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We derive well-understood and well-studied Subregular classes of for-

mal languages purely from the computational perspective of algorith-

mic learning problems. We parameterise the learning problem along

dimensions of representation and inference strategy. Of special inter-

est are those classes of languages whose learning algorithms are neces-

sarily not prohibitively expensive in space and time, since learners are

often exposed to adverse conditions and sparse data. Learned natural

language patterns are expected to be most like the patterns in these

classes, an expectation supported by previous typological and linguis-

tic research in phonology. A second result is that the learning algo-

rithms presented here are completely agnostic to choice of linguistic

representation. In the case of the Subregular classes, the results fall out

from traditional model-theoretic treatments of words and strings. The

same learning algorithms, however, can be applied to model-theoretic

treatments of other linguistic representations such as syntactic trees

or autosegmental graphs, which opens a useful direction for future

research.

1 i n t r o d u c t i o n

We present an analysis supporting the view that the computational

simplicity of learning mechanisms have considerable impact on the

types of patterns found in natural languages.
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First, we derive well-understood and well-studied Subregular

classes of formal languages purely from the computational perspective

of algorithmic learning problems. We present a family of four learn-

ing algorithms, generalizing Heinz (2010b). We show that the simplest

classes of languages in these hierarchies are precisely the ones whose

learning algorithms use the least computational resources. In fact,

these are the only ones that are not prohibitively expensive to learn.

A reasonable expectation is that learned natural language patterns

would be most similar to patterns in the simplest of these classes, an

expectation supported by previous typological and linguistic research

in the domain of phonology.

A second result is that we introduce linear-time learning algo-

rithms for some Subregular classes. As we explain, these algorithms

are helpful in certain cases and not so helpful in others, depending on

the extent to which the target patterns interact with other constraints.

At issue is that a set of data points which may be helpful in identify-

ing one constraint do not occur because they also happen to violate

another. A virtue of this analysis is that we can identify precisely the

situations where the linear-time learning algorithms can be applied.

A third result is that the learning algorithms presented here are

completely agnostic to choice of linguistic representation. These learn-

ing algorithms essentially parameterise the learning problem in two

ways: the structural knowledge salient to the learner (the representa-

tion), and the way the learner collects and combines this structural

information to derive sets of acceptable and unacceptable linguistic

structures. In the case of the Subregular classes of formal languages,

the results fall out from traditional model-theoretic treatments of

words and strings on the representational side and how the combi-

natorics of the grammars relate to kinds of logical languages on the

other side.

Because the algorithms are agnostic to the representations, the

same learning algorithms can be applied tomodel-theoretic treatments

of other linguistic representations such as syntactic tree structures or

autosegmental graphs. Of course, the real-life learning problem is com-

plicated by the fact that language learners do not have direct access

to linguistic structures like trees. Nonetheless the generality of these

learning algorithms means the real-life learning problems may be re-

duced to these algorithms coupled with appropriate parsing mecha-

[ 2 ]



Simplicity in representations and learning

nisms.

1.1 Priors in language learning

Language acquisition succeeds despite sparse, underdetermined, Zipf-

distributed input, compounded by a lack of invariance in the signal –

the so-called poverty of stimulus (Yang 2013). This holds across all

domains of language, from phonological to syntactic induction.

It is uncontroversial that some bias or innate component restricts

a learner’s hypothesis space regardless of its strategy to solve this in-

duction problem, often referred to as Universal Grammar (Nowak et al.

2002). The question is its nature. How is it rich, and how is it poor?

Data-driven statistical learning does not change this basic calcu-

lus. One reason is that children often learn language in ways that defy

adult distributions (Legate and Yang 2002). Another is that induc-

tion from a data distribution without a prior may only recapitulate

the training data (Fodor and Pylyshyn 1988; Mitchell 1982, 2017),

and cannot generalize. Without a lens in which linguistic experience

is viewed, even the input distribution cannot be recovered, simply

because distributions are based on the structure of their parameters

(Lappin and Shieber 2007). Consequently, the nontrivial open ques-

tion central to learnability research in linguistics instead concerns the

characteristics of this additional prior knowledge or bias such that

learners generalize from limited experience (Rawski and Heinz 2019).

1.2 Regular and Subregular patterns

Recent typological and experimental work highlights the Regular re-

gion of languages as a sufficient structural bound on computational ex-

pressivity for phonological and morphological grammars . This Regu-

lar characterization has been extended to syntactic distributions when

the data structure characterizing the computational trace is formu-

lated as a tree rather than strings, which enforce syntactic member-

ship in the Mildly Context-Sensitive class of languages (Kobele 2011;

Graf 2011). However, the Regular class is not learnable from under

various learning scenarios including identification in the limit from

positive data, and the Probably Approximately Correct (PAC) frame-

work (Gold 1967; Valiant 1984; de la Higuera 2010). Additionally,

the range of distributions present in phonology and morphology that

sit in the Regular region do not require the full complexity of Regular
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power (Heinz 2018; Chandlee 2017).

