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S O C I A L  S C I E N C E S

Geospatial distributions reflect temperatures 
of linguistic features
Henri Kauhanen1*, Deepthi Gopal2, Tobias Galla3,4, Ricardo Bermúdez-Otero5

Quantifying the speed of linguistic change is challenging because the historical evolution of languages is sparsely 
documented. Consequently, traditional methods rely on phylogenetic reconstruction. Here, we propose a model- 
based approach to the problem through the analysis of language change as a stochastic process combining vertical 
descent, spatial interactions, and mutations in both dimensions. A notion of linguistic temperature emerges 
naturally from this analysis as a dimensionless measure of the propensity of a linguistic feature to undergo 
change. We demonstrate how temperatures of linguistic features can be inferred from their present-day geospatial 
distributions, without recourse to information about their phylogenies. Thus, the evolutionary dynamics of 
language, operating across thousands of years, leave a measurable geospatial signature. This signature licenses 
inferences about the historical evolution of languages even in the absence of longitudinal data.

INTRODUCTION
Since the biological emergence of modern language some 100,000 
years ago (1), human languages have diversified through processes 
of cultural evolution to the extent that thousands of distinct languages 
are spoken today around the world (2). These languages display an 
enormous amount of variation in a combinatorial space spanned by 
a finite number of structural features, whose possible values emerge 
from biological and cognitive constraints on linguistic representa-
tion and language use. These features determine how individual 
words are formed, how words are combined into phrases and sen-
tences, and which sounds and sound sequences are available in any 
given language.

The causes of linguistic change have been debated ever since the 
birth of modern linguistic theory in the late 19th century, and a 
number of these processes are now understood in detail (3). The 
most basic general insight emerging from this work, translated into 
terms that are current in the study of evolution in other fields (4), is 
that language change is both vertical and horizontal. Under ordinary 
circumstances, language is relatively reliably passed on from par-
ents to children, which accounts for the vertical, intergenerational 
descent of linguistic features across phylogenetic lineages. It is 
possible for this transmission to fail, however, and for a feature to 
change, a process not unlike point mutations in the genome, 
although debate exists over whether linguistic mutations are mostly 
random or directed (5). It is also possible for the vertical line of 
descent to be interrupted by horizontal effects, in which a feature of 
a language changes because of the influence of a phylogenetically 
distinct but geographically neighboring language; the empirical 
problem of distinguishing the results of horizontal effects from the 
results of failed vertical transmission recurs often in many areas of 
historical linguistics (3).

Within the study of the dynamics of language, there is a large 
and rich body of work that seeks to measure the susceptibility of 
linguistic features to change over time (6–15). In this tradition, 
susceptibility to change is evaluated in terms of linguistic stability, 
which is generally understood as resistance to endogenous change, 
that is, resistance to mutation in vertical transmission, to the exclusion 
of horizontal effects. Consider two protolanguages L and L′ at a giv-
en point in historical time, such that L has feature F, while L′ lacks 
this feature. After a suitable period of time, if all the descendants of 
L have feature F and all the descendants of L′ lack it, then F is said 
to display maximal stability over this time period. Conversely, F is 
said to display maximal instability over this time period if it is found 
that any individual descendant of L′ has exactly the same probabil-
ity of having feature F as any individual descendant of L. This ideal 
scenario assumes that the only forces acting on L, L′, and their de-
scendants pertain to intergenerational transmission so that there 
are no horizontal effects of language contact.

In this light, the tradition of linguistic research described above 
sees it as a key task to devise methods of stability estimation that can 
effectively control for the role of horizontal contact in the evolutionary 
dynamics of language, recovering the vertical signal as cleanly as 
possible. Some approaches within this tradition rely solely on 
phylogenetic information, i.e., information about the distribution of 
linguistic features among groups of related and unrelated languages 
(7, 11), while others combine phylogenetic and areal information 
(8, 9, 15). In general, however, these approaches seek to control for 
horizontal effects in an effort to isolate stability in the vertical dimen-
sion. For convenience, therefore, we may refer to this tradition as 
“the stability program” or “the vertical program.”

