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Incorporating tone when modeling wordlikeness judgments  
 
Abstract 
Various phonotactic models have been proposed to predict speakers’ wordlikeness 

judgments but most have focused primarily on segments. This article aims to model speakers’ 
wordlikeness judgments incorporating tone. We first show how the two major determinants 
of wordlikeness judgments, namely phonotactic probability and neighborhood density, can be 
applied to tone languages. To test the role of the two determinants to wordlikeness judgments 
in a tone language, judgment data are obtained from speakers of Cantonese. The results are 
then used to model speakers’ judgments, showing that phonotactic probability, but not 
neighborhood density, modulates wordlikeness judgments and that the phonotactic 
probabilities involving nucleus and coda are most relevant to wordlikeness judgments. We 
also show that phonotactic probability affects the tendency to judge items being absolutely 
perfect or more or less wordlike, while it does not affect the judgments that an item is 
absolutely not-wordlike. Implications of these results for phonotactic modeling and processes 
involved in wordlikeness judgments are discussed. 
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1. Introduction 
 
Wordlikeness denotes the degree to which a sound sequence is considered typical in a 

language (Bailey & Hahn, 2001). Native speakers have consistent intuitions about which 
sound sequences are more wordlike. They can not only tell which existing sequences sound 
more like typical words (e.g., ‘bag’ [bæg] is more typical than ‘squad’ [skwad] in English) 
but also make a similar judgement for nonwords (e.g., ‘bnick’ [bnɪk] sounds more wordlike 
than ‘bdick’ [bdɪk] in English). In the research of phonotactics, one core interest has been on 
finding sources of such wordlikeness judgments. Previous literature has shown evidence for 
various sources of wordlikeness judgments, including phonotactic probability (Coleman & 
Pierrehumbert, 1997; Dankoviþová et al., 1998; Frisch et al., 2000; Gathercole & Martin, 
1996; Vitevitch et al., 1997), lexical neighborhood density (Bailey & Hahn, 2001; Gathercole 
& Martin, 1996; Greenberg & Jenkins, 1964), and orthotactic probability (Bailey & Hahn, 
2001). ‘Phonotactic probability’ denotes the probability of finding a phoneme’s substring 
(e.g., how likely to have the sequence [st] in the English). ‘Neighborhood density’ is the 
degree to which a sound sequence overlaps with existing words in a lexicon. ‘Orthotactic 
probability’ refers to written letters, not sounds, calculated similarly to phonotactic 
probability.  

By incorporating these sources, proposals have been made to model wordlikeness 
judgments, including syllabic parser (Coleman & Pierrehumbert, 1997), Generalized 
Neighborhood Model (Bailey & Hahn, 2001), Phonotactic Probability Calculator (Vitevitch 
& Luce, 2004), Phonotactic Learner (Hayes & Wilson, 2008), Featural Bigram Model 
(Albright, 2009), Simple Bigram Model (Jurafsky & Martin, 2009), and Generative 
Phonotactic Learner (Bailey & Hahn, 2001; Futrell et al., 2017). See Daland et al. (2011) for 
an overview. Work on wordlikeness judgment, however, has so far focused primarily on 
segments and studies incorporating suprasegmental features is relatively limited. Some 
suprasegmental features, including stress and tone, are used to create lexical contrasts cross-
linguistically. Therefore, in order to understand the system of wordlikeness, the determinants 
of wordlikeness judgments should include suprasegmental features. Especially for the 
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languages where lexical contrasts are created with suprasegmental features, understanding the 
system of wordlikeness incorporating suprasegmental features is particularly crucial.  

Some previous work examined how prosodic features related to stress should be 
incorporated into phonotactic models (Bird & Ellison, 1994; Coleman & Pierrehumbert, 
1997; Hayes & Wilson, 2008; Olejarczuk & Kapatsinski, 2018). As for tone, which is the 
focus of this paper, there is previous work on wordlikeness judgments of tone languages 
which considers only segmental phonotactics, omitting tone. Gong (2017) compared 
speakers’ acceptability and reaction times on lexical decisions involving systematic gaps and 
accidental gaps in Mandarin. They considered the role of phonotactic probability and 
neighborhood density to predict the results. It was found that the two had independent 
influence on acceptability, but neighborhood density was the only significant factor for 
reaction times. Gong also used Hayes & Wilson’s (2008) phonotactic probability calculator, 
but without considering tone. As an extension of Gong (2017), Gong & Zhang (2020) did 
consider tonal neighbors, i.e. syllables that differ only by tone. In their investigation of lexical 
neighbors, however, cases where both a segment and a tone differ were not included, thus it 
was not possible to know the relative contribution of segments and tones in determining 
lexical neighbors in Mandarin. Myers (2015) is another work on a tone language, Mandarin, 
that considered only segmental phonotactics without tone. Myers focused on comparing the 
effect of lexical typicality and typological frequency on acceptability judgments. Lexical 
typicality was defined as to how many lexical syllables in Mandarin share the item’s onset 
consonant, and typological frequency was defined in terms of the number of phoneme 
inventories that exhibit this consonant across languages. They looked at onset frequency 
within Mandarin and consonant frequency within The UCLA Phonological Segment 
Inventory Database (UPSID: Maddieson & Precoda, 1989) to find that both typological 
frequency and Mandarin-specific lexical typicality had effects which items speakers judge 
more wordlike.  

Modeling work incorporating tone includes Myers & Tsay (2005), Kirby & Yu (2007), 
and Shoemark (2013). These studies differ with each other as to what they aimed to predict 
(e.g., judgements on real words, systematic gaps, accidental gaps, etc,), but a main goal was 
to identify the role of phonotactic probability and neighborhood density in predicting native 
speakers’ wordlikeness judgments. Myers & Tsay (2005) examined the role of neighborhood 
density in predicting the typicality judgments in Mandarin and reported that the judgments of 
real Mandarin words can be predicted by neighborhood density but nonwords are inversely 
correlated to neighborhood density. In Kirby & Yu (2007), their focus was to find out the role 
of phonotactic probability and neighborhood density in understanding systematic and 
accidental gaps in Cantonese. The results showed the role of neighborhood density to predict 
wordlikeness judgments. Phonotactic probability also played a role, although there was a less 
correlation between phonotactic probability and wordlikeness. They suggest that this may be 
because Cantonese does not permit complex onsets and codas and thus has a much smaller 
number of possible monosyllables, leading to a lower importance of phonotactic probability. 
Also because the possible monosyllables are limited due to strict phonotactic regulations, 
lexical items occupy a much larger portion of the space of possible monosyllables, resulting 
in a greater role of lexical density. This idea was further pursued by Shoemark (2013) where 
it was argued that strict phonotactic restrictions in Cantonese create denser phonological 
network, from which the role of neighborhood density becomes crucial.  

While the findings are mixed, the overall results seem to suggest that neighborhood 
density has a greater effect on tone language speakers’ wordlikeness judgments than 
phonotactic probability. However, the space of possible ways to incorporate tone into the 
modeling of wordlikeness judgments has yet to be fully explored. In order to incorporate tone 
in modeling wordlikeness judgments, we need to address the following two issues; first, how 
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the major determinants of wordlikeness judgments, such as phonotactic probability and 
neighborhood density, should be operationalized with tone, and second, how to evaluate the 
contribution of these factors to wordlikeness judgment test results. For the first, we provide a 
survey of a variety of methods, and for the second, we provide a Bayesian hierarchical 
modeling. Both methods and modeling results will be presented with Cantonese as an 
example of a tone language. Section 2 first introduces the basics of Cantonese phonotactics 
and overviews multiple methods of measuring the two determinants of phonotactic 
knowledge, i.e. phonotactic probability and neighborhood density. It shows that both 
determinants have been primarily limited to measuring segments. Section 3 shows how to 
measure phonotactic probability and neighborhood density when tone is involved. Our 
methodology shows that ‘classic’ phonotactic probability calculation methods, originally 
proposed for segments such as n-gram models, (see Section 2.1), can be applied to tone 
languages, but tonal probabilities need to be incorporated into the calculation by identifying 
the tonal representation from which we can predict speakers’ wordlikeness judgments. We 
also show how neighborhood density models, such as Generalized Context Model (Nosofsky, 
1986) and Generalized Neighborhood Model (Bailey & Hahn, 2001), can be constructed with 
tone: Neighborhood density models should be informed by correct measurements of 
phonological distances between words which should incorporate measurements of segmental 
distances as well as tonal distances and their relative weights. To identify the role of 
phonotactic probability and neighborhood density in predicting speakers’ wordlikeness 
judgments in Cantonese, we run a wordlikeness judgment test, presented in Section 4. Our 
results show that phonotactic probability, but not neighborhood density, is a significant factor 
in predicting speakers’ wordlikeness judgments in Cantonese. When the role of each syllabic 
component is considered, probabilities of nucleus and coda are shown to contribute to the 
wordlikeness judgments most. We also show that phonotactic probability can predict the 
gradient items that fall between the two extreme judgments (i.e. between very wordlike and 
not at all wordlike) and categorically perfect items (very wordlike) but not for categorically 
bad items (not at all wordlike). Section 5 discuss the implications of the current findings to 
the study of phonotactic modeling with tone and the processes involved in wordlikeness 
judgments when tone is included. 

 
2. Background 

 
2.1. Cantonese phonotactics 

 
Cantonese belongs to the Sinitic branch of Sino-Tibetan/Trans-Himalayan language 

family. Phonemically, the language has 19 consonants (Table 1), and 8 monophthongs with 
11 diphthongs (Table 2). In this study, we assume that Cantonese has six tones as in Table 3 
(Bauer, 1985; Matthews & Yip, 2011). There is another possible analysis, following the 
historical phonology tradition, in which Cantonese is analyzed to have nine tones, with high 
level, mid level, and low level tones assumed here being treated as the checked tones in 
syllables ending with an oral stop coda. The oral and nasal stops are then allophones in coda 
position. When the nine-tone system is assumed, one needs to suppose that codas change into 
oral stops when the tone is short (K. H. Cheung, 1986).  
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Consonants 
 Bilabial Labio-

dental Alveolar Palatal Velar Glottal Plain Labialized 

Plosive Plain p  t  k kʷ  
Aspirated pʰ  tʰ  kʰ kʷʰ  

Nasal m  n  ŋ   
Fricative  f s    h 

Affricate Plain   ts     
Aspirated   tsʰ     

Approximant    j w   
Lateral approximant   l     

Table 1. The inventory of Cantonese consonants. 
 

Vowels 
Monophthongs 

 Front Central Back Unrounded Rounded Short Long 
Close iː yː   uː 
Mid ɛː œː   ɔː 
Open   ɐ aː  

Diphthongs 
 Main vowel 

aː ɐ ɛː e œː ɵ ɔː o iː uː 

Terminal 
i aːi ɐi  ei       
y      ɵy ɔːy   uːy 
u aːu ɐu ɛːu     ou iːu  

Table 2. The inventory of Cantonese vowels. 
 

Lexical tones 

Tone name High 
level 

High 
rising 

Mid level Low 
falling 

Low 
rising 

Low level 

Tone letter ˥ u ˧ w x ˨ 
Jyutping 
tone number 1 2 3 4 5 6 

Table 3. Lexical tones in Cantonese. 
 
Cantonese has a maximal syllable structure of (C)V(C) or (C)V(V)1 with strict restrictions 

on what segments or tones are allowed in certain syllabic positions (S. L. Cheung, 1991; 
Kirby & Yu, 2007; Yip, 1989). Apart from vowels, the syllabic nasal may take the nucleus 
position as there are a few syllables that consist of a nasal consonant alone ([ŋ] or [m]). All 
consonants are allowed in onsets, and in the current analysis, the secondary articulation /w/ is 
treated as a part of the onset, rather than as part of the nucleus. Compared to onset, only 
unreleased stops, nasals, and high vowels are allowed in codas, suggesting stricter 
phonotactic restrictions on coda than onset positions. Additional phonotactic restrictions are 
found from among the relations between two syllabic positions. The onset and coda of a 
syllable cannot be both labial (*pap, *mim) (S. L. Cheung, 1991; Kirby & Yu, 2007; Yip, 

 
1 Note that consonant codas never co-occur with diphthongs, from which it was proposed that the second 

vowel in a diphthong should be considered as the coda of the syllable (Bauer & Benedict, 1997, pp. 13–14). Our 
study follows this idea. 
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1989). Rounded vowels cannot be followed by labial codas (*-uːm, *- ɔːp) and front rounded 
vowels cannot be preceded by labial onsets (*my-, *pœː-). The onset and coda of a syllable 
with a back vowel as the nucleus cannot be both coronal (*nɔːn, *tuːt) and coronal onsets 
cannot be followed by nucleus /uː/ or /uːy/ (*tuː, *nuːy). Syllables ending in unreleased stops 
can only take the three level tones (tones ˥, ˧, and ˨). Syllables with unaspirated stops or 
affricates in onset do not bear tones w and x, while syllables with aspirated stops or affricates 
in onset do not bear tone ˨ (Kirby & Yu, 2007). Exceptions to the aforementioned 
phonotactic regulations exist in loanwords and ideophones (Bauer, 1985). The results of a 
wordlikeness test showed that Cantonese native speakers’ phonotactic knowledge reflects 
systematic and accidental gaps found in the lexicon (Kirby & Yu, 2007). 

A morphological aspect that is relevant to the current study is the status of monosyllabicity 
in Cantonese. Cantonese favors disyllabicity, and many modern Cantonese monosyllabic 
morphemes are generally not used as independent words, but only appear in compounds 
(Bauer & Benedict, 1997). Some sociolinguistic sound changes in Cantonese are relevant to 
the current study as well: Cantonese shows ongoing sound changes including the initial [n-] 
and [l-] merger, the coda [-t] and [-k] merger, and [-n] and [-ng] merger (Bauer & Benedict, 
1997), and the merges between tones u and x, ˧ and ˨, and w and ˨ (Mok et al., 2013).  