For these reasons, phonological constraints are hypothesised to

inhabit structured subclasses of the Regular languages, lumped under

the term Subregular (Heinz 2010a, 2018). Various connections be-

tween logic, formal languages and automata defining these classes

have been explored in great detail. These characterizations build

on two classical results in formal language theory: Büchi’s monadic

second-order characterization of the Regular languages (1960), and

the first-order characterization by McNaughton and Papert (1971) of

the Star-Free languages, which are also characterized by aperiodic de-

terministic finite-state automata (Schützenberger 1965). Refinements

of these results from logical, automata-theoretic, and algebraic view-

points have defined the Local and Piecewise hierarchies (Rogers et al.

2012). Linguistically, these refinements have garnered interest since

the mirphological and phonological typology correlates with these

refinements, favouring the weakest subclasses in the Subregular hi-

erarchy. Experimental work also favours this characterization (Finley

2008; Lai 2015; McMullin and Hansson 2019). Our learning algo-

rithms can be applied to model-theoretic treatments of other linguis-

tic representations such as syntactic trees or autosegmental graphs,

which opens a useful direction for future research.

1.3 Outline

This paper proceeds as follows. Section 2 defines a general model-

theoretic treatment of linguistic representation, and several types of

linguistic structures based on different model signatures. Section 3 de-

fines a typology of online learning algorithms and derives the Subreg-

ular language classes, hierarchically organised by space complexity.

Section 4 characterizes this space of algorithms according to time com-

plexity, and picks out of the least space-intensive Subregular classes

those that can be learned in linear time. Section 5 characterizes inter-

actions of constraints defined in and between these classes. Section 6

discusses model signatures for other linguistic representations. Sec-

tion 7 describes related work. Section 8 concludes with future direc-

tions.
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2 m o d e l t h e o r i e s

Our learning algorithms can be applied to model-theoretic treatments

of other linguistic representations such as syntactic trees or autoseg-

mental graphs, which opens a useful direction for future research. This

section will introduce the structures that the learning algorithms will

work over. We will first discuss a general notion of structural informa-

tion, and use it to derive a notion of substructures. This will allow us

to describe several representations of words. Structural information is

defined relationally in terms of model theory. Finite model theory pro-

vides a unified ontology and a vocabulary for representing many kinds

of objects, by considering them as relational structures (see Libkin 2004

for a thorough introduction). This allows flexible but precise defini-

tions of the structural information in an object, by explicitly defining

its parts and the relations between them. This makes model-theoretic

representations a powerful tool for analyzing the information charac-

terizing a certain structure.

The discussion of this section is organized around different no-

tions of order: successor, precedence, and relativized successor. The

successor and precedence orders give rise to the Local and Piecewise

branches of the Subregular hierarchy, and the relativized successor

gives rise to the Tier-Based Local branch. We assume some familiar-

ity with these classes. Because this presentation focuses on deriving

these Subregular classes from a model-theoretic and learning perspec-

tive, we postpone most references to these classes and related work to

Section 7.

A relational structure in general is a set of domain elements, D,
which is augmented with a set of relations of arbitrary arity, Ri ⊆ Dni .

The relations provide information about the domain elements. The

model signatureM = 〈D; Ri〉 collects these parts and defines the nature
of the structure in terms of the information in the model. Let w be a

string over some alphabet Σ. Then a model for a word w is a structure:

M Ri
Σ (w) :=



Dw; Ri ,σw

�

σ∈Σ

where Dw is isomorphic to an initial segment 〈1, . . . , |w|〉 of the nonzero
natural numbers and represents the positions in w, and each σw is a

unary relation that holds for all and only those positions at which σ

occurs. Note that it is assumed that the set {σw}σ∈Σ is a partition of
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Dw.
1 Without loss of generality, consider an alphabet Σ = {s, ʃ,á,à},

which represent two types of sibilants and a vowel with either low or

high tone. Strings are combinations of these symbols at certain events,

like the word ‘sásàʃá’.

The remaining Ri are the other salient relations, which are used to

define order in a particular structure. One model signature for strings,

called the precedence model, is given as

M<(w) = 〈Dw;<w, sw, ʃw,áw,àw〉.

This model says that for every symbol σ in alphabet Σ, there is a unary

relation Rσ in R that can be thought of as a labelling relation for that

symbol. For our set Σ = {s, ʃ,á,à}, R includes the unary relations Rs,

Rʃ, Rà, and Rá. It also defines a binary relation (x < y), the general

precedence relation on the domain D. A visual of the word model for

‘sásàʃá’ under this signature is given in Figure 1.

The general precedence relation describes a notion of structural

information purely in terms of whether a node precedes another one.

While the information that, say, the last element in a string comes af-

ter the first is immediately accessible from the model, this distinction

collapses the notions of immediate and general structural adjacency.

Building on this precedence relation we can derive different types of

1One can convert a model in which multiple unary relations may apply to a

given domain element into a partitioned normal form by simply replacing these

unary relations with their powerset.

Figure 1:

The general precedence model of

‘sásàʃá’, along with the 3-factor ‘áàá’.
Each edge defined by the relation is

pictured, while the thick solid edges

designate those that form the window

from which this 3-factor is derived

s á s à ʃ á

〈D;<, s, ʃ,á,à〉

á à á
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relational structure. These refine the model of a word to describe im-

mediate, relativized, or multiply-relativized adjacency.

Perhaps we would like to consider only immediately adjacent ele-

ments. Rather than a general precedence relation <, we may consider

an immediate precedence, or successor, relation Ã. The standard suc-

cessor relation is the transitive reduction of the precedence relation

and is first-order definable from the latter as follows:

x Ã y := x < y ∧ (∀z)[x < z ⇒ y ≤ z].

