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(Don’t) try this at home!  

The effects of recording devices and software on phonetic analysis 

 

 

Abstract 

Because of restrictions on in-person research due to Covid-19, researchers are now relying on 

remotely recorded data to a much greater extent than has been typical in previous work. Given 

the change in methodology, it is important to know how remote recording might alter the 

acoustic signal, either based on different recording devices used by participants and consultants 

recording themselves or based on video-conferencing software used to make interactive 

recordings. This study investigates audio signal fidelity across different in-person recording 

equipment and remote recording software when compared to a solid-state digital recording 

device that is representative of the standard used in-person for elicitation and fieldwork. We 

show that the choice of equipment and software can have a large effect on acoustic 

measurements, including measurements of frequency, duration, and noise. The issues do not just 

reflect decreased reliability of measurements; some measurements are systematically shifted in 

particular recording conditions. These results show the importance of carefully considering and 

documenting equipment choices. In particular, any cross-linguistic or cross-speaker comparison 

needs to account for possible effects of differences in which devices or software platforms were 

used. 
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1 Introduction1 

1.1 Overview: fieldwork in a pandemic 

Human subjects compliance boards across various institutions restricted approval of protocols 

for in-person research for much of 2020, and at the time of writing many of these restrictions are 

still in place. For this reason, and also for the safety of research participants, many researchers 

have decided to either postpone phonetic elicitation or turn to alternative methods involving the 

use of remote recordings. This has led to a rapid and dramatic shift in the types of technologies 

used for phonetic elicitation both in fieldwork and other linguistic research, as well as language 

documentation more broadly.  In order to use the data collected online, it is necessary to know 

how the recording device and recording software might impact acoustic measurements. 

 

While in-person linguistic fieldwork has primarily used digital recording equipment for 15 years 

or more (cf. Bird and Simons 2003; Maddieson 2001; Podesva and Zsiga 2013), the use of video-

conferencing or social media software applications for primary fieldwork has not been 

widespread until this year, a result of restrictions on travel and in-person interactions in response 

to COVID-19 pandemic. Remote recording technology is readily accessible and there are many 

different methods which can be used. Prior to the pandemic, the types of technology used for 

linguistic documentation and archiving had already started to shift away from solid-state 

recorders in favor of more easily accessible technologies, such as smartphones (cf. Bird et al 

2014; Goldman et al 2014). It has long been noted that compression (van Son 2005), technical 

differences (e.g. transmission over telephone lines; Künzel 2001; Rathcke et al 2017, and cell 

phones; Gold 2009) all affect measurements of the speech signal (in more or less predictable 

ways). However, to our knowledge, there is no study which systematically tests the acoustic 

impact of recent internet-based video conferencing programs in order to establish new best 

practices for language documentation and sociolinguistic research (cf. Leemann et al 2020). 

Furthermore, though these considerations have been discussed in technical phonetics venues, it 

appears that this knowledge is less commonly discussed among endangered language 

researchers. Therefore, our aim is both to make these issues more transparent and to suggest 

some best practices for researchers suddenly faced with the shift to online recording.    

 
1 Acknowledgement footnote removed 
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Without testing of this type, we do not know how the data that we archive today encodes 

artefacts from these different technologies, and how comparable contemporary datasets are to 

materials digitized from analog collections. In particular, the rapid shift to online fieldwork 

raises questions, including whether this remotely recorded data is comparable to data collected 

in-person, as well as what differences are likely to be present. While some acoustic signals may 

be less affected by differences in recording method (e.g. duration of consonants or vowels), other 

types of measurements are likely to be more sensitive to differences between methods and 

devices. For example, because the center of gravity (COG) in fricatives measures aperiodic 

noise, background noise can influence these measurements, particularly in spectrally diffuse 

fricatives like [f]. A high degree of background noise could thus substantially alter the COG of 

[f], while fricatives with denser spectral peaks exhibit less of an influence from background 

noise. Measurement issues that disproportionately impact certain sounds thus might not only 

alter the raw measurements but also the evidence for contrasts. 

 

In this paper, we report the results of a two-phase experimental data gathering study which tests 

the impact of recording equipment and software applications on the recording output of linguistic 

data. In the first phase, we gathered a single acoustic sample on six commonly available 

technological devices. In the second phase, we recorded speech played over popular video 

conferencing applications in order to test the effects of that software on the audio.2 These 

methods were devised to highlight possible interactions between signal intake through a device, 

signal transmission, and signal processing through different software. We compared these 

recordings against a digitally recorded “gold standard” solid state recording. We found that some 

remote recording methods produce acoustic signals that statistically resemble the solid-state 

audio, whereas other remote recording methods produce audio that significantly differs from the 

solid-state audio recordings. While identification of contrasts remains clear in the majority of 

cases, the raw measurements are substantially altered for many characteristics, including 

duration, intensity, and spectral measurements. This raises issues for work on comparative 

 
2 There are several factors which fall beyond the scope of this study such as the effects of technology on inter-
speaker, genre (see Hall-Lew and Boyd 2017), and formality differences (see Sneller 2021). As a result, we do not 
make any claims about these results in comparison to other studies. 
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phonetic typologies or sociolinguistic research which relies on the comparisons of acoustic data 

from different sources. 