 
2.2. Determinants of wordlikeness judgment 

 
Our main question is on what basis native speakers make wordlikeness judgments in tone 

languages. For example, how do Cantonese native speakers tell that a novel sound sequence 
with coda /f/ is less wordlike than the one with coda /m/? As mentioned in Section 1, 
previous work suggests that there are mainly two sound-related determinants of wordlikeness, 
namely phonotactic probability and neighborhood density (see review in Bailey & Hahn, 
2001). Phonotactic probability and neighborhood density models are often correlated, but 
they quantify different aspects of wordlikeness. Phonotactic probability decomposes strings 
of sounds into substrings and aggregate the probabilities of those substrings to create 
measures of wordlikeness (Albright, 2009). It is an analytical approach in that it decomposes 
words into pieces and calculates probabilities. Neighborhood density models count the 
number of words that are similar in a lexicon, by certain metrics which we will discuss in 
Section 2.2, to the sound sequence in question, sometimes weighted by some criteria like 
frequency (e.g., GNM of Bailey & Hahn, 2001). It is a holistic approach in that the 
calculation is based on the whole lexicon. In the following section, we first introduce the two 
determinants in detail and Section 2.3 considers how the two determinants can be measured 
in tone languages, such as Cantonese. 
 

2.2.1. Phonotactic probability 
 
Numerous ways to compute phonotactic probability have been proposed. These 

methodological decisions can fall into ‘researcher degrees of freedom’ (Roettger, 2019; 
Simmons et al., 2011) that can critically affect the results. Although the diverse 
methodological approaches all have a similar goal of generating good predictors of 
wordlikeness judgements (or performance in some other experimental task, such as spoken 
word recognition or non-word repetition) and are often quite strongly correlated, there is 
considerable variation in the underlying philosophy. Here we identify three main aspects in 
which the implementations of phonotactic probability may vary: (a) types of probabilities, (b) 
methods of estimating probabilities, and (c) methods of aggregating estimated probabilities. 
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Type of probabilities. Phonotactic probability is generally calculated over n-phones (n-
grams) of segments, where n is the length of the substring of segments considered. A unigram 
is a single segment, a bigram/biphone consists of two contiguous segments, etc. Usually, the 
largest substring considered in phonotactics studies is the triphone. For Cantonese, when 
segment sequences are considered, the application of unigram to trigram calculation is 
straightforward as its maximal syllable structure is CVC or CVV, and only one phoneme is 
allowed in each syllabic position. There are also models that, instead of considering the 
probabilities of n-phones directly, consider the probabilities of n-grams of ‘natural classes’ as 
well as the probabilities of individual phonemes given the natural class (Albright, 2009; 
Albright & Hayes, 2003). Hybrid models of these also exist, generally based on syllable 
structure. The ‘syllable part’ approach (Bailey & Hahn, 2001) computes probabilities over the 
onset, nucleus and coda of a syllable, which may vary in length in some languages like 
English. Similarly, their ‘syllable rime’ approach computes probabilities over onsets and 
rimes, calculating the probabilities of onsets and rimes as single units, and treating them as 
independent. In Chinese, it has sometimes been argued that there is no need to decompose the 
rime into nucleus and coda, and instead the rime is treated as a single unit, with each rime 
being a rimeme (Chao 1934, Light 1977). The distinction of rime and rimeme is important for 
the analysis of different syllables in different Chinese dialects, but for the purpose of our 
paper, they can be understood comparable. If a rimeme or a rime is assumed to be a single 
unit, the syllable part approach cannot be pursued, and instead the syllable rime approach 
must be used. For Cantonese phoneme sequences, no complication is involved in applying 
the syllable structure approaches, whether it is a syllable part or a syllable rime approach, due 
to its phonotactic restriction to allow only one phoneme in each syllabic position. A main 
issue in measuring phonotactic probability in Cantonese is to determine the position of tone 
in relation to onset, nucleus, and coda. We further discuss this issue in Section 2.3.  

Once we determine the representation of the syllable structure, the next step is to compute 
probabilities within a syllable. There are two types of probabilities computed. First, positional 
probability computes the probabilities that a segment or n-phone appears at a certain position 
in a word, e.g. the probabilities that the phone [a] is the second segment in a word, or that the 
biphone [pl] is the second and third segments in a word. Transitional probability computes 
the probabilities that a segment appears, given the n − 1 previous segments, where n = 2 for 
biphones, n = 3 for triphones, etc. Word boundaries, denoted #, are often considered 
‘segments’ in these approaches, so that the probability distribution of the actual first sound in 
a phoneme sequence is the conditional distribution of it given the first ‘segment’, namely the 
word-initial boundary. Due to a restriction in Cantonese that allows a single phoneme in each 
syllabic position, measuring positional and transitional probabilities of Cantonese segmental 
sequences is simple. Like before, the issue is to determine the position of tone in relation to 
phonemes. 

 
Method of estimating probabilities. The probabilities themselves are concepts (or 

‘parameters’ in statistics) that are unknown and thus must be estimated using a corpus. Note 
that the estimation is independent of phonotactics of individual languages and estimating 
probabilities with or without tone is not an issue here. Different researchers differ with 
respect to the estimation methods used. One popular method, especially among 
psycholinguists, is to use log frequencies in the computation of phonotactic probability 
(Jusczyk et al., 1994; Vitevitch & Luce, 2004). To calculate positional probability of an n-
phone, for instance, the log frequency of that n-phone in a certain position is divided by the 
log of the total number of words that contain in the position; to calculate the transitional 
probability of an n-phone, the log frequency of the n-phone is divided by the log of the total 
number of words where the first n − 1 segments of the n-phone appears. The underlying 
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assumption is that log frequencies are better measures of ‘perceived’ frequencies than raw 
frequencies. A second approach is to use maximum likelihood estimation in calculating the 
probabilities (e.g. Albright, 2007, 2009). Here, raw counts are used instead of log frequencies 
in the numerator and denominator; otherwise, the calculations are identical as the log 
frequency approach. Some probabilities are likely to be zero due to accidental or systematic 
gaps. A third approach is intended to better deal with such zero probabilities. It modifies the 
maximum likelihood estimation by adding a smoothing parameter to avoid overfitting (e.g. 
Dautriche et al., 2017; see also Jurafsky & Martin, 2009, for a more detailed description of 
the method as applied to word n-grams). In methods that use log-frequencies, zero counts are 
particularly problematic, as they would result in undefined log-frequencies and hence 
undefined probability estimations. Some methods using log frequencies can deal with issues 
of zero counts, though in somewhat ‘ad hoc’ ways: For example, Vitevich & Luce’s (2004) 
phonotactic probability replaces the undefined probabilities for unattested n-phones, which 
have log 0 in the numerator, with 0 probabilities. 

Apart from the methods of estimating probabilities, there is also a question of whether the 
frequencies used should be based on type frequencies or token frequencies (Daland et al., 
2011; Denby et al., 2018; Richtsmeier, 2011). The former is counted with an entire lexicon, 
whereas the latter can be computed using a frequency wordlist or a corpus. 

 
Method of aggregating estimated probabilities. Once we estimate individual probabilities, 

we need to combine them together. As with estimation, the methods of combining the 
probabilities are independent of the involvement of tone. There are two main ways of 
combining the estimated probabilities computed into single measures of phonotactic 
probability: taking the sums (i.e. adding probabilities) or taking the products (i.e. multiplying 
probabilities). Note though that simply adding or multiplying probabilities may produce a 
measure that is not a true probability, but they are still frequently used. For both methods of 
taking the sums (i.e. adding probabilities) and taking the products (i.e. multiplying 
probabilities), many variations exist. First, the probabilities may be logged before combining 
them; they may be combined before being logged; or they may not be logged at all. (Note that 
the sum of the log of the probabilities is the same as the logs of the products.) Second, the 
probabilities may be normalized to account for word length; the arithmetic mean of the 
probabilities may be taken if we are summing the probabilities, and the geometric mean if we 
are multiplying them. Many of these methods were explored in Bailey & Hahn (2001) and 
Vitevitch and Luce (2004). 

 
2.2.2. Neighborhood density 

 
The other major predictor of wordlikeness judgments is neighborhood density, the degree 

to which an item under consideration resembles other items in the lexicon. Like phonotactic 
probability, neighborhood density can be measured in many different ways. The simplest and 
most common measure is the number of lexical neighbors, where a word is a neighbor of 
another word if one word can be obtained from another by adding, deleting or changing one 
segment. For example, /kæt/ is a neighbor of /kæts/, /æt/ and /bæt/. In this approach, a 
neighbor is a categorical concept: Two words are either neighbors or not. Due to the 
assumption that a lexical neighbor is a categorical concept, counting the number of lexical 
neighbors including tone does not differ from the one only with phonemes. In Cantonese, for 
instance, /kaː˥/ is a neighbor of /kaːu/, /kʰaː˥/, /kanː˥/ and /saː˥/. This is the method used in 
Kirby & Yu (2007) when measuring neighborhood density in Cantonese. 

A more sophisticated measure of lexical neighborhood allows for gradience. For example, 
we would expect that /kæt/ is a closer neighbor to /kæts/ than to /bræts/, but also /kæt/ is 



8 
 

closer to /bræts/ than to /brɪts/. To arrive at such ‘gradient’ neighborhood models, we need to 
construct phonological distance measures for the exact distances between words. The 
literature on such measures is large, primarily for the ones for segments.2 The most common 
method is to determine the distances between two corresponding phonemes first, then 
combine them to find distances between phoneme strings. When measuring distance between 
two phonemes, Bailey & Hahn (2001) used the natural class distance in Frisch et al. (1997). 
In the distance measurement in (1), the number of non-shared natural classes between two 
phonemes is divided by the total number of natural classes, i.e. shared natural classes + non-
shared natural classes, across the two phonemes. In other words, the distance between two 
phonemes is defined by the proportion of non-shared natural classes that the phonemes 
belong to. 

 
(1) 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒!" =

!#$%&'()*+	$(-.)(/	0/(&&*&
1#-(/	$.23*)	#4	$(-.)(/	0/(&&*&

 
 
The Levenshtein distance (Jurafsky & Martin, 2019) between the two phoneme strings is 

then computed: An algorithm is used to find the way of adding a segment, deleting a segment 
or substituting one segment for another that minimizes the ‘cost’ of these operations, cost 
being the distance between the two corresponding phonemes involved. The distance between 
two phoneme strings then becomes the average cost of the operation. When tone is involved 
in the distance calculation, the distance between two tones should be included in the 
calculation. We elaborate this point in Section 2.3. 

Once a distance measure between two words, d(wi, wj), has been constructed, 
incorporating phoneme distances and tone distances, it is used to measure the lexical density 
of words. One possibility is the Generalized Context Model (GCM) of Nosofsky (1988). 
GCM is an exemplar model, where categorization of a lexical item is based on its similarity 
towards all relevant stored exemplars, i.e. lexical neighbors. In GCM, the neighborhood 
density of a word is calculated by summing up the exponent of the negative distance of every 
word in the lexicon from the word itself. In (2), L denotes the lexicon, i.e. the set of all words 
in the language. Because of the negation sign, words that are far away from the word under 
consideration are weighted less whereas words that are close to the word are weighted 
heavily. In order to measure how far a word is to other words including tone, we need to 
identify the relative contribution of segmental distance and tonal distance in determining the 
distance between two words. Section 3.2 shows methods of identifying the relative 
weightings of segmental and tonal distances. 

 
(2) 𝐺𝐶𝑀(𝑤5) = ∑6!∈8 𝑒%+96",6!; 
 
Although GCM does consider gradient similarity of all relevant words in the lexicon, one 

disadvantage of GCM is that lexical frequencies are ignored. To address this issue, Bailey & 
Hahn (2001) propose the Generalized Neighborhood Model (GNM), where the contribution 
of a word depends not only on its distance to the word under consideration but also its 
frequency of occurrence. So, under GNM, frequency of a word’ occurrence affects its 
‘weights’. In (3), log frequency of occurrence is denoted by 𝑓<, and A, B, C, and D are free 
parameters. These parameters give the relative contribution of the quantity weighted by the 
square of the log frequency (A), the quantity weighted by the raw frequency itself (B), the 
non-frequency weighted (i.e. GCM) quantity (C), along with a ‘sensitivity parameter’ D that 
is multiplied to each distance, as in (3). GNM modeling with tone is similar to the GCM 

 
2 Readers are pointed to Kessler (2005) for an overview. 
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modeling with tone, except that the relative weight of tones and segments, which incorporates 
frequency information, should be included in the distance measure. Due to the additional 
parameters, it is mathematically more complicated than GCM, but the core components 
needed for GNM modeling with tone are similar to those for GCM modeling: We need to 
identify both segmental and tonal distances and their relative contributions in determining the 
distances between words. 

 
(3) 𝐺𝑁𝑀(𝑤5) = ∑6!∈8 3𝐴𝑓<= + 𝐵𝑓< + 𝐶7𝑒%>⋅+96",6!; 
 
As an example of the GCM and the GNM applications to phoneme strings without tone, 

consider a miniature language below. The language has five words taken from English, strata 
[streɪtə], spray [spreɪ], star [stɑr], tar [tɑr] and states [steɪts], and each word appears in the 
corpus 8, 15, 16, 5 and 20 times respectively. We consider the problem of determining the 
neighborhood density of star [stɑr]. The distance between star [stɑr] and the other four words 
are shown in Figure 1 on the lines joining them with star /stɑr/. Under GCM, the 
neighborhood density of star [stɑr] is 𝑒%@ + 𝑒%= + 𝑒%A + 𝑒%B = 0.571. Under the GNM 
with 𝐴 = 1, 𝐵 = −2, 𝐶 = 3, 𝐷 = 4, the neighborhood density of star [stɑr] is (1 × 5= −
2 × 5 + 3)𝑒%B×@ + (1 × 8= − 2 × 8 + 3)𝑒%B×= + (1 × 20= − 2 × 20 + 3)𝑒%B×A +
(1 × 15= − 2 × 15 + 3)𝑒%B×B = 0.349. To build GCM and GNM models with tone here, the 
distances of a word to the other words in Figure 1 (1, 2, 3, and 4) should be measured with 
tonal distances as well, and log frequency of occurrence, 𝑓<, and the four parameters in (3), A, 
B and C, and D, should be informed by lexicon including tonal information. 

