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(Don’t) try this at home!  

The effects of recording devices and software on phonetic analysis 

 

 

Abstract 

Because of restrictions on in-person research due to Covid-19, researchers are now relying on 

remotely recorded data to a much greater extent than has been typical in previous work. Given 

the change in methodology, it is important to know how remote recording might alter the 

acoustic signal, either based on different recording devices used by participants and consultants 

recording themselves or based on video-conferencing software used to make interactive 

recordings. This study investigates audio signal fidelity across different in-person recording 

equipment and remote recording software when compared to a solid-state digital recording 

device that is representative of the standard used in-person for elicitation and fieldwork. We 

show that the choice of equipment and software can have a large effect on acoustic 

measurements, including measurements of frequency, duration, and noise. The issues do not just 

reflect decreased reliability of measurements; some measurements are systematically shifted in 

particular recording conditions. These results show the importance of carefully considering and 

documenting equipment choices. In particular, any cross-linguistic or cross-speaker comparison 

needs to account for possible effects of differences in which devices or software platforms were 

used. 
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1 Introduction1 

1.1 Overview: fieldwork in a pandemic 

Human subjects compliance boards across various institutions restricted approval of protocols 

for in-person research for much of 2020, and at the time of writing many of these restrictions are 

still in place. For this reason, and also for the safety of research participants, many researchers 

have decided to either postpone phonetic elicitation or turn to alternative methods involving the 

use of remote recordings. This has led to a rapid and dramatic shift in the types of technologies 

used for phonetic elicitation both in fieldwork and other linguistic research, as well as language 

documentation more broadly.  In order to use the data collected online, it is necessary to know 

how the recording device and recording software might impact acoustic measurements. 

 

While in-person linguistic fieldwork has primarily used digital recording equipment for 15 years 

or more (cf. Bird and Simons 2003; Maddieson 2001; Podesva and Zsiga 2013), the use of video-

conferencing or social media software applications for primary fieldwork has not been 

widespread until this year, a result of restrictions on travel and in-person interactions in response 

to COVID-19 pandemic. Remote recording technology is readily accessible and there are many 

different methods which can be used. Prior to the pandemic, the types of technology used for 

linguistic documentation and archiving had already started to shift away from solid-state 

recorders in favor of more easily accessible technologies, such as smartphones (cf. Bird et al 

2014; Goldman et al 2014). It has long been noted that compression (van Son 2005), technical 

differences (e.g. transmission over telephone lines; Künzel 2001; Rathcke et al 2017, and cell 

phones; Gold 2009) all affect measurements of the speech signal (in more or less predictable 

ways). However, to our knowledge, there is no study which systematically tests the acoustic 

impact of recent internet-based video conferencing programs in order to establish new best 

practices for language documentation and sociolinguistic research (cf. Leemann et al 2020). 

Furthermore, though these considerations have been discussed in technical phonetics venues, it 

appears that this knowledge is less commonly discussed among endangered language 

researchers. Therefore, our aim is both to make these issues more transparent and to suggest 

some best practices for researchers suddenly faced with the shift to online recording.    

 
1 Acknowledgement footnote removed 
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Without testing of this type, we do not know how the data that we archive today encodes 

artefacts from these different technologies, and how comparable contemporary datasets are to 

materials digitized from analog collections. In particular, the rapid shift to online fieldwork 

raises questions, including whether this remotely recorded data is comparable to data collected 

in-person, as well as what differences are likely to be present. While some acoustic signals may 

be less affected by differences in recording method (e.g. duration of consonants or vowels), other 

types of measurements are likely to be more sensitive to differences between methods and 

devices. For example, because the center of gravity (COG) in fricatives measures aperiodic 

noise, background noise can influence these measurements, particularly in spectrally diffuse 

fricatives like [f]. A high degree of background noise could thus substantially alter the COG of 

[f], while fricatives with denser spectral peaks exhibit less of an influence from background 

noise. Measurement issues that disproportionately impact certain sounds thus might not only 

alter the raw measurements but also the evidence for contrasts. 

