Incorporating tone when modeling wordlikeness judgments

Abstract

Various phonotactic models have been proposed to predict speakers’ wordlikeness
judgments but most have focused primarily on segments. This article aims to model speakers’
wordlikeness judgments incorporating tone. We first show how the two major determinants
of wordlikeness judgments, namely phonotactic probability and neighborhood density, can be
applied to tone languages. To test the role of the two determinants to wordlikeness judgments
in a tone language, judgment data are obtained from speakers of Cantonese. The results are
then used to model speakers’ judgments, showing that phonotactic probability, but not
neighborhood density, modulates wordlikeness judgments and that the phonotactic
probabilities involving nucleus and coda are most relevant to wordlikeness judgments. We
also show that phonotactic probability affects the tendency to judge items being absolutely
perfect or more or less wordlike, while it does not affect the judgments that an item is
absolutely not-wordlike. Implications of these results for phonotactic modeling and processes
involved in wordlikeness judgments are discussed.
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1. Introduction

Wordlikeness denotes the degree to which a sound sequence is considered typical in a
language (Bailey & Hahn, 2001). Native speakers have consistent intuitions about which
sound sequences are more wordlike. They can not only tell which existing sequences sound
more like typical words (e.g., ‘bag’ [bag] is more typical than ‘squad’ [skwad] in English)
but also make a similar judgement for nonwords (e.g., ‘bnick’ [bnik] sounds more wordlike
than ‘bdick’ [bdik] in English). In the research of phonotactics, one core interest has been on
finding sources of such wordlikeness judgments. Previous literature has shown evidence for
various sources of wordlikeness judgments, including phonotactic probability (Coleman &
Pierrehumbert, 1997; Dankovipova et al., 1998; Frisch et al., 2000; Gathercole & Martin,
1996; Vitevitch et al., 1997), lexical neighborhood density (Bailey & Hahn, 2001; Gathercole
& Martin, 1996; Greenberg & Jenkins, 1964), and orthotactic probability (Bailey & Hahn,
2001). ‘Phonotactic probability’ denotes the probability of finding a phoneme’s substring
(e.g., how likely to have the sequence [st] in the English). ‘Neighborhood density’ is the
degree to which a sound sequence overlaps with existing words in a lexicon. ‘Orthotactic
probability’ refers to written letters, not sounds, calculated similarly to phonotactic
probability.

By incorporating these sources, proposals have been made to model wordlikeness
judgments, including syllabic parser (Coleman & Pierrehumbert, 1997), Generalized
Neighborhood Model (Bailey & Hahn, 2001), Phonotactic Probability Calculator (Vitevitch
& Luce, 2004), Phonotactic Learner (Hayes & Wilson, 2008), Featural Bigram Model
(Albright, 2009), Simple Bigram Model (Jurafsky & Martin, 2009), and Generative
Phonotactic Learner (Bailey & Hahn, 2001; Futrell ez al., 2017). See Daland et al. (2011) for
an overview. Work on wordlikeness judgment, however, has so far focused primarily on
segments and studies incorporating suprasegmental features is relatively limited. Some
suprasegmental features, including stress and tone, are used to create lexical contrasts cross-
linguistically. Therefore, in order to understand the system of wordlikeness, the determinants
of wordlikeness judgments should include suprasegmental features. Especially for the
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languages where lexical contrasts are created with suprasegmental features, understanding the
system of wordlikeness incorporating suprasegmental features is particularly crucial.

Some previous work examined how prosodic features related to stress should be
incorporated into phonotactic models (Bird & Ellison, 1994; Coleman & Pierrehumbert,
1997; Hayes & Wilson, 2008; Olejarczuk & Kapatsinski, 2018). As for tone, which is the
focus of this paper, there is previous work on wordlikeness judgments of tone languages
which considers only segmental phonotactics, omitting tone. Gong (2017) compared
speakers’ acceptability and reaction times on lexical decisions involving systematic gaps and
accidental gaps in Mandarin. They considered the role of phonotactic probability and
neighborhood density to predict the results. It was found that the two had independent
influence on acceptability, but neighborhood density was the only significant factor for
reaction times. Gong also used Hayes & Wilson’s (2008) phonotactic probability calculator,
but without considering tone. As an extension of Gong (2017), Gong & Zhang (2020) did
consider tonal neighbors, i.e. syllables that differ only by tone. In their investigation of lexical
neighbors, however, cases where both a segment and a tone differ were not included, thus it
was not possible to know the relative contribution of segments and tones in determining
lexical neighbors in Mandarin. Myers (2015) is another work on a tone language, Mandarin,
that considered only segmental phonotactics without tone. Myers focused on comparing the
effect of lexical typicality and typological frequency on acceptability judgments. Lexical
typicality was defined as to how many lexical syllables in Mandarin share the item’s onset
consonant, and typological frequency was defined in terms of the number of phoneme
inventories that exhibit this consonant across languages. They looked at onset frequency
within Mandarin and consonant frequency within The UCLA Phonological Segment
Inventory Database (UPSID: Maddieson & Precoda, 1989) to find that both typological
frequency and Mandarin-specific lexical typicality had effects which items speakers judge
more wordlike.

Modeling work incorporating tone includes Myers & Tsay (2005), Kirby & Yu (2007),
and Shoemark (2013). These studies differ with each other as to what they aimed to predict
(e.g., judgements on real words, systematic gaps, accidental gaps, etc,), but a main goal was
to identify the role of phonotactic probability and neighborhood density in predicting native
speakers’ wordlikeness judgments. Myers & Tsay (2005) examined the role of neighborhood
density in predicting the typicality judgments in Mandarin and reported that the judgments of
real Mandarin words can be predicted by neighborhood density but nonwords are inversely
correlated to neighborhood density. In Kirby & Yu (2007), their focus was to find out the role
of phonotactic probability and neighborhood density in understanding systematic and
accidental gaps in Cantonese. The results showed the role of neighborhood density to predict
wordlikeness judgments. Phonotactic probability also played a role, although there was a less
correlation between phonotactic probability and wordlikeness. They suggest that this may be
because Cantonese does not permit complex onsets and codas and thus has a much smaller
number of possible monosyllables, leading to a lower importance of phonotactic probability.
Also because the possible monosyllables are limited due to strict phonotactic regulations,
lexical items occupy a much larger portion of the space of possible monosyllables, resulting
in a greater role of lexical density. This idea was further pursued by Shoemark (2013) where
it was argued that strict phonotactic restrictions in Cantonese create denser phonological
network, from which the role of neighborhood density becomes crucial.

While the findings are mixed, the overall results seem to suggest that neighborhood
density has a greater effect on tone language speakers’ wordlikeness judgments than
phonotactic probability. However, the space of possible ways to incorporate tone into the
modeling of wordlikeness judgments has yet to be fully explored. In order to incorporate tone
in modeling wordlikeness judgments, we need to address the following two issues; first, how
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the major determinants of wordlikeness judgments, such as phonotactic probability and
neighborhood density, should be operationalized with tone, and second, how to evaluate the
contribution of these factors to wordlikeness judgment test results. For the first, we provide a
survey of a variety of methods, and for the second, we provide a Bayesian hierarchical
modeling. Both methods and modeling results will be presented with Cantonese as an
example of a tone language. Section 2 first introduces the basics of Cantonese phonotactics
and overviews multiple methods of measuring the two determinants of phonotactic
knowledge, i.e. phonotactic probability and neighborhood density. It shows that both
determinants have been primarily limited to measuring segments. Section 3 shows how to
measure phonotactic probability and neighborhood density when tone is involved. Our
methodology shows that ‘classic’ phonotactic probability calculation methods, originally
proposed for segments such as n-gram models, (see Section 2.1), can be applied to tone
languages, but tonal probabilities need to be incorporated into the calculation by identifying
the tonal representation from which we can predict speakers’ wordlikeness judgments. We
also show how neighborhood density models, such as Generalized Context Model (Nosofsky,
1986) and Generalized Neighborhood Model (Bailey & Hahn, 2001), can be constructed with
tone: Neighborhood density models should be informed by correct measurements of
phonological distances between words which should incorporate measurements of segmental
distances as well as tonal distances and their relative weights. To identify the role of
phonotactic probability and neighborhood density in predicting speakers’ wordlikeness
judgments in Cantonese, we run a wordlikeness judgment test, presented in Section 4. Our
results show that phonotactic probability, but not neighborhood density, is a significant factor
in predicting speakers’ wordlikeness judgments in Cantonese. When the role of each syllabic
component is considered, probabilities of nucleus and coda are shown to contribute to the
wordlikeness judgments most. We also show that phonotactic probability can predict the
gradient items that fall between the two extreme judgments (i.e. between very wordlike and
not at all wordlike) and categorically perfect items (very wordlike) but not for categorically
bad items (not at all wordlike). Section 5 discuss the implications of the current findings to
the study of phonotactic modeling with tone and the processes involved in wordlikeness
judgments when tone is included.

2. Background

2.1.Cantonese phonotactics

Cantonese belongs to the Sinitic branch of Sino-Tibetan/Trans-Himalayan language
family. Phonemically, the language has 19 consonants (Table 1), and 8 monophthongs with
11 diphthongs (Table 2). In this study, we assume that Cantonese has six tones as in Table 3
(Bauer, 1985; Matthews & Yip, 2011). There is another possible analysis, following the
historical phonology tradition, in which Cantonese is analyzed to have nine tones, with high
level, mid level, and low level tones assumed here being treated as the checked tones in
syllables ending with an oral stop coda. The oral and nasal stops are then allophones in coda
position. When the nine-tone system is assumed, one needs to suppose that codas change into
oral stops when the tone is short (K. H. Cheung, 1986).



Consonants
- Labio- Velar
Bilabial dental Alveolar | Palatal Plain | Labialized Glottal
. Plain t k kv
Plosive Aspirated ;I:h th kh kvh
Nasal m n 1
Fricative f s h
. Plain ts
Affricate Aspirated tsh
Approximant ] w
Lateral approximant 1
Table 1. The inventory of Cantonese consonants.
Vowels
Monophthongs
Front Central
Back
Unrounded Rounded Short Long
Close i y: u
Mid € e a:
Open e a:
Diphthongs
Main vowel
a B € e () 0 J: 0 i u:
i ai el el
Terminal y oy 21y uy
u | au eu eu ou | iu
Table 2. The inventory of Cantonese vowels.
Lexical tones
High High Mid level Low Low Low level
Tone name . . . . .
level rising falling rising
Tone letter 1 1 i { A |
Jyutping 1 2 3 4 5 6
tone number

Table 3. Lexical tones in Cantonese.

Cantonese has a maximal syllable structure of (C)V(C) or (C)V(V)! with strict restrictions
on what segments or tones are allowed in certain syllabic positions (S. L. Cheung, 1991;
Kirby & Yu, 2007; Yip, 1989). Apart from vowels, the syllabic nasal may take the nucleus
position as there are a few syllables that consist of a nasal consonant alone ([g] or [m]). All
consonants are allowed in onsets, and in the current analysis, the secondary articulation /w/ is
treated as a part of the onset, rather than as part of the nucleus. Compared to onset, only
unreleased stops, nasals, and high vowels are allowed in codas, suggesting stricter
phonotactic restrictions on coda than onset positions. Additional phonotactic restrictions are
found from among the relations between two syllabic positions. The onset and coda of a
syllable cannot be both labial (*pap, *mim) (S. L. Cheung, 1991; Kirby & Yu, 2007; Yip,

! Note that consonant codas never co-occur with diphthongs, from which it was proposed that the second
vowel in a diphthong should be considered as the coda of the syllable (Bauer & Benedict, 1997, pp. 13—14). Our
study follows this idea.
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1989). Rounded vowels cannot be followed by labial codas (*-u:m, *- 5.p) and front rounded
vowels cannot be preceded by labial onsets (*my-, *pe.-). The onset and coda of a syllable
with a back vowel as the nucleus cannot be both coronal (*no:n, *tu:t) and coronal onsets
cannot be followed by nucleus /u:/ or /uy/ (*tu., *nu:y). Syllables ending in unreleased stops
can only take the three level tones (tones 1, 1, and 1). Syllables with unaspirated stops or
affricates in onset do not bear tones | and 4, while syllables with aspirated stops or affricates
in onset do not bear tone 4 (Kirby & Yu, 2007). Exceptions to the aforementioned
phonotactic regulations exist in loanwords and ideophones (Bauer, 1985). The results of a
wordlikeness test showed that Cantonese native speakers’ phonotactic knowledge reflects
systematic and accidental gaps found in the lexicon (Kirby & Yu, 2007).