This relation gives a different word model, where elements are ar-

ranged according to immediate adjacency, commonly called the suc-

cessor model. The signature for this model is given as

MÃ(w) = 〈Dw;Ãw, sw, ʃw,áw,àw〉.

A visual of the successor word model for the word ‘sásàʃá’ is given in

Figure 2.

The general precedence relation can alternatively be refined to

discuss a form of immediate adjacency relativized to certain unary re-

lations in the signature. In particular, we can form relations between

subsets of the alphabet, commonly called a tier-alphabet. For example,

we may want to discuss the relations between only the sibilant ele-

ments present in a word, to the exclusion of all others. Similarly to

how the successor relation is derived, we can restrict the precedence

relation to the intended tier-alphabet τ and first-order define a similar

tier-successor relation Ãτ:

x Ãτ y := τ(x)∧τ(y) ∧ x < y ∧
�

∀z
���

τ(z) ∧ x < z
�

⇒ y ≤ z
�

.

Figure 3 depicts the relationships among these ordering relations.

Adjusting the model signature appropriately, shown below, we

get a tier-based notion of structure, shown visually in Figure 4.

s á s à ʃ á

〈D;Ã, s, ʃ,á,à〉

á s à

Figure 2:

The immediate successor model of

‘sásàʃá’, along with its 3-factor ‘ásà’
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< <τ

Ã Ãτ

reduce

restrict

reduce

relativize

Figure 3:

Relationships between the general

precedence relation and others

first-order definable from it

MÃ
{s,ʃ}
(w) = 〈Dw;Ã{s,ʃ}w , sw, ʃw,áw,àw〉.

Because the unary relations partition the domain elements, we

can create a tier-adjacency relation for each element of the powerset of

these relations. This merely amounts to adding tier-adjacency relations

to the model signature to create a multi-tier signature. A model of the

multi-tier relations is shown in Figure 5.

MÃ
{s,ʃ},Ã{à,á}

(w) = 〈Dw;Ã{s,ʃ}w ,Ã{à,á}
w , sw, ʃw,áw,àw〉.

These four model signatures are by no means the only relational

word models that may be considered. However, for the purposes of

this paper we restrict ourselves to these signatures. Additionally, the

definability of these signatures from other signatures leads to a general

ability to define a notion of substructure, which we cover below.

2.1 Windows and factors

Now that we have a general model-theoretic notion of structure, we

would like a way to define certain parts of each structure, each of

which is a structure in itself defined by the signature. Here we gen-

eralize the method of Lambert and Rogers (2020) in defining these

restrictions on models.

In order to pick out subparts of a wordmodel, we first pick out sets

of elements that will define the substructure. Given a homogeneous

Figure 4:

The tier-successor model of ‘sásàʃá’

relativized over the set τ= {s, ʃ},
along with its only 3-factor ‘sʃs’

s á s à ʃ á

〈D;Ã{s,ʃ}, s, ʃ,á,à〉

s s ʃ

[ 8 ]



Simplicity in representations and learning

s á s à ʃ á

〈D;Ã{s,ʃ},Ã{à,á}, s, ʃ,à,á〉

s s ʃ á à á

Figure 5:

The multi-tier-successor model of

‘sásàʃá’ relativized over the sets {s, ʃ}
and {à,á}, along with its only two

3-factors, ‘sʃs’ and ‘áàá’

relation R of arity a, the set

W R
a (m) :=
¦

�

〈
i
x i ,

i+1
x i+1〉: 1≤ i < a

	

: 〈x1, . . . , xa〉 ∈ Rm

©

is the set of a-windows over R in the context of the model m. These are

merely directed acyclic graphs (represented by their edge sets alone)

constructed from the relations in R, such that each instance of a given

domain element in the tuple is represented by a distinct node in the

window, rather than merging all instances into a single node. Con-

cretely, if 1 were a domain element and 〈1,1〉 an element of the re-

lation, the corresponding 2-window would have two distinct nodes,

both labelled by an index and the domain element 1: 〈
1
1,

2
1〉. The set of

windows of length greater than a is defined inductively by

W R
k+1(m) :=
¦

A∪
�

〈
ja−1xa−1,

k+1
xa 〉
	

:

A∈W R
k (m), 〈x1, . . . , xa〉 ∈ Rm,
�

〈
jix i ,

ji+1x i+1〉: 1≤ i < a− 1
	

⊆ A, 〈
ja−1xa−1,

jaxa〉 6∈ A
©

.

This means that for each k-window, we find a linear subgraph (a path)
that maps to the initial a − 1 domain elements of one of the a-tuples
that comprise R and add an edge from the final node of this path to a

newly constructed node representing the final domain element from

that tuple. The conditions are arranged in such a way that each it-

eration actually adds a new step to the path rather than simply re-

peating an older step, while still allowing cycles to be taken arbitrar-

ily many times. Each of these larger windows can then be thought

of as a graph of positions that are formed from a set of overlapping

a-windows, which in turn are merely representations of tuples in the

relation R. However, we may also wish to discuss a window which is
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of shorter length than the arity of the relation that defines it. To do

so, we simply state that any connected subgraph of a window is itself

a window.