 

 
Figure 1. The distance between star [stɑr] and the other four words with their frequency. 
 
As we will discuss below, our experimental design is constructed with reference to the 

‘number of neighbors’ measure, as in Kirby & Yu (2007), as well as the GCM and GNM 
models. In Section 3, we show how these methods can be adapted to incorporate tone in 
calculations, with Cantonese as a case study. 
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3. Phonotactic modeling with tone 
 
3.1. Phonotactic probability 

 
As introduced in Section 2, there are multiple methods for computing phonotactic 

probability, involving a large number of decisions concerning the type of probabilities, the 
estimation methods, and the methods of aggregating the probabilities. For the computation of 
phonotactic probability, a main guiding principle is to create a theoretically well-grounded 
measure of the joint probability of the entire syllable including tone. 

In our study with Cantonese, we use traditional bigram probabilities due to its best 
performance in Kirby & Yu (2007). Alternatively, unigram or trigram probabilities can be 
applied without much difference from bigram probabilities, because only one segment or tone 
is allowed in each syllabic position in Cantonese. Bigram probabilities are calculated on the 
basis of token frequencies from Hong Kong Cantonese corpus (Luke & Wong, 2015), whose 
performance was better than when the calculation was based on type frequency in Kirby & 
Yu3. We adopt the ‘syllable parts’ approach described by Bailey & Hahn (2001), which 
computes probabilities over the onset, nucleus and coda of a syllable. We do not adopt an 
approach which assumes a rime as a single unit, such as a syllable rime approach or a rimeme 
approach (Chao 1934, Light 1977). See our justification for this decision in Section 4. As 
Cantonese syllable structure only allows one phoneme in each of syllable part slots (assuming 
that the second vowels in diphthongs are considered to be a coda), we compute P(onset)4—
conceptually equivalent to P(onset|#) for models that consider word boundaries—
P(nucleus|onset), and P(coda|nucleus), then multiply the three together as P(segments). In 
other words, P(segments) is calculated by multiplying probabilities of the syllabic 
components’ n-grams. We assume that the second vowels in diphthongs are codas for the 
following reason. In Cantonese, there are strict phonotactic restrictions on diphthong-coda 
sequences. For example, falling-sonority diphthongs like ei never co-occur with nasal or oral 
stop coda. So it has been proposed that the second component of the diphthongs be 
considered part of the coda (Bauer & Benedict, 1997). When computing these probabilities, 
additive smoothing is performed to prevent zero probabilities, since this would result in an 
undefined log-probability (See section 2.2). For smoothing, we simply add 1 to all counts for 
simplicity (i.e. add-one smoothing), and do not pursue more complicated methods.  

To calculate probabilities of tone given the string of segments, we compute 
P(tone|segments) using a multinomial logistic regression model with the nnet package 
(Ripley & Venables, 2016) in R (R Core Team, 2020). An assumption here is that the 
probability of a syllable having a certain tone is dependent on the identities of all segments in 
the syllable. Dummy variables representing onset, nucleus and coda are included in the 
model; we excluded interaction effects to ensure that the probabilities of tone can be 
calculated for an unattested segment string as well. The probability of a monosyllable is then 
the joint probability of segments with tone given the segments, P(segments) 
P(tone|segments). Then we take the natural logarithm of this joint probability as a linear 
predictor of wordlikeness in our model. As an alternative, we also consider P(tone|coda) 

 
3 We believe that a better performance based on token probabilities is largely due to language-specific 

properties of lexicon. In Cantonese, words are predominantly disyllabic (73%) and the length of almost all of the 
words lies between 1 to 3 syllables (97%) (Lai & Winterstein, 2020). Due to this, there are many homophones 
and many characters have multiple pronunciations, which can be indicative of a more crucial role of token rather 
than type frequencies in judgment tests.  

4 Throughout this paper, we will use notation such as P(onset) to denote the probability of a particular onset 
(e.g. /p/ or /l/), not the probability that any onset will appear. 
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rather than P(tone|segments), because, as introduced in Section 2.1, there is a strong co-
occurrence restriction in most Cantonese words whereby oral stop finals [p, t, k] may only 
co-occur with tones ˥, ˧, and ˨ (Bauer & Benedict, 1997). Additionally, we also consider 
P(tone|onset), because Cantonese exhibits some restrictions on the relation between onset and 
tone, i.e. syllables with unaspirated stops or affricates in onset do not bear tones w and x while 
syllables with aspirated stops or affricates in onset do not bear tone ˨ (Bauer & Benedict, 
1997). Three other conceptually possible probabilities are tested as well, including tone 
conditioned on nucleus, tone not conditioned on segments, and the one only with segments 
without tone. Our case of Cantonese thus resulted in six log-probability measurements shown 
in (4) with different assumptions with regards to the relationship between tone and segments.  

 
(4) Six types of measurements of tonal probabilities 

Types   Abbreviations   Definitions 
P(tone|segments) P(T|S) Tone conditioned on all segments  
P(tone|coda) P(T|C) Tone conditioned on coda only   
P(tone|onset) P(T|O) Tone conditioned on onset only   
P(tone|nucleus) P(T|N) Tone conditioned on nucleus only  
P(tone) P(T) Tone unconditioned on segments  
No tonal probability NoT Segmental probabilities only without tone  

 
3.2. Neighborhood density 

 
As mentioned in Section 2.2, it is straightforward to count the number of neighbors in tone 

languages if a tonal neighbor is assumed to be a categorical concept. For examples, ka5 [khɐ�] 
is a neighbor of ka6 [khɐ˨] (tone substitution), just as it is to ki5 [khiː�] (segment substitution), 
a5 [ɐ�] (segment deletion), or kat5 [khɐt̚�] (segment addition). On the other hands, modeling 
neighborhood density in tone languages using GCM or GNM models is more complicated, 
mainly because (a) tonal distance should be measured and incorporated into modeling and (b) 
relative contributions of segmental and tonal distances should be identified in determining the 
distance between words. 

First, we demonstrate how to construct distance metrics between two words, 𝑑3𝑤5 , 𝑤<7, in 
the notation introduced in Section 2.2, including tonal distance. Instead of directly following 
Bailey & Hahn (2001) in calculating segmental Levenshtein distances (Jurafsky & Martin, 
2019), we adopt a way that was proposed to measure phonological distance in Cantonese 
taking both segments and tones into account. A study from Do & Lai (forthcoming) reported 
how to measure phonological distances of words when tone is involved using Cantonese as 
an example. In their study, the distances of segments and tones were first calculated 
separately assuming various phonological representations of segments and tones. The 
assumed representations included binary and multivalued feature representations for 
segments and the Chao tone letters, autosegmental, and (onset)-contour-(offset) 
representations of tones (see Do & Lai for the justifications for each representation). They 
collected phonological distance judgement data between two items by asking how similar the 
two items are, such as between se4 [sɛːw] ‘snake’ and te6 [thɛː˨], within the scale of 0 (totally 
different) and 100 (identical). Various models were compared with the participants’ data to 
find out the optimal way to measure segmental and tonal distances. For segmental distance, 
Do & Lai found that a distance measure represented by a multivalued, mostly articulatory-
based featural representation based on the one in Ladefoged (1975) worked best. There are 
several ways to calculate segmental distances between such segmental representations, but 
the one that worked optimally in their study was with Hamming distance (Nerbonne & 
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Heeringa, 1997). Hamming distance measures the number of features that are not shared 
between two phonemes and divides them into the total number of phonological features, i.e. 
shared and non-shared phonological features between the two. Given its optional 
performance in the previous study, the current study adopts Hamming distance measures for 
multivalued representations to measure segmental distances in Cantonese. For the tonal 
distance, Do & Lai found that Hamming distance measure with representing tone in terms of 
contour and offset was optimal in predicting native speakers’ phonological distance 
judgements. This result echos the results of perception studies in Cantonese, where tonal 
contours are found to be an important perceptual cue (e.g. Khouw & Ciocca, 2007; Xu et al., 
2006), which in fact is more important than tonal heights (Gandour, 1981). Reflecting its 
good performance, the current study also adopts the same distance measure and the tonal 
representation. The six tones of Cantonese are represented in Table 4 following the contour-
offset representation. The distance between the tones was 1 if both contour and offset were 
different (e.g., tone ˥ vs. tone 1), 0.5 if either contour or offset was different (e.g., tone ˥ vs. 
tone u), and 0 if both were same (i.e. same tone). 

 
Tone letter  ˥ 6 ˧ 1 8 ˨ 
Tone number 1 2 3 4 5 6 
Contour Lv R Lv F R Lv 
Offset H H M L* M L 

(Lv: level; R: rising; F: falling; H: high; M: mid; L: low; L*: Extra low) 
Table 4. Six tones in Cantonese in the contour-offset representation. 
 

Second, once we identify optimal distance measures for segments and tones, the issue now 
is to combine the two measures together. One straightforward way to do this is to simply add 
them together. However, this does not allow for different weightings for segments and tones, 
which are experimentally evidenced from perception (Cham, 2003), word recognition (Cutler 
& Chen, 1997; Keung & Hoosain, 1979), word reconstruction (Wiener & Turnbull, 2016), 
and phonological distance studies (Do & Lai, forthcoming; Yang & Castro, 2008). To model 
empirically informed weights of segments and tones, we decided to choose the weights that 
can predict native speakers’ phonological distance judgements in Do & Lai using the fixed 
intercept and coefficients for segmental and tonal distance. 

The computation of a GCM model is straightforward so far as we identify segmental and 
tonal distances and their relative weights. However, there are additional complications with 
GNM. It is mainly because GNM modeling incorporates ‘frequency’, which is ignored in 
GCM modeling. As mentioned in Section 2.2, there are four free parameters in Bailey & 
Hahn’s (2001) model, A (the quantity weighted by the square of the log frequency), B (the 
quantity weighted by the raw frequency itself), C (a free parameter that gives the relative 
contribution of the non-frequency weighted quantity), and D (a sensitivity parameter that is 
multiplied to each distance). Bailey & Hahn mentioned that they computed these coefficients 
in GNM by regression. However, as they did not specify the details of the implementation, 
we devised our own method of estimating the parameters. In our modeling, to simplify 
calculations, we fixed a sensitivity parameter D at 1 but inferred A, B and C empirically from 
the results of our wordlikeness test. This greatly simplifies the process of finding the values 
of A, B and C, as the GNM without a sensitivity parameter will become a linear combination 
of three quantities—the sum of the exponent of the negative distance from each word to the 
word under question, weighted by the square of the frequency, weighted frequency and 
unweighted (i.e. GCM), respectively—with A, B and C as coefficients. Frequency weighting 
was based on token frequencies from Hong Kong Cantonese corpus (Luke & Wong, 2015). 
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Now, with frequency information and segmental and tonal distances as well as their relative 
weights, what is needed is wordlikeness judgment data from native speakers. Section 4 
collects wordlikeness judgment data, from which we build the GCN and GNM models in 
Section 5. 

4. Wordlikeness judgment test5  
 
Previous sections introduced ways to measure phonotactic probability and neighborhood 

density. We also showed our measurement decisions for Cantonese, incorporating tone. With 
the two predictors measured with tone, we test their roles in predicting Cantonese native 
speakers’ wordlikeness judgments. In our experiment, participants were asked to judge how 
wordlike given words are within the range of 0 (not at all wordlike) to 100 (very wordlike). 

 
4.1. Test 

 
Participants. The experiment was built by using an online survey software Qualtrics 

(Qualtrics, 2020) and was distributed through social media to the public. Self-reported native 
speakers of Hong Kong Cantonese participated in the experiment and they received 100 HKD 
(13 USD) compensation upon the completion of the experiment. In total, 145 participants 
were recruited. They were within the age range of 18 and 60. Among all the participants, 44 
of them did not complete the experiment and 4 of the participants provided more than three 
incorrect answers out of 12 in the pretest (see procedure for the specifics of the pretest), and 
thus did not proceed to the main test. Data from the participants who did not complete the test 
(n=44) and who did not pass the pretest (n=4) were excluded from the analysis. 
Consequently, 97 participants’ data were analyzed. 

 
Design. In creating the experimental stimuli, we first calculated the phonotactic 

probability and neighborhood density following our measurement decisions presented in 
Section 3 for every logically possible combination of possible onsets, nuclei, codas and tones 
in Cantonese. The list was shortened to exclude the real words that are present in the Hong 
Kong Cantonese corpus (Luke & Wong, 2015). We then chose 288 items from the list. This 
includes all possible onsets, nuclei and codas, and it was made sure that every single possible 
phoneme at each syllabic position appears in the stimuli list. After creating the list, the 
second author examined the items to identify syllables that exist in Cantonese but were not 
present in the corpus by accident and modified one syllabic component to create non-existing 
syllables. For example, the string gep6 [kɛːp̚˨] (which is present in Cantonese as the 
colloquial reading of 夾 ‘press from both sides’) was replaced by non-existing syllable get6 
[kɛːt̚˨]. The stimuli list is provided in Supplementary Materials A. 