A morphological aspect that is relevant to the current study is the status of monosyllabicity
in Cantonese. Cantonese favors disyllabicity, and many modern Cantonese monosyllabic
morphemes are generally not used as independent words, but only appear in compounds
(Bauer & Benedict, 1997). Some sociolinguistic sound changes in Cantonese are relevant to
the current study as well: Cantonese shows ongoing sound changes including the initial [n-]
and [I-] merger, the coda [-t] and [-k] merger, and [-n] and [-ng] merger (Bauer & Benedict,
1997), and the merges between tones 1 and 4, 1 and 4, and { and 4 (Mok et al., 2013).

2.2.Determinants of wordlikeness judgment

Our main question is on what basis native speakers make wordlikeness judgments in tone
languages. For example, how do Cantonese native speakers tell that a novel sound sequence
with coda /1/ is less wordlike than the one with coda /m/? As mentioned in Section 1,
previous work suggests that there are mainly two sound-related determinants of wordlikeness,
namely phonotactic probability and neighborhood density (see review in Bailey & Hahn,
2001). Phonotactic probability and neighborhood density models are often correlated, but
they quantify different aspects of wordlikeness. Phonotactic probability decomposes strings
of sounds into substrings and aggregate the probabilities of those substrings to create
measures of wordlikeness (Albright, 2009). It is an analytical approach in that it decomposes
words into pieces and calculates probabilities. Neighborhood density models count the
number of words that are similar in a lexicon, by certain metrics which we will discuss in
Section 2.2, to the sound sequence in question, sometimes weighted by some criteria like
frequency (e.g., GNM of Bailey & Hahn, 2001). It is a holistic approach in that the
calculation is based on the whole lexicon. In the following section, we first introduce the two
determinants in detail and Section 2.3 considers how the two determinants can be measured
in tone languages, such as Cantonese.

2.2.1. Phonotactic probability

Numerous ways to compute phonotactic probability have been proposed. These
methodological decisions can fall into ‘researcher degrees of freedom’ (Roettger, 2019;
Simmons et al., 2011) that can critically affect the results. Although the diverse
methodological approaches all have a similar goal of generating good predictors of
wordlikeness judgements (or performance in some other experimental task, such as spoken
word recognition or non-word repetition) and are often quite strongly correlated, there is
considerable variation in the underlying philosophy. Here we identify three main aspects in
which the implementations of phonotactic probability may vary: (a) types of probabilities, (b)
methods of estimating probabilities, and (c) methods of aggregating estimated probabilities.



Type of probabilities. Phonotactic probability is generally calculated over n-phones (n-
grams) of segments, where 7 is the length of the substring of segments considered. A unigram
is a single segment, a bigram/biphone consists of two contiguous segments, etc. Usually, the
largest substring considered in phonotactics studies is the triphone. For Cantonese, when
segment sequences are considered, the application of unigram to trigram calculation is
straightforward as its maximal syllable structure is CVC or CVV, and only one phoneme is
allowed in each syllabic position. There are also models that, instead of considering the
probabilities of n-phones directly, consider the probabilities of n-grams of ‘natural classes’ as
well as the probabilities of individual phonemes given the natural class (Albright, 2009;
Albright & Hayes, 2003). Hybrid models of these also exist, generally based on syllable
structure. The ‘syllable part” approach (Bailey & Hahn, 2001) computes probabilities over the
onset, nucleus and coda of a syllable, which may vary in length in some languages like
English. Similarly, their ‘syllable rime’ approach computes probabilities over onsets and
rimes, calculating the probabilities of onsets and rimes as single units, and treating them as
independent. In Chinese, it has sometimes been argued that there is no need to decompose the
rime into nucleus and coda, and instead the rime is treated as a single unit, with each rime
being a rimeme (Chao 1934, Light 1977). The distinction of rime and rimeme is important for
the analysis of different syllables in different Chinese dialects, but for the purpose of our
paper, they can be understood comparable. If a rimeme or a rime is assumed to be a single
unit, the syllable part approach cannot be pursued, and instead the syllable rime approach
must be used. For Cantonese phoneme sequences, no complication is involved in applying
the syllable structure approaches, whether it is a syllable part or a syllable rime approach, due
to its phonotactic restriction to allow only one phoneme in each syllabic position. A main
issue in measuring phonotactic probability in Cantonese is to determine the position of tone
in relation to onset, nucleus, and coda. We further discuss this issue in Section 2.3.

Once we determine the representation of the syllable structure, the next step is to compute
probabilities within a syllable. There are two types of probabilities computed. First, positional
probability computes the probabilities that a segment or n-phone appears at a certain position
in a word, e.g. the probabilities that the phone [a] is the second segment in a word, or that the
biphone [pl] is the second and third segments in a word. Transitional probability computes
the probabilities that a segment appears, given the n — 1 previous segments, where n = 2 for
biphones, n = 3 for triphones, etc. Word boundaries, denoted #, are often considered
‘segments’ in these approaches, so that the probability distribution of the actual first sound in
a phoneme sequence is the conditional distribution of it given the first ‘segment’, namely the
word-initial boundary. Due to a restriction in Cantonese that allows a single phoneme in each
syllabic position, measuring positional and transitional probabilities of Cantonese segmental
sequences is simple. Like before, the issue is to determine the position of tone in relation to
phonemes.

Method of estimating probabilities. The probabilities themselves are concepts (or
‘parameters’ in statistics) that are unknown and thus must be estimated using a corpus. Note
that the estimation is independent of phonotactics of individual languages and estimating
probabilities with or without tone is not an issue here. Different researchers differ with
respect to the estimation methods used. One popular method, especially among
psycholinguists, is to use log frequencies in the computation of phonotactic probability
(Jusczyk et al., 1994; Vitevitch & Luce, 2004). To calculate positional probability of an n-
phone, for instance, the log frequency of that n-phone in a certain position is divided by the
log of the total number of words that contain in the position; to calculate the transitional
probability of an n-phone, the log frequency of the n-phone is divided by the log of the total
number of words where the first » — 1 segments of the n-phone appears. The underlying
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assumption is that log frequencies are better measures of ‘perceived’ frequencies than raw
frequencies. A second approach is to use maximum likelihood estimation in calculating the
probabilities (e.g. Albright, 2007, 2009). Here, raw counts are used instead of log frequencies
in the numerator and denominator; otherwise, the calculations are identical as the log
frequency approach. Some probabilities are likely to be zero due to accidental or systematic
gaps. A third approach is intended to better deal with such zero probabilities. It modifies the
maximum likelihood estimation by adding a smoothing parameter to avoid overfitting (e.g.
Dautriche et al., 2017, see also Jurafsky & Martin, 2009, for a more detailed description of
the method as applied to word n-grams). In methods that use log-frequencies, zero counts are
particularly problematic, as they would result in undefined log-frequencies and hence
undefined probability estimations. Some methods using log frequencies can deal with issues
of zero counts, though in somewhat ‘ad hoc’ ways: For example, Vitevich & Luce’s (2004)
phonotactic probability replaces the undefined probabilities for unattested n-phones, which
have log 0 in the numerator, with 0 probabilities.

Apart from the methods of estimating probabilities, there is also a question of whether the
frequencies used should be based on type frequencies or token frequencies (Daland et al.,
2011; Denby et al., 2018; Richtsmeier, 2011). The former is counted with an entire lexicon,
whereas the latter can be computed using a frequency wordlist or a corpus.

Method of aggregating estimated probabilities. Once we estimate individual probabilities,
we need to combine them together. As with estimation, the methods of combining the
probabilities are independent of the involvement of tone. There are two main ways of
combining the estimated probabilities computed into single measures of phonotactic
probability: taking the sums (i.e. adding probabilities) or taking the products (i.e. multiplying
probabilities). Note though that simply adding or multiplying probabilities may produce a
measure that is not a true probability, but they are still frequently used. For both methods of
taking the sums (i.e. adding probabilities) and taking the products (i.e. multiplying
probabilities), many variations exist. First, the probabilities may be logged before combining
them; they may be combined before being logged; or they may not be logged at all. (Note that
the sum of the log of the probabilities is the same as the logs of the products.) Second, the
probabilities may be normalized to account for word length; the arithmetic mean of the
probabilities may be taken if we are summing the probabilities, and the geometric mean if we
are multiplying them. Many of these methods were explored in Bailey & Hahn (2001) and
Vitevitch and Luce (2004).

2.2.2. Neighborhood density

The other major predictor of wordlikeness judgments is neighborhood density, the degree
to which an item under consideration resembles other items in the lexicon. Like phonotactic
probability, neighborhood density can be measured in many different ways. The simplest and
most common measure is the number of lexical neighbors, where a word is a neighbor of
another word if one word can be obtained from another by adding, deleting or changing one
segment. For example, /ket/ is a neighbor of /kaets/, /&t/ and /bat/. In this approach, a
neighbor is a categorical concept: Two words are either neighbors or not. Due to the
assumption that a lexical neighbor is a categorical concept, counting the number of lexical
neighbors including tone does not differ from the one only with phonemes. In Cantonese, for
instance, /ka:1/ is a neighbor of /ka:1/, /kta:1/, /kan:1/ and /sa:1/. This is the method used in
Kirby & Yu (2007) when measuring neighborhood density in Cantonese.

A more sophisticated measure of lexical neighborhood allows for gradience. For example,
we would expect that /keet/ is a closer neighbor to /kats/ than to /braets/, but also /kat/ is
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closer to /brats/ than to /brits/. To arrive at such ‘gradient’ neighborhood models, we need to
construct phonological distance measures for the exact distances between words. The
literature on such measures is large, primarily for the ones for segments.? The most common
method is to determine the distances between two corresponding phonemes first, then
combine them to find distances between phoneme strings. When measuring distance between
two phonemes, Bailey & Hahn (2001) used the natural class distance in Frisch ef al. (1997).
In the distance measurement in (1), the number of non-shared natural classes between two
phonemes is divided by the total number of natural classes, i.e. shared natural classes + non-
shared natural classes, across the two phonemes. In other words, the distance between two
phonemes is defined by the proportion of non-shared natural classes that the phonemes
belong to.

Non-shared natural classes

1) Distanceyc =
( ) NC Total number of natural classes

The Levenshtein distance (Jurafsky & Martin, 2019) between the two phoneme strings is
then computed: An algorithm is used to find the way of adding a segment, deleting a segment
or substituting one segment for another that minimizes the ‘cost’ of these operations, cost
being the distance between the two corresponding phonemes involved. The distance between
two phoneme strings then becomes the average cost of the operation. When tone is involved
in the distance calculation, the distance between two tones should be included in the
calculation. We elaborate this point in Section 2.3.

Once a distance measure between two words, d(w;, w;), has been constructed,
incorporating phoneme distances and tone distances, it is used to measure the lexical density
of words. One possibility is the Generalized Context Model (GCM) of Nosofsky (1988).
GCM is an exemplar model, where categorization of a lexical item is based on its similarity
towards all relevant stored exemplars, i.e. lexical neighbors. In GCM, the neighborhood
density of a word is calculated by summing up the exponent of the negative distance of every
word in the lexicon from the word itself. In (2), L denotes the lexicon, i.e. the set of all words
in the language. Because of the negation sign, words that are far away from the word under
consideration are weighted less whereas words that are close to the word are weighted
heavily. In order to measure how far a word is to other words including tone, we need to
identify the relative contribution of segmental distance and tonal distance in determining the
distance between two words. Section 3.2 shows methods of identifying the relative
weightings of segmental and tonal distances.

(2) GCMW;) = By e, €4 We%))

Although GCM does consider gradient similarity of all relevant words in the lexicon, one
disadvantage of GCM is that lexical frequencies are ignored. To address this issue, Bailey &
Hahn (2001) propose the Generalized Neighborhood Model (GNM), where the contribution
of'a word depends not only on its distance to the word under consideration but also its
frequency of occurrence. So, under GNM, frequency of a word’ occurrence affects its
‘weights’. In (3), log frequency of occurrence is denoted by f, and 4, B, C, and D are free
parameters. These parameters give the relative contribution of the quantity weighted by the
square of the log frequency (A), the quantity weighted by the raw frequency itself (B), the
non-frequency weighted (i.e. GCM) quantity (C), along with a ‘sensitivity parameter’ D that
is multiplied to each distance, as in (3). GNM modeling with tone is similar to the GCM

2 Readers are pointed to Kessler (2005) for an overview.
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modeling with tone, except that the relative weight of tones and segments, which incorporates
frequency information, should be included in the distance measure. Due to the additional
parameters, it is mathematically more complicated than GCM, but the core components
needed for GNM modeling with tone are similar to those for GCM modeling: We need to
identify both segmental and tonal distances and their relative contributions in determining the
distances between words.