 

We begin with an overview of digital speech recording (Section 1.2). The design for our tests is 

described in Section 2. We briefly summarize the results of tests in Section 3. Finally, in Section 

4 we discuss the implications of our results for remote fieldwork, both during the pandemic and 

in the future. The supplementary materials provide fuller discussion and analysis of the statistical 

results.  

 

1.2 Digital speech recording 

When speech is recorded digitally, the air vibrations that comprise the speech signal are encoded 

as a set of binary data that can be read by the computer, reconverted to audio and played through 

speakers, and otherwise manipulated.3 The raw acoustic signal can be frequently sampled, 

producing accurate reproductions. However, doing so creates large files. There is a tradeoff 

between high fidelity and bandwidth choking when sending large amounts of audio and video 

traffic over the internet. Moreover, parts of the spectrum can be compressed without loss of 

comprehensibility to the average user. 

 

Turning to the effects on online recording on speech, there are several types of acoustic signal 

manipulation which are likely to introduce variation: (1) different types of compression; (2) 

different types of filters introduced by software programs; and (3) different sampling rates. We 

describe each of these below. 

 

Audio compression can be lossless (that is, encoded in such a way that recorded information is 

fully recoverable) or lossy, where parts of the signal are irretrievably compressed. Both types of 

codecs are in common use (cf. Drude et al 2011; Bowern 2015:18–36). Compression may be 

vertical (compressing parts of the sound spectrum but not affecting timing), or horizontal, where, 

for example, silence is compressed. Compression also occurs within the speech signal; of course, 

any alterations in timing can cause issues in any frequency measurements, because frequency is 

 
3 For more information about this process, see Zölzer (2008), Lyons (2011), and Lyons & Fugal (2014). 
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defined by timing. Compression can cause large jumps in frequency measurements like f0, 

formants, and center of gravity, as well as smaller shifts in these measurements (van Son 2005; 

de Decker & Nycz 2015; Nash 2001). 

 

Compression is often not uniform across the entire signal, but identifies repeating wave patterns; 

a repeating cycle is mostly redundant information that can be reconstructed from more reduced 

information. Compression systems often include some assumptions about the signal, such as 

using this type of frequency-based compression (Sun, Mkwawa, Jammeh, & Ifeachor 2013); 

while this can improve perceptual clarity, it does not necessarily preserve all of the acoustic cues 

that will be relevant for phonetic analysis. Variable bit demand between frames can exaggerate 

or eliminate spectral valleys, altering formants, f0, and spectral tilt (Liu, Hsu, & Lee 2008). 

Although codecs usually have anti-aliasing filters to prevent conversion of frequencies that are 

higher than the sampling rate can measure, this does not prevent the system from misidentifying 

the frequency and altering the signal based on the assumed frequency. 

 

Some internet-based recordings filter out background noise and feedback (e.g. echos from the 

microphone picking up signal from the device’s speakers4), which also decreases the amount of 

information that needs to be sent and may improve the listening experience for individuals. 

However, manipulations to reduce noise may also alter acoustic measurements depending on 

how the algorithm identifies noise and what frequencies are attenuated or amplified. This kind of 

audio manipulation may also come from the device itself. For example, some sound cards now 

include audio manipulation (e.g. boosting or depressing certain frequencies). 

 

Finally, digital audio can be sampled at different rates. The sampling rate may be constrained by 

a variety of factors, such as the type of microphone that is used or the recording device itself. 

Historically, different linguistic subfields have established different standards of recorded signal 

fidelity. Within sociolinguistics, major documentation projects such as the Atlas of North 

American English (Labov, Ash, & Boberg 2006) have made use of telephone-quality recordings 

 
4 For example, https://support.zoom.us/hc/en-us/articles/360046244692-Background-noise-suppression describes 
some of Zoom’s background noise suppression techniques. 
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which have a sampling rate around 8kHz/s.5 It has long been considered best practice in language 

documentation to use a sampling rate around 44.1 kHz/s, in order to create high-quality 

recordings, even if lower quality would be adequate for the goals of the project. This is because 

researchers cannot anticipate how future language records might be used; subsequent research 

questions might require recordings with a high sampling rate. Projects which do not require the 

higher sampling rate can always employ a technique called downsampling. 

 

Downsampling is the audio equivalent of reducing resolution in an image file, and refers to how 

frequently the audio spectrum is sampled. In addition to reducing the precision in temporal 

measurements, lower sampling rates limit what frequencies can be measured, thus leading to loss 

of information at higher frequencies (Johnson 2008). Most speech information, such as vowel 

formant structure, is at lower frequencies (below 4000 Hz), and will not be obscured by lower 

sampling rates. Other information, such as fricative frequency structure, is encoded in higher 

frequencies and can be sensitive to sampling rate (Johnson 2008:22–23). In particular, fricatives 

often make use of a measurement called the center of gravity (COG) (Gordon, Barthmaier, and 

Sands 2002). To get a sense of how sampling rate can affect fricatives, we will revisit the point 

made above about sampling rate standards used in different fields of linguistics. The standard 

sampling rate over telephone lines, as sometimes used in sociolinguistic studies, is around 

8kHz/s, whereas the standard audio recording sample rate from a solid-state recorder is usually 

44.1kHz/s (cf. recommendations in field linguistics textbooks such as Bowern 2015). Fricatives 

like [s] have spectral energy which exceeds 8kHz, meaning that some of the energy of the [s] is 

cut off over the phone, but these frequencies are retained in a standard audio recording. 