For a given window x of a word model m, we define the factor at

x (written ¹xºm) as the restriction of m to the domain elements that

occur in x . This lets us define the set of all k-factors of m as follows:

F R
k (m) :=
�

¹xºm : x ∈W R
k (m)
	

.

Note that a window is distinct from a factor in that the former is a

graph of positions while the latter describes a word model whose do-

main consists of only a certain set of positions.

As example, consider the tier successor model of the word ‘sásàʃá’

as above. Consider a 3-window x which contains all and only the do-

main elements {1,3, 5}. Here the restriction of the word model that

defines this 3-factor is

¹xºm = m � x =



{1,3, 5}; {〈1,3〉, 〈3,5〉}, {1,3}, {5},∅,∅
�

.

Similar examples can be seen above in Figures 1–5. Various par-

allels emerge. The precedence word model contains a strict superset

of the factors of every other word model we have considered. The

tier-based and multi-tier-based word models have ‘sʃs’ as a 3-factor,
but the immediate successor model does not. On the other hand, ‘ásà’

is a 3-factor of only the precedence and immediate successor models.

Only the precedence and multi-tier successor models have both ‘sʃs’

and ‘áàá’ (a sequence of High-Low-High tone vowels) as 3-factors.

2.2 Anchored word models

The word models considered up to this point do not encode domain

boundaries explicitly. However, many prior treatments, including that

of Lambert and Rogers (2020), explicitly assume such boundaries. One

approach that has not been explicitly considered in this prior work is

a model whose string yield is biinfinite. Here left and right boundary

symbols (labelled o and n, respectively) exist in the model and both

participate in and are self-related under any ordering relations. This

approach naturally captures words shorter than k symbols in its con-

cept of a k-factor, without having to consider a union of smaller factor

widths. The successor model for ‘sásàʃá’ is shown along with each of

its 3-factors in Figure 6.
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o s á s à ʃ á n

o

o s

o s á

s á s

á s à

s à ʃ

à ʃ á

ʃ á n

á n

n

Figure 6:

The anchored word model

under successor for ‘sásàʃá’

along with each of its

3-factors. Note that every
factor that includes a

boundary symbol has an

infinite yield. Those factors

shorter than 3 symbols are

formed from windows of

length 3 that repeat the

boundary symbols

The learning algorithms that we consider in this work are not

bound to any particular model signature. Thus we may consider the

standard word models as shown in, for example, Figure 1, or we might

consider these anchored word models.

3 s p a c e c o m p l e x i t y a n d t h e s u b r e g u l a r g r i d

This section will examine four learning algorithms in the style of Gold

(1967), where stringsets are learned in the limit from distribution-

free positive texts. Indeed, we will only be considering subclasses of

a style of learning algorithm presented by Heinz (2010b, expanded

upon by Heinz et al. 2012). We show that of these subclasses, some

require substantially more space than others to properly account for

the distinctions that must be made in the course of learning, and we

argue that this alone would cause linguistic typology to tend toward

the simpler, less space-intensive classes.

First we briefly discuss some background from learning theory.

Let L be a set of strings drawn from Σ∗ and let Lý represent L with an

adjoined element ý. An online learner is a function ϕ : G × Lý→G ,
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where G is some kind of grammar representation, a mechanism by

which one can decide whether a given string is in L. In other words, an
online learner begins with some guess as to what the grammar might

be and updates this guess for each input word. Let L : G →P (Σ∗) be
the function that maps a grammar to its extensions, the set of strings

it represents. Two grammars G1 and G2 are equivalent (G1 ≡ G2) iff

they are extensionally equal, that is, L (G1) =L (G2).
A text for L is a function t : N→ Lý, a sequence of strings drawn

from L or pauses in which data does not appear. Following traditional

mathematical notation for sequences, we use tn to represent t(n). If
∅ represents an initial guess at what the grammar might be, then the

recursively-defined sequence

an(t) :=

(

∅ if n= 0

ϕ(an−1, tn) otherwise.

represents the learning trajectory over a given text. Then given a text

t for a language L, we say that a learning algorithm ϕ converges on t
iff there is some i ∈ N such that for all j > i it holds that a j(t)≡ ai(t).
If for every possible text t over L it is the case that ϕ converges on t
and L
�

limn→∞ an(t)
�

= L, then we say ϕ converges on L. As a second
lift, if for every stringset L in a class L it is the case that ϕ converges

on L, then we say ϕ converges on L.

3.1 String extension learning

Heinz (2010b, expanded by Heinz et al. 2012) defined a general notion

of learning from gathered substructures. Originally treated only as a

batch learner, the online definition is trivial to derive. Given a function

f : M →S that extracts informational content from a word model,

where S represents some notion of structural content, along with a

combinator ⊕ : G ×S →G that somehow informs the grammar of

these structures, we define

ϕ(G, w) :=

(

G if w= ý

G ⊕ f
�

M (w)
�

otherwise.

In a simple case, G and S will be the same type, and ⊕ will simply be

set union, but this is not a necessary requirement.

[ 12 ]
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3.1.1 Learning with factors

This simple case is exemplified by a learner that makes distinctions

only between permitted and nonpermitted factors. This learner is pa-

rameterised by a factor width k. We have G = S =P (Σk) and G⊕S =
G ∪ S. The information extraction function is

f (m) :=Fk(m).