 

In this paper, we report the results of a two-phase experimental data gathering study which tests 

the impact of recording equipment and software applications on the recording output of linguistic 

data. In the first phase, we gathered a single acoustic sample on six commonly available 

technological devices. In the second phase, we recorded speech played over popular video 

conferencing applications in order to test the effects of that software on the audio.2 These 

methods were devised to highlight possible interactions between signal intake through a device, 

signal transmission, and signal processing through different software. We compared these 

recordings against a digitally recorded “gold standard” solid state recording. We found that some 

remote recording methods produce acoustic signals that statistically resemble the solid-state 

audio, whereas other remote recording methods produce audio that significantly differs from the 

solid-state audio recordings. While identification of contrasts remains clear in the majority of 

cases, the raw measurements are substantially altered for many characteristics, including 

duration, intensity, and spectral measurements. This raises issues for work on comparative 

 
2 There are several factors which fall beyond the scope of this study such as the effects of technology on inter-
speaker, genre (see Hall-Lew and Boyd 2017), and formality differences (see Sneller 2021). As a result, we do not 
make any claims about these results in comparison to other studies. 
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phonetic typologies or sociolinguistic research which relies on the comparisons of acoustic data 

from different sources. 

 

We begin with an overview of digital speech recording (Section 1.2). The design for our tests is 

described in Section 2. We briefly summarize the results of tests in Section 3. Finally, in Section 

4 we discuss the implications of our results for remote fieldwork, both during the pandemic and 

in the future. The supplementary materials provide fuller discussion and analysis of the statistical 

results.  

 

1.2 Digital speech recording 

When speech is recorded digitally, the air vibrations that comprise the speech signal are encoded 

as a set of binary data that can be read by the computer, reconverted to audio and played through 

speakers, and otherwise manipulated.3 The raw acoustic signal can be frequently sampled, 

producing accurate reproductions. However, doing so creates large files. There is a tradeoff 

between high fidelity and bandwidth choking when sending large amounts of audio and video 

traffic over the internet. Moreover, parts of the spectrum can be compressed without loss of 

comprehensibility to the average user. 

 

Turning to the effects on online recording on speech, there are several types of acoustic signal 

manipulation which are likely to introduce variation: (1) different types of compression; (2) 

different types of filters introduced by software programs; and (3) different sampling rates. We 

describe each of these below. 

 

Audio compression can be lossless (that is, encoded in such a way that recorded information is 

fully recoverable) or lossy, where parts of the signal are irretrievably compressed. Both types of 

codecs are in common use (cf. Drude et al 2011; Bowern 2015:18–36). Compression may be 

vertical (compressing parts of the sound spectrum but not affecting timing), or horizontal, where, 

for example, silence is compressed. Compression also occurs within the speech signal; of course, 

any alterations in timing can cause issues in any frequency measurements, because frequency is 

 
3 For more information about this process, see Zölzer (2008), Lyons (2011), and Lyons & Fugal (2014). 
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defined by timing. Compression can cause large jumps in frequency measurements like f0, 

formants, and center of gravity, as well as smaller shifts in these measurements (van Son 2005; 

de Decker & Nycz 2015; Nash 2001). 

 

Compression is often not uniform across the entire signal, but identifies repeating wave patterns; 

a repeating cycle is mostly redundant information that can be reconstructed from more reduced 

information. Compression systems often include some assumptions about the signal, such as 

using this type of frequency-based compression (Sun, Mkwawa, Jammeh, & Ifeachor 2013); 

while this can improve perceptual clarity, it does not necessarily preserve all of the acoustic cues 

that will be relevant for phonetic analysis. Variable bit demand between frames can exaggerate 

or eliminate spectral valleys, altering formants, f0, and spectral tilt (Liu, Hsu, & Lee 2008). 

Although codecs usually have anti-aliasing filters to prevent conversion of frequencies that are 

higher than the sampling rate can measure, this does not prevent the system from misidentifying 

the frequency and altering the signal based on the assumed frequency. 

 

Some internet-based recordings filter out background noise and feedback (e.g. echos from the 

microphone picking up signal from the device’s speakers4), which also decreases the amount of 

information that needs to be sent and may improve the listening experience for individuals. 

However, manipulations to reduce noise may also alter acoustic measurements depending on 

how the algorithm identifies noise and what frequencies are attenuated or amplified. This kind of 

audio manipulation may also come from the device itself. For example, some sound cards now 

include audio manipulation (e.g. boosting or depressing certain frequencies). 

 

Finally, digital audio can be sampled at different rates. The sampling rate may be constrained by 

a variety of factors, such as the type of microphone that is used or the recording device itself. 