(3) GNM(w;) = ZWjEL (Asz + Bf; + C)e_D'd(Wier)

As an example of the GCM and the GNM applications to phoneme strings without tone,
consider a miniature language below. The language has five words taken from English, strata
[stretta], spray [sprei], star [star], tar [tar] and states [steits], and each word appears in the
corpus 8, 15, 16, 5 and 20 times respectively. We consider the problem of determining the
neighborhood density of star [star]. The distance between star [star] and the other four words
are shown in Figure 1 on the lines joining them with star /star/. Under GCM, the
neighborhood density of star [star]is e™! + e™% + e™3 + e™* = 0.571. Under the GNM
withA = 1,B = —2,C = 3,D = 4, the neighborhood density of star [star] is (1 X 52 —
2x54+3)e™ T+ (1x82-2x8+4+3)e ™2+ (1x20%2—-2x%x20+3)e 3+
(1 x 152 =2 x 15 + 3)e™*** = 0.349. To build GCM and GNM models with tone here, the
distances of a word to the other words in Figure 1 (1, 2, 3, and 4) should be measured with
tonal distances as well, and log frequency of occurrence, f;, and the four parameters in (3), 4,
B and C, and D, should be informed by lexicon including tonal information.

spray [spre1]; freq: 1

strara [streita]; freq: 8

tar [tar]; freq: 5

states [steits]; freq: 20
Figure 1. The distance between star [star] and the other four words with their frequency.

As we will discuss below, our experimental design is constructed with reference to the
‘number of neighbors’ measure, as in Kirby & Yu (2007), as well as the GCM and GNM
models. In Section 3, we show how these methods can be adapted to incorporate tone in
calculations, with Cantonese as a case study.



3. Phonotactic modeling with tone

3.1.Phonotactic probability

As introduced in Section 2, there are multiple methods for computing phonotactic
probability, involving a large number of decisions concerning the type of probabilities, the
estimation methods, and the methods of aggregating the probabilities. For the computation of
phonotactic probability, a main guiding principle is to create a theoretically well-grounded
measure of the joint probability of the entire syllable including tone.

In our study with Cantonese, we use traditional bigram probabilities due to its best
performance in Kirby & Yu (2007). Alternatively, unigram or trigram probabilities can be
applied without much difference from bigram probabilities, because only one segment or tone
is allowed in each syllabic position in Cantonese. Bigram probabilities are calculated on the
basis of token frequencies from Hong Kong Cantonese corpus (Luke & Wong, 2015), whose
performance was better than when the calculation was based on type frequency in Kirby &
Yu?. We adopt the ‘syllable parts’ approach described by Bailey & Hahn (2001), which
computes probabilities over the onset, nucleus and coda of a syllable. We do not adopt an
approach which assumes a rime as a single unit, such as a syllable rime approach or a rimeme
approach (Chao 1934, Light 1977). See our justification for this decision in Section 4. As
Cantonese syllable structure only allows one phoneme in each of syllable part slots (assuming
that the second vowels in diphthongs are considered to be a coda), we compute P(onset)*—
conceptually equivalent to P(onset|#) for models that consider word boundaries—
P(nucleus|onset), and P(codajnucleus), then multiply the three together as P(segments). In
other words, P(segments) is calculated by multiplying probabilities of the syllabic
components’ n-grams. We assume that the second vowels in diphthongs are codas for the
following reason. In Cantonese, there are strict phonotactic restrictions on diphthong-coda
sequences. For example, falling-sonority diphthongs like ei never co-occur with nasal or oral
stop coda. So it has been proposed that the second component of the diphthongs be
considered part of the coda (Bauer & Benedict, 1997). When computing these probabilities,
additive smoothing is performed to prevent zero probabilities, since this would result in an
undefined log-probability (See section 2.2). For smoothing, we simply add 1 to all counts for
simplicity (i.e. add-one smoothing), and do not pursue more complicated methods.

To calculate probabilities of tone given the string of segments, we compute
P(tone|segments) using a multinomial logistic regression model with the nnet package
(Ripley & Venables, 2016) in R (R Core Team, 2020). An assumption here is that the
probability of a syllable having a certain tone is dependent on the identities of all segments in
the syllable. Dummy variables representing onset, nucleus and coda are included in the
model; we excluded interaction effects to ensure that the probabilities of tone can be
calculated for an unattested segment string as well. The probability of a monosyllable is then
the joint probability of segments with tone given the segments, P(segments)
P(tone|segments). Then we take the natural logarithm of this joint probability as a linear
predictor of wordlikeness in our model. As an alternative, we also consider P(tone|coda)

3 We believe that a better performance based on token probabilities is largely due to language-specific
properties of lexicon. In Cantonese, words are predominantly disyllabic (73%) and the length of almost all of the
words lies between 1 to 3 syllables (97%) (Lai & Winterstein, 2020). Due to this, there are many homophones
and many characters have multiple pronunciations, which can be indicative of a more crucial role of token rather
than type frequencies in judgment tests.

4 Throughout this paper, we will use notation such as P(onset) to denote the probability of a particular onset
(e.g. /p/ or /1/), not the probability that any onset will appear.
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rather than P(tone|segments), because, as introduced in Section 2.1, there is a strong co-
occurrence restriction in most Cantonese words whereby oral stop finals [p, t, k] may only
co-occur with tones 1, 1, and { (Bauer & Benedict, 1997). Additionally, we also consider
P(tone|onset), because Cantonese exhibits some restrictions on the relation between onset and
tone, i.e. syllables with unaspirated stops or affricates in onset do not bear tones | and 4 while
syllables with aspirated stops or affricates in onset do not bear tone 4 (Bauer & Benedict,
1997). Three other conceptually possible probabilities are tested as well, including tone
conditioned on nucleus, tone not conditioned on segments, and the one only with segments
without tone. Our case of Cantonese thus resulted in six log-probability measurements shown
in (4) with different assumptions with regards to the relationship between tone and segments.

(4) Six types of measurements of tonal probabilities

Types Abbreviations Definitions

P(tone[segments) P(T|S) Tone conditioned on all segments
P(tone|coda) P(T|C) Tone conditioned on coda only
P(tone|onset) P(T|O) Tone conditioned on onset only
P(tone|nucleus) P(T|N) Tone conditioned on nucleus only
P(tone) P(T) Tone unconditioned on segments

No tonal probability NoT Segmental probabilities only without tone

3.2.Neighborhood density

As mentioned in Section 2.2, it is straightforward to count the number of neighbors in tone
languages if a tonal neighbor is assumed to be a categorical concept. For examples, ka5 [k'ed]
is a neighbor of ka6 [ked] (tone substitution), just as it is to ki5 [k"i:4] (segment substitution),
a5 [ed] (segment deletion), or kat5 [kPetd] (segment addition). On the other hands, modeling
neighborhood density in tone languages using GCM or GNM models is more complicated,
mainly because (a) tonal distance should be measured and incorporated into modeling and (b)
relative contributions of segmental and tonal distances should be identified in determining the
distance between words.

First, we demonstrate how to construct distance metrics between two words, d(wi, Wj), in
the notation introduced in Section 2.2, including tonal distance. Instead of directly following
Bailey & Hahn (2001) in calculating segmental Levenshtein distances (Jurafsky & Martin,
2019), we adopt a way that was proposed to measure phonological distance in Cantonese
taking both segments and tones into account. A study from Do & Lai (forthcoming) reported
how to measure phonological distances of words when tone is involved using Cantonese as
an example. In their study, the distances of segments and tones were first calculated
separately assuming various phonological representations of segments and tones. The
assumed representations included binary and multivalued feature representations for
segments and the Chao tone letters, autosegmental, and (onset)-contour-(offset)
representations of tones (see Do & Lai for the justifications for each representation). They
collected phonological distance judgement data between two items by asking how similar the
two items are, such as between se4 [se:d] ‘snake’ and ze6 [t"e:], within the scale of 0 (totally
different) and 100 (identical). Various models were compared with the participants’ data to
find out the optimal way to measure segmental and tonal distances. For segmental distance,
Do & Lai found that a distance measure represented by a multivalued, mostly articulatory-
based featural representation based on the one in Ladefoged (1975) worked best. There are
several ways to calculate segmental distances between such segmental representations, but
the one that worked optimally in their study was with Hamming distance (Nerbonne &
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Heeringa, 1997). Hamming distance measures the number of features that are not shared
between two phonemes and divides them into the total number of phonological features, i.e.
shared and non-shared phonological features between the two. Given its optional
performance in the previous study, the current study adopts Hamming distance measures for
multivalued representations to measure segmental distances in Cantonese. For the tonal
distance, Do & Lai found that Hamming distance measure with representing tone in terms of
contour and offset was optimal in predicting native speakers’ phonological distance
judgements. This result echos the results of perception studies in Cantonese, where tonal
contours are found to be an important perceptual cue (e.g. Khouw & Ciocca, 2007; Xu et al.,
2006), which in fact is more important than tonal heights (Gandour, 1981). Reflecting its
good performance, the current study also adopts the same distance measure and the tonal
representation. The six tones of Cantonese are represented in Table 4 following the contour-
offset representation. The distance between the tones was 1 if both contour and offset were
different (e.g., tone 1vs. tone {), 0.5 if either contour or offset was different (e.g., tone 1vs.
tone 1), and 0 if both were same (i.e. same tone).

Tone letter 1 1 1 4 1
Tone number 1 2 3 4 5 6
Contour Lv R Lv F R Lv
Offset H H M L* M L

(Lv: level; R: rising; F: falling; H: high; M: mid; L: low; L*: Extra low)
Table 4. Six tones in Cantonese in the contour-offset representation.

Second, once we identify optimal distance measures for segments and tones, the issue now
is to combine the two measures together. One straightforward way to do this is to simply add
them together. However, this does not allow for different weightings for segments and tones,
which are experimentally evidenced from perception (Cham, 2003), word recognition (Cutler
& Chen, 1997; Keung & Hoosain, 1979), word reconstruction (Wiener & Turnbull, 2016),
and phonological distance studies (Do & Lai, forthcoming; Yang & Castro, 2008). To model
empirically informed weights of segments and tones, we decided to choose the weights that
can predict native speakers’ phonological distance judgements in Do & Lai using the fixed
intercept and coefficients for segmental and tonal distance.

The computation of a GCM model is straightforward so far as we identify segmental and
tonal distances and their relative weights. However, there are additional complications with
GNM. It is mainly because GNM modeling incorporates ‘frequency’, which is ignored in
GCM modeling. As mentioned in Section 2.2, there are four free parameters in Bailey &
Hahn’s (2001) model, A (the quantity weighted by the square of the log frequency), B (the
quantity weighted by the raw frequency itself), C (a free parameter that gives the relative
contribution of the non-frequency weighted quantity), and D (a sensitivity parameter that is
multiplied to each distance). Bailey & Hahn mentioned that they computed these coefficients
in GNM by regression. However, as they did not specify the details of the implementation,
we devised our own method of estimating the parameters. In our modeling, to simplify
calculations, we fixed a sensitivity parameter D at 1 but inferred A, B and C empirically from
the results of our wordlikeness test. This greatly simplifies the process of finding the values
of A, B and C, as the GNM without a sensitivity parameter will become a linear combination
of three quantities—the sum of the exponent of the negative distance from each word to the
word under question, weighted by the square of the frequency, weighted frequency and
unweighted (i.e. GCM), respectively—with A, B and C as coefficients. Frequency weighting
was based on token frequencies from Hong Kong Cantonese corpus (Luke & Wong, 2015).
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Now, with frequency information and segmental and tonal distances as well as their relative
weights, what is needed is wordlikeness judgment data from native speakers. Section 4
collects wordlikeness judgment data, from which we build the GCN and GNM models in
Section 5.

4. Wordlikeness judgment test>

Previous sections introduced ways to measure phonotactic probability and neighborhood
density. We also showed our measurement decisions for Cantonese, incorporating tone. With
the two predictors measured with tone, we test their roles in predicting Cantonese native
speakers’ wordlikeness judgments. In our experiment, participants were asked to judge how
wordlike given words are within the range of 0 (not at all wordlike) to 100 (very wordlike).