Since the grammar only needs to maintain a single merged set

of attested factors, the space complexity for this class of learner is

O (|Σ|k). This will be referred to as Algorithm II. A variant, which will

be Algorithm I, will be discussed in Section 3.1.4.

3.1.2 Learning with sets

The primary difference between learning with factors and learning

with sets thereof is the grammar augmentation combinator. Rather

than set union, G⊕S = G∪S, we have set insertion, G⊕S = G∪{S}. This
of course means that G and S are no longer equal, with G being the

powerset P (S ), adding a layer of structure. Since a given grammar

is in this case a set of sets of factors, with this larger grammar the

space complexity is O (2|Σ|
k
). These set-based classes can make more

distinctions than the purely factor-based classes, but this power comes

at a cost. This is Algorithm III.

3.1.3 Learning with multisets

A set is simply a structure that contains for each possible element

a Boolean value describing whether or not that element is included.

Given the natural isomorphism between the Booleans and the subset

of N consisting of 0 and 1, one might consider a natural expansion of

this structure which denotes number of occurrences saturating not at

1 but at some arbitrary value t. We can learn classes in which well-

formedness is characterized by the saturating multisets of factors in a

word as follows. With S =P (Σk ×Nt) and G =P (S ), we can main-

tain from the set-based learner the augmentation combinator where

G⊕S = G∪{S}. However, the function that extracts informational con-

tent must be modified to include the t-counts associated with a given

factor as follows

f (m) := H¹xºm : x ∈Wk(m)It .

[ 13 ]
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The notation H. . .It represents a multiset that saturates at a count of

t. Note that this parallels the window-based definition of factors in a

model, except that a saturating multiset is formed rather than merely

a set. The space complexity here is much like that of Algorithm III, ex-

cept that the base of the exponent is changed to correspond with the

number of values each factor may be associated with: O
�

(t + 1)|Σ|
k�

.

This is Algorithm IV. Using this algorithm with t = 1 is equivalent in

every way to Algorithm III, so in fact there are only three algorithms

under discussion. That said, we will retain this separation for the cur-

rent discussion.

3.1.4 Learning with factors, revisited

A variant of Algorithm II ignores all input words longer than k sym-

bols. The only difference then is the information extraction function

f (m) :=

(

m if |m| ≤ k

∅ otherwise.

This is Algorithm I. Notably, using the anchored word models with

this algorithm produces only finite languages. In contrast to the other

algorithms, translating such models into unanchored ones provides an

increase in expressive power.

3.1.5 Illustration

Considering a standard unanchored word model, with the algorithmic

parameters k and t both set to 2, Table 1 represents the outputs of these
four learning algorithms after seeing the single word ‘aaaab’. Notably,

this word is not short enough to inform Algorithm I of anything. Also,

despite the fact that ‘aa’ occurs as a substring three distinct times, Al-

gorithm IV saturates at a count of 2 under these assumed parameters.

Table 1:

Encountering the single word ‘aaaab’ with each learner
Algorithm Resulting Grammar

I ∅
II {aa,ab}
III
�

{aa,ab}
	

IV
�

{〈aa, 2〉, 〈ab, 1〉}
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3.2 The grid

These learning algorithms are model-agnostic. As long as there exists

some way to extract windows or factors (i.e., substructures) from a

model, the algorithms will work with that. When allowed to range

over selected model signatures, the classes learned by each algorithm

are shown in Figure 7. Note that Algorithm I learns only strong classes

(those in which domain boundaries are unreferenced), while the oth-

ers do not have this restriction. In the Piecewise case, where the model

signature contains the general precedence relation (<), the strong

classes are equivalent to the general classes and this distinction is ir-

relevant.

We note that the amount of space required to store the grammar

is fairly large for any of these algorithms. But Algorithms III and IV

require exponentially more space than I and II. These space require-

ments are shown in Figure 8, where it is apparent that even on merely

a binary alphabet, the Locally 5-Testable class of languages, for exam-

ple, requires more storage space than there are synapses in an average

human being (Azevedo et al. 2009; Herculano-Houzel and Lent 2005).

Due to the enormous space requirements in terms of alphabet size

of the higher-numbered algorithms, it seems in general unfeasible to

learn patterns that lie strictly in their corresponding classes. That is,

from learnability alone we would expect the typology of patterns in

natural language to lie primarily within the region spanned by Algo-

rithms I and II. This region is highlighted in Figure 7 by a dotted line.

Further, we would expect any attested patterns to require relatively

small values for the factor width parameter k, since that is the expo-
nent of these singly and doubly exponential space complexities.

4 c o m p l e x i t y i n t i m e

The Strictly Local (SL) class (McNaughton and Papert 1971) is learned

by gathering the factors of simple adjacency. Under such a model,

there exists at most a single window of size k at any given point. Thus

for each index in the word, we can simply insert the contents of this

single window into the grammar. Including the time it takes to insert a

factor into a set, the class is learnable in O (nk log|Σ|) time for input of

size n, and since Σ and k are assumed constant this amounts to linear

[ 15 ]
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Figure 7:
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time. As discussed, this Algorithm II learner also uses constant space

that is but singly exponential in the width of the factors.