Historically, different linguistic subfields have established different standards of recorded signal 

fidelity. Within sociolinguistics, major documentation projects such as the Atlas of North 

American English (Labov, Ash, & Boberg 2006) have made use of telephone-quality recordings 

 
4 For example, https://support.zoom.us/hc/en-us/articles/360046244692-Background-noise-suppression describes 
some of Zoom’s background noise suppression techniques. 
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which have a sampling rate around 8kHz/s.5 It has long been considered best practice in language 

documentation to use a sampling rate around 44.1 kHz/s, in order to create high-quality 

recordings, even if lower quality would be adequate for the goals of the project. This is because 

researchers cannot anticipate how future language records might be used; subsequent research 

questions might require recordings with a high sampling rate. Projects which do not require the 

higher sampling rate can always employ a technique called downsampling. 

 

Downsampling is the audio equivalent of reducing resolution in an image file, and refers to how 

frequently the audio spectrum is sampled. In addition to reducing the precision in temporal 

measurements, lower sampling rates limit what frequencies can be measured, thus leading to loss 

of information at higher frequencies (Johnson 2008). Most speech information, such as vowel 

formant structure, is at lower frequencies (below 4000 Hz), and will not be obscured by lower 

sampling rates. Other information, such as fricative frequency structure, is encoded in higher 

frequencies and can be sensitive to sampling rate (Johnson 2008:22–23). In particular, fricatives 

often make use of a measurement called the center of gravity (COG) (Gordon, Barthmaier, and 

Sands 2002). To get a sense of how sampling rate can affect fricatives, we will revisit the point 

made above about sampling rate standards used in different fields of linguistics. The standard 

sampling rate over telephone lines, as sometimes used in sociolinguistic studies, is around 

8kHz/s, whereas the standard audio recording sample rate from a solid-state recorder is usually 

44.1kHz/s (cf. recommendations in field linguistics textbooks such as Bowern 2015). Fricatives 

like [s] have spectral energy which exceeds 8kHz, meaning that some of the energy of the [s] is 

cut off over the phone, but these frequencies are retained in a standard audio recording. 

Sociolinguistic studies that use telephone recordings generally do not focus on fricative 

contrasts, but rather on vowel contrasts (Labov, Ash, & Boberg 2006:4), which are not as 

affected by the lower sampling rate. Even if a sound remains perceptually clear at lower 

sampling rates, cutting off higher frequencies will result in lower COG measurements. 

 

Variation in the quality of the online recording can arise either from the software program used 

or from the device used. The variation may arise via (1) different types of compression, 

 
5 See Leemann et al. (2020) for a discussion of cellphone data collection and best practices for online interviewing 
in a sociolinguistic context. 
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particularly variable rate compression that may preserve data optimized for human speech but at 

the expense of manipulating the signal irrecoverably; (2) artefacts in the signal introduced 

through equipment noise, poor shielding, or through the background filters introduced by 

software programs; or (3) different sampling rates. This, of course, is in addition to all the issues 

about audio recording that fieldworkers are familiar with based on the circumstances of 

recording, such as background noise, microphone placement, and the recording environment 

(see, for example, Barwick 2006; Bowern 2015; Seyfeddinipur and Rau 2020).  

 

2 Methods 

In this section we describe methods used to record and compare speech across multiple recording 

devices and software programs. Given the proliferation of recording devices and software for 

audio recording and sharing through social media, there are potentially limitless combinations of 

apps, software, and devices to test. Our aim was not to produce a comprehensive set of 

comparisons; that would not be feasible. Instead, we chose software applications and recording 

equipment that are already commonly used, and we focused tests on those choices most likely to 

impact the audio signal. For example, we made sure to test solid state recording equipment (the 

“gold standard” of in-field recording) vs. cellular telephones, but we did not test different types 

of solid state recorders. On the software side, we tested local recordings versus remote recording, 

but did not additionally test files which were locally recorded through a device and then 

uploaded remotely. 

 

Language users cannot repeat language utterances identically from production event to 

production event, and background noise may differ across production events. Therefore, we 

could not simply record the same speakers sequentially on different devices, because each 

recording could introduce new variation. Instead, we constructed a two-phase setup so that all 

comparisons occur between multiple recordings of the same production event. In Phase 1, each 

speaker produced a set of stimuli while all devices recorded simultaneously. In Phase 2, the 

recording from the solid-state recorder was used as the input to each software. Figure 1 

summarizes the different recording conditions and the setup is described in more detail in 

Sections 2.2 and 2.3 below. 
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Figure 1: Setup of recording phases 

 

In the remainder of this section, we discuss the stimuli we used (Section 2.1), the device setup in 

Phase 1 and the software selection in Phase 2 (Sections 2.2 and 2.3), the types of acoustic 

measurements we made (Section 2.4), and the statistical analyses we used (Section 2.5). 