One complication facing the vertical program is that the actual 
dynamics of the cultural evolution of language do exhibit extensive 
horizontal effects; idealized vertical stability is not always recover-
able from the signal. Attested situations of horizontal transfer, in 
which features are borrowed from one language family to another, 
range from the multilingualism and diglossia that characterize the 
linguistic landscapes of major cosmopolitan centers to more intricate 
situations of language contact between two or more geographically 
contiguous language communities (16). The problem for phylo-
genetic stability estimation methods arises in these situations from 
the fact that some linguistic features (e.g., inflectional markers) are 
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known to be more resistant to horizontal transfer than others (17), 
while some (e.g., case systems) are highly vulnerable to simplifica-
tion in contact situations involving large numbers of second-language 
(L2) learners (18): There is a complex dependence of the rate of 
horizontally motivated change on both the type of contact situation 
and the nature of the feature itself. Enriching the phylogenetic anal-
ysis with areally defined groupings (8, 15) is only a partial solution, 
however, as no agreed methods exist for delimiting linguistic areas.

A related contrast exists in the field of population genetics be-
tween phylogeographic approaches and methods that rely on math-
ematical models and summary statistics (key quantities summarizing 
an observation) to infer properties of genetic evolution (19). Noting 
this fact, here, we pursue a model-based approach to the dynamics 
of language change. We treat the cultural evolution of language as a 
combination of two stochastic processes, one operating in the verti-
cal domain and the other operating in the horizontal domain. From 
this model, we derive a quantity, which we call (linguistic) tempera-
ture, which expresses the global ratio of unfaithful transmission in 
both the vertical and horizontal dimensions (mutation) to faithful 
transmission. By this definition, temperature is different from sta-
bility, as defined within the vertical program. Nonetheless, we 
expect, and indeed demonstrate below, that temperature estimates 
will be strongly correlated with the stability estimates generated by 
phylogenetic methods. The expectation of these correlations builds 
on conceptual considerations, which suggest that the mechanisms 
of endogenous language change (i.e., the mechanisms that cause 
mutations in the vertical dimension of intergenerational transmis-
sion) are, in fact, not entirely independent from the mechanisms of 
contact-driven language change (i.e., the mechanisms that cause 
mutations in the horizontal dimension of language contact).

As we show in detail below, the temperature of a linguistic feature 
can be recovered using this model if two empirically measurable 
“summary statistics” about that feature are known, the feature’s 
overall frequency across a sample of languages and a measure of 
how clumped or scattered the feature is in geographical space. The 
consequence is that linguistic temperature, a dimensionless measure 
of the propensity of a linguistic feature to undergo change, is recoverable 
from synchronic information about that feature’s empirical geospatial 
distributions, without recourse to information about its phylogeny.

RESULTS
Modeling the stochastic dynamics of language
The transmission of a linguistic feature can be faithful or unfaithful 
whether it takes place on the vertical dimension (i.e., intergenera-
tionally) or on the horizontal dimension (i.e., through language 
contact). As above, faithful transmission in the vertical dimension 
results in historical stability (in the technical sense of the existing 
literature), whereas unfaithful transmission in the vertical dimen-
sion amounts to endogenous change. On the horizontal dimension, 
however, transmission can also be either faithful or unfaithful. 
Faithful horizontal transmission results in simple transfer between 
languages by contact, often called borrowing (16). In contrast, un-
faithful horizontal transmission occurs when adult learners of an L2 
incorporate into their first language (L1) a modified, typically sim-
plified, version of a feature of L2. This sort of simplification by L2 
learners is widely thought to underlie phenomena such as the emer-
gence of impoverished inflectional systems from contact between 
languages with rich but heterogeneous inflections (18).

To model these interactions, we expand upon an early but 
underexploited paradigm in dynamic linguistic typology, which 
proposed to model the dynamics of language as a Markov process in 
the vertical domain (20). This work also suggested, albeit without 
putting forward a mathematically explicit model of spatial diffusion, 
that features attesting different ingress and egress rates ought to 
pattern differently geographically. We here make these assumptions 
concrete by implementing languages on a spatial substrate; a similar 
approach, based on computer simulations of a more complex dy-
namics, has been pursued in (9). For the sake of mathematical trac-
tability, we assume languages to be distributed on a regular square 
lattice and each feature to be binary (absent or present) in any given 
language. Each language on the lattice is subject to a vertical and a 
horizontal process with respect to each of its features; in our stylized 
model, we assume that each feature evolves independently of the 
other features. The model has five free parameters per feature, pI, 
pE,   p  I  ′  ,   p  E  ′   , and q, each a probability. In the vertical process, trans-
mission errors occur at rates pI and pE, where pI is the probability of 
innovating a feature that the language lacks (called the feature’s ver-
tical ingress rate) and pE is the probability of losing an existing fea-
ture (called the feature’s vertical egress rate). In the horizontal process, 
a feature (or its absence) is copied into the language from one of its 
immediate neighbors on the lattice. This horizontal transfer is sub-
ject to errors as follows: A feature’s absence is incorrectly copied as 
its presence with probability   p  I  ′   (horizontal ingress rate), while its 
presence is incorrectly copied as its absence with probability   p  E  ′    
(horizontal egress rate). A fifth parameter, q, supplies the relative 
rate of horizontal over vertical events (see Fig. 1 for a summary 
illustration and Materials and Methods for a complete algorithmic 
specification of the model).