For the Tier-Based Strictly Local (TSL) class (Heinz et al. 2011,

see also Lambert and Rogers 2020), if the tier alphabet τ is known,

then this approach applies directly to the projection of the word to

τ. But generally we assume that τ is not known, and one might ini-

tially assume that a learner might need to construct grammars for all

possibilities, which would result in increased resource requirements,

be that in terms of time, space, or both. Per Jardine and McMullin

(2017), maintaining the factors of width bounded above by k + 1 is

sufficient to determine the value of τ. But their approach seems to

require a batch approach, first deciding the value of the τ parameter

and then processing the (projections of) the input as for the Strictly

Local class. But it turns out that, due to (inverse-)projection closure

and the fact that in the Gold framework we assume a complete text,

we can guarantee that any substring whose projection will appear on

the tier will itself appear as a substring in some word. Since we still

need to determine the value of τ, we do still require the factors of

width bounded above by k+ 1, but nothing more. The exact learning

algorithm used for SLk+1 will produce a grammar for TSLk, and only

the interpretation of the result is changed (Lambert 2020). These same

properties hold true for the relativized variants of the Locally Testable

(LT) (McNaughton and Papert 1971) and Locally Threshold Testable

(LTT) (Beauquier and Pin 1989) classes as well, where the correspond-
ing adjacency-based learners suffice to learn the relativized-adjancy

classes (Lambert 2020).

The Strictly Piecewise (SP) class (Rogers et al. 2010, see also

Haines 1969) is similar in that, one might expect a time complexity on

the order of O (nk) to find all of the subsequences of each word. Heinz

and Rogers (2013) show that in fact a factored approach can use sim-

ply O (n|Σ|k), but we can reduce this even further by taking advantage
of this same property. Given a complete text, every attested subse-

quence will eventually occur as a substring due to the SP stringsets’

closure under deletion. Again then, the same learning algorithm used

for SLk will produce a grammar for SPk as well, where the difference

lies only in interpretation.

Given this ability to learn the SP, SL, and TSL classes in linear time

and in space only singly exponential in factor width, we can modify

[ 17 ]
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Figure 7 to indicate the boundary between the classes that are learn-

able within these resource bounds and those that are not. This bound-

ary is indicated by a thick line in Figure 9, which also uses dashed

lines to indicate where one algorithm may be used for multiple dis-

tinct classes.

Considering only the SP class of stringsets, there are at least three

online learning algorithms of various complexities:

• Gather all factors under general precedence of each word.

– O (nkk log|Σ|) time

– O (|Σ|k) space
– Learns an SP least upper bound (lub) of the source text.

• Use factored learning as per Heinz and Rogers (2013).

– O (n|Σ|k) time

– O (|Σ|k) space
– Learns an SP lub of the source text.

• Gather all adjacency factors of each word.

– O (nk log|Σ|) time

– O (|Σ|k) space
– Only works if every permitted subsequence eventually occurs

adjacently, which holds for SP targets.

One caveat is that these optimizations of the learning algorithms

for the SP and TSL classes rely on certain properties of the input

stringset. The nonoptimized variants are guaranteed to learn a small-

est in-class superset of the input stringset, a property which is lost

in this optimization. For example, a long distance sibilant harmony

constraint will not be learned by the optimized SP learner if the text

is drawn from a language that exemplifies both this constraint and a

CV syllable structure, even though it would be learned by the nonop-

timized variant. This prompts a question regarding the learnability

consequences of constraint interaction.

5 l e a r n i n g i n t e r a c t i o n s

Most natural languages are describable not by a single Subregular

class but by an interaction of constraints from multiple such classes.

[ 18 ]
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Figure 9:
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The interaction of constraints from different classes might influence

the learnability of each constraint individually, in which case time or

space tradeoffs might be necessary.

For example, we might consider the default-to-opposite stress pat-

tern of Chuvash (Krueger 1961), where primary stress falls on the

rightmost heavy syllable if there is one, or on the initial syllable other-

wise. One way of describing this invokes the conjunction of two con-

straints from two different classes, namely an SP constraint detailing

a lack of:

• A heavy syllable anywhere after a stressed syllable,

• A stressed light syllable after any other syllable, or

• Two stressed syllables in the same word,

and a coSP constraint that states that every word contains some

stressed syllable.

The requirement that some stress must occur does not affect

which substrings may appear in a word, and so the SP constraint may

be learned by any of the three algorithms that have been discussed

[ 19 ]
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for that class so far, including the optimized substring-based learner.

Further, the precedence restrictions do not prevent seeing the two

words (light and heavy stressed monosyllables) required to learn the

stress requirement. In other words, these constraints interact in such

a way that learning is not hindered. This is not always the case.

Consider now the sibilant harmony of Samala (Applegate 1972),

in which as ‘s’ and an ‘ʃ’ may not appear in the same word. Since this

constraint acts on the segment level rather than the syllable level, we

might assume that it is isolated from any kind of stress constraint. But

other segment-level constraints will certainly have the possibility of

interaction. For example, imposing a CV syllable pattern restricts the

substrings that may occur, in such a way that using an SL learner to

infer the SP constraints is not a possibility. This means that one has

to decide between among the other possible SP learning algorithms,

where time or space tradeoffs must be made.