Sociolinguistic studies that use telephone recordings generally do not focus on fricative 

contrasts, but rather on vowel contrasts (Labov, Ash, & Boberg 2006:4), which are not as 

affected by the lower sampling rate. Even if a sound remains perceptually clear at lower 

sampling rates, cutting off higher frequencies will result in lower COG measurements. 

 

Variation in the quality of the online recording can arise either from the software program used 

or from the device used. The variation may arise via (1) different types of compression, 

 
5 See Leemann et al. (2020) for a discussion of cellphone data collection and best practices for online interviewing 
in a sociolinguistic context. 
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particularly variable rate compression that may preserve data optimized for human speech but at 

the expense of manipulating the signal irrecoverably; (2) artefacts in the signal introduced 

through equipment noise, poor shielding, or through the background filters introduced by 

software programs; or (3) different sampling rates. This, of course, is in addition to all the issues 

about audio recording that fieldworkers are familiar with based on the circumstances of 

recording, such as background noise, microphone placement, and the recording environment 

(see, for example, Barwick 2006; Bowern 2015; Seyfeddinipur and Rau 2020).  

 

2 Methods 

In this section we describe methods used to record and compare speech across multiple recording 

devices and software programs. Given the proliferation of recording devices and software for 

audio recording and sharing through social media, there are potentially limitless combinations of 

apps, software, and devices to test. Our aim was not to produce a comprehensive set of 

comparisons; that would not be feasible. Instead, we chose software applications and recording 

equipment that are already commonly used, and we focused tests on those choices most likely to 

impact the audio signal. For example, we made sure to test solid state recording equipment (the 

“gold standard” of in-field recording) vs. cellular telephones, but we did not test different types 

of solid state recorders. On the software side, we tested local recordings versus remote recording, 

but did not additionally test files which were locally recorded through a device and then 

uploaded remotely. 

 

Language users cannot repeat language utterances identically from production event to 

production event, and background noise may differ across production events. Therefore, we 

could not simply record the same speakers sequentially on different devices, because each 

recording could introduce new variation. Instead, we constructed a two-phase setup so that all 

comparisons occur between multiple recordings of the same production event. In Phase 1, each 

speaker produced a set of stimuli while all devices recorded simultaneously. In Phase 2, the 

recording from the solid-state recorder was used as the input to each software. Figure 1 

summarizes the different recording conditions and the setup is described in more detail in 

Sections 2.2 and 2.3 below. 
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Figure 1: Setup of recording phases 

 

In the remainder of this section, we discuss the stimuli we used (Section 2.1), the device setup in 

Phase 1 and the software selection in Phase 2 (Sections 2.2 and 2.3), the types of acoustic 

measurements we made (Section 2.4), and the statistical analyses we used (Section 2.5). 

 

2.1 Stimuli 

Stimuli were designed to test some parameters of acoustic interest (cf. Whalen et al 2020), in 

particular using contexts where those parameters are part of the realization of distinctions made 

in English (e.g. f0 as related to stress and onset voicing). The stimuli allowed us to construct a 

vowel space for speakers, and also test f0, jitter, peak timing, duration, intensity, spectral tilt, 

Harmonics-to-Noise Ratio (HNR), and the center of gravity (COG) of fricatives. The stimuli are 

given in the Supplementary materials. Stimuli were 94 target words embedded in the carrier 

sentence “we say [word] again” and delivered through PsychoPy (Pierce 2007) on the computer 

that was running the internal microphone condition in Phase 1 (described in Section 2.2). The 

recordings were made by three native speakers of English.6 One speaker (NW) was excluded 

 
6 The three speakers are female, with ages between early 30s and early 40s. All three speak different English dialects 
(two North American, one Australian).  
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from the statistical tests of the by-device comparisons (Phase 1) due to a recording error with one 

device.  

 

2.2 Device setup (Phase 1) 

As briefly discussed above, we used a sample of convenience for recording equipment, and did 

not attempt to include all possible configurations of internal and external microphones and types 

of devices. We tested an array of commonly used devices, such as Macs, PCs, tablets, cellular 

phones, and handheld recorders. All devices were in airplane mode and running on battery 

power. Table S1 in the supplementary materials gives the specifications of the items that were 

tested. The recording took place in a quiet room in an otherwise empty building, but with some 

street noise. Three speakers of English with different regional dialects recorded the stimuli 

analyzed in this phase.7 The picture in Figure 2 illustrates the setup: 

 

 
Figure 2: Phase 1 recording setup. (1) Zoom H4n; (2) ipad; (3) computer with internal 

microphone; (4) computer with external headset microphone; (5) android phone; (6) iphone. See 

supplementary materials for specifications 

 

 
7 Due to COVID-19 campus restrictions on who is permitted within university buildings, external participants were 
not recruited. Social distancing measures were implemented during all recordings. 
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2.3 Software selection (Phase 2) 