A female Cantonese native speaker from Hong Kong recorded the stimuli. An examination 
of the speaker’s natural speech revealed that she was not affected by ongoing sound changes 
in Cantonese including the initial [n-] and [l-] merger, the coda [-t] and [-k] and [-n] and [-ng] 
mergers, and the merges between tones u and x, ˧ and ˨, and w and ˨. The stimuli were 
recorded in a sound-attenuated booth in the first author’s institute with Marantz 
PMD661MKII Handheld Solid State Recorder and Sennheiser MKE2-P-K Clip-On Lavalier 
Condenser Microphone. All stimuli were recorded as WAV format in mono with 16 bit-

 
5 The data and the code for the experiment are available at   
https://osf.io/3j2se/?view_only=911bd65bb6f54db6ae1083e98937e543.  
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resolution at a sampling rate of 44.1kHz and were normalized by using the built-in normalize 
command in Praat (Boersma & Weenink, 2019). 

 
Procedure. The experiment began with an introduction and an electronic consent form, 

followed by a demographic questionnaire related to participants’ language background. See 
Supplementary Materials B for the questionnaire. Participants had to complete a pre-test 
before entering the main experiment session. The pre-test was in the form of AXB test to 
ensure that participants could perceptually distinguish between [n] and [l] initials, [t] and [k] 
finals, and [n] and [ng] finals, which have merged in some Cantonese speakers (Bauer & 
Benedict, 1997). The AXB test also included items to check whether they could distinguish 
between tones u and x, ˧ and ˨, and w and ˨, which are merging in some Cantonese speakers 
(Mok et al., 2013). If participants submitted more than three incorrect answers to the 12 
questions, the experiment stopped. 

In the main session, the experimental items were randomly presented to participants, one 
at a time. The main session lasted on average 40 minutes. Participants were asked to rate how 
likely each item would be a Cantonese word from 0 to 100 by using a slider. They were 
allowed to listen to it multiple times. Afterwards, the results were divided by 100 to lie 
between 0 and 1 for ease of interpretation. 

 
4.2. Results 

 
Data exploration. Before turning to modelling and statistical inference, we first provide a 

descriptive analysis of the data. To do so, graphs of the wordlikeness judgement data against 
the two assumed determinants, i.e. phonotactic probability and neighborhood density, are 
provided. The plots here show the percentage of categorically ‘wordlike’ judgements, 
percentage of categorically ‘not at all wordlike’ judgements, as well as the average gradient 
judgement against each of the predictors that we use. Scatterplots of the raw data are given in 
Supplementary Materials C. 

First, in Figure 2, the x-axis denotes log-probabilities of test items and the y-axis is 
wordlikeness judgments converted to the range of 0 (not at all wordlike) to 1 (very wordlike). 
The size of the points on the graph indicate the number of points with the same x and y 
values. We chose the version of log-probabilities where tone is conditioned on all segments 
for illustration, but the graphs are very similar across different types of log-probabilities. For 
log-probabilities, there is a clear relationship with the wordlikeness judgements, as seen in 
Figure 2. Aside from an outlier on the far left, the higher the log-probability, the greater the 
chances that participants rate the wordlikeness as 1 or in the higher rate regions. In particular, 
ratings above 0.5 are quite sparse before the log-probabilities of −23, and they become much 
more common afterwards, especially after around −17. Ratings below 0.5 become quite rare 
for the three stimuli with the very highest log-probabilities. However, aside from the three 
items with the top log-probabilities, the rest of the items all have a similar number of 0 rating 
judgements. There are also stimuli, such as those around −23 log-probabilities, where there 
are frequent ratings of 1, but ratings in the higher regions are still sparse. All this suggests 
that there is great degree of variations among the participants’ wordlikeness judgments, and 
the categorical judgments of 0s and 1s and the gradient judgements may not be produced by 
the same process; in particular, the judgements of 0s do not seem heavily affected by log-
probabilities, whereas visually, the trend is clearer for gradient judgements and the judgments 
of 1s. 
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Figure 2. A plot of the proportion of 0 judgements (green triangles), proportion of 1 
judgements (red circles) and average gradient judgement (blue squares) against the log-
probability (x-axis). 

 
Second, the descriptive results for neighborhood density measures are provided in Figures 

3–6. Each figure shows the judgment data against the number of neighbors (NN, Figure 3), 
GCM (Figure 4), and GNM (Figures 4-6) respectively. As shown in Figure 3, the judgments 
of 0s (not at all wordlike) tend to be somewhat more common on the left side of the graph, 
lower NN regions. However, items with higher NN were not clearly judged better, indicating 
no predictive power of NN for the wordlikeness judgments. 

 

 
Figure 3. A plot of the proportion of 0 judgements (green triangles), proportion of 1 
judgements (red circles) and average gradient judgement (blue squares) against the number of 
neighbors (x-axis). 

 
When the neighbors’ gradience is taken into account, there is no clear pattern for any of 

the three terms, the one with A (i.e. the quantity weighted by the square of the log frequency), 
with B (i.e. the quantity weighted by the raw frequency itself), and with C (i.e. the 
unweighted GCM quality). We start by examining the GCM value, i.e. with the coefficient C. 
As in Figure 4, the judgments of 1s and 0s, categorical judgments, tend to be concentrated in 
the middle of the GCM values. For intermediate judgements, there are items skewed towards 
high and low values across the entire x-axis. The addition of frequency weighting does not 
seem to create clear patterns, either. Figure 5 is for the raw frequency, i.e. with the coefficient 
B. For intermediate judgements, there is a tendency in which items in the far lower part of the 
graph tend to disfavor the judgments of 1s. But there is no clear tendency for the rest of the 
graph. Figure 6 shows the data for the square frequencies, i.e. the coefficient A. We see a 
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similar pattern, whereby items with value below around 50 disfavor 1s, but we do not see 
very clear tendencies for the judgments of 0s or for the other sections of the graph. 

 

 
Figure 4. A plot of the proportion of 0 judgements (green triangles), proportion of 1 
judgements (red circles) and average gradient judgement (blue squares) against the GCM 
values (x-axis). 
 

 
Figure 5. A plot of the proportion of 0 judgements (green triangles), proportion of 1 
judgements (red circles) and average gradient judgement (blue squares) against the 
frequency-weighted GNM values (x-axis). 
 

 
 

Figure 6. A plot of the proportion of 0 judgements (green triangles), proportion of 1 
judgements (red circles) and average gradient judgement (blue squares) against the square 
frequency-weighted GNM values (x-axis). 
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Descriptive data seem to suggest that log-probability is relevant to wordlikeness 
judgments in Cantonese, but the effect of neighborhood density, if at all present, is weak: 
whether it be on categorical measure like NN nor gradient measures like GCM or GNM. 
Modeling results in Section 4.3 concur with these descriptive observations. 

 
4.3. Modeling 

 
Our modeling decisions were made based on the descriptive data in Section 4.2. As we 

noted above, there is a clear tendency for the categorical judgements to behave differently 
from gradient judgements. For example, log-probability seems to have little effect on the 
judgments of 0s while it seems to be correlated with gradient judgments. Its role to the 
judgments of 1s is less clear but items with low log-probability were rarely rated very 
wordlike. Based on the observations showing the distinctive patterns among the judgments of 
0s, 1s, and gradient ones, we chose a model that allows us to separate judgements of 0s, 1s, 
and gradient ones. Specifically, we employ a mixed-effect Zero-One-Inflated Beta regression 
model (ZOIB: Ospina & Ferrari, 2012), which is similar to a beta regression model, but with 
extra components that allow the response to take on values of 0 or 1, modelled separately 
from judgement between 0 and 1. More ‘familiar’ models will not be appropriate for 
modeling our data. For example, linear regression models assume the residuals to be 
normally distributed, an assumption that is difficult to justify for the current case because of 
the multimodality prevalent throughout the data, which can be clearly seen in the scatterplots 
of the raw data in Supplementary Materials C. Beta regression models only cover the open 
interval (0, 1), and to use beta regression, we need to artificially turn the categorical 
judgements into values like 0.001 and 0.999, which is not ideal. Thus, ZOIB was our choice 
for the current data type. It is an ‘inflated’ regression model in that the distribution of the 
dependent variable is assumed to contain frequent 0s and 1s, which is consistent with our 
data. The ZOIB model was fit using the package brms version 2.13.0 (Bürkner, 2017a, 
2017b), which employs Bayesian inference. We chose to use a Bayesian analysis because 
most implementations of ZOIBs are Bayesian. Additionally, brms is the most accessible 
package for modelling ZOIBs that we are aware of, as it makes use of a syntax very similar to 
the familiar lme4 package. Moreover, Bayesian analyses allow us to put weakly informative 
priors on the coefficients, which allows easier convergence in the optimization process. 
Details of the model settings and prior choices are given in Supplementary Materials D, 
including an explanation about the basics of the ZOIBs. 

Our modeling decision so far is empirically driven. It may seem to go against some other 
empirical findings that both words and nonce words lie on a continuum of acceptability (e.g. 
Albright, 2009; Bailey & Hahn, 1998; Coleman & Pierrehumbert, 1997; Hay et al., 2004; 
Hayes & Wilson, 2008; Shademan, 2006 among many) and the claim about the gradient 
nature of phonotactic wellformedness (Borowsky, 1989; Chomsky & Halle, 1968; Clements 
& Keyser, 1983; S. Myers, 1987). Thus, if we accept that the grammar plays a role in 
wordlikeness judgments (Berent et al., 2001; Frisch & Zawaydeh, 2001), as opposed to 
treating the gradient judgments as the product of mere performance (see studies reviewed in 
Hayes, 2000 and Schütze, 1996), we should first check theoretical significance of our data 
(i.e. one that justifies the choice of the ZOIB model). Specifically, we need to check if the 
nature of grammar that generates wordlikeness judgments is both gradient and categorical. 
Gorman (2013) argued that large number of gradient judgments reported in previous 
literature may not be due to the gradient nature of wordlikeness system. Instead, the grammar 
may consist of categorical and gradient components, but gradient judgments were observed 
more frequently due to the nature of gradient rating tasks. More directly evidence showing 
both categorical and gradient nature of the grammar comes from Coetzee (2009, computer 
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science). The study tested wordlikeness judgments from Hebrew and English speakers. Two 
types of tests were conducted, a wordlikeness rating test on a gradient scale and a 
comparative wordlikeness test which forced participants to choose a more wordlike item 
between two grammatical or two ungrammatical ones. The results showed that grammatical 
and ungrammatical items were rated categorically in a wordlikeness rating test, but the 
comparative test elicited gradient wordlikeness distinctions from the participants.  The results 
suggest that there are two independent cognitive processes involved in wordlikeness 
judgments and speakers use their grammar both gradient and categorical ways. Both 
processes may not be used in all types of wordlikeness tasks, but crucially the nature of the 
grammar that generates wordlikeness judgments are not only gradient but also categorical, 
supporting the current choice of the ZOIB model.   

As to the modeling decision on syllabic structure, recall that there are two possible 
options; one is the syllable part approach (Bailey & Hahn, 2001) which decomposes a 
syllable into onset, nucleus, coda, and tone, and another is a syllable rime approach which 
decomposes a syllable into onset, rime, and tone. If a syllable rime approach has its 
psychological reality in Cantonese speakers’ mind, thus it should be pursued, we would 
expect that syllables with unattested rimes tend to be frequently judged categorically bad. 
This was not borne out in the present data. Refer to the following graph showing the 
relationship between log-probabilities (with tone dependent on all segments) but color-coded 
to show whether the rime is attested or not: Grey items have unattested rimes whereas orange 
items have attested rimes in Cantonese in Figure 7.  

 

 
Figure 7. Scatterplot of the log probability (x-axis) against the wordlikeness (y-axis) 

depending on the attested of rimes (grey: attested rimes vs. orange: unattested rimes). The 
sizes of the circles indicate the number of items at that log-probability value. 

 
As we can see here, the items with unattested rimes (grey dots) were overall rated less 

wordlike than the items with attested rimes (orange dots). However, ones with unattested 
rimes (grey dots) have comparable judgement distributions as ones with attested rimes 
(orange dots) in the mid log-probability range, e.g. probabilities between -25 and -15, and 
many of grey dots have a fair number of responses judging the items as categorically 
wordlike as well. Based on this observation, we decided not to include a syllable rime 
analysis and pursue a syllabic part analysis where a syllable is decomposed of onset, nucleus, 
and coda, and tone.  

 
Comparison between phonotactic probability and neighborhood density measures. To 

examine the role of phonotactic probability and neighborhood density in predicting the 
wordlikeness judgment data, the ZOIB model we constructed was fit using the combined 
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measures of phonotactic probability and neighborhood density. This was to identify the 
relative contributions of phonotactic probability and neighborhood density in predicting the 
wordlikeness judgments. We fit the models using each of possible pairings of phonotactic 
probability measures in (4) (six measures: log-probabilities with tonal probability conditioned 
on (a) all segments, (b) onset only, (c) nucleus only, (d) coda only, (e) tonal probability not 
conditioned on segments, and (f) with no tonal component) and three neighborhood density 
measures ((a) NN, (b) GNM, and (c) GCM), along with models that only have phonotactic 
probability measures (6 in total) or only have neighborhood density measures (3 in total). In 
total, there were 27 models, i.e. 6×3 combined models + 6 phonotactic probability models + 3 
neighborhood density models. We then compared the model fits using WIDELY APPLICABLE 
INFORMATION CRITERION (Vehtari et al., 2017), an approximation of the Akaike Information 
Criterion which is used as a measure of models’ out-of-sample predictive power, i.e. how 
good the model will be to predict data beyond the current sample. 

The full model for the ZOIBs, in principle, includes population-level coefficients for the 
predictors along with item-level and participant-level random intercepts and participant-level 
random slopes for all predictors. Due to the limitation of modeling capacity, it was 
impossible to fit the full ZOIB model for all the combinations we tested. So we fit all the 27 
models initially with random intercepts only. Once we identified the optimal model only with 
random intercepts, then we re-fit the optimal model with both random slopes and intercepts. 
There were additional modeling complications for GNM. Because of the large sample size, 
and more crucially, because of highly correlated nature of the three GNM-related predictors, 
it was not possible to fit the models containing all three GNM values in a timely manner, 
even with random slopes removed. Thus, for the models involving GNM, we decided to first 
fit a model with only the three GNM-related quantities as predictors with no random effects. 
Then we used those values, normalized to sum up to 1, to derive GNM quantities for each 
syllable, which were used to fit the GNM models including random effects. 

