬K¬[> 3]

Therefore, if we want to generalize the SET approach from sentences involving
intuitively dense scales to sentences involving intuitively non-dense scales, we must
assume, in addition to the UDM, that SET is a condition on the logical entailments
of an utterance. This is stated in (29) as a hypothesis.

(29) Hypothesis about SET (to be tentatively rejected)
The entailment notion that figures in the formulation of SET in (2) is the
notion of logical entailment.

As a consequence, (29) implies that the entailment notion that figures in the for-
mulation of the Maxim of Quantity must also be logical entailment. The reason is
that SET is a consequence of the interaction between the Maxim of Quantity and
the assumption that relevance is closed under belief. Buccola & Haida (2019: §6.4)
provide methodological motivation and empirical evidence for the assumption that
the relevant notion is logical entailment. However, this assumption seems to be at
odds with the Maxim of Quantity being a conversational principle, which should
rather be involved with contextual entailment. In the next section, we explore how to
reject this assumption while also improving the empirical coverage of our approach.

6 An alternative account

6.1 Conceptual and empirical issues to be addressed

As we’ve just seen, generalizing the SET account of the contrast in IIs between
at least and more than requires the assumption that the Maxim of Quantity com-
mits speakers to utter sentences that logically entail every contextually relevant
proposition they believe to be true. However, for conceptual reasons it’s much
more plausible that the Maxim of Quantity is concerned with contextual entailment.
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Therefore, we now investigate an alternative to adopting (29). In addition, our
investigation aims to broaden the empirical coverage of the aspired analysis. The
current analysis accounts for the IIs in (30) and the absence of IIs and SIs in (31).10

(30) at least induces IIs (and not SIs)

(3) I[> 8], (3) I[= 8]
(23) I[> 2], (23) I[= 2]

(31) more than does not induce IIs/SIs

(4) 6 I[> 9], (4) 6 I[= 9]
(24) 6 I[> 3], (24) 6 I[= 3]
(4) 6 K[= 9], (24) 6 K[= 3]

However, it does not predict another set of facts reported in the recent literature,
viz. the availability of SIs with (3), see (32), and the sentences in (33), where [> 200]
abbreviates the proposition [λw. the number of people that attended in w > 200] and
likewise for [= 200], [> 100], and [≥ 100].11

(32) (3) ¬[> 9]∧¬[= 9] (Émile Enguehard 2018)
(33) {More than | At least} 100 people attended. (cf. Cummins et al. 2012)

 ¬[> 200]∧¬[= 200]

Thus, in what follows we not only abandon (29) but also aim to predict SIs of
modified round numerals.12 The alternative analysis we propose will be compat-
ible with SET but it will explain the facts in (30) and (31) independently from it.
Nevertheless, we continue to explore the consequences of closure of relevance under
belief even though, as just pointed out, this condition will no longer play a crucial
part in explaining the empirical observations reported above.

6.2 Restrictions on exhaustification domains

6.2.1 Our goals

Here, we set the stage for a later assumption, namely that exhaustification must apply
below the K operator. The desired effect of this assumption is to preempt the deriva-
tion of unattested IIs (caused, without preemption, by subsequent exhaustification
above K). Preemption of IIs is achieved by imposing restrictions on exhaustification
domains. To enable a more specific discussion, we adopt the following standard
definition of exh (Fox 2007; Magri 2009):13

10 Recall that the absence of SIs follows from the UDM, which we adopted in §5.
11 Cummins et al. (2012) only discuss the SI ¬[> 200] for sentences like (33). They remain silent about

the exclusion of [= 200] with more than 100 and don’t make specific claims about the SIs of at least
100. However, our empirical claims in (33) are consistent with their quantitative data.

12 The numeral 8 in (3) is a round numeral in that it denotes an integer on a scale of rational numbers.
13 Sometimes, we assume, for expository reasons, that the domain of exh is assigned to a syntactic

variable that comes with syntactic occurrences of exh. The rendering in (34) is better suited to our
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(34) The definition of exh
Jexh SKg = [λw. p(w) = 1∧∀q ∈ IE(A, p) : q(w) = 0], where:

p = JSKg

A = {JS′Kg : S′ ∈ Alt(S)}∩R
IE(A, p) =

⋂
{E : E is a maximal subset of A such that p∧¬

∨
E 6≡ ⊥}

Our discussion concerns the following two components of this definition, where S is
the structure undergoing exhaustification: (i) the set Alt(S) of formal alternatives
of S and (ii) the set R of relevant propositions. The set A of relevant propositions
denoted by formal alternatives of S is what we call ‘exhaustification domain’ or
‘domain of exh’ in previous sections and subsequently.