In contrast, a tone plateauing constraint like that which occurs

in Luganda (Hyman and Katamba 1993) is SP3, which means that it

could be learned directly alongside this sibilant harmony constraint

without fear of interaction effects. Note that the word ‘sásàʃá’ that has

been our running example violates both the harmony constraint and

the tone plateauing constraint.

Given our space-based learnability considerations, we would as-

sume that Algorithms III or IV are not practically learnable and would

likely be unattested. In other words, we would expect linguistic typol-

ogy to inhabit only the lower regions of the hierarchy, or at least be bi-

ased heavily toward this region. Rogers and Lambert (2019b) provide

strong evidence that this is in fact the case when it comes to stress pat-

terns. Their exhaustive analysis of the more than one hundred stress

patterns in the StressTyp2 database (Goedemans et al. 2015) showed

that each of these can be described as the interaction of constraints

that can be learned by Algorithms I and II.

6 m o d e l - t h e o r e t i c r e p r e s e n t a t i o n s

o f n o n l i n e a r s t r u c t u r e s

This model-theoretic formulation provides a distinct advantage when

applied to various linguistic objects. It allows one to characterize the

content of a particular linguistic representation, and in so doing, im-

[ 20 ]
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mediately guarantee that there are learning algorithms which can

describe various constraints over those representations. This is im-

portant, because work describing nonlinear structures in syntax and

phonology has proceeded in an ad-hoc way, by first defining con-

straints, and working backwards to the representations, often without

any learning algorithms at all, or ones relativized to that structure.

The previous sections used various model signatures that charac-

terized information based on a string data structure. This is because

the Subregular classes that were the central motivation for this paper

are defined over strings, or model signatures based on strings, in the

work of Büchi, Thomas, and others. The constructions considered to

this point are not restricted to simple string models. Without mod-

ification, the algorithms may be applied to any relational model at

all. They in fact apply to any structure that can be characterized as a

graph. In this sense, strings are a special case, but the distinctions that

each of the four learning algorithms pick out carry over onto these

more general factors as well. In this section we discuss some other

linguistically-motivated models that one might consider.

6.1 Autosegmental graphs

An example of a nonlinear structure where the graph perspective is

clearly relevant to linguistic research concerns autosegmental repre-

sentations in phonology. Graphs were proposed to handle a variety of

prosodic phenomena for which the string-based perspective was in-

adequate. Phonological processes affecting domains larger than two

adjacent segments, such as tonal alternations in tonal languages, have

temporal properties that do not always map consistently onto dis-

crete vowel segments in one-to-one fashion (Goldsmith 1976;Williams

1976). Goldsmith introduced a model of the phonological word where

tonal features formed an independent string from the segmental string,

called a tier. Segments on the two strings are linked via many-to-one

relations, turning the structure into a graph.

In practice, encoding these adjustments into a word model in-

volves adding more relational structure. Jardine (2017a,b, 2019) uses

a binary relation α(x , y) to encode the association relation between

autosegmental tiers. Augmenting the successor model signature used
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throughout this paper gives a signature as

M α,Ã(w) = 〈Dw;αw,Ãw, sw, ʃw,aw,Hw,Lw〉.

Here the domain is increased to accommodate the new autosegments,

and the successor relation holds between elements on both tiers. The

unary relations encoding vowels with tonal features have been split,

into a relation ‘a’ for vowel information, and distinct ‘H’ and ‘L’ re-

lations for tonal information. Under this signature, a word model for

the example ‘sásàʃá’ is given in Figure 10.

Our notion of a factor is exactly a notion of a subgraph. The pre-

vious section showcased how this word violates a constraint on tone

plateauing. The autosegmental model makes this information immedi-

ately accessible, by encoding the ‘HLH’ structure as its own subgraph,

shown on the bottom of Figure 10. Thus the permissibility of tone

sequences is liberated from the segmental elements that carry them.

6.2 Tree models

< The model-theoretic framework also allows describing tree struc-

tures (Rogers 1998), and opens the door to study parallels between

phonological and syntactic constraints (Graf 2014). Rogers (2003) de-

scribes a model-theoretic characterization of trees of arbitrary dimen-

sionality. In this framework, we specify the domain D as a Gorn tree

domain (Gorn 1967). This is a hereditarily prefix closed set D of node

addresses, that is to say, for every d ∈ D with d = αi, it holds that
α ∈ D, and if i 6= 0 then α(i − 1) ∈ D as well. In this view, a string

may be called a one-dimensional or unary-branching tree, since it has

one axis along which its nodes are ordered. In a standard tree, on

the other hand, the set of nodes is ordered as above by two relations,

Figure 10:

The autosegmental successor model

of ‘sásàʃá’, along with its 3-factor
‘HLH’. The α relation is shown

without tips because it is symmetric

s a s a ʃ a

H L H

〈D;α,Ã, s, ʃ,a,H,L〉

H L H

α α α
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“dominance” and “immediate right-of”. Suppose s is the mother of two

nodes t and u in some standard tree, and also assume that t precedes
u. Then we might say that s dominates the string tu.

While a Gorn tree domain as written encodes these dominance

and adjacency relations implicitly, we may explicitly write them

out model-theoretically so that a signature for a Σ-labelled two-

dimensional tree T is MÃ
↓,Ã→ = 〈D;Ã↓,Ã→, Rσ〉σ∈Σ where Ã↓ is the

immediate dominance relation and Ã→ is the immediate right-of re-

lation. Model signatures that include the transitive closures of each

of these relations have also been studied. Additionally, the anchored

word models considered above for strings lift naturally to trees, where

a root node is an anchor and each leaf is a separate anchor, or there

is a single additional node which serves as the anchor for every leaf.