4.1.Test

Participants. The experiment was built by using an online survey software Qualtrics
(Qualtrics, 2020) and was distributed through social media to the public. Self-reported native
speakers of Hong Kong Cantonese participated in the experiment and they received 100 HKD
(13 USD) compensation upon the completion of the experiment. In total, 145 participants
were recruited. They were within the age range of 18 and 60. Among all the participants, 44
of them did not complete the experiment and 4 of the participants provided more than three
incorrect answers out of 12 in the pretest (see procedure for the specifics of the pretest), and
thus did not proceed to the main test. Data from the participants who did not complete the test
(n=44) and who did not pass the pretest (n=4) were excluded from the analysis.
Consequently, 97 participants’ data were analyzed.

Design. In creating the experimental stimuli, we first calculated the phonotactic
probability and neighborhood density following our measurement decisions presented in
Section 3 for every logically possible combination of possible onsets, nuclei, codas and tones
in Cantonese. The list was shortened to exclude the real words that are present in the Hong
Kong Cantonese corpus (Luke & Wong, 2015). We then chose 288 items from the list. This
includes all possible onsets, nuclei and codas, and it was made sure that every single possible
phoneme at each syllabic position appears in the stimuli list. After creating the list, the
second author examined the items to identify syllables that exist in Cantonese but were not
present in the corpus by accident and modified one syllabic component to create non-existing

syllables. For example, the string gep6 [ke:pd] (which is present in Cantonese as the
colloquial reading of 7 ‘press from both sides’) was replaced by non-existing syllable ger6

[ke:t4]. The stimuli list is provided in Supplementary Materials A.

A female Cantonese native speaker from Hong Kong recorded the stimuli. An examination
of the speaker’s natural speech revealed that she was not affected by ongoing sound changes
in Cantonese including the initial [n-] and [I-] merger, the coda [-t] and [-k] and [-n] and [-ng]
mergers, and the merges between tones 1 and 4, 1 and 4, and | and 4. The stimuli were
recorded in a sound-attenuated booth in the first author’s institute with Marantz
PMD661MKII Handheld Solid State Recorder and Sennheiser MKE2-P-K Clip-On Lavalier
Condenser Microphone. All stimuli were recorded as WAV format in mono with 16 bit-

5 The data and the code for the experiment are available at
https://osf.i0/3j2se/?view _only=911bd65bb6f54db6ac1083e98937e543.
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resolution at a sampling rate of 44.1kHz and were normalized by using the built-in normalize
command in Praat (Boersma & Weenink, 2019).

Procedure. The experiment began with an introduction and an electronic consent form,
followed by a demographic questionnaire related to participants’ language background. See
Supplementary Materials B for the questionnaire. Participants had to complete a pre-test
before entering the main experiment session. The pre-test was in the form of AXB test to
ensure that participants could perceptually distinguish between [n] and [1] initials, [t] and [k]
finals, and [n] and [ng] finals, which have merged in some Cantonese speakers (Bauer &
Benedict, 1997). The AXB test also included items to check whether they could distinguish
between tones 1 and 4, 1 and 4, and { and 4, which are merging in some Cantonese speakers
(Mok et al., 2013). If participants submitted more than three incorrect answers to the 12
questions, the experiment stopped.

In the main session, the experimental items were randomly presented to participants, one
at a time. The main session lasted on average 40 minutes. Participants were asked to rate how
likely each item would be a Cantonese word from 0 to 100 by using a slider. They were
allowed to listen to it multiple times. Afterwards, the results were divided by 100 to lie
between 0 and 1 for ease of interpretation.

4.2.Results

Data exploration. Before turning to modelling and statistical inference, we first provide a
descriptive analysis of the data. To do so, graphs of the wordlikeness judgement data against
the two assumed determinants, i.e. phonotactic probability and neighborhood density, are
provided. The plots here show the percentage of categorically ‘wordlike’ judgements,
percentage of categorically ‘not at all wordlike” judgements, as well as the average gradient
judgement against each of the predictors that we use. Scatterplots of the raw data are given in
Supplementary Materials C.

First, in Figure 2, the x-axis denotes log-probabilities of test items and the y-axis is
wordlikeness judgments converted to the range of 0 (not at all wordlike) to 1 (very wordlike).
The size of the points on the graph indicate the number of points with the same x and y
values. We chose the version of log-probabilities where tone is conditioned on all segments
for illustration, but the graphs are very similar across different types of log-probabilities. For
log-probabilities, there is a clear relationship with the wordlikeness judgements, as seen in
Figure 2. Aside from an outlier on the far left, the higher the log-probability, the greater the
chances that participants rate the wordlikeness as 1 or in the higher rate regions. In particular,
ratings above 0.5 are quite sparse before the log-probabilities of —23, and they become much
more common afterwards, especially after around —17. Ratings below 0.5 become quite rare
for the three stimuli with the very highest log-probabilities. However, aside from the three
items with the top log-probabilities, the rest of the items all have a similar number of 0 rating
judgements. There are also stimuli, such as those around —23 log-probabilities, where there
are frequent ratings of 1, but ratings in the higher regions are still sparse. All this suggests
that there is great degree of variations among the participants’ wordlikeness judgments, and
the categorical judgments of Os and 1s and the gradient judgements may not be produced by
the same process; in particular, the judgements of Os do not seem heavily affected by log-
probabilities, whereas visually, the trend is clearer for gradient judgements and the judgments
of 1s.
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Figure 2. A plot of the proportion of 0 judgements (green triangles), proportion of 1
judgements (red circles) and average gradient judgement (blue squares) against the log-
probability (x-axis).

Second, the descriptive results for neighborhood density measures are provided in Figures
3—6. Each figure shows the judgment data against the number of neighbors (NN, Figure 3),
GCM (Figure 4), and GNM (Figures 4-6) respectively. As shown in Figure 3, the judgments
of Os (not at all wordlike) tend to be somewhat more common on the left side of the graph,
lower NN regions. However, items with higher NN were not clearly judged better, indicating
no predictive power of NN for the wordlikeness judgments.
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Figure 3. A plot of the proportion of 0 judgements (green triangles), proportion of 1
judgements (red circles) and average gradient judgement (blue squares) against the number of
neighbors (x-axis).

When the neighbors’ gradience is taken into account, there is no clear pattern for any of
the three terms, the one with A (i.e. the quantity weighted by the square of the log frequency),
with B (i.e. the quantity weighted by the raw frequency itself), and with C (i.e. the
unweighted GCM quality). We start by examining the GCM value, i.e. with the coefficient C.
As in Figure 4, the judgments of 1s and Os, categorical judgments, tend to be concentrated in
the middle of the GCM values. For intermediate judgements, there are items skewed towards
high and low values across the entire x-axis. The addition of frequency weighting does not
seem to create clear patterns, either. Figure 5 is for the raw frequency, i.e. with the coefficient
B. For intermediate judgements, there is a tendency in which items in the far lower part of the
graph tend to disfavor the judgments of 1s. But there is no clear tendency for the rest of the
graph. Figure 6 shows the data for the square frequencies, i.e. the coefficient A. We see a
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similar pattern, whereby items with value below around 50 disfavor 1s, but we do not see
very clear tendencies for the judgments of Os or for the other sections of the graph.
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Figure 4. A plot of the proportion of 0 judgements (green triangles), proportion of 1
judgements (red circles) and average gradient judgement (blue squares) against the GCM
values (x-axis).
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Descriptive data seem to suggest that log-probability is relevant to wordlikeness
judgments in Cantonese, but the effect of neighborhood density, if at all present, is weak:
whether it be on categorical measure like NN nor gradient measures like GCM or GNM.
Modeling results in Section 4.3 concur with these descriptive observations.

4.3.Modeling

Our modeling decisions were made based on the descriptive data in Section 4.2. As we
noted above, there is a clear tendency for the categorical judgements to behave differently
from gradient judgements. For example, log-probability seems to have little effect on the
judgments of Os while it seems to be correlated with gradient judgments. Its role to the
judgments of 1s is less clear but items with low log-probability were rarely rated very
wordlike. Based on the observations showing the distinctive patterns among the judgments of
0s, 1s, and gradient ones, we chose a model that allows us to separate judgements of Os, 1s,
and gradient ones. Specifically, we employ a mixed-effect Zero-One-Inflated Beta regression
model (ZOIB: Ospina & Ferrari, 2012), which is similar to a beta regression model, but with
extra components that allow the response to take on values of 0 or 1, modelled separately
from judgement between 0 and 1. More ‘familiar’ models will not be appropriate for
modeling our data. For example, linear regression models assume the residuals to be
normally distributed, an assumption that is difficult to justify for the current case because of
the multimodality prevalent throughout the data, which can be clearly seen in the scatterplots
of the raw data in Supplementary Materials C. Beta regression models only cover the open
interval (0, 1), and to use beta regression, we need to artificially turn the categorical
judgements into values like 0.001 and 0.999, which is not ideal. Thus, ZOIB was our choice
for the current data type. It is an ‘inflated’ regression model in that the distribution of the
dependent variable is assumed to contain frequent Os and 1s, which is consistent with our
data. The ZOIB model was fit using the package brms version 2.13.0 (Biirkner, 2017a,
2017b), which employs Bayesian inference. We chose to use a Bayesian analysis because
most implementations of ZOIBs are Bayesian. Additionally, brms is the most accessible
package for modelling ZOIBs that we are aware of, as it makes use of a syntax very similar to
the familiar /me4 package. Moreover, Bayesian analyses allow us to put weakly informative
priors on the coefficients, which allows easier convergence in the optimization process.
Details of the model settings and prior choices are given in Supplementary Materials D,
including an explanation about the basics of the ZOIBs.

Our modeling decision so far is empirically driven. It may seem to go against some other
empirical findings that both words and nonce words lie on a continuum of acceptability (e.g.
Albright, 2009; Bailey & Hahn, 1998; Coleman & Pierrehumbert, 1997; Hay et al., 2004;
Hayes & Wilson, 2008; Shademan, 2006 among many) and the claim about the gradient
nature of phonotactic wellformedness (Borowsky, 1989; Chomsky & Halle, 1968; Clements
& Keyser, 1983; S. Myers, 1987). Thus, if we accept that the grammar plays a role in
wordlikeness judgments (Berent et al., 2001; Frisch & Zawaydeh, 2001), as opposed to
treating the gradient judgments as the product of mere performance (see studies reviewed in
Hayes, 2000 and Schiitze, 1996), we should first check theoretical significance of our data
(i.e. one that justifies the choice of the ZOIB model). Specifically, we need to check if the
nature of grammar that generates wordlikeness judgments is both gradient and categorical.
Gorman (2013) argued that large number of gradient judgments reported in previous
literature may not be due to the gradient nature of wordlikeness system. Instead, the grammar
may consist of categorical and gradient components, but gradient judgments were observed
more frequently due to the nature of gradient rating tasks. More directly evidence showing
both categorical and gradient nature of the grammar comes from Coetzee (2009, computer
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science). The study tested wordlikeness judgments from Hebrew and English speakers. Two
types of tests were conducted, a wordlikeness rating test on a gradient scale and a
comparative wordlikeness test which forced participants to choose a more wordlike item
between two grammatical or two ungrammatical ones. The results showed that grammatical
and ungrammatical items were rated categorically in a wordlikeness rating test, but the
comparative test elicited gradient wordlikeness distinctions from the participants. The results
suggest that there are two independent cognitive processes involved in wordlikeness
judgments and speakers use their grammar both gradient and categorical ways. Both
processes may not be used in all types of wordlikeness tasks, but crucially the nature of the
grammar that generates wordlikeness judgments are not only gradient but also categorical,
supporting the current choice of the ZOIB model.

As to the modeling decision on syllabic structure, recall that there are two possible
options; one is the syllable part approach (Bailey & Hahn, 2001) which decomposes a
syllable into onset, nucleus, coda, and tone, and another is a syllable rime approach which
decomposes a syllable into onset, rime, and tone. If a syllable rime approach has its
psychological reality in Cantonese speakers’ mind, thus it should be pursued, we would
expect that syllables with unattested rimes tend to be frequently judged categorically bad.
This was not borne out in the present data. Refer to the following graph showing the
relationship between log-probabilities (with tone dependent on all segments) but color-coded
to show whether the rime is attested or not: Grey items have unattested rimes whereas orange
items have attested rimes in Cantonese in Figure 7.

judgement

30 -is
Log-probability (conditioning on all segments)

Figure 7. Scatterplot of the log probability (x-axis) against the wordlikeness (y-axis)
depending on the attested of rimes (grey: attested rimes vs. orange: unattested rimes). The
sizes of the circles indicate the number of items at that log-probability value.