The second phase was carried out remotely to test recordings made over the internet. This 

involved two researchers, mimicking the combination of the “local” and “remote” recordings of 

a fieldwork consultant. In each case, the recordings made with the Handy Zoom H4n (“H4n”8) 

solid state recorder in the first phase were played through the sound card of a 2012 Macbook Air 

(where the H4n was recognized by the computer as an external microphone). The H4n was 

connected to the computer using a TRRS connector cable attached to the headphone/line-out jack 

of the H4n and the microphone/headphone combined jack in the Macbook Air. While this is not 

equivalent to recording live speech, it does ensure that identical signals were transmitted across 

each remote recording condition. The input from the H4n was recorded uncompressed at 44,100 

Hz through the H4n’s internal microphones. The output was governed by the settings of the 

software programs being used. 

 

The software programs which were tested were: Zoom, Skype, Facebook Messenger (using the 

free program Audacity to make the recording, since Messenger does not have built-in recording 

capabilities), and Cleanfeed, a commonly used podcast interview platform. 

 

2.4 Acoustic measurements 

The software and devices used to make these recordings produce audio files in several different 

formats. All audio files were converted to 16,000 Hz uncompressed mono wav files, because this 

is the format required for forced alignment through p2fa. The audio files were then trimmed so 

that only the speech of the experiment was kept. These recordings were force-aligned to the 

segmental level using the p2fa forced alignment scripts described by Evanini et al (2009), which 

aligns at a resolution of 10ms.9 These recordings were inspected for major alignment errors (of 

which there were none) but were not further corrected. We only used the data from the target 

words (not the carrier phrases) in these analyses.  

 
8 While these devices are typically referred to as “Zoom” recorders, we call this the H4n recorder to distinguish it 
from the video conferencing software Zoom, which has no relationship to the solid state recorder. 
9 Because all files used the same speech input, it would be, in theory, possible to manually correct a single set of 
“gold standard” alignments from the H4n recording and use the correctly aligned version in all experiment 
conditions. However, in practice this is impossible, because the different lossy compression algorithms introduced 
by different recorders leads in practice to non-identical file lengths. This is further discussed in Section 3. 
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The acoustic characteristics measured were: Duration, F1, F2, F3, Center of Gravity (COG), 

jitter, f0 mean, f0 peak timing, spectral tilt (H1-H2), Harmonics-to-Noise ratio (HNR), and 

intensity. Measurements were extracted using scripts in Praat (Boersma & Weenink 2017). All 

measurements are means taken across the whole interval, except characteristics that are a single 

point by definition (e.g. time of the f0 peak). Phonation measurements were calculated using 

Voice Report with the following parameters: start, end, 65, 350, 1.3, 1.6, 0.03, 0.45. For COG, 

fricatives were extracted with Hanning windows to create the spectral objects for analysis. 

Formants were analyzed with a maximum frequency setting of 5500 Hz for 5 formants.  

 

Signal to noise ratio was calculated across the intervals marked as “silence” in the forced 

alignment versus those marked for the target words that were analyzed for the acoustic 

characteristics described above. The signal to noise ratio calculations compared the intervals 

labeled as silence by the alignment algorithm versus those in the carrier phrases. These were then 

averaged across each recording condition. 

 

2.5 Statistical analyses  

All statistical results are from mixed effects models calculated with the lme4 package in R (Bates 

et al 2015). The p-values were calculated by the lmerTest package (Kuznetsova et al 2015). The 

reference condition, which the other conditions were compared against, was always the H4n 

recorder. 

 

3 Results 

Here we summarize the main results. For reasons of space and legibility, only an overview is 

presented, and more thorough discussion of each condition is provided in the supplementary 

materials. Section 3.1 provides a general overview of the key findings about variation between 

devices and software programs and presumes minimal familiarity with phonetic measures. 

Section 3.2 discusses the results of individual acoustic measurements, while Section 3.3. presents 

an overview of findings with respect to recovery of data for contrasts.  
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When reading the results, the size of the effects and the significance must be interpreted with 

respect to the somewhat small amount of data. Lack of significance cannot be interpreted as 

indicating that there is no real effect, and some of the estimates are large despite not being 

significant, suggesting a high degree of variability. This overview should be read in conjunction 

with the supplementary materials, which provides further discussion of all of these points 

(Supplementary Materials). We concentrate here on a description of the results that will be 

accessible to linguists who do not use quantitative methods extensively in their work but whose 

work is affected by recording choices.  

 

3.1 Summary of results 

While our set of measurements is not exhaustive, we cover several types of measurements that 

exhibit effects of recording condition. These can broadly be grouped into measurements of 

duration, measurements of intensity in aperiodic noise, and measurements of frequency. 

 

First, as seen in more detail in Section 3.2, duration measurements seem to be affected by the 

compression algorithms used in m4a formats. The effects on duration are likely influenced both 

directly by lossy compression effects on timing and also indirectly when boundary assignment is 

obscured by noise and lowered intensity of the signal. While manual segmentation would likely 

reduce the latter effects, they would not be fully eliminated, and the compression-based effects 

could not be improved at all.   