 

2.1 Stimuli 

Stimuli were designed to test some parameters of acoustic interest (cf. Whalen et al 2020), in 

particular using contexts where those parameters are part of the realization of distinctions made 

in English (e.g. f0 as related to stress and onset voicing). The stimuli allowed us to construct a 

vowel space for speakers, and also test f0, jitter, peak timing, duration, intensity, spectral tilt, 

Harmonics-to-Noise Ratio (HNR), and the center of gravity (COG) of fricatives. The stimuli are 

given in the Supplementary materials. Stimuli were 94 target words embedded in the carrier 

sentence “we say [word] again” and delivered through PsychoPy (Pierce 2007) on the computer 

that was running the internal microphone condition in Phase 1 (described in Section 2.2). The 

recordings were made by three native speakers of English.6 One speaker (NW) was excluded 

 
6 The three speakers are female, with ages between early 30s and early 40s. All three speak different English dialects 
(two North American, one Australian).  
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from the statistical tests of the by-device comparisons (Phase 1) due to a recording error with one 

device.  

 

2.2 Device setup (Phase 1) 

As briefly discussed above, we used a sample of convenience for recording equipment, and did 

not attempt to include all possible configurations of internal and external microphones and types 

of devices. We tested an array of commonly used devices, such as Macs, PCs, tablets, cellular 

phones, and handheld recorders. All devices were in airplane mode and running on battery 

power. Table S1 in the supplementary materials gives the specifications of the items that were 

tested. The recording took place in a quiet room in an otherwise empty building, but with some 

street noise. Three speakers of English with different regional dialects recorded the stimuli 

analyzed in this phase.7 The picture in Figure 2 illustrates the setup: 

 

 
Figure 2: Phase 1 recording setup. (1) Zoom H4n; (2) ipad; (3) computer with internal 

microphone; (4) computer with external headset microphone; (5) android phone; (6) iphone. See 

supplementary materials for specifications 

 

 
7 Due to COVID-19 campus restrictions on who is permitted within university buildings, external participants were 
not recruited. Social distancing measures were implemented during all recordings. 
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2.3 Software selection (Phase 2) 

The second phase was carried out remotely to test recordings made over the internet. This 

involved two researchers, mimicking the combination of the “local” and “remote” recordings of 

a fieldwork consultant. In each case, the recordings made with the Handy Zoom H4n (“H4n”8) 

solid state recorder in the first phase were played through the sound card of a 2012 Macbook Air 

(where the H4n was recognized by the computer as an external microphone). The H4n was 

connected to the computer using a TRRS connector cable attached to the headphone/line-out jack 

of the H4n and the microphone/headphone combined jack in the Macbook Air. While this is not 

equivalent to recording live speech, it does ensure that identical signals were transmitted across 

each remote recording condition. The input from the H4n was recorded uncompressed at 44,100 

Hz through the H4n’s internal microphones. The output was governed by the settings of the 

software programs being used. 

 

The software programs which were tested were: Zoom, Skype, Facebook Messenger (using the 

free program Audacity to make the recording, since Messenger does not have built-in recording 

capabilities), and Cleanfeed, a commonly used podcast interview platform. 

 

2.4 Acoustic measurements 

The software and devices used to make these recordings produce audio files in several different 

formats. All audio files were converted to 16,000 Hz uncompressed mono wav files, because this 

is the format required for forced alignment through p2fa. The audio files were then trimmed so 

that only the speech of the experiment was kept. These recordings were force-aligned to the 

segmental level using the p2fa forced alignment scripts described by Evanini et al (2009), which 

aligns at a resolution of 10ms.9 These recordings were inspected for major alignment errors (of 

which there were none) but were not further corrected. We only used the data from the target 

words (not the carrier phrases) in these analyses.  

 
8 While these devices are typically referred to as “Zoom” recorders, we call this the H4n recorder to distinguish it 
from the video conferencing software Zoom, which has no relationship to the solid state recorder. 
9 Because all files used the same speech input, it would be, in theory, possible to manually correct a single set of 
“gold standard” alignments from the H4n recording and use the correctly aligned version in all experiment 
conditions. However, in practice this is impossible, because the different lossy compression algorithms introduced 
by different recorders leads in practice to non-identical file lengths. This is further discussed in Section 3. 
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The acoustic characteristics measured were: Duration, F1, F2, F3, Center of Gravity (COG), 

jitter, f0 mean, f0 peak timing, spectral tilt (H1-H2), Harmonics-to-Noise ratio (HNR), and 

intensity. Measurements were extracted using scripts in Praat (Boersma & Weenink 2017). All 

measurements are means taken across the whole interval, except characteristics that are a single 

point by definition (e.g. time of the f0 peak). Phonation measurements were calculated using 

Voice Report with the following parameters: start, end, 65, 350, 1.3, 1.6, 0.03, 0.45. For COG, 

fricatives were extracted with Hanning windows to create the spectral objects for analysis. 