Table 5 shows the performance of the models with random effects. Phonotactic probability 
effect is on the horizontal line and neighborhood density effect is on the vertical line. The 
performance of each model was based on WAIC values. The WAIC values in each cell in 
Table 5 indicate the model performance for the combination of the two assumed 
determinants. For example, the WAIC value of 11437.8 in the top left cell is when 
phonotactic probabilities are calculated assuming that tone is conditioned on onset and 
neighborhood density is measured by the number of neighbors. Lower WAIC values indicate 
better predictive power of the data. Standard errors of the WAIC values are provided in 
parenthesis in each cell. 

 
 T|O T|N T|C T|S T NoT No 

phonotactic 
probability  

NN 11437.8 
(316.8) 

11438.1 
(316.9) 

11439.8 
(317.0) 

11440.7 
(316.9) 

11437.4 
(317.0) 

11438.2 
(316.9) 

11439.4 
(316.9) 

GCM 11439.7 
(316.9) 

11439.3 
(316.9) 

11443.4 
(317.0) 

11442.4 
(317.0) 

11435.0 
(316.9) 

11438.1 
(316.9) 

11442.8 
(316.9) 

GNM 11434.3 
(316.8) 

11435.6 
(316.8) 

11434.5 
(316.8) 

11437.4 
(316.9) 

11433.9 
(316.8) 

11436.8 
(316.8) 

11436.1 
(316.8) 

No  
lexical 
neighborhood 

11437.6 
(316.9) 

11437.0 
(316.9) 

11443.6 
(317.0) 

11441.3 
(316.9) 

11433.1 
(316.9) 

11435.8 
(316.9) 
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Table 5. WAIC values of the different models and standard errors of the WAICs, with 
columns indicating the measure of phonotactic probability, and rows indicating the measure 
of neighborhood density. 
 

The model with only log-probabilities using unconditional tonal probabilities (T) has the 
lowest WAIC values, indicating its best performance (boldface). However, it only has a slight 
edge over some other models, especially those with GNM; T with GNM, T|O with GNM, and 
T|C with GNM. Note, however, though that the WAIC values from the current GNM 
modeling are not exactly comparable with the WAIC values from the other models. The 
GNM models did correctly incorporate frequency effects, including the square of the log 
frequency and the raw frequency itself. The exact weights of the GNM quantities were also 
calculated from the current wordlikeness judgment data. However, this was done in the ‘first 
round’ of the fitting process, and was not factored into the calculation of WAIC in the final 
model. Recall that this was an inevitable modeling decision, due to the large sample size and 
intrinsically high correlation of the three GNM-related predictors. In principle, the WAIC 
values from our ‘simplified’ GNM modeling are underestimated. Thus, we refrain from 
interpreting the precise WAIC values from the GNM models, but instead infer the GNM 
performance from GCM: Given that the GNM is based on GCM but it adds extra 
complications (rather highly correlated to the GCM value—both extra components have 
correlation coefficients over 0.99 with the GCM value), we interpret that if there is no 
evidence that GCM is better than other models, it is unlikely that GNM, with much more 
parameters but not adding much extra information, performs better. Thus, in the following 
reports, we compare the models excluding the WAIC values of the GNM (grey-colored in 
Table 5), and we infer the performance of GNM models from the performance of GCM 
models. 

When the GNM is excluded from the comparison of the exact WAIC values across the 
models, the best model, i.e. the one with only log-probabilities using unconditional tonal 
probabilities (T), is still comparable to some other models, such as the one with log-
probabilities without tone (NoT), and the one with log-probabilities of unconditional tonal 
probabilities along with GCM (T with GCM). Given the closeness of their WAIC values and 
given that the WAIC differences are around the similar size as the standard error differences, 
it would be inappropriate to choose the optimal model from these values alone. We decided 
to first identify whether the performance differences of the six types of measurements of 
tonal probabilities (i.e. the horizontal line in Table 5 except for No phonotactic probability) 
are meaningful. In other words, we examined if one tonal representation has a better 
predictive power than others. The WAIC value differences between the optimal model (T) 
and the best models for each tonal representation were compared: These best models include 
tone given onset with no lexical effect, tone given nucleus with no lexical effect, tone given 
coda with NN, tone given all segments with NN, and a representation excluding tone with no 
lexical effect. The WAIC differences, along with standard errors, are shown in Table 6. 

 
 T|O T|N T|C T|S NoT 
lexical effect None None NN NN None 
WAIC diff. −1.3 −1.0 −2.4 −2.8 −0.4 
SE 2.0 1.4 1.9 2 1.4 

Table 6. Differences in WAIC between the unconditioned tone model and the other models 
among other tonal representations. 
 

In Table 6, the WAIC differences among the models are quite small considering their 
standard errors: Most of the times, the magnitude of the difference is smaller than the 
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standard error. Even for the greatest difference, i.e. the one with tone condition on all 
segments (T|S), the WAIC difference is only slightly greater than the standard error. From 
this observation that the optimal models per each tonal representation do not significantly 
vary in their performance, we conclude that there are no grounds for preferring one tonal 
representation over others. Therefore, we report the results based on the optimal model (T) in 
the following discussion for the purpose of presentation, but it should be understood that the 
results are comparable across different tonal probabilities we tested.    

To understand the exact relation between log-probability and the wordlikeness judgments, 
we examined the coefficient estimates of the models. We fit the best-performing model with 
full random effects for all predictors in three regions considered, i.e. gradient judgments 
(between zero and one) and two categorical judgments (judgments of 0s and 1s). This was 
done using the model with unconditioned tonal representation (T) and no neighbourhood 
effects. Then, we examined point and interval estimates of the coefficients. Since the 
different models have roughly similar performance in terms of WAIC, we also ran a 
robustness check known as multiverse analysis (e.g. Steegen et al., 2016). This was 
performed using the models without random effects in Table 5. That is, we examined a 
variety of logically possible ways to do the analysis, in this case all the different tonal 
representations and neighbourhood representations, and then examined the coefficient 
estimates in each one. 

The results for the optimal model are in Table 7.  The 95% credible intervals (CI)6 indicate 
the range of values for which we can be 95% sure that the coefficient lies in. 95% CI that 
excludes zero would indicate strong evidence that the coefficient is nonzero, meaning that the 
evidence is sufficient to support the considered effect. 
 

 Estimate Estimated Error Lower 95% CI Upper 95% CI 
Beta regression component (between zero and one) 
Intercept 0.769 0.144 0.490 1.058 
LogprobT 0.079 0.009 0.061 0.097 
Logistic regression component (ones) 

Intercept 8.480 1.125 6.403 11.96 
LogprobT 0.509 0.069 0.375 0.647 
Logistic regression component (zeros) 

Intercept −1.324 0.265 −1.853 −0.826 
LogprobT 0.039 0.018 0.003 0.073 

Table 7. The overall results of the optimal model. 
 
Higher log-probabilities lead to intermediate judgements (between zeros and ones) being 

higher in general, since the coefficient of the log-probabilities in the beta regression 
component excludes zero (0.061, 0.097). Evidence is sufficient that higher log-probabilities 
substantially enhance the chances of items being judged as 1 (i.e. very wordlike), since the 
95% credible interval for its coefficient in the logistic regression component for ones does not 
include zero (0.375, 0.647). Also, we have some evidence for the logistic regression 
component for zeroes (i.e. not at all wordlike) being affected by log-probabilities, since the 
coefficient excludes zero (0.003, 0.073), though in an unexpected direction whereby higher 
log-probabilities makes zero judgements more frequent. This aligns with our descriptive 

 
6 This is different from frequentist confidence intervals (also abbreviated as CIs), which cannot be 

interpreted in such terms. 
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observations in Section 4.2 such that the judgments of 0s seem to be less affected by log-
probabilities, compared to those of 1s and intermediate judgements. So we do have clear 
evidence that log-probability does contribute to the determination of sound sequences as 
categorically legitimate Cantonese words and more or less wordlike at a gradient level. 

Next, we performed a multiverse analysis as a robustness check for the effects obtained 
above. We examine the CIs for the coefficients for phonotactic probability and neighborhood 
density under each possible pairing of phonotactic probability and neighborhood density 
measures in Table 5. The examination of the CIs was conducted for each of the three regions, 
0s, 1s, and gradient judgments. CIs that exclude 0, i.e. do not touch the red line, indicate 
evidence that the predictor is effective. First, the effect of phonotactic probability is examined 
in Figures 8a–c. The exact numerical values are given in Supplementary Materials E. 

 

 
 
Figure 8a. Multiverse results for the 95% CI of the effect of log-probabilities on gradient 
judgements. 
 

 
Figure 8b. Multiverse results for the 95% CI of the effect of log-probabilities on the 
judgments of 0s. 
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Figure 8c. Multiverse results for the 95% CI of the effect of log-probabilities on the 
judgments of 1s. 

 
As clearly seen from the above figures, in the case of gradient judgements (Figure 8a) and 

the judgments of 1s (Figure 8c), the effect of phonotactic probability on judgments is 
completely robust regardless of the tonal representations. However, only two possible 
decisions lead to a small effect on the judgments of 0 (Figure 8b), and both are very marginal. 
Given the results, we confirm that the effect of log-probability is only on the judgments of 1s 
and gradient judgements, but not on the judgments of 0s. Now the analysis of neighborhood 
density is given in Figures 9a–c.  

 

 
Figure 9a. Multiverse results for the 95% CI of the effect of neighborhood density on gradient 
judgements 

 
Figure 9b. Multiverse results for the 95% CI of the effect of neighborhood density on the 
judgments of 0s. 
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Figure 9c. Multiverse results for the 95% CI of the effect of neighborhood density on the 
judgments of 1s. 
 

For the judgments of 0s (Figure 9b), every model shows CIs including 0, suggesting no 
neighborhood density effect of on the judgements of 0s. For the effects on gradient 
judgements (Figure 9a) and judgments of 1s (Figure 9c), the presence of a CI excluding 0, i.e. 
neighborhood density effect, hinges crucially on the choices between NN and GCM. 
Specifically, models with GCM almost always have a GCM coefficient excluding 0. Models 
with NN rarely have a NN coefficient excluding 0. This suggests that between NN and GCM, 
GCM is a better predictor of the wordlikeness judgements. However, the models with GCM 
have not been shown to perform better than those without GCM in terms of WAIC values in 
Table 5. Recall we note in Table 5 that under no choice of log-probability measure does the 
model using GCM outperform the model with no neighborhood density measures. Therefore, 
while GCM appears to be a better predictor than NN from these graphs, our data still do not 
provide sufficient evidence for a GCM effect. In sum, our modeling results suggest that log-
probability, regardless of tonal representations, does play a role in predicting the 
wordlikeness data for the categorically wordlike items and gradient items, but not for 
categorically not wordlike items. We do not have sufficient evidence for the role of 
neighborhood density. 

To summarize, log-probability predicts the wordlikeness judgments within gradient 
judgment areas and categorical judgments for 1s (very wordlike), but not for categorical 
judgments for 0s (not at all wordlike). This effect is robust across different ways that tonal 
probabilities depend on segmental probabilities that we have considered, and we have little 
evidence in favor of one tonal representation over the rest. The number of neighbors is not a 
predictor of the current wordlikeness judgement data. Although we have suggestive, yet by 
no means conclusive, evidence that GCM may be involved in the prediction of gradient 
judgements and the judgments of 1s, we can still be confident that it rarely plays a role in the 
judgements of 0s. Given the limited GCM effect, we infer that the GNM effect will be 
extremely minor, if it ever exists. 

 
Comparison of the relative contribution of syllable components.  So far, we have only 

investigated the effect on phonotactic judgements of the log-probability of the items as a 
whole. An assumption behind such consideration is that the different parts of a syllable that 
make up these probabilities are equally important. Recall that we also aimed to examine 
whether the different components of the syllable (onset, nucleus, coda, tone) differ in their 
importance in determining wordlikeness judgements. To determine the relative roles of 
different syllable components towards the prediction of wordlikeness judgements, we 
separated the log-probabilities in Table 7 into the four syllable-component probabilities—
onset, nucleus, coda, and tone—and allowed the model to assign separate coefficients to each 
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syllable component.7 The results in Table 10 are based on the assumption that tone is 
conditioned on onset, but the general trends are same for other tonal representations that we 
examined as well.8 

 
 Estimate Estimated Error Lower 

95% CI 
Upper 

95% CI 
Beta regression component 
(between zero and one) 
Intercept 0.583 0.170 0.249 0.919 
ln P(Onset) 0.055 0.029 0.000 0.112 
ln P(Nucleus|Onset) 0.131 0.016 0.099 0.163 
ln P(Coda|Nucleus) 0.048 0.012 0.025 0.072 
ln P(Tone|Onset) −0.002 0.017 −0.035 0.030 
Logistic regression component 
(zeros) 
Intercept −1.625 0.266 −2.142 −1.109 
ln P(Onset) 0.039 0.039 −0.036 0.117 
ln P(Nucleus|Onset) 0.013 0.021 −0.030 0.055 
ln P(Coda|Nucleus) −0.002 0.016 −0.033 0.029 
ln P(Tone|Onset ) −0.001 0.023 −0.047 0.044 
Logistic regression component 
(ones) 
Intercept 6.957 1.157 4.739 9.269 
ln P(Onset) 0.407 0.175 0.060 0.762 
ln P(Nucleus|Onset) 0.700 0.103 0.503 0.911 
ln P(Coda|Nucleus) 0.349 0.074 0.207 0.495 
ln P(Tone|Onset ) −0.088 0.105 −0.297 0.118 

Table 10. The results with the decomposition of syllabic components. 
 