With regard to (i), Table 1 shows how the structures of interest are to be associated
with alternative sets, where the associations vary with whatever is the intuitively
adequate scale for interpreting the structure in context. In this table, we characterize
structures and alternative-set members by their denotations.14 We do this for brevity
and because the assignment-function parameter g of the interpretation function will
serve to determine the granularity level of the alternative sets.

With regard to (ii), we need to restrict the extensions of R in such a way that cer-
tain subsets of {JS′Kg : S′ ∈ Alt(S)} are preserved if they emerge. These restrictions
will impose limits on which members of triplets like {[> 2], [> 3], [= 3]} can be
disregarded. Specifically, they rule out R = {[> 2], [> 3]} so that [> 2] in the fourth
row of Table 1 cannot be exhaustified relative to the domain

⋃
n∈N{[> n], [= n]}∩

{[> 2], [> 3]}, since this would yield the SI ¬[> 3] and hence the unwanted enriched
meaning [= 3] (given the UDM and the contextual equivalence of [> 2] and [≥ 3]).

6.2.2 Providing the generative capacity to build the desired Alt(S) values

We adopt the theory of formal alternatives proposed in Katzir 2007; Fox & Katzir
2011. In this theory, the set of formal alternatives of a structure S, i.e. Alt(S), is
defined as given in (35), where AltRooth(S) is the set of focus alternatives of S (Rooth
1992) and AltKatzir(S) contains all and only those structures S′ that can be derived
from S by replacing constituents of S with items of the same or lower structural
complexity (see the cited references for details).

current purposes. With (34), we are simplifying matters somewhat since Alt(S) is to a certain degree
context dependent (Katzir 2007). We believe that this simplification doesn’t impede the discussion.

14 We don’t want to suggest that the alternative-building mechansim derives the desired associations
without reference to how the propositions in the first column of Table 1 are linguistically expressed.
For example, the parse of the sentence Bella weighs no less than 8 kg contains a structure denoting
[≥ 8] (Nouwen 2008). However, because of restrictions limiting the generative capacity of the
alternative-building mechanism, this structure cannot be associated with the alternative set in the first
row of Table 1 (Haida 2019).
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JSKg Intuitive scale suggested by S
and/or its context {JS′Kg : S′ ∈ Alt(S)}

[≥ 8]
dense

⋃
d∈Q+{[≥ d], [> d], [= d]}

[> 8]
⋃

d∈Q+{[> d], [= d]}

[≥ 2]
non-dense with steps of 1

⋃
n∈N{[≥ n], [> n], [= n]}

[> 2]
⋃

n∈N{[> n], [= n]}

[≥ 100]
non-dense with steps of 100

⋃
c∈{n·100 : n∈N}{[≥ c], [> c], [= c]}

[> 100]
⋃

c∈{n·100 : n∈N}{[> c], [= c]}

Table 1: Desired values of Alt(S) for various (denotations of) S

(35) Alt(S) = AltRooth(S)∩AltKatzir(S)

In general terms, the Katzir alternatives of the structures under consideration are
derived by (I) replacing numeral modifiers with other numeral modifiers and/or
(II) replacing numerals with other numerals (cf. Schwarz 2016). It’s beyond the
scope of this article to defend the first assumption (or assumptions to its effect).
Therefore, we merely acknowledge our acceptance of the stipulations in (36).

(36) a. The numeral modifiers at least, more than, and exactly are constituents of
expressions they occur in.

b. i. More than is no more complex than at least.

ii. Exactly is no more complex than more than.

By (36), the alternative-building mechanism can derive e.g. (α) Bella weighs more
than 8 kg and (β ) Bella weighs exactly 8 kg from (γ) Bella weighs at least 8 kg, and
(β ) from (α).

Assumption (II), we spell out in the following way. We assume that numerals
denote degrees (of the atomic semantic type d; cf. Landman 2004) and that they
can be moved at LF (cf. Kennedy 2015). Specifically, if a numeral is c-commanded
by an exh operator, it can be moved to a position c-commanding that operator.15

Thus, we assume, for instance, that (37) is a possible LF structure (and likewise for
structures without a numeral modifier or with a different one).