Recent work in syntax has synthesised the model-theoretic ap-

proach to trees with insights from the Subregular approach to phonol-

ogy. For instance, Graf and Shafiei (2019) hypothesise that the TSL
class is sufficient to characterize syntactic constraints.

7 f u r t h e r r e a d i n g

The Subregular classes considered here have been widely studied for

decades. McNaughton and Papert (1971) introduce the Local hier-

archy, with Beauquier and Pin (1989) adding the Locally Threshold

Testable class. The Piecewise branch of the hierarchy stems from Si-

ε

0
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010 011

1

10 11

110 111

1110

112

〈D;Ã↓,Ã→, Rσ〉σ∈Σ

Figure 11:

A tree model. Nodes are organised by

immediate dominance (black tip) and

immediate right-of (white tip)

relations. Labelling relations are

omitted to show Gorn addresses. All

edges are shown, with a particular

factor noted with solid thick lines
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mon (1975), with the Strictly Piecewise class only being integrated

into the hierarchy in 2010 by Rogers et al.. (Languages closed under

subsequence had been discussed by Haines 1969, though not in con-

nection with other Subregular classes.) The Tier-Based Strictly Local

class was introduced by Heinz et al. (2011) and extended in various

ways by De Santo and Graf (2019), Lambert and Rogers (2020), and

Lambert (2020). Recent work in syntax has synthesized the model-

theoretic perspective on trees with insights from the Subregular pro-

gram (Graf and Shafiei 2019; Graf 2020, 2014)

Provided a finite-state automaton, Caron (1998, see also Caron

2000) describe algorithms that decide whether the corresponding lan-

guage is Locally or Piecewise Testable. An efficient algorithm for de-

ciding SL is described by Edlefsen et al. (2008). Algorithms that extract

SL and SP factors from a given language (and thus can also be used to

decide class membership) are due to Rogers and Lambert (2019a), and

these were extended to the TSL class by Lambert and Rogers (2020).

While this paper has so far focused on constraints, this work is

easily extended to consider mappings between structures, expressed

mathematically as Regular functions (Courcelle 1994; Courcelle and

Engelfriet 2012; Filiot 2015; Engelfriet and Hoogeboom 2001). The

notion of strict locality has been generalized to functions and shown

to be relevant for natural language phonology and morphology (Chan-

dlee 2014, 2017). These local functions have been model-theoretically

characterized and extended to consider nonlinear structures in phonol-

ogy (Chandlee and Jardine 2019; Strother-Garcia 2019). Relativing

input representations to consider multi-arity functions allowes a no-

tion of strictly local transducers expressed using multi-tape automata

(Rawski and Dolatian 2020; Dolatian and Rawski 2020). Expressed as

functions, these Subregular characterizations have been extended to

consider continuous functions over vector spaces, and learning algo-

rithms operating over them (Rawski 2019; Nelson et al. 2020).

There exist other learning algorithms alongside the string ex-

tension learners of Heinz (2010b) and Heinz et al. (2012). Garcia

et al. (1990) demonstrate the learnability of SL. Heinz and Rogers

(2013) provide learning algorithms for the SL and SP classes as well

as their Testable correlates. Other approaches have directly incorpo-

rated phonological features into the models (Vu et al. 2018; Chandlee

et al. 2019). Learning of TSL classes has been discussed by Jardine
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and Heinz (2016) and Jardine and McMullin (2017), while online

learners for this class and the remaining single-tier-based hierarchy

were proposed by Lambert (2020).

8 c o n c l u s i o n

This paper showed how the nature of phonological typology emerges

from simple representations and inference strategies. We discussed the

nature of these representations in model-theoretic terms, forming a

general notion of structural information (factors) that characterizes

virtually any linguistic representation, from strings, to trees, to graphs.

We also discussed a series of learning algorithms that work over any

form of these factors, and are organised into a hierarchy of space com-

plexity based on the distinctions they make with respect to structural

information. We then derived the full hierarchical range of Subregu-

lar formal language classes from the product of these different repre-

sentations and inference strategies. Consideration of time complexity

further parameterises this hierarchy, drawing equivalences and dis-

tinctions amongst the classes with respect to learning. We find that

the scope of phonological typology is strongly biased into the range

defined by the simplest learning algorithms and representations.

The relevance of these results for linguistic theory are clear. A

learner, faced with dramatically sparse data, favours grammar induc-

tion strategies that limit the amount of necessary distinctions between

structural forms. The requirement for learners to structure and limit

their hypothesis spaces plays off the distinctions learners make and

the representations they make them over. The results here, as well

as typological and experimental evidence, suggest that a learner may

fix a learning algorithm and allow representational primitives to vary.

From this perspective, the requirement of parsing from a linguistic in-

put to a particular linguistic form is of the utmost importance. Linguis-

tic learning can be relativized over various representations, be they

strings or graphs for phonology, to trees for syntax. In this way, natu-

ral language typology, considered through an algorithmic lens, can be

shown to emerge from the interaction of simple learning algorithms

and simple but wide-ranging notions of representation.
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