First, for the beta regression component (gradient judgments), we have strong evidence for 

effects of nucleus and coda, because their CIs exclude zero; we also have sufficient evidence 
that the effect of nucleus given onset is greater than that of coda given nucleus in the beta 
regression component (estimated difference between nucleus and coda: 0.08; SE: 0.02; 95% 
CI: (0.05, 0.12)). Moreover, we have some evidence that the probability of the onset matters. 

 
7 One might question whether the estimates of the coefficient values for different syllable components are 

comparable, because they are logs of different types of probabilities. Note that under the assumptions that the 
following syllable component only depends on the preceding one, e.g. nucleus only depends the onset, the coda 
only depends on the nucleus, each of the covariates, like ln P(Nucleus|Onset), or ln P(Coda|Nucleus), may be 
considered −1 times of the surprisal (Levy & Gibson, 2013) of the corresponding syllable component. The only 
difference from a usual definition of surprisal is that the surprisal is measured in nats (Cover & Thomas, 2012) 
instead of bits in our case, because we are taking natural instead of base-2 logarithm. Since the different 
predictors take the same unit (nats), their coefficients should be considered comparable, as the coefficients can 
be interpreted in the same way. For the beta regression component, the coefficients should be interpreted as ‘for 
each unit increase of the surprisal in nats, the mean judgement decreases by the coefficient’. For the logistic 
regression component, the coefficients should be interpreted as ‘the log-odds ratio of the probability two 
syllables being judged as 0/1, the first one having a surprisal value of 1 less than the second one, is the value of 
the coefficient.’ 

8 For some representations, we could not get the models to converge. 
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This effect is also smaller than the nucleus effect (estimated difference between onset and 
nucleus: −0.08, SE: 0.03, 95% CI: (−0.13, −0.02)). We have no evidence for a difference 
between onset and coda (estimated difference: 0.01, SE: 0.03, 95% CI: (−0.04, 0.06)). We 
have no evidence for a tonal effect either. Second, in the logistic regression component for 
ones (very wordlike), we see the same situation with the coefficients of all three segmental 
probabilities excluding 0. We do not have evidence that their coefficients are different: The 
estimated difference between onset and nucleus is 0.03 (SE: 0.04; 95% CI: (−0.05, 0.1)), the 
one between onset and coda is 0.04 (SE: 0.04; 95% CI: (−0.03, 0.11)), and the one between 
nucleus and coda is 0.01 (SE: 0.03, 95% CI: (−0.03, 0.06)). Third, we have no significant 
predictors for the judgments of zeroes, consistent with the results in the previous subsection. 
Thus, the general tendency such that the log-probability can predict gradient judgements and 
the categorical judgments of 1s, but not those for 0s, is consistent across the model assuming 
a syllable as a whole (Table 6) and the model with the decomposition of syllabic components 
(Table 10). 

To summarize, we find evidence that phonotactic log-probability is a good predictor of the 
current wordlikeness judgement data. We do not find evidence that neighborhood density 
contributes to the prediction of the current data patterns. Moreover, if we split up the log-
probability into its syllabic component parts, we find that the conditional probabilities of 
nucleus and coda play a crucial role; onset is less important but still it plays a role to a certain 
degree, but tone does not. Finally, such effects tell us how likely participants are to rate an 
item as perfect (1) or, if their rating falls between 0 and 1, how likely they are to rate it 
higher; but the predictors do not affect the rate at which participants consider the items not at 
all wordlike. 

5. General discussion 

5.1. Phonotactics vs. lexical neighborhoods  
 

Our finding that mainly phonotactic log-probability, but not neighborhood density, is 
important in predicting wordlikeness judgements goes against some previous studies, 
including Kirby & Yu (2007) who also tested wordlikeness in Cantonese, although their 
research focus was specifically on lexical gaps. Recall that Kirby & Yu (2007) found the 
relative weakness of phonotactic probability and a stronger effect of neighborhood density. 
Since our study and theirs both tested Cantonese, despite differences of the exact research 
questions, it is worth considering the different results more in detail. Kirby & Yu attributed 
their findings to the fact that Cantonese makes use of larger space of possible monosyllabic 
words than some other languages like English. Because of strict phonotactic restrictions of 
Cantonese, possible phonotactic combinations are more limited compared to other languages 
like English. Due to this, proportionally, large portions of limited phonotactic space are taken 
by real words in Cantonese. If so, native speakers rely more on the lexicon in making 
wordlikeness judgments. Kirby & Yu also pointed out that due to the high rate of words in 
the limited phonotactic space, many nonwords have their lexical neighbors which might 
encourage speakers’ reliance on lexical neighbors in making wordlikeness judgments. This 
idea was further pursued by Shoemark (2013), who argued that because the connectivity of 
Cantonese phonological networks is denser than those of English, great proportion of the 
Cantonese lexicon is activated by any nonword. Beyond the work on Cantonese, our results 
are also against Bailey & Hahn (2001) and Myers (2016), who found independent effects of 
lexicon and phonotactics in English and Mandarin respectively. Gorman (2013) also reported 
a major role of neighborhood density in English, which is different from the current results. 
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Our results are, however, in line with Frisch et al. (2000) and Albright (2009). Frisch et al. 
(2000) reported that English native speakers’ wordlikeness judgments of multisyllabic 
nonwords was better predicted by phonotactic probability than by neighborhood density, 
although the difference was only marginal. Albright (2009) found that, although judgements 
are correlated with lexical neighborhood measures at a descriptive statistical level, they were 
not found to be significant in the regression model. There are several ways to account for 
such discrepancies across different studies. 

First, the differences might be due to a research design, specifically the inclusion of real 
words in some experiments. For example, Bailey & Hahn (2001) included real words, and in 
Kirby & Yu (2007), over one third of test items were real words (162 out of 432 items). This 
was not the case in our experimental design where only nonwords were tested. In fact, some 
studies which reported no neighborhood density effect did not include real words either 
(Albright, 2009; Frisch et al., 2000). As argued by Vitevitch & Luce (1998, 1999) and 
Shademan (2006), the processing of real words is highly dominated by lexical influences. 
This idea is supported by Myers and Tsay (2005) who found the lexical effects to the 
judgments of real words in Mandarin but no such effect to nonwords. The inclusion of real 
words may encourage lexical access, and therefore strong lexical effects might have 
observed. However, note also that some studies which included only nonwords did report 
strong effects of neighborhood density (Gorman, 2013; Myer, 2016). This suggests that the 
method of a stimulus selection might affect the results and the conclusions drawn from 
different wordlikeness studies but the method itself is not a sole factor determining the lexical 
effect to wordlikeness judgments.   

Second, another possibility is related to the size of syllable inventory, which differs across 
languages. Compared to some languages like English, Cantonese has highly restricted 
phonotactics, allowing no consonant clusters and a fairly limited set of codas, including only 
an oral stop series, a nasal stop series, and /i/ and /u/. Myers (2016) argued that for languages 
involving a small syllable inventory due to their strict phonotactic restrictions (e.g., Mandarin 
and Cantonese), lexical neighborhoods are more important than phonotactic probability, 
because the small numbers involved in the inventory makes syllables easier to access from 
rote memory. Along the same logic, in languages like English, where there are larger number 
of syllables, speakers rely less on lexical neighborhoods, because there are too many syllables 
they need to access, which makes the process too complicated. This idea is similar to Kirby & 
Yu (2007) where the strict phonotactic restrictions were argued to encourage the lexical 
effect because a language with strict phonotactic restrictions makes use of a larger proportion 
of limited phonotactic possibilities. This line of logic predicts that our study on Cantonese 
wordlikeness judgments should have observed a strong lexical effect, but it was not the case. 
We believe that there is an alternative way to consider the relation between the level of 
phonotactic restrictions and the role of neighborhood density to wordlikeness judgments. As 
Kirby & Yu (2007) and Myers (2016) argued, if phonotactic restrictions are very strict in a 
certain language, phonotactically possible patterns are limited. This will not only result in 
limited syllable inventory, but also result in relatively little variation in lexical density, 
compared to languages that allow varying degree of phonotactic combinations (e.g., complex 
onsets and codas) such as English. For example, English syllables can go up to seven 
segments (as in the word strengths), while Cantonese syllables only go up to three segments 
and a tone. So, in principle, the range of values covered by Cantonese phonological space is 
only from 0 to 4 (including tone), when a distance of 1 is assume for each syllabic 
component, whereas in English, it varies more widely, from 0 to 7. Due to this limited 
phonological space taken by Cantonese words, lexical neighborhood effects may not be as 
significant as in languages like English where phonotactic patterns are more varying and 
complicated, thus taking wider phonological space. Even if there were the lexical effect, it is 
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possible that the effect would be difficult to estimate, since the range of the independent 
variable is too narrow. Further investigations are needed to identify the exact relation 
between the degree of variation in lexical density or in phonological space in languages and 
the role of lexical effects in wordlikeness judgments. Crucially, considering that wordlikeness 
judgment tests using the same languages frequently yielded contrastive results, including 
English (e.g. Albright, 2009; Bailey & Hahn, 2001) and Cantonese (e.g. Kirby & Yu, 2007; 
the current study), language-specific phonotactic factors are important but they should not be 
treated deterministic in predicting wordlikeness judgments for specific languages.   

Third, another possible explanation is related to speakers’ different perception of 
nonwords depending on different morphological systems of different languages. As 
introduced, many modern Cantonese monosyllabic morphemes are generally not used as 
independent words per se, but only appear in compounds (Bauer & Benedict, 1997). This is 
different from some other languages like English. For instance, the morpheme 則 zak1 [tsɐk̚˥] 
is used in many common words such as 規則 kwai1zak1 [kʷʰɐi˥tsɐk̚˥] ‘rules, regulations’, 
守則 sau2zak1 [sɐuutsɐk̚˥] ‘regulation, code of conduct’, etc., but the monosyllabic 
morpheme does not really mean anything on its own.9 Previous work consistently suggested 
that the syllables, not the individual phonemes, are the fundamental unit in Chinese 
languages: Alpatov (1996) described the syllables in Chinese as ‘the most important 
psycholinguistic units’ and O’Seaghdha et al. (2010) called the syllables in Mandarin 
‘proximal unit’.  So there is little doubt that Cantonese speakers can easily recognize and 
process monosyllabic items, which are the basic unit in their mind. However, they may not 
regard monosyllabic items as independent words which can potentially have corresponding 
Chinese characters bearing their own meanings, because of monosyllables’ frequent 
involvements in compounds. In fact, Chan et al. (2011) casted doubt on testing Cantonese 
speakers with monosyllabic nonwords, from which they argued that nonwords created based 
on one language’s phoneme inventory and phonotactic regulations are different from 
nonwords created based on other languages. A clinical work by Stokes et al. (2006) reported 
the failure of monosyllable-based nonword repetition test to discriminate children with 
specific language impairment in Cantonese while studies in English found evidence that the 
monosyllabic nonword repetition test serves as a meaningful clinical marker (see a meta-
analysis in Estes et al., 2007). These may suggest that monosyllabic nonwords in Cantonese 
may have different status as those in English, a factor to which the current results might be 
attributed. The current study conducted neighborhood analysis based on syllables, where an 
example like 則 zak1 [tsɐk̚˥] was counted as a neighbor of a stimulus. Considering that such 
syllable is not used as an independent word, it is conceivable that the results would differ 
when the neighborhood analysis is based on words. Future work involves identifying which 
neighborhood analysis matches better with speakers’ judgments in Cantonese. Additionally, a 
cross-linguistic exploration of nonwords processing is needed differing in their 
morphological systems. 

We suggested the effects of the stimulus selection methods, language-specific phonotactic 
complexity, and language-specific morphological systems in determining the predictors of 
wordlikeness judgments. Crucially, the conclusions drawn from similar methods or from 
same languages differ from each other. This suggests that the predictors of wordlikeness 
judgments should be considered in a comprehensive way including research design-specific 
factors as well as language-specific factors and that the exact correlations of each factor 
should be further identified to correctly model wordlikeness judgments.  

 
9 則 zak1 [tsɐk̚˥] is a function word in Standard Written Chinese and Classical Chinese, and so is an 

independent morpheme when written texts in these languages are read using Cantonese readings of characters, 
but it is not common in spoken Cantonese. 
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5.2. The roles of syllabic components  
 
When splitting up the phonotactic log-probabilities into syllabic components, we found 

that the conditional probabilities of nucleus and coda matter most, those of onset marginally 
matter, but those of tone do not play a role. Note that our experiment only used permissible 
phonemes and tones in Cantonese. Compared to nuclei and codas, where the judgment can be 
based on their concurrence with the previous phonemes, onsets can be judged on their own 
given their initial position. So, it is not surprising that permissible onsets were simply treated 
all ‘acceptable’, resulting in low weight in onsets when judging items’ wordlikeness. What is 
surprising is no major role of conditional probabilities of tone, given that there is at least one 
highly robust generalization about Cantonese phonotactics whereby oral stop codas are only 
compatible with tones ˥, ˧ and ˨ (and u, where there is a tone change from one of these tones). 
This result, though, goes with the previous studies on lexical access in Mandarin showing that 
tone is playing a minor role than other syllabic components (Taft & Chen, 1992), especially 
among monosyllables (Lin, 2016). Why do results from different experimental paradigms and 
across two languages consistently show that tone is less important than segments in lexical 
processing? We consider that the results can be accounted for when lexical predictability of 
syllabic components is taken into consideration. One way to measure how ‘predictable’ a 
component is in a lexicon is measuring its functional load. In Cantonese, for example, it has 
been found that onsets and tones have higher functional load than nuclei and codas (Do & 
Lai, forthcoming), where functional load is defined as the entropy of the language contrasts in 
a syllable component divided by the actual entropy of the language (e.g. Hockett 1966). This 
suggests that nuclei and codas are lexically more predictable (i.e. restricted) than onsets and 
tones in Cantonese, and hence play a smaller role in discriminating between lexical items. 
Thus, our results may tentatively be predicted as saying that lexically less predictable aspects 
of an item are more likely to contribute to wordlikeness judgements.  