15 Presumably, movement of this type is restricted by locality constraints. We have to leave further
explorations to future research.
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(37) [β two [λ1 [exh [α Ann owns more than t1 dogs]]]]

Above, t1 is a syntactic variable of the same type as its antecedent, i.e. a variable
of type d. Because of the unbounded nature of language, there must be an infinite
repository of syntactic variables of type d. For concreteness, let this repository be the
set Td = {tn : n ∈ N}. We assume that all of the variables in Td are equally complex
(i.e. differences in the formal complexity of subscripted indices are notational
artefacts). Consequently, t1 in (37) can be replaced with any other syntactic variable
in Td . Together with (36b-ii), we thus derive the following set of Katzir alternatives
of the complement α of the exh operator in (37):

(38) AltKatzir(α) = {[Ann owns more than tn dogs] : n ∈ N}
∪ {[Ann owns exactly tn dogs] : n ∈ N}

This means that the set of Katzir alternatives of α yields the proposition set in (39)
under the interpretation function J·Kg.

(39) {JS′Kg : S′ ∈ AltKatzir(α)}=
⋃

d∈D{[> d], [= d]}

Above, the set of degrees D is the image of the set of syntactic variables of type d
under g, i.e. D = {g(t) : t ∈ Td}. Thus, D can be Q+ (a dense scale), N (a non-dense
scale with steps of 1), {n ·100 : n ∈ N} (a non-dense scale with steps of 100), or any
other set of degrees, depending on the parameter g of the interpretation function.
Since, by standard assumptions, the argument-value associations of assignment
functions are context dependent, we thus derive, at the level of Katzir alternatives,
the context-dependent variation in Table 1 for structures containing more than and,
mutatis mutandis, also for structures containing at least.

Let’s assume, for illustration, that the domain of exh in (37) is the set
⋃

d∈N{[>
d], [= d]}. Then, the constituent β has the following denotation, where the first
equivalence holds if (and only if) the UDM is valid.16

(40) Jβ Kg = [λw. JAnn owns more than t1 dogsKg[t1 7→2](w) = 1
∧ ∀q ∈ IE(

⋃
d∈N{[> d], [= d]},Jβ Kg) : q(w) = 0]

≡ λw. [ [λw′. the number of dogs Ann owns in w′ > 2](w) = 1
∧ ∀q ∈

⋃
d∈N\{0,1,2}{[> d], [= d]} : q(w) = 0]

≡ [λw. the number of dogs Ann owns in w > 2
∧ the number of dogs Ann owns in w 6> 3
∧ the number of dogs Ann owns in w 6= 3]

Obviously, the proposition derived above is a contextual contradiction. As will
become apparent shortly, this plays an important role in our preemption account.

16 This is because the condition of innocent excludability requires logical consistency, which is met
because [> 2]∧¬[> 3]∧¬[= 3] is logically consistent given the UDM.
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6.2.3 Restrictions on R

We’ve explored the consequences of the assumption that the set R of relevant
propositions is closed under conjunction, negation, and speaker belief, which we
adopted in §1 and kept, although we changed course at the beginning of this section.
Here we add another closure condition, viz. closure of R under contextual equivalence
(Magri 2009), given in (41):

(41) If φ ∈ R and ψ is contextually equivalent to φ , then ψ ∈ R.

In conjunction with the other closure conditions, (41) implies that R contains all
contextual equivalences of Boolean combinations of its members. For example, if c
is a context that supports [> 2]≡c [≥ 3], then we derive the following consequences
regarding R:

(42) [> 2], [> 3] ∈ R ⇒ [> 2]∧¬[> 3] ∈ R (closure under ∧ and ¬)
⇒ [= 3] ∈ R (closure under ≡c)

Thus, (41) guarantees that R cannot ‘break contextual symmetry’: if R contains
[> 2] in a context c that supports [> 2]≡c [≥ 3] and hence the symmetric contextual
entailments in (43), then R contains either none or both of [= 3] and [> 3].17

(43) [> 2] ∧
{
¬[> 3] ⇒c [= 3]
¬[= 3] ⇒c [> 3]

This is a good result because broken contextual symmetries yield unwanted SIs,
which we prevent with (41).

Note that we also derive that, in the same context, R is a dense set:18

(44) [> 2] ∈ R ⇒ [> d] ∈ R for all d ∈Q with 2 < d < 3 (closure under ≡c)

The result in (44) is counterintuitive but unproblematic for our approach, since, as
just shown, the alternative-building mechanism yields non-dense alternative sets in
contexts that suggest a non-dense scale with steps of 1 (or other step sizes).

17 For triplets like {[≥ 8], [> 8], [= 8]} and {K[≥ 8],K[> 8],K[= 8]}, symmetry breaking is prevented
by closure of relevance under conjunction, negation, and belief alone since the symmetric entailments
these triplets support are logical entailments and not just contextual entailments.