 

Second, there are also differences in levels of background noise, efficacy in capturing the speech 

signal, and filtering meant to remove background noise or boost the speech signal. Lowered 

signal-to-noise ratios, either due to higher intensity of noise or lowered intensity of the signal, 

directly impacts measurements like the Harmonics-to-Noise ratio (HNR) and center of gravity 

(COG). Changes in noise and intensity also have indirect effects in identification of segment 

boundaries and measurement of other characteristics that depend on being able to isolate the 

target characteristic of the speech signal. 
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Lastly, there are changes in measurements of frequency, observed in f0 and formants. These are 

likely the result of lossy compression; depending on how the compression system handles 

repeating waves, these could be over-regularized or obscured. Compression that alters the file’s 

duration will also produce changes in spectral measurements. Some of the spectral issues may 

also be caused by changes in intensity, as some recording conditions are less sensitive to certain 

frequency ranges, which can subsequently change how formants and f0 are identified. Of course, 

changes in intensity of different frequencies is also directly reflected in spectral tilt effects. Such 

differences are also likely to affect perceptual clarity, making fieldwork using remote recordings 

more difficult and making transcription less reliable. 

 

There were a larger number of significant differences between software programs than between 

devices. Intensity and signal to noise ratio measures differed significantly among devices, but 

most other measures are not significantly different. As noted above, however, though the 

differences were not all statistically significant, we did find measurement differences, that is, raw 

differences in the measurements of variables beyond what one might expect. The software 

choices also led to differences in intensity, signal to noise ratio, and duration measurements. 

 

Finally, we found that we were, in almost all cases, able to recover evidence for the phonemic 

distinctions which were tracked (such as stressed versus unstressed vowels, voicing differences, 

and vowel space measurements to capture vowel differences). However, the raw measurements 

of the distinctions varied, in some cases substantially. 

 

3.2 Individual Acoustic Metrics 

Table 2 below summarizes the different measures in the Phase 1 recordings, testing differences 

based on recording device. Asterisks indicate significance levels at < 0.05 (*), < 0.01 (**), or < 

0.001 (***). When a test was significant, then the direction of significance is also indicated in 

that table cell.  

 

Table 2: Effects of device on acoustic measures. Empty cells indicate that the condition did not 

differ significantly from the Zoom H4n solid state recording in the given characteristic.  
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Device: Android 
(m4a) 

External Mic 
(wav) 

Internal Mic 
(wav) 

iPad (m4a, 
compressed) 

iPhone (m4a, 
uncompresse
d) 

Consonant 
Duration 

  ** (shorter) * (shorter)  

Vowel 
Duration 

   * (longer)  

Consonant 
Intensity 

*** (lower) *** (lower) *** (lower) *** (lower) *** (lower) 

Vowel 
Intensity 

*** (lower) *** (lower) *** (lower) *** (lower) *** (lower) 

Mean Vowel 
f0 

     

Peak f0 
timing 

     

Jitter * (lower)     

Spectral tilt   ** (lower)   

Harmonics-
to-noise ratio 

  *** (lower)   

F1      

F2   * (lower)   

Center of 
Gravity 
(frics) 

 ** (higher) ** (higher)   

Signal to 
noise ratio 

*** (higher) *** (higher) *** (lower) *** (lower) *** (lower) 

 

In addition to those tests reported here, we also tested whether devices differed in capturing the 

acoustic cues to English phonological contrasts. The measurements included: stress reflected in 

vowel duration, intensity, and F0 maximum; coda voicing reflected in vowel duration and HNR; 

onset voicing indicated in HNR, spectral tilt, and F0 maximum; obstruent manner indicated in 

intensity; and sibilant identity indicated in COG. 
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Few measurements of these contrasts are significantly altered by device, though both the internal 

computer mic and external computer mic conditions overestimated the difference between the 

COG of /s/ and /ʃ/. However, most contrasts were maintained in the recordings, as further 

discussed below.  

 

Consonant duration was significantly shorter than the baseline standard in the 

InternalComputerMic condition and the iPad condition. The existence of differences in duration 

might suggest that other factors are impacting how the forced aligner determines boundaries; 

most of the overall estimates as well as the estimates for individual segments are within about 10 

ms, which is close to the margin of error of the forced aligner (Evanini et al 2009; see 

supplementary materials). It is also possible that some effects on duration reflect actual 

differences in duration measurements within the file, through lossy compression warping the 

signal in different ways. This is, however, unlikely. The Android and iPad were recorded with 

compressed audio, while the iPhone condition was not. However, the iPad results are almost 

identical to the Internal Computer Microphone, which (like the external computer mic) used 

Audacity to record the audio. Therefore it is unlikely that compression algorithms alone are 

responsible for the differences. The differences in consonant duration seen in the table above 

appear to be largely offset by the differences in vowel duration. That is, those conditions where 

the vowels are shorter are the same ones where the consonants are longer. This implies that the 

issue is a difference in boundary placement identification rather than compression. Note, 

moreover, that the magnitude of the effects is overall quite small (as detailed in the 

supplementary materials). 