Formants were analyzed with a maximum frequency setting of 5500 Hz for 5 formants.  

 

Signal to noise ratio was calculated across the intervals marked as “silence” in the forced 

alignment versus those marked for the target words that were analyzed for the acoustic 

characteristics described above. The signal to noise ratio calculations compared the intervals 

labeled as silence by the alignment algorithm versus those in the carrier phrases. These were then 

averaged across each recording condition. 

 

2.5 Statistical analyses  

All statistical results are from mixed effects models calculated with the lme4 package in R (Bates 

et al 2015). The p-values were calculated by the lmerTest package (Kuznetsova et al 2015). The 

reference condition, which the other conditions were compared against, was always the H4n 

recorder. 

 

3 Results 

Here we summarize the main results. For reasons of space and legibility, only an overview is 

presented, and more thorough discussion of each condition is provided in the supplementary 

materials. Section 3.1 provides a general overview of the key findings about variation between 

devices and software programs and presumes minimal familiarity with phonetic measures. 

Section 3.2 discusses the results of individual acoustic measurements, while Section 3.3. presents 

an overview of findings with respect to recovery of data for contrasts.  
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When reading the results, the size of the effects and the significance must be interpreted with 

respect to the somewhat small amount of data. Lack of significance cannot be interpreted as 

indicating that there is no real effect, and some of the estimates are large despite not being 

significant, suggesting a high degree of variability. This overview should be read in conjunction 

with the supplementary materials, which provides further discussion of all of these points 

(Supplementary Materials). We concentrate here on a description of the results that will be 

accessible to linguists who do not use quantitative methods extensively in their work but whose 

work is affected by recording choices.  

 

3.1 Summary of results 

While our set of measurements is not exhaustive, we cover several types of measurements that 

exhibit effects of recording condition. These can broadly be grouped into measurements of 

duration, measurements of intensity in aperiodic noise, and measurements of frequency. 

 

First, as seen in more detail in Section 3.2, duration measurements seem to be affected by the 

compression algorithms used in m4a formats. The effects on duration are likely influenced both 

directly by lossy compression effects on timing and also indirectly when boundary assignment is 

obscured by noise and lowered intensity of the signal. While manual segmentation would likely 

reduce the latter effects, they would not be fully eliminated, and the compression-based effects 

could not be improved at all.   

 

Second, there are also differences in levels of background noise, efficacy in capturing the speech 

signal, and filtering meant to remove background noise or boost the speech signal. Lowered 

signal-to-noise ratios, either due to higher intensity of noise or lowered intensity of the signal, 

directly impacts measurements like the Harmonics-to-Noise ratio (HNR) and center of gravity 

(COG). Changes in noise and intensity also have indirect effects in identification of segment 

boundaries and measurement of other characteristics that depend on being able to isolate the 

target characteristic of the speech signal. 
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Lastly, there are changes in measurements of frequency, observed in f0 and formants. These are 

likely the result of lossy compression; depending on how the compression system handles 

repeating waves, these could be over-regularized or obscured. Compression that alters the file’s 

duration will also produce changes in spectral measurements. Some of the spectral issues may 

also be caused by changes in intensity, as some recording conditions are less sensitive to certain 

frequency ranges, which can subsequently change how formants and f0 are identified. Of course, 

changes in intensity of different frequencies is also directly reflected in spectral tilt effects. Such 

differences are also likely to affect perceptual clarity, making fieldwork using remote recordings 

more difficult and making transcription less reliable. 

 

There were a larger number of significant differences between software programs than between 

devices. Intensity and signal to noise ratio measures differed significantly among devices, but 

most other measures are not significantly different. As noted above, however, though the 

differences were not all statistically significant, we did find measurement differences, that is, raw 

differences in the measurements of variables beyond what one might expect. The software 

choices also led to differences in intensity, signal to noise ratio, and duration measurements. 