As we can see here, the items with unattested rimes (grey dots) were overall rated less
wordlike than the items with attested rimes (orange dots). However, ones with unattested
rimes (grey dots) have comparable judgement distributions as ones with attested rimes
(orange dots) in the mid log-probability range, e.g. probabilities between -25 and -15, and
many of grey dots have a fair number of responses judging the items as categorically
wordlike as well. Based on this observation, we decided not to include a syllable rime
analysis and pursue a syllabic part analysis where a syllable is decomposed of onset, nucleus,
and coda, and tone.

Comparison between phonotactic probability and neighborhood density measures. To
examine the role of phonotactic probability and neighborhood density in predicting the
wordlikeness judgment data, the ZOIB model we constructed was fit using the combined
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measures of phonotactic probability and neighborhood density. This was to identify the
relative contributions of phonotactic probability and neighborhood density in predicting the
wordlikeness judgments. We fit the models using each of possible pairings of phonotactic
probability measures in (4) (six measures: log-probabilities with tonal probability conditioned
on (a) all segments, (b) onset only, (c¢) nucleus only, (d) coda only, (e) tonal probability not
conditioned on segments, and (f) with no tonal component) and three neighborhood density
measures ((a) NN, (b) GNM, and (c) GCM), along with models that only have phonotactic
probability measures (6 in total) or only have neighborhood density measures (3 in total). In
total, there were 27 models, i.e. 6%3 combined models + 6 phonotactic probability models + 3
neighborhood density models. We then compared the model fits using WIDELY APPLICABLE
INFORMATION CRITERION (Vehtari et al., 2017), an approximation of the Akaike Information
Criterion which is used as a measure of models’ out-of-sample predictive power, i.e. how
good the model will be to predict data beyond the current sample.

The full model for the ZOIBs, in principle, includes population-level coefficients for the
predictors along with item-level and participant-level random intercepts and participant-level
random slopes for all predictors. Due to the limitation of modeling capacity, it was
impossible to fit the full ZOIB model for all the combinations we tested. So we fit all the 27
models initially with random intercepts only. Once we identified the optimal model only with
random intercepts, then we re-fit the optimal model with both random slopes and intercepts.
There were additional modeling complications for GNM. Because of the large sample size,
and more crucially, because of highly correlated nature of the three GNM-related predictors,
it was not possible to fit the models containing all three GNM values in a timely manner,
even with random slopes removed. Thus, for the models involving GNM, we decided to first
fit a model with only the three GNM-related quantities as predictors with no random effects.
Then we used those values, normalized to sum up to 1, to derive GNM quantities for each
syllable, which were used to fit the GNM models including random effects.

Table 5 shows the performance of the models with random effects. Phonotactic probability
effect is on the horizontal line and neighborhood density effect is on the vertical line. The
performance of each model was based on WAIC values. The WAIC values in each cell in
Table 5 indicate the model performance for the combination of the two assumed
determinants. For example, the WAIC value of 11437.8 in the top left cell is when
phonotactic probabilities are calculated assuming that tone is conditioned on onset and
neighborhood density is measured by the number of neighbors. Lower WAIC values indicate
better predictive power of the data. Standard errors of the WAIC values are provided in
parenthesis in each cell.

T|O TIN T|C T|S T NoT No
phonotactic
probability

NN 11437.8 | 11438.1 | 11439.8 | 11440.7 | 11437.4 | 11438.2 | 11439.4

(316.8) | (316.9) | (317.0) | (316.9) | (317.0) | (316.9) | (316.9)

GCM 11439.7 | 11439.3 | 11443.4 | 11442.4 | 11435.0 | 11438.1 | 11442.8
(316.9) | (316.9) | (317.0) | (317.0) | (316.9) | (316.9) |(316.9)

No 11437.6 | 11437.0 | 11443.6 | 11441.3 | 11433.1 | 11435.8

lexical (316.9) | (316.9) | (317.0) | (316.9) |(316.9) | (316.9)

neighborhood
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Table 5. WAIC values of the different models and standard errors of the WAICs, with
columns indicating the measure of phonotactic probability, and rows indicating the measure
of neighborhood density.

The model with only log-probabilities using unconditional tonal probabilities (T) has the
lowest WAIC values, indicating its best performance (boldface). However, it only has a slight
edge over some other models, especially those with GNM; T with GNM, T|O with GNM, and
T|C with GNM. Note, however, though that the WAIC values from the current GNM
modeling are not exactly comparable with the WAIC values from the other models. The
GNM models did correctly incorporate frequency effects, including the square of the log
frequency and the raw frequency itself. The exact weights of the GNM quantities were also
calculated from the current wordlikeness judgment data. However, this was done in the “first
round’ of the fitting process, and was not factored into the calculation of WAIC in the final
model. Recall that this was an inevitable modeling decision, due to the large sample size and
intrinsically high correlation of the three GNM-related predictors. In principle, the WAIC
values from our ‘simplified” GNM modeling are underestimated. Thus, we refrain from
interpreting the precise WAIC values from the GNM models, but instead infer the GNM
performance from GCM: Given that the GNM is based on GCM but it adds extra
complications (rather highly correlated to the GCM value—both extra components have
correlation coefficients over 0.99 with the GCM value), we interpret that if there is no
evidence that GCM is better than other models, it is unlikely that GNM, with much more
parameters but not adding much extra information, performs better. Thus, in the following
reports, we compare the models excluding the WAIC values of the GNM (grey-colored in
Table 5), and we infer the performance of GNM models from the performance of GCM
models.

When the GNM is excluded from the comparison of the exact WAIC values across the
models, the best model, i.e. the one with only log-probabilities using unconditional tonal
probabilities (T), is still comparable to some other models, such as the one with log-
probabilities without tone (NoT), and the one with log-probabilities of unconditional tonal
probabilities along with GCM (T with GCM). Given the closeness of their WAIC values and
given that the WAIC differences are around the similar size as the standard error differences,
it would be inappropriate to choose the optimal model from these values alone. We decided
to first identify whether the performance differences of the six types of measurements of
tonal probabilities (i.e. the horizontal line in Table 5 except for No phonotactic probability)
are meaningful. In other words, we examined if one tonal representation has a better
predictive power than others. The WAIC value differences between the optimal model (T)
and the best models for each tonal representation were compared: These best models include
tone given onset with no lexical effect, tone given nucleus with no lexical effect, tone given
coda with NN, tone given all segments with NN, and a representation excluding tone with no
lexical effect. The WAIC differences, along with standard errors, are shown in Table 6.

T|O TIN T|C T|S NoT
lexical effect None None NN NN None
WAIC diff. -1.3 -1.0 —2.4 —2.8 -0.4
SE 2.0 1.4 1.9 2 1.4

Table 6. Differences in WAIC between the unconditioned tone model and the other models

among other tonal representations.

In Table 6, the WAIC differences among the models are quite small considering their
standard errors: Most of the times, the magnitude of the difference is smaller than the




standard error. Even for the greatest difference, i.e. the one with tone condition on all
segments (T|S), the WAIC difference is only slightly greater than the standard error. From
this observation that the optimal models per each tonal representation do not significantly
vary in their performance, we conclude that there are no grounds for preferring one tonal
representation over others. Therefore, we report the results based on the optimal model (T) in
the following discussion for the purpose of presentation, but it should be understood that the
results are comparable across different tonal probabilities we tested.

To understand the exact relation between log-probability and the wordlikeness judgments,
we examined the coefficient estimates of the models. We fit the best-performing model with
full random effects for all predictors in three regions considered, i.e. gradient judgments
(between zero and one) and two categorical judgments (judgments of Os and 1s). This was
done using the model with unconditioned tonal representation (T) and no neighbourhood
effects. Then, we examined point and interval estimates of the coefficients. Since the
different models have roughly similar performance in terms of WAIC, we also ran a
robustness check known as multiverse analysis (e.g. Steegen et al., 2016). This was
performed using the models without random effects in Table 5. That is, we examined a
variety of logically possible ways to do the analysis, in this case all the different tonal
representations and neighbourhood representations, and then examined the coefficient
estimates in each one.

The results for the optimal model are in Table 7. The 95% credible intervals (CI)® indicate
the range of values for which we can be 95% sure that the coefficient lies in. 95% CI that
excludes zero would indicate strong evidence that the coefficient is nonzero, meaning that the
evidence is sufficient to support the considered effect.

Estimate ‘ Estimated Error ‘ Lower 95% CI Upper 95% CI
Beta regression component (between zero and one)
Intercept 0.769 0.144 0.490 1.058
Logprobr 0.079 0.009 0.061 0.097
Logistic regression component (ones)
Intercept 8.480 1.125 6.403 11.96
Logprobr 0.509 0.069 0.375 0.647
Logistic regression component (zeros)
Intercept —1.324 0.265 —1.853 —0.826
Logprobr 0.039 0.018 0.003 0.073

Table 7. The overall results of the optimal model.

Higher log-probabilities lead to intermediate judgements (between zeros and ones) being
higher in general, since the coefficient of the log-probabilities in the beta regression
component excludes zero (0.061, 0.097). Evidence is sufficient that higher log-probabilities
substantially enhance the chances of items being judged as 1 (i.e. very wordlike), since the
95% credible interval for its coefficient in the logistic regression component for ones does not
include zero (0.375, 0.647). Also, we have some evidence for the logistic regression
component for zeroes (i.e. not at all wordlike) being affected by log-probabilities, since the
coefficient excludes zero (0.003, 0.073), though in an unexpected direction whereby higher
log-probabilities makes zero judgements more frequent. This aligns with our descriptive

® This is different from frequentist confidence intervals (also abbreviated as Cls), which cannot be

interpreted in such terms.
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observations in Section 4.2 such that the judgments of Os seem to be less affected by log-
probabilities, compared to those of 1s and intermediate judgements. So we do have clear
evidence that log-probability does contribute to the determination of sound sequences as
categorically legitimate Cantonese words and more or less wordlike at a gradient level.

Next, we performed a multiverse analysis as a robustness check for the effects obtained
above. We examine the Cls for the coefficients for phonotactic probability and neighborhood
density under each possible pairing of phonotactic probability and neighborhood density
measures in Table 5. The examination of the CIs was conducted for each of the three regions,
0s, 1s, and gradient judgments. CIs that exclude 0, i.e. do not touch the red line, indicate
evidence that the predictor is effective. First, the effect of phonotactic probability is examined
in Figures 8a—c. The exact numerical values are given in Supplementary Materials E.
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Figure 8a. Multiverse results for the 95% CI of the effect of log-probabilities on gradient
judgements.
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Figure 8b. Multiverse results for the 95% CI of the effect of log-probabilities on the
judgments of Os.
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Figure 8c. Multiverse results for the 95% CI of the effect of log-probabilities on the
judgments of 1s.
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As clearly seen from the above figures, in the case of gradient judgements (Figure 8a) and
the judgments of 1s (Figure 8c), the effect of phonotactic probability on judgments is
completely robust regardless of the tonal representations. However, only two possible
decisions lead to a small effect on the judgments of 0 (Figure 8b), and both are very marginal.
Given the results, we confirm that the effect of log-probability is only on the judgments of 1s
and gradient judgements, but not on the judgments of 0s. Now the analysis of neighborhood
density is given in Figures 9a—c.
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Figure 9a. Multiverse results for the 95% CI of the effect of neighborhood density on gradient
judgements
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Figure 9b. Multiverse results for the 95% CI of the effect of neighborhood density on the
judgments of Os.
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Figure 9c. Multiverse results for the 95% CI of the effect of neighborhood density on the
judgments of 1s.
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For the judgments of Os (Figure 9b), every model shows ClIs including 0, suggesting no
neighborhood density effect of on the judgements of 0s. For the effects on gradient
judgements (Figure 9a) and judgments of 1s (Figure 9c¢), the presence of a CI excluding 0, i.e.
neighborhood density effect, hinges crucially on the choices between NN and GCM.
Specifically, models with GCM almost always have a GCM coefficient excluding 0. Models
with NN rarely have a NN coefficient excluding 0. This suggests that between NN and GCM,
GCM is a better predictor of the wordlikeness judgements. However, the models with GCM
have not been shown to perform better than those without GCM in terms of WAIC values in
Table 5. Recall we note in Table 5 that under no choice of log-probability measure does the
model using GCM outperform the model with no neighborhood density measures. Therefore,
while GCM appears to be a better predictor than NN from these graphs, our data still do not
provide sufficient evidence for a GCM effect. In sum, our modeling results suggest that log-
probability, regardless of tonal representations, does play a role in predicting the
wordlikeness data for the categorically wordlike items and gradient items, but not for
categorically not wordlike items. We do not have sufficient evidence for the role of
neighborhood density.