Similar building blocks (copying, diffusion, and mutation) have 
been used in other fields, for example, in modeling the dynamics of 
opinions in the social sciences (21). Notably, in biology, models of 
this general type are often a key component of genetic inference based 
on summary statistics (19). So-called stepping stone, island, or voter 
models involve combinations of copying processes and mutation 
(21–24), with some differences in the details of the implementation 
of these components. In some models, each spatial node is occupied 
by multiple agents (22), while in others, each node hosts one agent 
only, similar to our model setup (23). The model we use can per-
haps best be described as an “asymmetric noisy two-state voter 
model” (25). Its behavior, similar to that of related models, can be 
studied using methods and concepts from statistical physics (21, 26–28). 
In particular, key quantities describing the stationary state can be 
computed. In our case, these are properties of the distribution of 
features across the lattice. Our approach is therefore similar in spirit 
to work in population genetics focusing on the inference of param-
eters of evolutionary processes from summary statistics of observed 
patterns of genetic diversity, using analytical solutions of stylized 
models of evolution (for example, via coalescent theory) (19, 28–31).

In our lattice model, the statistical properties of the stationary 
distribution of a linguistic feature depend on the feature’s parameters 
pI, pE,   p  I  ′  ,   p  E  ′   , and q. Useful information about the stationary distri-
bution is contained in two quantities, illustrated in Fig. 2: the fre-
quency  with which a particular feature is present across the lattice 
and the feature’s associated isogloss density . The latter quantity is 
defined as the probability of finding a dialect boundary (an isogloss) 
between two neighboring languages such that the feature is found 
on one side of the boundary but not on the other; similar quantities 
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are sometimes also found as the “density of active interfaces” or “ac-
tive bonds” [see (21) and references therein]. Our model is more 
stylized than that in (9), for instance, and as a consequence of this 
austere setup, values of  and  in the stationary distribution can be 
calculated analytically in the special case   p  I  ′  =  p  E  ′   , i.e., when errors 
in the horizontal transmission of language are not directed. This 
calculation follows well-established principles in statistical physics 
(21, 27), particularly the procedure in (26). The following results are 
a generalization of the analytical solution, verified in numerical 

simulations for the general case in which   p  I  ′   and   p  E  ′    are independent. 
We refer the reader to the Supplementary Materials for the analytical 
derivations and a full description of the numerical simulations.

The frequency of a feature in the stationary distribution is given by

   =   (1 − q )  p  I   + q  p  I  ′   ─  (1 − q ) p + q p ′     , (1)

where p = pI + pE and   p ′   =  p  I  ′  +  p  E  ′    represent the total error rates of 
the vertical and horizontal processes, respectively. For the isogloss 
density, we find

   = 2H( ) (1 − )  (2)

with

  H( ) =   (1 + ) ─ 
2K (     1 _ 1 +   )  

   −   (3)

and

   =   (1 − q ) p + q p ′    ─ q(1 −  p ′  )   . (4)

The function K(·) denotes the complete elliptic integral of the 
first kind. From Eq. 2, the stationary-state isogloss density  is found 
to be a parabolic function of the feature’s overall frequency . The 
height of this parabola is controlled by H() and, hence ultimately, 
by the parameter  (Fig. 3A). This parameter gives the relative rate 
of unfaithful transmission events (i.e., mutations) over faithful 
transmission events (Eq. 4) and can thus be interpreted as a dimen-
sionless measure of the propensity of the feature to undergo change: 
Lower values of  signify a relatively infrequently changing feature, 
while higher values indicate relative rapidity in change. (In Eq. 4, 
the denominator does not include a term for faithful transmission 
events in the vertical process. This may be puzzling at first but be-
comes more natural when one realizes that faithful vertical events 
never change the state of the lattice. These events promote neither 
order nor disorder, and temperature as an overall measure of dis-
order is hence not affected by the background of faithful vertical 
transmission.) We refer to  as temperature, and note that, as a 
dimensionless ratio, it is not calibrated to an overall frequency of 
transmission events in language. Such a calibration is unnecessary 
for our purposes, as we are only interested in the relative ranking of 
different features in terms of .