The weaker reliance on tone is additionally in line with the results from Cantonese 
perception studies. Phonological awareness tests in Cham (2003) reported that Cantonese 
speakers performed poorer in tone awareness tasks compared to segment awareness tasks, 
suggesting that tones are perceptually less salient than segments for Cantonese speakers. 
Studies on spoken word recognition also showed that word recognition is more challenging 
when tone differences were involved (e.g. Cutler & Chen, 1997; Keung & Hoosain, 1979), 
which imply listeners’ lower sensitivity to tone differences than segment differences. If so, 
the current study may suggest that speakers rely less on the syllabic component that is 
perceptually less salient and more on perceptually more salient ones.  

5.3. Categorical vs. gradient judgments  
 
Our final finding is that log-probability of syllabic components affects only the tendency 

to judge words being absolutely perfect or between the two extremes. They do not affect the 
probability that the participants will judge items as absolutely unacceptable. This suggests 
that potentially there are two different cognitive processes involved in wordlikeness 
judgements, for only one of which we have a solid predictor. The other one, one for 
categorically bad judgements, remains poorly understood. It is not surprising though that 
phonotactically illicit items are processed in a different way from absolutely grammatical and 
gradient items. Large amount of evidence showed difficulties in processing phonotactically 
illicit sequences in perception (e.g. Berent et al., 2007; Dupoux et al., 1999; Kabak & Idsardi, 
2007) and in production (Davidson, 2005, 2006a, 2006b; Rose & King, 2007; Vitevitch & 
Luce, 1998, 2005), which may suggest speakers’ limited ability to process the representations 
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of illicit sequences (Gorman, 2013). While the gradient nature of wordlikeness judgments has 
been widely recognized (Bailey & Hahn, 2001; Coleman & Pierrehumbert, 1997; Frisch et 
al., 2000; Hayes, 2000; Ohala & Ohala, 1986), the exact processes involved in the judgments 
for absolutely perfect vs. absolutely bad vs. gradient are yet to be known. We refrain from 
speculating as to why this is the case and whether this is generalizable to other languages and 
tasks. 

Modeling work on wordlikeness judgments has shown that phonotactic probability and 
neighborhood density are crucial determinants of speakers’ judgments (Bailey & Hahn, 1998, 
2001; Frisch et al., 2000). However, the full understanding of speakers’ phonotactic 
knowledge has yet to be obtained, given the lack of research focus on suprasegmental 
features in phonotactic modeling work. Our paper was an attempt to model wordlikeness 
judgments incorporating tone. Future work is to test other tonal languages, on the basis of the 
methodologies presented in the current study, so that the determinants of speakers’ 
wordlikeness judgments can be understood inclusive of segments and tones. 
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Supplementary Materials A 
List of Stimuli 

 
No. Stimuli 

string 
Jyutping IPA No. Stimuli 

string 
Jyutping IPA 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
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24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

mik2 
pYu3 
Gek3 
juY3 
bai4 
gAu5 
kYi1 
lYk1 
gOt2 
GeY5 
cem5 
hem1 
ceY2 
kOp2 
zek5 
jou4 
jeY3 
cei6 
fen1 
mAm1 
wet5 
pOt1 
hak3 
poi4 
KOY4 
GiY3 
got2 
fOt1 
wYN5 
weu1 
liY6 
hak4 
sAp1 
sai4 
fOt3 
heN3 
jAm1 
pYp6 
tot5 
mYn2 
GON6 
dA04 
gik3 
lOn3 
fYp3 

mik2 
pyuu3 
gwek3 
juyu3 
bai4 
gaau5 
kyui1 
lyuk1 
geot2 
gweyu5 
cem5 
hem1 
ceyu2 
keop2 
zek5 
jou4 
jeyu3 
cei6 
fen1 
maam1 
wet5 
peot1 
hak3 
poi4 
kweoyu4 
gwiyu3 
got2 
feot1 
wyung5 
weu1 
liyu6 
hak4 
saap1 
sai4 
feot3 
heng3 
jaam1 
pyup6 
tot5 
myun2 
gwoeng6 
daa4 
gik3 
leon3 
fyup3 

mɪk̚u 
pʰyːu˧ 
kʷɛːk̚˧ 
juːy˧ 
pɐiw 
kaːux 
kʰyːi˥ 
lyːk̚˥ 
kɵt̚u 
kʷeyx 
tsʰɛːmx 
hɛːm˥ 
tsʰeyu 
kʰœːp̚u 
tsɛːk̚x 
jouw 
jey˧ 
tsʰei˨ 
fɛːn˥ 
maːm˥ 
wɛːt̚x 
pʰɵt̚˥ 
hɐk̚˧ 
pʰɔːiw 
kʷʰɵyw 
kʷiːy˧ 
kɔːt̚u 
fɵt̚˥ 
wyːŋx 
wɛːu˥ 
liːy˨ 
hɐk̚w 
saːp̚˥ 
sɐiw 
fɵt̚˧ 
hɛːŋ˧ 
jaːm˥ 
pʰyːp̚˨ 
tʰɔːt̚x 
myːnu 
kʷœːŋ˨ 
taːw 
kɪk̚˧ 
lɵn˧ 
fyːp̚˧ 
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bom4 
GOu5 
hYk6 
cOt4 
zYu2 
wom5 
hAk2 
fap4 
fYm1 
cip4 
cOp6 
fei5 
GOi6 
tAk6 
dYi6 
kAp4 
mOn5 
GAt1 
dOn4 
mi06 
foi4 
lY06 
KAu4 
bak3 
tik5 
kek4 
koY3 
pon3 
jup3 
cen1 
seY3 
wYn2 
zYt4 
KaN6 
hYp5 
dum5 
pet5 
jO02 
cO05 
bOY5 
huk5 
fip4 
muY3 
jak4 
wAt5 

bom4 
gwoeu5 
hyuk6 
ceot4 
zyuu2 
wom5 
haak2 
fap4 
fyum1 
cip4 
ceop6 
fei5 
gweoi6 
taak6 
dyui6 
kaap4 
meon5 
gwaat1 
deon4 
mi6 
foi4 
lyu6 
kwaau4 
bak3 
tik5 
kek4 
koyu3 
pon3 
jup3 
cen1 
seyu3 
wyun2 
zyut4 
kwang6 
hyup5 
dum5 
pet5 
joe2 
coe5 
beoyu5 
huk5 
fip4 
muyu3 
jak4 
waat5 

pɔːmw 
kʷœːux 
hyːk̚˨ 
tsʰɵt̚w 
tsyːuu 
wɔːmx 
haːk̚u 
fɐp̚w 
fyːm˥ 
tsʰiːp̚w 
tsʰœːp̚˨ 
feix 
kʷɵi˨ 
tʰaːk̚˨ 
tyːi˨ 
kʰaːp̚w 
mɵnx 
kʷaːt̚˥ 
tɵnw 
miː˨ 
fɔːiw 
lyː˨ 
kʷʰaːuw 
pɐk̚˧ 
tʰɪk̚x 
kʰɛːk̚w 
kʰoy˧ 
pʰɔːn˧ 
juːp̚˧ 
tsʰɛːn˥ 
sey˧ 
wyːnu 
tsyːt̚w 
kʷʰɐŋ˨ 
hyːp̚x 
tuːmx 
pʰɛːt̚x 
jœːu 
tsʰœːx 
pɵyx 
hʊk̚x 
fiːp̚w 
muːy˧ 
jɐk̚w 
waːt̚x 
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49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

gAm6 
bip5 
cip6 
mYN4 
lan5 
pe06 
dep4 
boY5 
wi05 
dAY3 
zot1 
bum6 
tuk3 
dou5 
tet5 
deN4 
tuY4 
gaN4 
bu01 
fik3 
gOt3 
KAN5 
GYp3 
soY2 
cap5 
GoY5 
Kai3 
bOu1 
dAk1 
jek2 
mam2 
cu05 
sYu5 
KAp4 
koN6 
kom2 
get6 
Ki01 
sen3 
tek2 
faN6 
pik6 
pAu5 
GOi1 
heN2 
fiY5 
bem1 
ceu5 
jO03 
fYu4 

gaam6 
bip5 
cip6 
myung4 
lan5 
pe6 
dep4 
boyu5 
wi5 
daayu3 
zot1 
bum6 
tuk3 
dou5 
tet5 
deng4 
tuyu4 
gang4 
bu1 
fik3 
geot3 
kwaang5 
gwyup3 
soyu2 
cap5 
gwoyu5 
kwai3 
boeu1 
daak1 
jek2 
mam2 
cu5 
syuu5 
kwaap4 
kong6 
kom2 
get6 
kwi1 
sen3 
tek2 
fang6 
pik6 
paau5 
gweoi1 
heng2 
fiyu5 
bem1 
ceu5 
joe3 
fyuu4 

kaːm˨ 
piːp̚x 
tsʰiːp̚˨ 
myːŋw 
lɐnx 
pʰɛː˨ 
tɛːp̚w 
poyx 
wiːx 
taːy˧ 
tsɔːt̚˥ 
puːm˨ 
tʰʊk̚˧ 
toux 
tʰɛːt̚x 
tɛːŋw 
tʰuːyw 
kɐŋw 
puː˥ 
fɪk̚˧ 
kɵt̚˧ 
kʷʰaːŋx 
kʷyːp̚˧ 
soyu 
tsʰɐp̚x 
kʷoyx 
kʷʰɐi˧ 
p�ːu˥ 
taːk̚˥ 
jɛːk̚u 
mɐmu 
tsʰuːx 
syːux 
kʷʰaːp̚w 
kʰɔːŋ˨ 
kʰɔːmu 
kɛːt̚˨ 
kʷʰiː˥ 
sɛːn˧ 
tʰɛːk̚u 
fɐŋ˨ 
pʰɪk̚˨ 
pʰaːux 
kʷɵi˥ 
hɛːŋu 
fiːyx 
pɛːm˥ 
tsʰɛːux 
jœː˧ 

190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 

suk2 
za03 
KOY1 
fok5 
fat4 
keN1 
dap4 
GYN1 
moi3 
pOt2 
sOp1 
hOi2 
cum6 
Gek6 
wO05 
men3 
tei6 
ta01 
dap3 
ton3 
fon3 
muN3 
cit6 
dek1 
gOn1 
jAu2 
hYi5 
dOn5 
bOp5 
cY01 
leY1 
bOn2 
Kan5 
hYk3 
jAu5 
KOp2 
kat5 
hYp2 
pAY4 
bYu3 
Kim4 
sOp6 
sO02 
Gen5 
wAu2 
wOi3 
dek5 
sui3 
zem3 
bYt2 

suk2 
za3 
kweoyu1 
fok5 
fat4 
keng1 
dap4 
gwyung1 
moi3 
peot2 
seop1 
heoi2 
cum6 
gwek6 
woe5 
men3 
tei6 
ta1 
dap3 
ton3 
fon3 
mung3 
cit6 
dek1 
geon1 
jaau2 
hyui5 
deon5 
boep5 
cyu1 
leyu1 
beon2 
kwan5 
hyuk3 
jaau5 
kweop2 
kat5 
hyup2 
paayu4 
byuu3 
kwim4 
seop6 
soe2 
gwen5 
waau2 
weoi3 
dek5 
sui3 
zem3 
byut2 

sʊk̚u 
tsɐ˧ 
kʷʰɵy˥ 
fɔːk̚x 
fɐt̚w 
kʰɛːŋ˥ 
tɐp̚w 
kʷyːŋ˥ 
mɔːi˧ 
pʰɵt̚u 
sɵp̚˥ 
hɵiu 
tsʰuːm˨ 
kʷɛːk̚˨ 
wœːx 
mɛːn˧ 
tʰei˨ 
tʰɐ˥ 
tɐp̚˧ 
tʰɔːn˧ 
fɔːn˧ 
mʊŋ˧ 
tsʰiːt̚˨ 
tɛːk̚˥ 
kɵn˥ 
jaːuu 
hyːix 
tɵnx 
p�ːp̚x 
tsʰyː˥ 
ley˥ 
pɵnu 
kʷʰɐnx 
hyːk̚˧ 
jaːux 
kʷʰœːp̚u 
kʰɐt̚x 
hyːp̚u 
pʰaːyw 
pyːu˧ 
kʷʰiːmw 
sɵp̚˨ 
sœːu 
kʷɛːnx 
waːuu 
wɵi˧ 
tɛːk̚x 
suːi˧ 
tsɛːm˧ 
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96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 

lOu3 
pek4 
pO04 
fiY6 
tot2 
meu4 
lik3 
tat6 
dO03 
bOi1 
mOk4 
gun6 
pek5 
Gon1 
gik4 
jom5 
bot3 
bAp2 
pak2 
wok4 
KYi2 
fAu5 
KOi4 
ka01 
hot2 
koY2 
pup4 
wi03 
wAu5 
laY4 
zot4 
joY2 
zun1 
wOY2 
fAm4 
jop3 
fYu5 
Kin4 
bYu1 
hAu5 
jok3 
kap3 
gAt4 
koi2 
dam4 
ki04 
poN1 
cut1 
sYu3 

loeu3 
pek4 
poe4 
fiyu6 
tot2 
meu4 
lik3 
tat6 
doe3 
beoi1 
moek4 
gun6 
pek5 
gwon1 
gik4 
jom5 
bot3 
baap2 
pak2 
wok4 
kwyui2 
faau5 
kweoi4 
ka1 
hot2 
koyu2 
pup4 
wi3 
waau5 
layu4 
zot4 
joyu2 
zun1 
weoyu2 
faam4 
jop3 
fyuu5 
kwin4 
byuu1 
haau5 
jok3 
kap3 
gaat4 
koi2 
dam4 
ki4 
pong1 
cut1 
syuu3 

fyːuw 
l�ːu˧ 
pʰɛːk̚w 
pʰœːw 
fiːy˨ 
tʰɔːt̚u 
mɛːuw 
lɪk̚˧ 
tʰɐt̚˨ 
tœː˧ 
pɵi˥ 
m�ːk̚w 
kuːn˨ 
pʰɛːk̚x 
kʷɔːn˥ 
kɪk̚w 
jɔːmx 
pɔːt̚˧ 
paːp̚u 
pʰɐk̚u 
wɔːk̚w 
kʷʰyːiu 
faːux 
kʷʰɵiw 
kʰɐ˥ 
hɔːt̚u 
kʰoyu 
pʰuːp̚w 
wiː˧ 
waːux 
lɐyw 
tsɔːt̚w 
joyu 
tsuːn˥ 
wɵyu 
faːmw 
jɔːp̚˧ 
fyːux 
kʷʰiːnw 
pyːu˥ 
haːux 
jɔːk̚˧ 
kʰɐp̚˧ 
kaːt̚w 
kʰɔːiu 
tɐmw 
kʰiːw 
pʰɔːŋ˥ 
tsʰuːt̚˥ 
syːu˧ 