To summarize, log-probability predicts the wordlikeness judgments within gradient
judgment areas and categorical judgments for 1s (very wordlike), but not for categorical
judgments for Os (not at all wordlike). This effect is robust across different ways that tonal
probabilities depend on segmental probabilities that we have considered, and we have little
evidence in favor of one tonal representation over the rest. The number of neighbors is not a
predictor of the current wordlikeness judgement data. Although we have suggestive, yet by
no means conclusive, evidence that GCM may be involved in the prediction of gradient
judgements and the judgments of 1s, we can still be confident that it rarely plays a role in the
judgements of 0s. Given the limited GCM effect, we infer that the GNM effect will be
extremely minor, if it ever exists.

Comparison of the relative contribution of syllable components. So far, we have only
investigated the effect on phonotactic judgements of the log-probability of the items as a
whole. An assumption behind such consideration is that the different parts of a syllable that
make up these probabilities are equally important. Recall that we also aimed to examine
whether the different components of the syllable (onset, nucleus, coda, tone) differ in their
importance in determining wordlikeness judgements. To determine the relative roles of
different syllable components towards the prediction of wordlikeness judgements, we
separated the log-probabilities in Table 7 into the four syllable-component probabilities—
onset, nucleus, coda, and tone—and allowed the model to assign separate coefficients to each

24



syllable component.” The results in Table 10 are based on the assumption that tone is
conditioned on onset, but the general trends are same for other tonal representations that we
examined as well.®

Estimate | Estimated Error Lower Upper
95% CI 95% CI

Beta regression component
(between zero and one)
Intercept 0.583 0.170 0.249 0.919
In P(Onset) 0.055 0.029 0.000 0.112
In P(Nucleus|Onset) 0.131 0.016 0.099 0.163
In P(Coda[Nucleus) 0.048 0.012 0.025 0.072
In P(Tone|Onset) —0.002 0.017 —0.035 0.030
Logistic regression component
(zeros)
Intercept —1.625 0.266 —2.142 -1.109
In P(Onset) 0.039 0.039 —0.036 0.117
In P(Nucleus|Onset) 0.013 0.021 —0.030 0.055
In P(Coda|Nucleus) -0.002 0.016 -0.033 0.029
In P(Tone|Onset ) —0.001 0.023 —0.047 0.044
Logistic regression component
(ones)
Intercept 6.957 1.157 4.739 9.269
In P(Onset) 0.407 0.175 0.060 0.762
In P(Nucleus|Onset) 0.700 0.103 0.503 0911
In P(Coda[Nucleus) 0.349 0.074 0.207 0.495
In P(Tone|Onset ) —0.088 0.105 —0.297 0.118

Table 10. The results with the decomposition of syllabic components.

First, for the beta regression component (gradient judgments), we have strong evidence for
effects of nucleus and coda, because their CIs exclude zero; we also have sufficient evidence
that the effect of nucleus given onset is greater than that of coda given nucleus in the beta
regression component (estimated difference between nucleus and coda: 0.08; SE: 0.02; 95%
CI: (0.05, 0.12)). Moreover, we have some evidence that the probability of the onset matters.

7 One might question whether the estimates of the coefficient values for different syllable components are
comparable, because they are logs of different types of probabilities. Note that under the assumptions that the
following syllable component only depends on the preceding one, e.g. nucleus only depends the onset, the coda
only depends on the nucleus, each of the covariates, like In P(Nucleus|Onset), or In P(Coda|Nucleus), may be
considered —1 times of the surprisal (Levy & Gibson, 2013) of the corresponding syllable component. The only
difference from a usual definition of surprisal is that the surprisal is measured in nats (Cover & Thomas, 2012)
instead of bits in our case, because we are taking natural instead of base-2 logarithm. Since the different
predictors take the same unit (nats), their coefficients should be considered comparable, as the coefficients can
be interpreted in the same way. For the beta regression component, the coefficients should be interpreted as ‘for
each unit increase of the surprisal in nats, the mean judgement decreases by the coefficient’. For the logistic
regression component, the coefficients should be interpreted as ‘the log-odds ratio of the probability two
syllables being judged as 0/1, the first one having a surprisal value of 1 less than the second one, is the value of
the coefficient.’

8 For some representations, we could not get the models to converge.
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This effect is also smaller than the nucleus effect (estimated difference between onset and
nucleus: —0.08, SE: 0.03, 95% CI: (—0.13, —0.02)). We have no evidence for a difference
between onset and coda (estimated difference: 0.01, SE: 0.03, 95% CI: (—0.04, 0.06)). We
have no evidence for a tonal effect either. Second, in the logistic regression component for
ones (very wordlike), we see the same situation with the coefficients of all three segmental
probabilities excluding 0. We do not have evidence that their coefficients are different: The
estimated difference between onset and nucleus is 0.03 (SE: 0.04; 95% CI: (—0.05, 0.1)), the
one between onset and coda is 0.04 (SE: 0.04; 95% CI: (=0.03, 0.11)), and the one between
nucleus and coda is 0.01 (SE: 0.03, 95% CI: (—0.03, 0.06)). Third, we have no significant
predictors for the judgments of zeroes, consistent with the results in the previous subsection.
Thus, the general tendency such that the log-probability can predict gradient judgements and
the categorical judgments of 1s, but not those for Os, is consistent across the model assuming
a syllable as a whole (Table 6) and the model with the decomposition of syllabic components
(Table 10).

To summarize, we find evidence that phonotactic log-probability is a good predictor of the
current wordlikeness judgement data. We do not find evidence that neighborhood density
contributes to the prediction of the current data patterns. Moreover, if we split up the log-
probability into its syllabic component parts, we find that the conditional probabilities of
nucleus and coda play a crucial role; onset is less important but still it plays a role to a certain
degree, but tone does not. Finally, such effects tell us how likely participants are to rate an
item as perfect (1) or, if their rating falls between 0 and 1, how likely they are to rate it
higher; but the predictors do not affect the rate at which participants consider the items not at
all wordlike.

5. General discussion

5.1.Phonotactics vs. lexical neighborhoods

Our finding that mainly phonotactic log-probability, but not neighborhood density, is
important in predicting wordlikeness judgements goes against some previous studies,
including Kirby & Yu (2007) who also tested wordlikeness in Cantonese, although their
research focus was specifically on lexical gaps. Recall that Kirby & Yu (2007) found the
relative weakness of phonotactic probability and a stronger effect of neighborhood density.
Since our study and theirs both tested Cantonese, despite differences of the exact research
questions, it is worth considering the different results more in detail. Kirby & Yu attributed
their findings to the fact that Cantonese makes use of larger space of possible monosyllabic
words than some other languages like English. Because of strict phonotactic restrictions of
Cantonese, possible phonotactic combinations are more limited compared to other languages
like English. Due to this, proportionally, large portions of limited phonotactic space are taken
by real words in Cantonese. If so, native speakers rely more on the lexicon in making
wordlikeness judgments. Kirby & Yu also pointed out that due to the high rate of words in
the limited phonotactic space, many nonwords have their lexical neighbors which might
encourage speakers’ reliance on lexical neighbors in making wordlikeness judgments. This
idea was further pursued by Shoemark (2013), who argued that because the connectivity of
Cantonese phonological networks is denser than those of English, great proportion of the
Cantonese lexicon is activated by any nonword. Beyond the work on Cantonese, our results
are also against Bailey & Hahn (2001) and Myers (2016), who found independent effects of
lexicon and phonotactics in English and Mandarin respectively. Gorman (2013) also reported

a major role of neighborhood density in English, which is different from the current results.
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Our results are, however, in line with Frisch ez al. (2000) and Albright (2009). Frisch ef al.
(2000) reported that English native speakers’ wordlikeness judgments of multisyllabic
nonwords was better predicted by phonotactic probability than by neighborhood density,
although the difference was only marginal. Albright (2009) found that, although judgements
are correlated with lexical neighborhood measures at a descriptive statistical level, they were
not found to be significant in the regression model. There are several ways to account for
such discrepancies across different studies.

First, the differences might be due to a research design, specifically the inclusion of real
words in some experiments. For example, Bailey & Hahn (2001) included real words, and in
Kirby & Yu (2007), over one third of test items were real words (162 out of 432 items). This
was not the case in our experimental design where only nonwords were tested. In fact, some
studies which reported no neighborhood density effect did not include real words either
(Albright, 2009; Frisch et al., 2000). As argued by Vitevitch & Luce (1998, 1999) and
Shademan (2006), the processing of real words is highly dominated by lexical influences.
This idea is supported by Myers and Tsay (2005) who found the lexical effects to the
judgments of real words in Mandarin but no such effect to nonwords. The inclusion of real
words may encourage lexical access, and therefore strong lexical effects might have
observed. However, note also that some studies which included only nonwords did report
strong effects of neighborhood density (Gorman, 2013; Myer, 2016). This suggests that the
method of a stimulus selection might affect the results and the conclusions drawn from
different wordlikeness studies but the method itself is not a sole factor determining the lexical
effect to wordlikeness judgments.

Second, another possibility is related to the size of syllable inventory, which differs across
languages. Compared to some languages like English, Cantonese has highly restricted
phonotactics, allowing no consonant clusters and a fairly limited set of codas, including only
an oral stop series, a nasal stop series, and /i/ and /u/. Myers (2016) argued that for languages
involving a small syllable inventory due to their strict phonotactic restrictions (e.g., Mandarin
and Cantonese), lexical neighborhoods are more important than phonotactic probability,
because the small numbers involved in the inventory makes syllables easier to access from
rote memory. Along the same logic, in languages like English, where there are larger number
of syllables, speakers rely less on lexical neighborhoods, because there are too many syllables
they need to access, which makes the process too complicated. This idea is similar to Kirby &
Yu (2007) where the strict phonotactic restrictions were argued to encourage the lexical
effect because a language with strict phonotactic restrictions makes use of a larger proportion
of limited phonotactic possibilities. This line of logic predicts that our study on Cantonese
wordlikeness judgments should have observed a strong lexical effect, but it was not the case.
We believe that there is an alternative way to consider the relation between the level of
phonotactic restrictions and the role of neighborhood density to wordlikeness judgments. As
Kirby & Yu (2007) and Myers (2016) argued, if phonotactic restrictions are very strict in a
certain language, phonotactically possible patterns are limited. This will not only result in
limited syllable inventory, but also result in relatively little variation in lexical density,
compared to languages that allow varying degree of phonotactic combinations (e.g., complex
onsets and codas) such as English. For example, English syllables can go up to seven
segments (as in the word strengths), while Cantonese syllables only go up to three segments
and a tone. So, in principle, the range of values covered by Cantonese phonological space is
only from 0 to 4 (including tone), when a distance of 1 is assume for each syllabic
component, whereas in English, it varies more widely, from 0 to 7. Due to this limited
phonological space taken by Cantonese words, lexical neighborhood effects may not be as
significant as in languages like English where phonotactic patterns are more varying and
complicated, thus taking wider phonological space. Even if there were the lexical effect, it is
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possible that the effect would be difficult to estimate, since the range of the independent
variable is too narrow. Further investigations are needed to identify the exact relation
between the degree of variation in lexical density or in phonological space in languages and
the role of lexical effects in wordlikeness judgments. Crucially, considering that wordlikeness
judgment tests using the same languages frequently yielded contrastive results, including
English (e.g. Albright, 2009; Bailey & Hahn, 2001) and Cantonese (e.g. Kirby & Yu, 2007;
the current study), language-specific phonotactic factors are important but they should not be
treated deterministic in predicting wordlikeness judgments for specific languages.