 

Our gold standard recording did not have a particularly high signal to noise ratio, compared to 

some of the other recording devices used in the live recording condition. This is probably due in 

part to the sensitivity of the H4n’s microphone and picking up background noise from the air 

conditioning system and external traffic noise. The SNR can also be influenced by the distance 

of each recording device from the speaker. SNR values varied by speaker in the gold standard 

recording. They also varied by both device and software program, implying that software adjusts 

internal volume levels. 



16 

 

Table 3 below summarizes the different measures in the Phase 2 recordings, testing differences 

based on the software application used. The models comparing these conditions used only one of 

the conditions that we recorded with Zoom software, because there were no significant 

differences between using different settings in Zoom (compressed or ‘original’ sound, or audio 

channel extracted from the video vs separate audio channel). The Zoom condition reported was 

recorded locally with the default audio settings. 

 

Table 3: Effects of device on acoustic measures. Empty cells indicate that the condition did not 

differ significantly from the H4n solid state recording in the given characteristic.  

Application Audacity 
(wav) 

Cleanfeed 
(wav) 

Messenger 
(wav) 

Skype (.mp4) Zoom (.wav) 

Consonant 
Duration 

  ***(shorter) ***(shorter) ***(shorter) 

Vowel 
Duration 

  ***(longer) ***(longer) ***(longer) 

Consonant 
Intensity 

 ***(lower) ***(lower) ***(lower) ***(lower) 

Vowel 
Intensity 

 ***(lower) ***(lower) ***(lower) ***(lower) 

Mean Vowel 
f0 

     

Peak f0 
timing 

    **(later) 

Jitter      

Spectral tilt **(underesti
mate) 

**(underesti
mate) 

***(overesti
mate) 

**(underesti
mate) 

***(underesti
mate) 

Harmonics-
to-noise ratio 

  ***(higher)   

F1   *(lower)   

F2   *(higher)   
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Center of 
Gravity 
(frics) 

  **(lower)  *(higher) 

Signal to 
noise ratio 

 *** (higher) *** (higher) *** (higher) *** (higher) 

 

Duration and intensity measures were often affected, even in cases where the recording signal is 

supposedly uncompressed, as in the Zoom condition where audio compression options were 

unchecked. This could be the result of the background noise and highpass filters leading p2fa to 

identify CV transitions in different places. Most of the programs do not record a significant 

difference between software conditions when it comes to f0 and formants. However, this lack of 

significant difference is not because these measurements were unaffected. Across different 

vowels, frequency was sometimes overestimated and sometimes underestimated; the lack of 

significant overall differences is due to the effects not being systematic across different vowels. 

Section 3.3 provides a discussion of how formant measurements for different vowels were 

impacted differently by the software conditions. 

 

Contrasts were generally still captured, even for characteristics that were influenced by the 

recording condition. Just as in Phase 1, there was some variation across conditions that did not 

reach significance. Additionally, Messenger failed to capture the effect of stress on vowel 

intensity and the difference in COG between /s/ and /ʃ/.  

 

The gold standard H4n recorder did not have the highest signal to noise ratio; it was actually 

lower than any of the software program conditions. The highest signal to noise ratio comes from 

the Zoom condition, presumably as an effect of the Zoom software suppressing background 

noise. While filtering background noise or amplifying frequencies that are typical of speech 

increases the signal to noise ratio, this filtering alters the acoustic signal and could potentially 

influence the results in misleading ways. Having a higher SNR is not necessarily indicative of a 

higher fidelity recording, even if the suppression of certain frequencies increases perceptual 

clarity for listeners. 

 



18 

3.3 Combined Acoustic Metrics 

While the previous section discussed absolute measurements of a range of acoustic phenomena, 

in this section we examine another facet of the data: how clearly phonetic cues to phonological 

contrasts are separated in each condition. That is, are features of the speech signal that mark 

phonological contrasts sufficiently recoverable to allow linguists to do phonological 

documentation? A few contrasts are presented here as examples; the full results testing the 

measurement of contrasts are given in the Supplementary Materials.10 

 

 

 
Figure 3: Aggregated stressed vs unstressed vowel duration across Phase 1 devices. Measured 

vowel duration as predicted by device and stress. Pooled raw data, not the model results. 

Whiskers indicate the standard error and the dot is the average. 

 

Figure 3 illustrates vowel duration differences between stressed and unstressed vowels across 

Phase 1 devices, while Figure 4 illustrates vowel duration differences between stressed and 

unstressed vowels across Phase 2 recording software. In all cases, the contrast is recovered, 

 
10 Note that this set of contrasts is limited to English contrasts, based on the language of the experiment.  We did 
aim to include examples of contrasts that depend on different types of acoustic characteristics, including duration, 
frequency of periodic waves, and intensity of periodic and aperiodic components of the signal. However, it is 
possible that contrasts other than the particular ones we measured here might behave differently. 
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though note that the category separation differs among conditions in both Phase 1 and Phase 2. 

As discussed in Section 3.2, vowel duration measurements are lengthened (though not always 

significantly) and that can be seen from these results as well. The device results have a higher 

variance than the software conditions. 

 

 
Figure 4: Aggregated stressed vs unstressed vowel duration across Phase 2 applications. The 

dots represent the average duration and the whiskers the standard error. 