Inferring linguistic temperatures from geospatial distributions
To arrive at empirical estimates of temperatures of linguistic features, 
we then need data from which feature frequencies () and isogloss 
densities () can be measured. These data are available in the World 
Atlas of Language Structures (WALS) (32), a large-scale typological 
database also containing spatial information in the form of geo-
graphical coordinates for languages. We curated 35 binary or binarized 
features from the WALS, each of which is recorded for at least 300 
languages in the atlas (for full details, see Materials and Methods). 
For each feature, the frequency  is given by the proportion of lan-
guages in which that feature is present (rather than absent) in the 
feature’s WALS language sample. Isogloss density  was estimated 
using the 10 geographically nearest-neighbor languages of each 
language in the sample. Last, the analysis was repeated 1000 times, 

Vertical process (1 q)

Horizontal process (q)

Feature present

Feature absent

Language chosen for update

Horizontal interaction

pE

1 pE

pI

1 pI

pI

1 pI

pE

1 pE

Fig. 1. Illustration of the model dynamics. At each iteration, a random cell of the 
lattice is chosen for update. A randomly selected feature then undergoes either a 
horizontal event (with probability q) or a vertical event (with probability 1 − q). The 
value of the feature may flip (from “absent” to “present” or vice versa) because of 
ingress or egress in either type of event. In a horizontal event, the donor language 
is drawn randomly from among the focal language’s four von Neumann neighbors.

A B C

ρ 0.5
σ 0.25

ρ 0.5
σ 0.5

ρ 0.5
σ 1

Fig. 2. Feature frequency and isogloss density. In each of these schematic illus-
trations, the feature frequency is  = 0.5 (half of the sites are yellow, the other half 
are blue). However, isogloss density , defined as the proportion of disagreeing 
lattice interfaces (white dots), depends on the spatial distribution of the feature. It 
is low when a feature is present throughout extended domains (A), intermediate 
when a feature is randomly distributed (B), and large when a feature is scattered (C).

 on January 2, 2021
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Kauhanen et al., Sci. Adv. 2021; 7 : eabe6540     1 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 9

resampling languages with replacement to generate bootstrap con-
fidence intervals. The results are summarized in Fig. 3B, which sup-
plies median feature frequency  and isogloss density  for each of 
the 35 features, together with 95% bootstrap confidence ellipses. 
Figure 3 (C and D) provides a detailed illustration of the geospatial 
distribution of two features, definite marker (WALS feature 37A), 
and order of object and verb (WALS feature 83A).

For a given feature frequency , the isogloss density  is fixed by 
the value of H() (Eq. 2); this quantity itself is an increasing function 
of  (Eq. 3). Since each of our 35 empirical features lies on a unique 
parabola in the space spanned by  and  (Fig.  3), estimating its 
temperature is now a matter of inverting the function H(). Although 
the elliptic integral in Eq. 3 cannot be expressed in terms of elemen-

tary functions and H() thus cannot be inverted analytically, the 
inversion can be performed numerically (see Materials and Meth-
ods). Using this procedure, we obtain an estimate of  for any fea-
ture for which empirical measurements of frequency  and isogloss 
density  exist. Figure 4 supplies the bootstrap distributions of these 
estimates (for numerical values of the medians, see Table 1). Esti-
mated temperatures span a range of roughly five orders of magnitude, 
with word order features tending to have the lowest tempera-
tures and certain lexical, phonological, and morphological features 
the highest. 

Comparison with a phylogenetic method
We have predicted on conceptual grounds that our estimates of 
linguistic temperature () will be correlated with estimates of verti-
cal stability. To test this prediction, we choose a method of vertical 
stability estimation that is diametrically opposed to our own spatial 
procedure of temperature estimation: namely, a method that oper-
ates on phylogenetic data to the exclusion of any spatial signal. De-
diu (11) recovered estimates of the rate of evolution of a selection of 
linguistic features using two different Bayesian phylogenetic methods 
and drawing data from two sources, WALS and Ethnologue (33), to 
control for possible implementation effects. The aggregate rate esti-
mates from this analysis are expressed as the additive inverse of the 
first component of a principal components analysis (PC1) on the 
evolution rate rank predicted by each combination of phylogenetic 
algorithm and dataset. In practice, the higher the PC1 value, the 
higher the evolution rate of the feature and, consequently, the lower 
its stability.