Third, another possible explanation is related to speakers’ different perception of
nonwords depending on different morphological systems of different languages. As
introduced, many modern Cantonese monosyllabic morphemes are generally not used as
independent words per se, but only appear in compounds (Bauer & Benedict, 1997). This is
different from some other languages like English. For instance, the morpheme Hl| zak! [tselz'l]
is used in many common words such as #1H| kwailzakl [k* eiltsek1] ‘rules, regulations’,
SR sau2zakl [snu’ltsnlh] ‘regulation, code of conduct’, etc., but the monosyllabic
morpheme does not really mean anything on its own.? Previous work consistently suggested
that the syllables, not the individual phonemes, are the fundamental unit in Chinese
languages: Alpatov (1996) described the syllables in Chinese as ‘the most important
psycholinguistic units’ and O’Seaghdha et al. (2010) called the syllables in Mandarin
‘proximal unit’. So there is little doubt that Cantonese speakers can easily recognize and
process monosyllabic items, which are the basic unit in their mind. However, they may not
regard monosyllabic items as independent words which can potentially have corresponding
Chinese characters bearing their own meanings, because of monosyllables’ frequent
involvements in compounds. In fact, Chan et al. (2011) casted doubt on testing Cantonese
speakers with monosyllabic nonwords, from which they argued that nonwords created based
on one language’s phoneme inventory and phonotactic regulations are different from
nonwords created based on other languages. A clinical work by Stokes et al. (2006) reported
the failure of monosyllable-based nonword repetition test to discriminate children with
specific language impairment in Cantonese while studies in English found evidence that the
monosyllabic nonword repetition test serves as a meaningful clinical marker (see a meta-
analysis in Estes et al., 2007). These may suggest that monosyllabic nonwords in Cantonese
may have different status as those in English, a factor to which the current results might be
attributed. The current study conducted neighborhood analysis based on syllables, where an
example like Hl zakl [tsnlz'l] was counted as a neighbor of a stimulus. Considering that such
syllable is not used as an independent word, it is conceivable that the results would differ
when the neighborhood analysis is based on words. Future work involves identifying which
neighborhood analysis matches better with speakers’ judgments in Cantonese. Additionally, a
cross-linguistic exploration of nonwords processing is needed differing in their
morphological systems.

We suggested the effects of the stimulus selection methods, language-specific phonotactic
complexity, and language-specific morphological systems in determining the predictors of
wordlikeness judgments. Crucially, the conclusions drawn from similar methods or from
same languages differ from each other. This suggests that the predictors of wordlikeness
judgments should be considered in a comprehensive way including research design-specific
factors as well as language-specific factors and that the exact correlations of each factor
should be further identified to correctly model wordlikeness judgments.

O N zakl [tsel_'d] is a function word in Standard Written Chinese and Classical Chinese, and so is an
independent morpheme when written texts in these languages are read using Cantonese readings of characters,

but it is not common in spoken Cantonese.
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5.2.The roles of syllabic components

When splitting up the phonotactic log-probabilities into syllabic components, we found
that the conditional probabilities of nucleus and coda matter most, those of onset marginally
matter, but those of tone do not play a role. Note that our experiment only used permissible
phonemes and tones in Cantonese. Compared to nuclei and codas, where the judgment can be
based on their concurrence with the previous phonemes, onsets can be judged on their own
given their initial position. So, it is not surprising that permissible onsets were simply treated
all ‘acceptable’, resulting in low weight in onsets when judging items’ wordlikeness. What is
surprising is no major role of conditional probabilities of tone, given that there is at least one
highly robust generalization about Cantonese phonotactics whereby oral stop codas are only
compatible with tones 1, 1 and 4 (and 1, where there is a tone change from one of these tones).
This result, though, goes with the previous studies on lexical access in Mandarin showing that
tone is playing a minor role than other syllabic components (Taft & Chen, 1992), especially
among monosyllables (Lin, 2016). Why do results from different experimental paradigms and
across two languages consistently show that tone is less important than segments in lexical
processing? We consider that the results can be accounted for when lexical predictability of
syllabic components is taken into consideration. One way to measure how ‘predictable’ a
component is in a lexicon is measuring its functional load. In Cantonese, for example, it has
been found that onsets and tones have higher functional load than nuclei and codas (Do &
Lai, forthcoming), where functional load is defined as the entropy of the language contrasts in
a syllable component divided by the actual entropy of the language (e.g. Hockett 1966). This
suggests that nuclei and codas are lexically more predictable (i.e. restricted) than onsets and
tones in Cantonese, and hence play a smaller role in discriminating between lexical items.
Thus, our results may tentatively be predicted as saying that lexically less predictable aspects
of an item are more likely to contribute to wordlikeness judgements.

The weaker reliance on tone is additionally in line with the results from Cantonese
perception studies. Phonological awareness tests in Cham (2003) reported that Cantonese
speakers performed poorer in tone awareness tasks compared to segment awareness tasks,
suggesting that tones are perceptually less salient than segments for Cantonese speakers.
Studies on spoken word recognition also showed that word recognition is more challenging
when tone differences were involved (e.g. Cutler & Chen, 1997; Keung & Hoosain, 1979),
which imply listeners’ lower sensitivity to tone differences than segment differences. If so,
the current study may suggest that speakers rely less on the syllabic component that is
perceptually less salient and more on perceptually more salient ones.

5.3.Categorical vs. gradient judgments

Our final finding is that log-probability of syllabic components affects only the tendency
to judge words being absolutely perfect or between the two extremes. They do not affect the
probability that the participants will judge items as absolutely unacceptable. This suggests
that potentially there are two different cognitive processes involved in wordlikeness
judgements, for only one of which we have a solid predictor. The other one, one for
categorically bad judgements, remains poorly understood. It is not surprising though that
phonotactically illicit items are processed in a different way from absolutely grammatical and
gradient items. Large amount of evidence showed difficulties in processing phonotactically
illicit sequences in perception (e.g. Berent et al., 2007; Dupoux et al., 1999; Kabak & Idsardi,
2007) and in production (Davidson, 2005, 2006a, 2006b; Rose & King, 2007; Vitevitch &
Luce, 1998, 2005), which may suggest speakers’ limited ability to process the representations
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of illicit sequences (Gorman, 2013). While the gradient nature of wordlikeness judgments has
been widely recognized (Bailey & Hahn, 2001; Coleman & Pierrehumbert, 1997; Frisch et
al., 2000; Hayes, 2000; Ohala & Ohala, 1986), the exact processes involved in the judgments
for absolutely perfect vs. absolutely bad vs. gradient are yet to be known. We refrain from
speculating as to why this is the case and whether this is generalizable to other languages and
tasks.

Modeling work on wordlikeness judgments has shown that phonotactic probability and
neighborhood density are crucial determinants of speakers’ judgments (Bailey & Hahn, 1998,
2001; Frisch et al., 2000). However, the full understanding of speakers’ phonotactic
knowledge has yet to be obtained, given the lack of research focus on suprasegmental
features in phonotactic modeling work. Our paper was an attempt to model wordlikeness
judgments incorporating tone. Future work is to test other tonal languages, on the basis of the
methodologies presented in the current study, so that the determinants of speakers’
wordlikeness judgments can be understood inclusive of segments and tones.
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Supplementary Materials A

List of Stimuli

No. | Stimuli Jyutping | IPA No. | Stimuli Jyutping | [PA

string string
1 mik2 mik2 mik’ 145 | bom4 bom4 po:m|
2 pYu3 pyuu3 p'y:ui 146 | GOuS5 gwoeus kvce:u/
3 Gek3 gwek3 kve:kd 147 | hYk6 hyuk6 hy:k4
4 juY3 juyu3 juiyd 148 | cOt4 ceotd tshotd
5 bai4 bai4 peil 149 | zYu2 zyuu?2 tsy:uf
6 gAu5s gaau5 ka:u 150 | wom5 wom5 wo:m/
7 kYil kyuil kby:il 151 | hAk2 haak?2 ha:k1
8 1Ykl lyuk1 ly kT 152 | fap4 fap4 fepd
9 gOot2 geot2 ket 153 | fYml fyuml fy:m1
10 | GeY5 gweyu5 kveyl 154 | cip4 cip4 tshi:pd
11 | cem5 cem5 tshe:m4 155 | cOp6 ceopb tshee:pd
12 | heml hem1 he:m] 156 | fei5 fei5 feid
13 | ceY2 ceyu2 tshey” 157 | GOi6 gweoib kveil
14 | kOp2 keop2 khee:p’ 158 | tAk6 taak6 tha:k
15 | zek5 zek5 tse:k4 159 | dYi6 dyui6 ty:id
16 | joud joud joud 160 | kAp4 kaap4 kha:pd
17 |jeY3 jeyu3 jeyd 161 | mOn5 meon5 men/
18 | ceib ceib tsheid 162 | GAtl gwaatl kva:tl
19 | fenl fenl femn 163 | dOn4 deon4 tend
20 | mAml maam|1 ma:m] 164 | mi06 mi6 mi:{
21 | wet5 wetS we:th 165 | foi4 foi4 fo:1d
22 | pOtl peotl phot] 166 | 1Y06 lyu6 ly:4
23 | hak3 hak3 hek 167 | KAu4 kwaau4 k*ha:ud
24 | poi4 poi4 pho:id 168 | bak3 bak3 peki
25 | KOY4 kweoyud | k*reyd 169 | tik5 tik5 thikd.
26 | GiY3 gwiyu3 kvi ;y-l 170 | kek4 kek4 khe:kl
27 | got2 got2 ko:t1 171 | koY3 koyu3 kroy
28 | fOtl feotl fot1 172 | pon3 pon3 pro:ni
29 | wYN5 wyung5 wy: 1 4 173 | jup3 jup3 ju:pd
30 | weul weul weul 174 | cenl cenl tshe:nl
31 | liY6 liyu6 liyd 175 | seY3 seyu3 seyd
32 | hak4 hak4 hekd 176 | wYn2 wyun2 wy:n
33 | sApl saapl sa:p] 177 | zYt4 zyut4 tsy:?\l
34 | sai4 sai4 seid 178 | KaN6 kwang6 kvhe 1 4
35 | fOt3 feot3 fot1 179 | hYp5 hyup5 hy:p/
36 | heN3 heng3 he: 1 180 | dum5 dum5 tum
37 |jAml jaaml ja:m] 181 | pet5 pet5 phe:t/
38 | pYpb pyup6 phy:pA 182 |;002 joe2 joe:
39 | tot5 tot5 thy: 14 183 | cOO05 coeS tshoe: /
40 | mYn2 myun2 my:n 184 | bOYS beoyu5 pey/
41 | GON6 gwoengé | jwge: 04 185 | huk5 huk5 hokA
42 | dAO4 daa4 ta-d 186 | fip4 fip4 fi:pd
43 | gik3 gik3 Kikd 187 | muY3 muyu3 mg:y-l
44 | 10n3 leon3 lond 188 | jak4 jak4 jekd
45 | fYp3 fyup3 fy:p1 189 | wAtS waat5 watd
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46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
&9
90
91
92
93
94
95

gAmb6
bip5
cipb
mYN4
lan5
pe06
dep4
boY5
wi05
dAY3
zotl
bum6
tuk3
dou5
tetS
deN4
tuY4
gaN4
bu01
fik3
gOt3
KANS
GYp3
soY?2
capd
GoY5
Kai3
bOul
dAkl
jek2
mam?2
cu05
sYu5
KAp4
koN6
kom?2
get6
Ki01
sen3
tek2
faN6
pik6
pAuS
GOil
heN2
fiYs
bem1
ceud
jO03
fYud

gaam6
bip5
cipb
myung4
lan5
peb
dep4
boyu5
wi5
daayu3
zotl
bum6
tuk3
dou5
tetS
deng4
tuyu4
gang4
bul

fik3
geot3
kwaang5
gwyup3
soyu2
capd
gwoyus
kwai3
boeul
daakl
jek2
mam?2
cud
syuus
kwaap4
kong6
kom?2
geto
kwil
sen3
tek2
fang6
pik6
paaus
gweoil
heng2
fiyu5
beml
ceud
joe3
fyuud

ka:m4
pi:pA
tshi:p4
my: |
len/
pre:d
te:pd
poy/
wi:/
ta:yd
tso:t]
pum
thokd
tou/
the:tA
te:nd
thu:yd
kel
pu:l
fik4
ket
kvha: 4
kvy:p1
soy’
tshep/
kvoyA4
k*heid
peeul
ta:l:'("l
jek1
mem/
tshu:4
sy:ud
kvha:pd
kbo: 14
kPo:m1
ke:td
kvhi:1
semnd
the k1
fend
phﬂ_'d
pra:ud
kveil
he: 11
fi:y4
pem]
tsherud
joe:d