240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 

mip6 
GOm2 
got4 
bom2 
hYm1 
Kok4 
GAn2 
Gim3 
dYp1 
dei4 
wO02 
zan5 
tap4 
sAu5 
gYt4 
wuk4 
cuY6 
tuY1 
pOY1 
tem2 
tem5 
wiY6 
jOu2 
kOm3 
pen5 
dYp6 
Gen3 
pO02 
tan5 
kAn3 
feY4 
Gak4 
baN3 
pip6 
tOn6 
bap1 
mit2 
Gom4 
jak1 
kaY3 
ket3 
KAt3 
set2 
maY5 
zYk3 
tan2 
tOi2 
tum4 
pot3 

mip6 
gweom2 
got4 
bom2 
hyum1 
kwok4 
gwaan2 
gwim3 
dyup1 
dei4 
woe2 
zan5 
tap4 
saau5 
gyut4 
wuk4 
cuyu6 
tuyu1 
peoyu1 
tem2 
tem5 
wiyu6 
joeu2 
keom3 
pen5 
dyup6 
gwen3 
poe2 
tan5 
kaan3 
feyu4 
gwak4 
bang3 
pip6 
teon6 
bap1 
mit2 
gwom4 
jak1 
kayu3 
ket3 
kwaat3 
set2 
mayu5 
zyuk3 
tan2 
teoi2 
tum4 
pot3 

pyːt̚u 
miːp̚˨ 
kʷœːmu 
kɔːt̚w 
pɔːmu 
hyːm˥ 
kʷʰɔːk̚w 
kʷaːnu 
kʷiːm˧ 
tyːp̚˥ 
teiw 
wœːu 
tsɐnx 
tʰɐp̚w 
saːux 
kyːt̚w 
wʊk̚w 
tsʰuːy˨ 
tʰuːy˥ 
pʰɵy˥ 
tʰɛːmu 
tʰɛːmx 
wiːy˨ 
j�ːuu 
kʰœːm˧ 
pʰɛːnx 
tyːp̚˨ 
kʷɛːn˧ 
pʰœːu 
tʰɐnx 
kʰaːn˧ 
feyw 
kʷɐk̚w 
pɐŋ˧ 
pʰiːp̚˨ 
tʰɵn˨ 
pɐp̚˥ 
miːt̚u 
kʷɔːmw 
jɐk̚˥ 
kʰɐy˧ 
kʰɛːt̚˧ 
kʷʰaːt̚˧ 
sɛːt̚u 
mɐyx 
tsyːk̚˧ 
tʰɐnu 
tʰɵiu 
tʰuːmw 
pʰɔːt̚˧ 
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Supplementary Materials B 
Demographic Questionnaire 

 
 

1. 您嘅性別係？What is your gender? 
a. 男Male 
b. 女 Female 
c. 其他 Other 
 

2. 您屬於以下邊一個年齡層？Which age group are you belong to? 
a. 18–24 
b. 25–34 
c. 35–44 
d. 45–54 
e. 55–60 
 

3. 您嘅母語係？（可選擇多於一項） 
What is(are) your mother language(s)? (More than one option can be selected) 
a. 廣東話 Cantonese 
b. 普通話/國語 Putonghua/Taiwanese Mandarin 
c. 英文 English 
d. 其他語言/方言，請註明： 

Other language/dialect, please indicate: 
 
4. 喺十歲之前，您主要喺邊個地方生活？ 

Where did you mainly live before the age of 10? 
a. 香港 Hong Kong 
b. 澳門Macau 
c. 內地，請註明城市： 

Mainland, please indicate city:  
d. 其他，請註明國家/地區： 

Other, please indicate country/city: 
 
5. 您現居嘅城市係？ 

Which country are you living in? 
a. 香港 Hong Kong 
b. 澳門Macau 
c. 內地，請註明城市： 

Mainland, please indicate city: 
d. 其他，請註明國家/地區： 

Other, please indicate country/city: 
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Supplementary Materials C 
Scatterplots of predictors against wordlikeliness judgements 

 
In the figures below, size of the circles are proportional to the number of judgements.             

 
(a) Scatterplot of judged wordlikeness (y-axis) against the log-probability 

(b)  
(c) Scatterplot of the judged wordlikeness (y-axis) against the number of neighbors (x-axis) 

 
(d) Scatterplot of the judged wordlikeness (y-axis) against the the GCM value (x-axis), i.e. 

the third GNM quality insensitive to frequency  
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(e) Scatterplot of the judged wordlikeness (y-axis) against the second GNM quantity (x-axis), 

i.e. GCM weighted by frequency (with B as a coefficient).  

 
(e) Scatterplot of the judged wordlikeness (y-axis) against the first GNM quantity(x-axis), i.e. 
GCM weighted by square frequency (with A as a coefficient).  
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Supplementary Materials D 
Basics of ZOIB models 

 
The ZOIB model has three components: A Bernoulli-distributed (i.e. discrete probability 

distribution) component for predicting whether the judgement is zero (absolutely impossible), 
another Bernoulli-distributed component for predicting whether the judgment is one 
(absolutely possible), and a beta-distributed (i.e. continuous probability distribution) 
component for modelling the density of the intermediate judgements (between 0 and 1). The 
three components’ distributions are given below: 

(1) 𝐼3𝑌5< = 07	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖3𝑙𝑜𝑔𝑖𝑡%@(𝛽DD + (𝛽D@ + 𝛼D@5)𝑥/E,< + 𝛼DD5 + 𝛾D<)7 
𝐼3𝑌5< = 17	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖3𝑙𝑜𝑔𝑖𝑡%@(𝛽@D + (𝛽@@ + 𝛼@@5)𝑥/E,< + 𝛼@D5 + 𝛾@<)7 

𝑌5< 	|	𝑌5< ∈ (0, 1)	~	𝐵𝑒𝑡𝑎3𝜙	𝑙𝑜𝑔𝑖𝑡%@3𝛽=D + (𝛽=@ + 𝛼=@5)𝑥/E,< + 𝛼=D5 + 𝛾=<7, 𝜙(1
− 𝑙𝑜𝑔𝑖𝑡%@(𝛽=D + (𝛽=@ + 𝛼=@5)𝑥/E,< + 𝛼=D5 + 𝛾@<)7 

In the above formula, the means of the two Bernoulli distributions (0s and 1s) and the beta 
distribution (gradient judgments) depend on the same set of predictors, in this case the log-
probability (𝑥/E,<). There are two population-level coefficients (‘fixed effects’ in frequentist 
terms) for each of the three parts of the model, namely the population-level intercept 
𝛽DD, 𝛽@D, 𝛽=D and the population-level slopes 𝛽D@, 𝛽@@, 𝛽=@. There are also participant-level 
predictors (‘random effects’ in frequentist terms) that allow for variability across participants, 
including the three random intercepts 𝛼DD5, 𝛼@D5 and 𝛼=D5, and the three random slopes 𝛼D@5, 
𝛼@@5 and 𝛼=@5. Finally, there is an item-level intercept. 

The means of the two Bernoulli distributions are related to the probability of through a 
logit link, as is the case for standard logistic regression. For the beta regression, the formula 
shown here is derived from a reparametrisation of the beta regression in terms of the mean 
and a precision parameter 𝜙. 

We will now look at the distributions of the model parameters in detail. Firstly, the group-
level effects for each component come from bivariate normal distributions. The covariance 
matrix allows for correlations. There is an LKJ prior with one degree of freedom 
(Lewandowski et al., 2009) on the lower Cholesky decomposition of the correlation matrix, 
and half-t priors (Gelman, 2006) on the standard deviations: 

 
(𝛼0D5 , 𝛼0@5)	~	𝑁(0, 𝛴F0)	𝑓𝑜𝑟	𝑐 ∈ {0, 1, 2}, 𝑖 ∈ {1, 2, … 𝐼} 

where 𝛴F0 = 𝐷(0𝑅(0𝐷(0 , 𝑅(0 =	𝐿(0𝐿(01 , 𝐷(0 = 𝑑𝑖𝑎𝑔(𝜎F0@, 𝜎F0=), 
𝐿(0~	𝐿𝐾𝐽(1), 𝜎F0@, 𝜎F0=~	ℎ𝑎𝑙𝑓 − 𝑡(3, 0, 2.5) 

 
The item-level intercept simply follows a univariate normal distribution, again with a half-

t prior on its standard deviation: 
 
𝛾D< 	~	𝑁(0, 𝜎G0) 𝑓𝑜𝑟	𝑐 ∈ {0, 1, 2}, 𝑖 ∈ {1, 2, … 𝐼}, 𝜎G0~	ℎ𝑎𝑙𝑓 − 𝑡(3, 0, 2.5) 
 
There is a default standard normal prior on the ‘fixed-effect’ slopes, a t-distributed prior 

on the population-level intercept for the beta component, and a logistic-distributed prior on 
the population-level intercept for the logistic components: 

𝛽0@~	𝑁(0, 1)	𝑓𝑜𝑟	𝑐 ∈ {0, 1, 2} 
𝛽D@, 𝛽D=~	𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0, 1) 

𝛽DD~	𝑡(3, 0, 2.5) 
Finally, there is a gamma prior on the precision parameter of the beta distribution: 

𝜙	~	𝛤(0.01, 0.01) 
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Supplementary Materials E 
Confidence intervals for the multiverse analysis 

 
 

 T|O T|N T|C T|S T NoT 
NN (0.03, 0.08) (0.05, 0.11) (0.03, 0.08) (0.02, 0.07) (0.06, 0.12) (0.03, 0.08) 
GCM (0.05, 0.08) (0.06, 0.09) (0.04, 0.08) (0.04, 0.07) (0.06, 0.10) (0.06, 0.09) 
None (0.04, 0.08) (0.05, 0.08) (0.05, 0.08) (0.06, 0.10) (0.06, 0.10) (0.06, 0.10) 

Table 8a. Multiverse results for the 95% CI of the effect of log-probabilities on gradient 
judgements. 
 
 
 T|O T|N T|C T|S T NoT 
NN (−0.03, 0.04) (−0.03, 0.04) (0.00, 0.07) (−0.02, 0.04) (−0.03, 0.05) (0.00, 0.07) 
GCM (−0.02, 0.03) (−0.02, 0.03) (−0.01, 0.04) (−0.01, 0.03) (−0.02, 0.03) (−0.02, 0.03) 
None (−0.01, 0.03) (−0.02, 0.03) (−0.00, 0.04) (−0.02, 0.03) (−0.02, 0.03) (−0.02, 0.03) 

Table 8b. Multiverse results for the 95% CI of the effect of log-probabilities on the judgments 
of 0s. 

 
 

 T|O T|N T|C T|S T NoT 
NN (0.13, 0.44) (0.30, 0.64) (0.13, 0.45) (0.06, 0.35) (0.37, 0.73) (0.13, 0.45) 
GCM (0.27, 0.50) (0.35, 0.58) (0.25, 0.47) (0.21, 0.43) (0.37, 0.61) (0.36, 0.59) 
None (0.28, 0.51) (0.28, 0.51) (0.27, 0.48) (0.37, 0.60) (0.38, 0.62) (0.38, 0.62) 

Table 8c. Multiverse results for the 95% CI of the effect of log-probabilities on the judgments 
of 1s. 
 

 T|O T|N T|C T|S T NoT None 
NN (−0.00,0.01) (−0.01, 0.00) (−0.00, 0.01) (−0.00, 0.01) (−0.01, 0.00) (−0.00, 0.01) (−0.01, 0.00) 
GCM (0.01, 0.10) (0.01, 0.10) (−0.00, 0.01) (0.00, 0.02) (0.00, 0.02) (0.00, 0.02) (0.00, 0.02) 

Table 9a. Multiverse results for the 95% CI of the effect of neighborhood density on gradient 
judgements 

 
 T|O T|N T|C T|S T NoT None 
NN (−0.01,0.01) (−0.01, 0.01) (−0.01, 0.00) (−0.01, 0.01) (−0.01, 0.01) (−0.01, 0.00) (−0.01, 0.01) 
GCM (−0.01,0.02) (−0.01, 0.02) (−0.01, 0.01) (−0.01, 0.01) (−0.01,0.02) (−0.01, 0.02) (−0.01, 0.01) 

Table 9b. Multiverse results for the 95% CI of the effect of neighborhood density on the 
judgments of 0s. 

 
 

 T|O T|N T|C T|S T NoT None 
NN (0.00, 0.07) (−0.04, 0.04) (−0.01, 0.07) (0.01, 0.08) (−0.05,0.02) (−0.01, 0.07) (−0.05, 0.02) 
GCM (0.02, 0.11) (0.02, 0.11) (−0.01, 0.09)  (0.01, 0.11) (0.01, 0.10) (0.02, 0.11) (0.02, 0.13) 

Table 9c. Multiverse results for the 95% CI of the effect of neighborhood density on the 
judgments of 1s. 

 