In Fig. 5, we consider the 24 features that fall in the intersection 
of our list of 35 features and Dediu’s list. Regressing our (median) 
estimates for  against Dediu’s PC1 (red regression line), we find no 
evidence of a correlation between the estimates predicted by the two 
methods (Spearman’s rS = 0.37, P = 0.08). A number of features, 
however, are clearly outliers of the regression. To detect these out-
liers more objectively, we pruned the regression recursively by 
removing those data points that contributed the greatest error in 
terms of sum of squared residuals. This procedure classified as out-
liers the following WALS features: 11A (front rounded vowels), 8A 
(lateral consonants), 107A (passive construction), and 57A (posses-
sive affixes). Regressing the pruned dataset (Fig. 5, black regression 
line), we find a significant high correlation between our  estimates 
and Dediu’s PC1 (Spearman’s rS = 0.68, P < 0.01).

We suggest that, rather than instantiating a lack of correlation 
between stability (as understood in the vertical program) and tem-
perature, these outliers are false positives and false negatives of the 
purely phylogenetic method of stability estimation in (11). This is 
illustrated by the case of front rounded vowels (WALS feature 11A), 
i.e., the presence or absence of the vowels /y/ (e.g., Finnish kyy), /ø/ 
(German schön), /œ/ (French bœuf), and /Œ/ (Danish grøn) in a 
language’s phonology (13). Front rounded vowels are one of the 
most stable features in the genetic analysis [they are the fourth most 
stable feature (out of 86) in Dediu’s study (11) and the second most 
stable (out of 62) in the meta-analysis in (12)] but one of the highest- 
temperature features in ours (Fig. 4). We argue that evidence from 
both language change and language acquisition supports our position. 
On the one hand, front rounded vowels are frequently innovated: 
historical fronting of the back rounded vowel /u/ to [y] (with or 
without subsequent phonemicization to /y/) has been documented 
in a number of languages (34). In addition, front rounded vowels 

A B

C

D

Fig. 3. Statistical properties of the model and empirical measures of feature 
frequency and isogloss density. (A) At long times, the state of the lattice is char-
acterized by the two quantities feature frequency  and isogloss density . We 
show computer simulations (markers) and analytical solution (curves) for different 
values of . Simulation snapshots of the lattice are shown for two different values 
of . (B) Empirical measurements of feature frequency  and isogloss density  for 
35 linguistic features, identified by their World Atlas of Language Structures 
(WALS) feature IDs (see Table 1 for a key), with 95% confidence ellipses from the 
empirical bootstrap. (C) Empirical geospatial distribution of WALS feature 37A 
(definite marker). (D) Empirical geospatial distribution of WALS feature 83A (OV 
word order). Shown are both individual empirical data points (languages, as given 
by WALS coordinates) and a spatial interpolation (inverse distance weighting) on 
these points. Blue, feature present; yellow, feature absent. Map projection, Moll-
weide equal area.
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can arise through the influence of /i/ or /j/ on a neighboring back 
rounded vowel (35). On the other hand, front rounded vowels are 
difficult to acquire in situations of language contact: Laboratory ex-
periments have shown that L2 learners whose L1 lacks these vowels 
perceive them as more similar to back vowels than front vowels 
(36). This perceptual assimilation is mirrored in speech production: 
Productions of /y/ by L2 learners are far less advanced in phonetic 
space than native speakers’ productions and are indeed often per-
ceived as /u/ by the latter (37). The fact that front rounded vowels 
are readily innovated points to a high ingress rate, while frequent 
acquisition failure by L2 learners in situations of language contact 
points to a high egress rate. These facts are inconsistent with the 
high stability predicted by the phylogenetic method but consistent 
with our approach, in which high ingress and high egress imply 
high temperature (Eq. 4).

Similar arguments can be made for the remaining outliers. For 
instance, all Uralic languages use possessive affixes (e.g., Finnish 
auto-ni “my car,” auto-si “your car,” etc.), and the appearance of 
this system of possession can be dated back to Pre-Proto-Uralic by 
standard reconstructive techniques (38). Possessive affixes are also 
old in the unrelated Turkic language family (39). There is, then, rea-
son to believe that WALS feature 57A on possessive affixes is a false 
negative of the purely phylogenetic method in (11), which classifies 
possessive affixes as one of the least stable features (Fig. 5). These 
conclusions are further supported by the fact that an independent 

method combining a phylogenetic and an areal signal (9) agrees 
with our temperature-based method on three of the four outliers, 
classifying, like our method but unlike the phylogenetic method, 
WALS features 11A and 8A as unstable and 57A as stable. There 
is, in other words, reason to believe that focusing on the phylogenetic 
signal to the complete exclusion of the areal dimension leads to a 
number of features being misclassified or mismeasured in terms of 
their stability and temperature.