 

 

Figure 5 gives the vowel spaces for each speaker as measured in Phase 1 (by-Device). Since the 

speakers come from different regions of the English-speaking world, we separate the vowel 

spaces by speaker. 
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Figure 5: Vowel spaces for each of the three speakers as measured in Phase 1 (comparisons by 

Device).  

 

The device conditions in Phase 1 all clearly pick out a recognizable vowel space. However, some 

of the vowels are shifted enough that they would likely cause problems for analysis. In 

particular, F2 measurements for /u/ and /ou/ were very high in many of the conditions. While 

other vowels did not exhibit systematic effects, there are several vowels that have strikingly 

variable measurements across conditions. Including the interaction between device and vowel 

significantly improved the model for F2, indicating that the differences in F2 between vowels 

were measured differently by different devices. There was less evidence for an interaction with 

F1. 

 

Vowel spaces from Phase 2 exhibit considerable variation across different software applications. 

Figure 6 gives vowel spaces for each speaker as measured in Phase 2 (by-Program). Including 

the interaction between device and vowel significantly improved the model for both F1 and F2, 

indicating that the differences in formants between vowels were measured differently by 

different devices. 
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Figure 6: Vowel spaces for each of the three speakers as measured in Phase 2 (comparisons by 

Program).  

 

Many of the conditions produce measurements that substantially shift a vowel far into the region 

of a different vowel. While clusters for measurements of each vowel are mostly apparent, 

Messenger is a clear outlier for most of the vowels for most of the speakers.  

 

It is important to note that the lack of overall effect in a measurement across vowels or other 

categories does not indicate that each individual data point is reliable; formant measurements 

have no main effect for most devices or programs because different vowels are impacted in 

different ways. These inconsistent effects across vowels are in fact likely to cause more issues 

than consistent effects, because they could obscure or exaggerate phonological contrasts, while a 

consistent shift would be more likely to preserve contrasts. 

 

4 Discussion, Implications, and Recommendations 

4.1 Implications of the results 

As seen from the previous section, both device and software altered the recording in ways that 

affected the retrieval of measurements and the instantiation of contrasts (though not, by and 

large, the contrasts themselves). Some of the effects of different devices and recording programs 

were very large and could produce misleading phonetic results. Contrasts generally remained 
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clear, because effects were largely consistent across different items, but some contrasts were 

exaggerated or underestimated. The main – and important – implication of the results is that it 

will be difficult to directly combine or compare data gathered “in person” in the field with data 

gathered remotely, even if recorded from the same speaker. Even the relatively reliable 

conditions produced measurement differences that will need to be taken into account in any 

analyses.  

 

The variation across recording conditions problematizes research that, for example, asks 

participants to record themselves and upload recordings, if that recording is done on different 

devices. It also means that the findings of cross-linguistic phonetic comparisons, such as Salesky 

et al (2020), should be evaluated in the context of possibly substantial interference from 

differences in measurements resulting from the circumstances of recording. This is particularly 

an issue for work on endangered languages, where a small number of speakers may be taken as 

“representative” of the language, further confounding differences between speakers, languages, 

and devices. 

 

Secondly, fieldworkers should be wary about combining recordings from the same speaker that 

were made in person and remotely at different times. That is, recordings made from the same 

person but with different devices are likely to show differences that are not features of the 

person’s speech. 

 

Thirdly, this work raises questions for any work that requires stable identification of features 

across devices or programs. While our discussion focuses on implications for fieldwork and 

language documentation, these effects are similarly relevant for sociophonetics research, online 

phonetic production experiments, and (perhaps most importantly) forensic phonetics, where the 

variation identified here (based on device and software) should be taken into consideration in 

voice comparisons.  

 

In the following sections we make some recommendations for field linguists looking to minimize 

the impact of device or software bias on their recordings. 
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4.2 Documenting recording set-up 

Documenting the recording set-up is crucial: what microphone was used, what program was 

used, and any settings for programs that allow multiple settings. Even if effects of these 

conditions do not have a large impact on comparisons within a recording, documenting the 

recording conditions will facilitate interpretation of results and comparisons across recordings, 

both for fieldworkers themselves and for others using their data in the future. The recordings 

being made now are the archival data for the future, so it is important to provide as much 

information as possible to make these recordings interpretable. The more we know about the 

effects of particular recording conditions, the better our ability to make comparisons across 

different recordings.  

 

One should always be cautious about comparing measurements from one set of recordings to 

measurements from another set of recordings, particularly if there is no documentation of what 

recording set-up was used to create a set of recordings. Our results suggest that the recording set-

up should generally not have a substantial impact on being able to identify contrasts; most of 

these methods will recover most phonological contrasts, so comparisons within a recording are 

likely to be usable. However, the magnitude of the effects may be estimated differently, and the 

precise measurements will vary across devices and software programs. The raw measurements 

are unreliable for a range of factors across many conditions. 

 

For language documentation, online recording can be used to recover phonemic contrasts and for 

broad description of linguistic processes, though the data might not reliably demonstrate the 

specific acoustic phonetic realization of each category. Researchers making comparisons across 

individual speakers (for example, in sociolinguistics or in comparative phonetics) or comparisons 

across languages need to be particularly aware of these issues. It is important to consider 

potential effects of the recording set-up, particularly if it varies across speakers. If information 

about the recording set-up is not available, it will be very difficult to distinguish between effects 

of the set-up and effects of the speaker or the speaker’s language. 
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4.3 General recommendations 

Based on the conditions we tested, we have a few specific recommendations for fieldworkers, 

sociolinguists, and anyone else conducting phonetic research.  