18 If the UDM is valid, the dense ordering of the rational interval [2,3) carries over to a dense logical-
strength ordering of R: if R satisfies the condition in (44), R contains, for any two of its members
[> d], [> d′] with 3 > d > d′ ≥ 2, a third member [> d′′] with d > d′′ > d′; because of the UDM,
[> d]⊂ [> d′′]⊂ [> d′], where ‘⊂’ is the asymmetric (logical) entailment relation.
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6.3 An LF hypothesis

On the background of our proposals regarding Alt(S) and R, the main ingredients of
our new analaysis are the UDM together with the structural hypothesis in (45).

(45) LF hypothesis for (assertive) sentences
Every sentence has the following hierarchy of covert operators in its periph-
ery: [exhD2 [K [exhD1 . . . ]]].

In (45), D2 is the set {K p : p ∈ D1}.19 This means that if we start out, for example,
with the hypothesis that D1 = {[> 2], [> 3], [= 3]} and find that, for some reason, D1
must exclude [> 3] and [= 3], we can further conclude that D2 must exclude K[> 3]
and K[= 3].

We start out exploring the consequences of (45) by considering the structure
it imposes on (24), see the LF strcuture in (46). This structure also exhibits LF
movement of the numeral two to a position above the lower exh operator.

(46) [exhD2 [K [β two [λ1 [exhD1 [α Ann owns more than t1 dogs]]]]]]

The foregoing discussion allows us to infer the value assignments in (47a) and
assume the value assignments in (47b) to derive the value assignment in (47c).

(47) a. JαKg[t1 7→2] = [> 2]

g(D1) = {Jα ′Kg : α ′ ∈
A1︷ ︸︸ ︷

AltKatzir(α)∩
A2︷ ︸︸ ︷

AltRooth(α)}∩R

{Jα ′Kg : α ′ ∈ A1}=
⋃

n∈N{[> n], [= n]} =: A3

b. A2 ⊇ A1, R⊇ {[> 2], [> 3], [= 3]}
c. g(D1) = {[> 2], [> 3], [= 3]}∪ (A3∩R)

The proposition in A3∩R (denotations of Katzir alternatives such as [> 1] or [= 4])
play no role for the outcome of exhaustifying JαKg[t1 7→2] relative to g(D1) and will
hence be ignored. Thus, we can derive the following denotation for the constituent
β in (46):

(48) The denotation of β in (46) for g(D1) = {[> 2], [> 3], [= 3]}
Jβ Kg = [> 2]∧¬[> 3]∧¬[= 3]

Now let’s bring in the assumption that forced us to adopt (29) in order to prevent
(24) from being assigned unattested IIs, viz. the assumption that [> 2] is contextually
equivalent to [≥ 3] (i.e. to be in a context c such that [> 2]≡c [≥ 3]). What we find
then is that the denotation we derived in (48) is a contextual contradiction:

19 This follows from the closure conditions and the inability of the alternative-building mechanism to
delete occurrences of K (Meyer 2013).
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(49) [> 2]∧¬[> 3]∧¬[= 3]≡c ⊥

Consequently, the denotation of (46) contextually entails K⊥, i.e. an irrational
speaker. This contradicts the foundation of conversations governed by the Gricean
maxims, namely the assumption of a rational speaker. Therefore, Gricean interlocu-
tors can conclude that [> 3] and [= 3] cannot both be members of D1 in (46) (the
domain of the lower exh operator) and hence, given that R cannot break contextual
symmetry, that neither can. Therefore, no SIs or IIs are assigned to (48): if D1
excludes both [> 3] and [= 3], D2 excludes both K[> 3] and K[= 3]; consequently,
the two exh operators apply vacuously. This is a good result since no SIs or IIs are
attested for (24).

Next, we contrast what we just derived with what (45) implies for (23), see (50).

(50) [γ exhD2 [K [β two [λ1 [exhD1 [α Ann owns at least t1 dogs]]]]]]

Again, our assumptions are consistent with g(D1) being the set {[≥ 2], [> 2], [= 2]}
(details omitted). However, unlike before, we now observe that the lower exh
operator applies vacuously because of the logical facts in (51), which prevent [> 2]
and [= 2] from being excluded by exh.