DISCUSSION
Estimating the speed of linguistic change is challenging, essentially, 
because the signal is poor: Although evolutionary and anthropological 
evidence suggests that human language in its modern form has 
existed for at least 100,000 years (1), the historical evolution of 
languages is (necessarily) poorly documented. This documentation 
only captures a few thousand years for languages with the best cov-
erage, cannot, in principle, go beyond the introduction of the first 
writing systems, and does not exist at all for the majority of the 
world’s languages. The rest of the cultural evolution of human 
language must be reconstructed on the basis of available data; in 
particular, methods for estimating the temporal stability of features 
of language have traditionally relied on phylogenetic analysis. Here, 
we showed that treating language dynamics as a stochastic process 
combining both a vertical and a horizontal dimension naturally 

Ordinal numerals (53A)
Order of genitive and noun is GenN (86A)
Order of object and verb is OV (83A)
Order of numeral and noun is NumN (89A)
Velar nasal (9A)
Order of subject and verb is SV (82A)
Productive reduplication (27A)
Order of adjective and noun is AdjN (87A)
Order of degree word and adjective is DegAdj (91A)
Tone (13A)
Hand and arm identical (129A)
Possessive affixes (57A)
Shared encoding of nominal and locational predication (119A)
Morphological second-person imperative (70A)
Inflectional morphology (26A)
Inflectional optative (73A)
Tense-aspect inflection (69A)
Uvular consonants (6A)
Glottalized consonants (7A)
Plural (33A)
Gender in independent personal pronouns (44A)
Passive construction (107A)
Zero copula for predicate nominals (120A)
Preverbal negative morpheme (143E)
Postverbal negative morpheme (143F)
Voicing contrast (4A)
Grammatical evidentials (77A)
Verbal person marking (100A)
Adpositions (48A)
Definite marker (37A)
Indefinite marker (38A)
Front rounded vowels (11A)
Question particle (92A)
Lateral consonants (8A)
Hand and finger(s) identical (130A)

10−6 −5 −4 −3 −2 −110 10 10 10 10 100 101

Temperature
Fig. 4. Temperature estimates for the 35 WALS features considered in this study. The box plots show the bootstrap distributions over 1000 runs; central bars repre-
sent medians.
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Table 1. The 35 linguistic features consulted in this study, ranked in order of decreasing estimated temperature. , frequency of feature; , isogloss 
density; , temperature; median values across 1000 bootstrap samples. 