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

suk?2
za03
KOY1
fok5
fat4
keN1
dap4
GYNI
moi3
pOt2
sOpl
hOi2
cumb6
Geko6
wO05
men3
tei6
ta01
dap3
ton3
fon3
muN3
cit6
dekl1
gOnl
JAuU2
hYi5
dOn5
bOp5
cYO01
leY1
bOn2
Kan5
hYk3
JAuUS
KOp2
kat5
hYp2
pAY4
bYu3
Kim4
sOp6
sO02
Gen5
wAu2
wOi3
dek5
sui3
zem3
bYt2

suk?2
za3
kweoyul
fok5
fat4
kengl
dap4
gwyungl
moi3
peot2
seopl
heoi2
cumb6
gwek6
woeS
men3
tei6

tal
dap3
ton3
fon3
mung3
cit6
dekl
geonl
jaau2
hyui5
deon5
boep5
cyul
leyul
beon2
kwan5
hyuk3
jaau5
kweop2
kat5
hyup2
paayu4
byuu3
kwim4
seopb
soe2
gwens
waau?2
weoi3
dek5
sui3
zem3
byut2

suk’
tsed
kvhoyl
fo:k4
fotl
kte: 1
tepd
kvy:n 1
mo:if
phet
sop1
hei’
tshuz_r|n4
kve:kd
wee:A
me:ni
theid
thel
tep1
tho:nA
fo:ni
mo 1
tshi_lza
te:k1
kenl
jaul
hy:i/
ton/
pee:pA
tshy:1
ley]
pen
kWhg‘n/i
hy:k1
jaud
khee:p
kbet
hy:p1
pra:yd
py:ud
k¥hi:md
sepd
sce:
kvemn/
wa:ul
weid
te:k4
su:id
tse:m1
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96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

10u3
pek4
pO04
fiye
tot2
meu4
lik3
tat6
dO03
bOil
mOk4
gun6
pekS5
Gonl
gik4
jom5
bot3
bAp2
pak2
wok4
KYi2
fAu5
KOi4
ka0l
hot2
koY2
pup4
wi03
wAuS
laY4
zot4
joY2
zunl
wOY2
fAm4
jop3
fYu5
Kin4
bYul
hAu5
jok3
kap3
gAt4
koi2
dam4
ki04
poN1
cutl
sYu3

loeu3
pek4
poe4
fiyu6
tot2
meu4
lik3
tat6
doe3
beoil
moek4
gun6
pekS5
gwonl
gik4
jom5
bot3
baap2
pak2
wok4
kwyui2
faaus
kweoi4
kal
hot2
koyu2
pup4
wi3
waaus
layu4
zot4
joyu2
zunl
weoyu2
faam4
jop3
fyuus
kwin4
byuul
haau5
jok3
kap3
gaat4
koi2
dam4
ki4
pongl
cutl
syuu3

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

mip6
GOm?2
got4
bom?2
hYml
Kok4
GAn2
Gim3
dYpl
dei4
w002
zan5
tap4
sAu5
gYtd
wuk4
cuYo6
tuYl1
pOY1
tem?2
tem5
wiY6
jOu2
kOm3
penS
dYp6
Gen3
p0O02
tan5
kAn3
feY4
Gak4
baN3
pip6
tOn6
bapl
mit2
Gom4
jakl
kaY3
ket3
KAt3
set2
maY5
zYk3
tan2
tOi2
tum4
pot3

mip6
gweom?2
got4
bom?2
hyuml
kwok4
gwaan2
gwim3
dyupl
dei4
woe2
zan5
tap4
saau$
gyut4
wuk4
cuyu6
tuyul
peoyul
tem2
tem5
wiyu6
joeu2
keom3
penS
dyup6
gwen3
poe2
tan5
kaan3
feyud
gwak4
bang3
pip6
teon6
bapl
mit2
gwom4
jakl
kayu3
ket3
kwaat3
set2
mayud
zyuk3
tan2
teoi2
tum4
pot3

py:t/
mi:p4
kvoe:m1
ko:td
po:m1
hy:m]
kwhy:kd
kva:n1
k¥i:m1
ty:p1
teid
wee:
tsend
thepd
sa:u/
ky:jt_';l
wokd
tshu:yd
thu:yl
pheyl
the:m7
the:m4
wiyd
joeru
khoe:mA
pre:n/
ty:pd
kveni
phree:
then/
kha:ni
feyd
kvekd
pen
phi:pd
then
pepl
mi:t
k*o:ml
jekl
kreyA
khe:t]
kvha:t1
se:tl
mey4
tsy: ki
then
thei]
thu:md
pho:t]
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Supplementary Materials B
Demographic Questionnaire

. IREEMER{Z ? What is your gender?
a. 5 Male

b. Z Female

c. HAt Other

. B LU T B —{EF# & ? Which age group are you belong to?
a. 1824

b. 25-34
c. 3544
d. 45-54
e. 55-60

| OEERRER 2 (TSR —IE)
What is(are) your mother language(s)? (More than one option can be selected)
. [E¥EE Cantonese
b. E#HEE/EZE Putonghua/Taiwanese Mandarin
c. L3 English
d. HMEES/J)75 @ shakie -
Other language/dialect, please indicate:

)

- M HBRZ AT > R R T A4S 7
Where did you mainly live before the age of 10?
a. 754 Hong Kong
b. JAFY Macau
c. VM SEEERHB

Mainland, please indicate city:
d. HAth > SFEEHEZ/HE

Other, please indicate country/city:

- R JE R 2

Which country are you living in?

a. 754 Hong Kong

b. JEFY Macau

c. WM - SEEERHB
Mainland, please indicate city:

d. HA - 5EEEIHEI /M

Other, please indicate country/city:
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Supplementary Materials C
Scatterplots of predictors against wordlikeliness judgements
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the third GNM quality insensitive to frequency

GCM / GNM value (unweighted)
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(d) Scatterplot of the judged wordlikeness (v
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(e) Scatterplot of the judged wordlikeness (y-axis) against the first GNM quantity(x-axis), i.e.

GCM weighted by square frequency (with A as a coefficient).
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Supplementary Materials D
Basics of ZOIB models

The ZOIB model has three components: A Bernoulli-distributed (i.e. discrete probability
distribution) component for predicting whether the judgement is zero (absolutely impossible),
another Bernoulli-distributed component for predicting whether the judgment is one
(absolutely possible), and a beta-distributed (i.e. continuous probability distribution)
component for modelling the density of the intermediate judgements (between 0 and 1). The
three components’ distributions are given below:

(1) I(Yij = 0) ~ Bernoulli(logit‘l(ﬁOo + (Bor + @o11)xip,j + Agoi + yoj))
I(Yij = 1) ~ Bernou.lli(logit‘l([3’10 + (B + am-)xlp,j + a9 + )/1]-))
Y |Y; €(0,1) ~ Beta(q’) logit_l(ﬁzo + (B21 + @z1)Xpp; + az0; + sz)»‘.b(l
—logit™ (Byo + (B21 + aZli)xlp,j + a0 + Y1j))

In the above formula, the means of the two Bernoulli distributions (0s and 1s) and the beta
distribution (gradient judgments) depend on the same set of predictors, in this case the log-
probability (x;y, ;). There are two population-level coefficients (‘fixed effects’ in frequentist
terms) for each of the three parts of the model, namely the population-level intercept
Boos P10, B2o and the population-level slopes fy1, f11, B21- There are also participant-level
predictors (‘random effects’ in frequentist terms) that allow for variability across participants,
including the three random intercepts a;, @19; and a,p;, and the three random slopes a4;,
a11; and a,q;. Finally, there is an item-level intercept.

The means of the two Bernoulli distributions are related to the probability of through a
logit link, as is the case for standard logistic regression. For the beta regression, the formula
shown here is derived from a reparametrisation of the beta regression in terms of the mean
and a precision parameter ¢.

We will now look at the distributions of the model parameters in detail. Firstly, the group-
level effects for each component come from bivariate normal distributions. The covariance
matrix allows for correlations. There is an LKJ prior with one degree of freedom
(Lewandowski et al., 2009) on the lower Cholesky decomposition of the correlation matrix,
and half-¢ priors (Gelman, 2006) on the standard deviations:

(@poir @c1i) ~N(0,2,.) forc €{0,1,2},i € {1,2,..1}
Where Zac = DacRacDachac = LacLEc'Dac = diag(o-aclfo—acz)r
Lae~ LKJ(1), Oge1, Ogez~ half — t(3,0,2.5)

The item-level intercept simply follows a univariate normal distribution, again with a half-
¢ prior on its standard deviation:

Yoj ~ N(0,0,.) forc €{0,1,2},i € {1,2,...1}, 0~ half — t(3,0,2.5)

There is a default standard normal prior on the ‘fixed-effect’ slopes, a z-distributed prior
on the population-level intercept for the beta component, and a logistic-distributed prior on
the population-level intercept for the logistic components:

Bei~N(0,1) for c €{0,1,2}
Bo1, Boz~ Logistic(0,1)
Boo~ t(3,0,2.5)

Finally, there is a gamma prior on the precision parameter of the beta distribution:

¢ ~1(0.01,0.01)
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Supplementary Materials E

Confidence intervals for the multiverse analysis

T|O TN TIC T|S T NoT
NN (0.03, 0.08) (0.05, 0.11) (0.03, 0.08) (0.02, 0.07) (0.06, 0.12) (0.03, 0.08)
GCM (0.05, 0.08) (0.06, 0.09) (0.04, 0.08) (0.04, 0.07) (0.06, 0.10) (0.06, 0.09)
None (0.04, 0.08) (0.05, 0.08) (0.05, 0.08) (0.06, 0.10) (0.06, 0.10) (0.06, 0.10)
Table 8a. Multiverse results for the 95% CI of the effect of log-probabilities on gradient
judgements.
T|O TN T|C T|S T NoT
NN (-0.03,0.04) | (—0.03,0.04) | (0.00,0.07) | (-0.02,0.04) | (-0.03,0.05) | (0.00, 0.07)
GCM (-0.02, 0.03) | (—0.02,0.03) | (—0.01,0.04) | (-0.01,0.03) | (—0.02,0.03) (-0.02, 0.03)
None (-0.01, 0.03) | (—0.02,0.03) | (—0.00,0.04) | (-0.02,0.03) | (—0.02,0.03) (-0.02, 0.03)
Table 8b. Multiverse results for the 95% CI of the effect of log-probabilities on the judgments
of Os.
T|O TN TIC T[S T NoT
NN (0.13, 0.44) (0.30, 0.64) (0.13, 0.45) (0.06, 0.35) (0.37,0.73) (0.13, 0.45)
GCM (0.27, 0.50) (0.35, 0.58) (0.25, 0.47) (0.21, 0.43) (0.37, 0.61) (0.36, 0.59)
None (0.28, 0.51) (0.28, 0.51) (0.27, 0.48) (0.37, 0.60) (0.38, 0.62) (0.38, 0.62)
Table 8c. Multiverse results for the 95% CI of the effect of log-probabilities on the judgments
of 1s.
T|O TN T|IC TS T NoT None
NN | (-0.00,0.01) | (-0.01,0.00) | (-0.00,0.01) | (~0.00,0.01) | (~0.01,0.00) | (~0.00,0.01) | (~0.01, 0.00)
GCM | (0.01,0.10) | (0.01,0.10) | (-0.00, 0.01) | (0.00, 0.02) | (0.00,0.02) | (0.00,0.02) | (0.00, 0.02)
Table 9a. Multiverse results for the 95% CI of the effect of neighborhood density on gradient
judgements
T|O TN T|C TS T NoT None
NN | (-0.01,0.01) | (-0.01,0.01) | (-0.01,0.00) | (-0.01,0.01) | (-0.01, 0.01) | (~0.01,0.00) | (~0.01, 0.01)
GCM | (-0.01,0.02) | (-0.01,0.02) | (-0.01,0.01) | (-0.01,0.01) | (~0.01,0.02) | (~0.01,0.02) | (~0.01, 0.01)

Table 9b. Multiverse results for the 95% CI of the effect of neighborhood density on the
judgments of Os.

T|O TN T|IC TS T NoT None
NN | (0.00,0.07) | (-0.04,0.04) | (-0.01,0.07) | (0.01,0.08) | (-0.05,0.02) | (-0.01,0.07) | (-0.05, 0.02)
GCM | (0.02,0.11) | (0.02,0.11) | (-0.01,0.09) | (0.01,0.11) | (0.01,0.10) | (0.02,0.11) | (0.02,0.13)

Table 9c. Multiverse results for the 95% CI of the effect of neighborhood density on the
judgments of 1s.
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