 

Because of the substantial differences across different recording conditions, it is important to 

make comparisons within the same recording whenever possible, and to use the same set-up 

when making multiple recordings that will be compared with one another, e.g. when recording 

multiple speakers in documentary and sociolinguistic tasks. When making long-distance 

recordings, ensure that the setup is the same on both ends (their set-up and yours) for all speakers 

being recorded.  

 

If using different devices or programs is unavoidable, this will, most likely, limit possibilities for 

making comparisons across different individuals, because individual differences will be 

confounded with differences due to the recording conditions. It will nonetheless be particularly 

important to include participant/recording as a factor in analyses. Given that linguistic fieldwork, 

particularly for endangered languages, is often conducted with few individuals, “pandemic 

recordings” from different speakers using different platforms may mean that in the future we will 

be unable to distinguish between individual speaker differences and individual software 

differences in much of this data. This risk is especially problematic for endangered languages, 

which are already severely phonetically underdocumented (Whalen et al 2020). 

 

Researchers doing virtual recordings should consider testing their own setup for which effects 

are likely to be present, by comparing a field recorder to the setup the linguistic consultants are 

using. The stimuli used here are available for download as part of the supplementary materials if 

readers would like to directly compare their setup with the results here. 

 

4.4 Recommendations about devices and local settings 

For recording devices, an external computer microphone is preferable to the internal microphone, 

even for a relatively new computer with a high quality microphone. Avoid compression if 

possible, and use lossless formats; this difference is reflected by the difference between our iPad 
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and iPhone conditions. This will mean that recording file size may become an issue and external 

storage may be necessary. 

 

Our device recording tests suggest relatively little overall difference between devices, apart from 

intensity measures, which could simply be due to the different distances each device had from 

the speaker. This is good news for making recordings in the field, and suggests that if possible, 

the best way to record remotely is to have research participants make recordings on their own 

devices (including phones or tablets) and transfer those recording files via file upload. We 

understand, however, that such a recommendation may not be feasible in many areas, given the 

costs of data plans, or the technical knowledge needed to transfer recordings. Furthermore, 

although most differences in recording devices were not significant, that does not mean that there 

were no differences in measurements. 

 

4.5 Recommendations about software programs 

For online recording, Cleanfeed performed overall the closest to the gold standard solid state 

recordings. However, this program does not make video recordings. We understand that using 

audio recording alone is problematic for general language documentation, and that there are 

many advantages to being able to see one’s interlocutor, as well as the screen-sharing and other 

features that programs like Zoom and Skype bring. However, if the primary goal is comparable 

acoustic phonetic measurements, Cleanfeed is preferable. Other video-based services (that we 

did not test) may also be preferable to Zoom or Skype. Facebook Messenger should be avoided; 

it consistently produced measurements that substantially differed from our solid state recorder 

and which were often very different from the measurements produced by other programs and 

devices. These issues seem to be traceable to Messenger and not to Audacity, given the more 

limited effects of using Audacity alone.  

 

If video is necessary, Skype and Zoom are similar to each other in reliability.  Both produce 

some artefacts, so it is very important to document what software was used.  The two programs 

handle noise differently, in a way that produces divergent COG effects and might also produce 

differences in other measurements. 
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In order to facilitate comparisons across different recordings, it is important to use the same 

software program across speakers and across recording sessions. While the absolute 

measurements are altered to some degree by all of these applications, using the same application 

for all recordings will at least ensure that artefacts do not produce apparent variability across 

speakers, across tasks, or based on other factors that also vary between recordings. 

 

One additional factor to consider that was not addressed within our study is the internet 

connection. All of our virtual recordings were made over stable high-speed11 connections. When 

the connection is weak, many issues are likely to arise from the speech signal cutting out, which 

can cause major distortions or omit words entirely. Some programs include greater compression 

to handle slower connections, so measurements that were reliable for recordings made over a fast 

connection will not necessarily be reliable when made over a slower connection. Thus, it is 

preferable to record locally whenever possible and subsequently share those recordings, rather 

than making the recording over an internet connection.  

 

5 Conclusions 

The ubiquity and relative auditory fidelity of online voice platforms and portable devices have 

led linguists to be more comfortable using such systems in field research. Covid-related 

restrictions and lockdowns have made it difficult or impossible to conduct in-person field 

research. We tested the feasibility of using these online solutions in a remote recording situation, 

by comparing a recording made on a solid-state recorder against the same recording after being 

fed through various software programs and recorded on different devices. We found that all 

options distort the signal in some fashion, and give recommendations for best practices: local 

recordings are best when possible, and the recording set-up should be consistent across recording 

sessions. For all recordings, both in-person and remote, researchers should document all aspects 

of the recording setup, including devices and software programs, in order to facilitate future 

interpretation of the data. 

 
11 Broad-band cable internet at one end, fiber-optic-to-curb at the other. 
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