Rank Feature WALS ID   

1 Hand and finger(s) identical 130A 0.12142 0.18876 1.21789

2 Lateral consonants 8A 0.83245 0.22907 0.63618

3 Question particle 92A 0.59955 0.39077 0.56961

4 Front rounded vowels 11A 0.06584 0.09890 0.53281

5 Indefinite marker 38A 0.44569 0.38193 0.37116

6 Definite marker 37A 0.60806 0.36313 0.33385

7 Adpositions 48A 0.83333 0.20930 0.31049

8 Verbal person marking 100A 0.77895 0.25744 0.29686

9 Grammatical evidentials 77A 0.56699 0.36507 0.27513

10 Voicing contrast 4A 0.68078 0.32122 0.26579

11 Postverbal negative 
morpheme 143F 0.46224 0.34988 0.18558

12 Preverbal negative 
morpheme 143E 0.70544 0.29141 0.18094

13 Zero copula for predicate 
nominals 120A 0.45337 0.32420 0.11337

14 Passive construction 107A 0.43432 0.31892 0.10915

15 Gender in independent 
personal pronouns 44A 0.32804 0.28686 0.10814

16 Plural 33A 0.90901 0.10821 0.10752

17 Glottalized consonants 7A 0.27866 0.25397 0.08912

18 Uvular consonants 6A 0.17108 0.17617 0.07762

19 Tense-aspect inflection 69A 0.86561 0.14372 0.07507

20 Inflectional optative 73A 0.15047 0.15337 0.06375

21 Inflectional morphology 26A 0.85552 0.14203 0.04492

22 Morphological second-
person imperative 70A 0.77697 0.19176 0.03745

23 Shared encoding of nominal 
and locational predication 119A 0.30311 0.23385 0.03724

24 Possessive affixes 57A 0.71175 0.22579 0.03463

25 Hand and arm identical 129A 0.36791 0.25061 0.03016

26 Tone 13A 0.41746 0.21060 0.00626

27 Order of degree word and 
adjective is DegAdj 91A 0.54177 0.21376 0.00595

28 Order of adjective and noun 
is AdjN 87A 0.29736 0.17745 0.00533

29 Productive reduplication 27A 0.85054 0.10143 0.00361

30 Order of subject and verb is 
SV 82A 0.86013 0.08752 0.00145

31 Velar nasal 9A 0.49893 0.18057 0.00139

32 Order of numeral and noun is 
NumN 89A 0.44015 0.16075 0.00053

33 Order of object and verb is 
OV 83A 0.50317 0.15203 0.00027

34 Order of genitive and noun is 
GenN 86A 0.59497 0.13545 0.00011

35 Ordinal numerals 53A 0.89720 0.04624 0.00005
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leads to the notion of linguistic temperature, a dimensionless mea-
sure of the propensity of linguistic features to undergo change. 
Temperatures of linguistic features can be readily estimated from 
purely synchronic information: All that is needed are estimates of 
feature frequency and isogloss density from a sufficiently large sample 
of languages and inversion of Eq. 3.

We have offered some evidence in support of our method, in the 
sense that this method is not liable to some of the false positives and 
false negatives incurred by some purely phylogenetic methods of 
stability estimation. Turning now to its limitations, we note that our 
approach currently only applies to binary features, i.e., features that 
are either present in or absent from a language. Most genetic meth-
ods do not suffer from this limitation: Dediu’s (11) procedure, in 
particular, can be applied to polyvalent and binary features. However, 
Dediu finds a correlation between estimates for polyvalent and 
binary (or binarized) features. This suggests that the resolution at 
which the values of a linguistic variable are recorded may be a 
minor issue: After all, any polyvalent classification can be reduced 
to a hierarchy of binary oppositions by a simple translation procedure. 
Another limitation of our technique is that it treats the evolution 
of each individual feature independently. Feature interactions are 
known to exist, however, for example, a language that places objects 
before verbs is far more likely to also place adverbs before verbs, 
rather than after them (40). It would, in principle, be possible to 
generalize our method to cater for polyvalent features and feature 
interactions, by extending the lattice model in the direction of the 
Axelrod model of cultural dissemination (41). The extent to which 
the behavior of such a generalized model can be characterized ana-
lytically is, however, not clear, and temperature estimates may have 
to be obtained in some other way. Similarly, extending the analysis 
to multiple summary statistics (beyond feature frequency and isogloss 
density) is likely to lead to analytical challenges and may necessitate 
computational inference approaches. Approximate Bayesian com-
putation, for example, is successfully used in population genetics 
(42) and has recently been applied to a comparison of genetic and 
linguistic evolution (43). Other avenues for extending the present 
model include exploration of transient long-range geographical 

connections in addition to local spatial effects, incorporation of 
more realistic selection and mutation dynamics in both the vertical 
and the horizontal dimension (44, 45), and incorporation of a model 
of linguistic speciation and a treatment of the resulting geospatial 
distributions of entire families of languages (46).

The derivation of linguistic temperature, together with the 
empirical demonstration that temperatures of linguistic features are 
measurable from typological atlases, suggests the existence of large-
scale regularities in the transmission of language, in both the vertical 
and the horizontal dimension. Although the evolutionary trajectories 
of individual languages are, to a large extent, molded by contingencies 
of history, when the representation of structural features of language 
is explored at the level of aggregates of languages, regularities emerge. 
The estimation of linguistic temperatures is but one possible appli-
cation resulting from work that combines the mathematical analy-
sis of stochastic systems with modern large-scale linguistic datasets, 
and we also expect similar approaches to be possible in other areas 
of cultural evolution outside the narrow domain of language.

MATERIALS AND METHODS
Model
The model assumes languages to be distributed among the sites or 
cells of a regular square lattice and is characterized by five parame-
ters per feature, each a probability: ingress and egress rates in the 
vertical process (pI and pE), ingress and egress rates in the horizon-
tal process (  p  I  ′   and   p  E  ′   ), and the relative rate of horizontal versus 
vertical events (q). The model is iterated as follows until statistical 
equilibrium is reached:

1) Initialize the lattice in a random state (for each feature F and 
lattice cell C, F is present in C with a probability of 0.5).