(51) [≥ 2] ∧
{
¬[> 2] ⇒ [= 2]
¬[= 2] ⇒ [> 2]

Importantly, the fact that [> 2] and [= 2] fail to meet the excludability condition of
exh doesn’t mean that they cannot be members of D1: their membership doesn’t lead
to an improper meaning assignment as in the previous case. Therefore, K[> 2] and
K[= 2] can be members of D2. Consequently, the labeled constituents in (50) can
have the following denotations:

(52) The denotation of the labeled constituents in (50)

JαKg = [≥ 2]

Jβ Kg = JαKg with g(D1) = {[≥ 2], [> 2], [= 2]}
JγKg =K[≥ 2]∧¬K[> 2]∧¬K[= 2] w/g(D2) = {K[≥ 2],K[> 2],K[= 2]}

Since JγKg logically entails I[> 2] and I[= 2], we are able to derive from (50) the IIs
attested for (23), the desired result.

The next step in our demonstration is concerned with the examples in (3) and
(4), whose structures, as imposed by (45), are given in (53).

(53) a. [γ exhD2 [K [β eight [λ1 [exhD1 [α Bella weighs at least t1 kg]]]]]]

b. [γ exhD2 [K [β eight [λ1 [exhD1 [α Bella weighs more than t1 kg]]]]]]
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If the variable D1 in (53a) and (53b) is assigned the dense set in the first and second
line of Table 1, respectively, then we derive virtually the same result for this pair as
for the pair in (50) and (46) with an exhaustification domain exhibiting contextual
symmetry. The only difference is that the constituent β in (53b) denotes a logical
contradiction (Fox & Hackl 2006; Gajewski 2009) and not a contextual contradiction
as in (46). Thus, we derive IIs for (53a) and no IIs for (53b) (in the latter case, if D1
is assigned the singleton {[> 8]}). If, in contrast, D1 in (53a) and (53b) is assigned
the non-dense set in the third and fourth line of Table 1, respectively, then we derive
for both structures the SIs ¬[> 9] and ¬[= 9] at the level of the lower exh operator
and for (53a) IIs about [> 8] and [= 8] at the level of the higher exh.

In the same way, if D1 in (54a) and (54b) is assigned the non-dense set in the
fifth and sixth line of Table 1, respectively, we derive for both structures the SIs
¬[> 200] and ¬[= 200] at the level of the lower exh operator and for (54a) IIs about
[> 100] and [= 100] at the level of the higher exh.

(54) a. [exhD2 [K [one hundred [λ1 [exhD1 [at least t1 people attended]]]]]]
b. [exhD2 [K [one hundred [λ1 [exhD1 [more than t1 people attended]]]]]]

Thus, to conclude, we derive all attested SIs and IIs for the sentences under consid-
eration and no unattested SIs or IIs.

7 Conclusion

If relevance is assumed to be closed under speaker belief (Fox 2016), then the
Maxim of Quantity (MQ) compels speakers to express their epistemic state about
every relevant proposition (Buccola & Haida 2019). This commitment (Strong
Epistemic Transparency, or SET), we showed, can predict the contrast in ignorance
inferences between at least and more than: the former can logically entail ignorance
due crucially to symmetry between formal alternatives, while the latter cannot.
To obtain these results, we brought in several auxiliary assumptions, such as the
hypothesis that semantic scales are universally dense (UDM; Fox & Hackl 2006) and
the assumption that SET, and hence MQ, involves a logical, rather than contextual,
notion of entailment. Although Buccola & Haida (2019) provide motivation for the
latter assumption, we showed here how we might dispense with it, and in the process
also capture cases where more than can induce scalar inferences with round numerals
(Cummins et al. 2012; Émile Enguehard 2018). Although this extended account no
longer relies on SET, it has in common with the SET account that symmetry between
formal alternatives is what drives ignorance inferences; that non-strict (cf. class B;
Nouwen 2010) modifiers like at least always involve symmetric alternatives, hence
entail ignorance; and that strict (cf. class A) modifiers, due crucially to the UDM,
never involve (logically) symmetric alternatives, hence cannot entail ignorance.

18



How obligatory irrelevance, symmetric alternatives, and dense scales conspire

References

Buccola, Brian & Andreas Haida. 2019. Obligatory irrelevance and the com-
putation of ignorance inferences. Journal of Semantics 36(4). 583–616.
doi:10.1093/jos/ffz013.

Büring, Daniel. 2008. The least at least can do. In West coast conference on formal
linguistics (WCCFL), vol. 26, 114–120. Somerville, MA. http://www.lingref.
com/cpp/wccfl/26/paper1662.pdf.

Cremers, Alexandre, Elizabeth Coppock, Jakub Dotlačil & Floris Roelofsen.
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