2) Pick a random cell (language) C and a random feature F.
3) Execute one of the following steps: (i) With probability 1 − q, 

conduct a vertical event. If F is absent from C, then acquire F with 
probability pI (ingress); if F is present in C, then lose F with proba-
bility pE (egress). (ii) With probability q, conduct a horizontal event. 
Pick a random nearest-neighbor C′ of C. If F is absent from C′, then 

A B

Fig. 5. Regression of our temperature estimates () against Dediu’s PC1 (11). (A) Red line indicates regression with all 24 data points (Spearman’s rS = 0.37, P = 0.08). 
Black line indicates regression with four outliers (red crosses) removed (Spearman’s rS = 0.68, P < 0.01). (B) Outliers were detected by pruning the dataset recursively for 
those data points that contributed most to the regression error, quantified as the sum of squared residuals. This identified features 11A, 8A, 107A, and 57A as outliers (see 
main text).
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copy the absence of F to C with probability  1 −  p  I  ′  ; otherwise, set the 
state of F in C to “present.” If F is present in C′, then copy its pres-
ence to C with probability  1 −  p  E  ′   ; otherwise, set the state of F in C to 
“absent.”

4) Go to 2.
The stationary distribution of this model may be studied analyt-

ically in the special case   p  I  ′  =  p  E  ′    and using numerical simulations 
in the general case, as detailed in the accompanying Supplementary 
Materials. More realistic spatial substrates can also be considered in 
numerical simulations, again as outlined in the Supplementary 
Materials.

Empirical estimation of temperatures
To estimate empirical temperatures, the latest (2014) version of the 
WALS Online database (32) was downloaded and used as the 
empirical basis for measures of feature frequency  and isogloss 
density . WALS is a large-scale atlas of structural features of 
human language, i.e., properties that can be compared across both 
related and unrelated languages: Examples include aspects of word 
order, the presence or absence of grammatical items such as articles 
and inflections, and the presence or absence of different classes of 
speech sounds. It contains data on varying numbers of features for 
a total of 2676 languages (approximately a third of the world’s 
languages). The spatial representation of each language is a latitude- 
longitude pair, placed approximately in the region of highest speaker 
density for that language. Language locations in WALS are precolo-
nial and thus represent geospatial distributions before more recent 
population expansions (47).

Since WALS uses a polyvalent coding for most features, a manual 
pass through the data was first made, retaining only those features 
that are binary or binarizable on uncontroversial linguistic grounds. 
Features with fewer than 300 languages in their language sample 
were discarded to ensure statistically robust results. Sign languages 
were excluded. This procedure resulted in 35 binary features (see 
Table 1 for a listing and the Supplementary Materials for detailed 
information about our binarization scheme).

Temperatures  were estimated by taking 1000 bootstrap samples 
for each feature from the feature’s WALS language sample. Feature 
frequency  is the proportion of languages attesting the feature in 
that feature’s bootstrap sample. In the calculation of isogloss densities 
, the 10 geographically nearest neighbors of each language were 
considered, found using the haversine formula assuming a perfectly 
spherical earth. For each language-language pair, an isogloss was 
recorded if the two languages differed in their value for the feature 
in question; isogloss density is the number of isoglosses divided by 
the total number of pairs. Thus, each of the 10 languages in a given 
language’s neighborhood contributed equally to isogloss density. 
Variation in the number of nearest neighbors considered did not 
have an effect on the results (see the Supplementary Materials). 
Temperatures were recovered by inverting Eq. 3 using a computa-
tionally generated hash table, the complete elliptic integral solved 
numerically using the arithmetic-geometric mean.

To ensure that our method is catching a universal signal about 
temperatures of linguistic features, rather than contingent proper-
ties of particular geographical areas, we performed the two hemi-
spheres test described in (9). In this test, the analysis is carried out 
for the Western and Eastern hemispheres separately, and the tem-
perature estimates arising from the two analyses correlated. As de-
tailed in the Supplementary Materials, the Spearman correlation for 

temperature estimates in the two hemispheres was found to be 0.52, 
statistically significant at P < 0.01. This compares with the Spear-
man correlation reported earlier for a genealogical-areal method of 
stability estimation in the same test, 0.51 (9).

Comparison with phylogenetic method
For the comparison with the phylogenetic method, table S1 to (11) was 
consulted, and only those features were selected for comparison for 
which our binarization schemes agreed; the PC1 values for the inter-
secting features were then gathered from table S4 of that publication.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/1/eabe6540/DC1
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