 

Finally, we found that we were, in almost all cases, able to recover evidence for the phonemic 

distinctions which were tracked (such as stressed versus unstressed vowels, voicing differences, 

and vowel space measurements to capture vowel differences). However, the raw measurements 

of the distinctions varied, in some cases substantially. 

 

3.2 Individual Acoustic Metrics 

Table 2 below summarizes the different measures in the Phase 1 recordings, testing differences 

based on recording device. Asterisks indicate significance levels at < 0.05 (*), < 0.01 (**), or < 

0.001 (***). When a test was significant, then the direction of significance is also indicated in 

that table cell.  

 

Table 2: Effects of device on acoustic measures. Empty cells indicate that the condition did not 

differ significantly from the Zoom H4n solid state recording in the given characteristic.  
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Device: Android 
(m4a) 

External Mic 
(wav) 

Internal Mic 
(wav) 

iPad (m4a, 
compressed) 

iPhone (m4a, 
uncompresse
d) 

Consonant 
Duration 

  ** (shorter) * (shorter)  

Vowel 
Duration 

   * (longer)  

Consonant 
Intensity 

*** (lower) *** (lower) *** (lower) *** (lower) *** (lower) 

Vowel 
Intensity 

*** (lower) *** (lower) *** (lower) *** (lower) *** (lower) 

Mean Vowel 
f0 

     

Peak f0 
timing 

     

Jitter * (lower)     

Spectral tilt   ** (lower)   

Harmonics-
to-noise ratio 

  *** (lower)   

F1      

F2   * (lower)   

Center of 
Gravity 
(frics) 

 ** (higher) ** (higher)   

Signal to 
noise ratio 

*** (higher) *** (higher) *** (lower) *** (lower) *** (lower) 

 

In addition to those tests reported here, we also tested whether devices differed in capturing the 

acoustic cues to English phonological contrasts. The measurements included: stress reflected in 

vowel duration, intensity, and F0 maximum; coda voicing reflected in vowel duration and HNR; 

onset voicing indicated in HNR, spectral tilt, and F0 maximum; obstruent manner indicated in 

intensity; and sibilant identity indicated in COG. 
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Few measurements of these contrasts are significantly altered by device, though both the internal 

computer mic and external computer mic conditions overestimated the difference between the 

COG of /s/ and /ʃ/. However, most contrasts were maintained in the recordings, as further 

discussed below.  

 

Consonant duration was significantly shorter than the baseline standard in the 

InternalComputerMic condition and the iPad condition. The existence of differences in duration 

might suggest that other factors are impacting how the forced aligner determines boundaries; 

most of the overall estimates as well as the estimates for individual segments are within about 10 

ms, which is close to the margin of error of the forced aligner (Evanini et al 2009; see 

supplementary materials). It is also possible that some effects on duration reflect actual 

differences in duration measurements within the file, through lossy compression warping the 

signal in different ways. This is, however, unlikely. The Android and iPad were recorded with 

compressed audio, while the iPhone condition was not. However, the iPad results are almost 

identical to the Internal Computer Microphone, which (like the external computer mic) used 

Audacity to record the audio. Therefore it is unlikely that compression algorithms alone are 

responsible for the differences. The differences in consonant duration seen in the table above 

appear to be largely offset by the differences in vowel duration. That is, those conditions where 

the vowels are shorter are the same ones where the consonants are longer. This implies that the 

issue is a difference in boundary placement identification rather than compression. Note, 

moreover, that the magnitude of the effects is overall quite small (as detailed in the 

supplementary materials). 

 

Our gold standard recording did not have a particularly high signal to noise ratio, compared to 

some of the other recording devices used in the live recording condition. This is probably due in 

part to the sensitivity of the H4n’s microphone and picking up background noise from the air 

conditioning system and external traffic noise. The SNR can also be influenced by the distance 

of each recording device from the speaker. SNR values varied by speaker in the gold standard 

recording. They also varied by both device and software program, implying that software adjusts 

internal volume levels. 
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Table 3 below summarizes the different measures in the Phase 2 recordings, testing differences 

based on the software application used. The models comparing these conditions used only one of 

the conditions that we recorded with Zoom software, because there were no significant 

differences between using different settings in Zoom (compressed or ‘original’ sound, or audio 

channel extracted from the video vs separate audio channel). The Zoom condition reported was 

recorded locally with the default audio settings. 

 

Table 3: Effects of device on acoustic measures. Empty cells indicate that the condition did not 

differ significantly from the H4n solid state recording in the given characteristic.  

Application Audacity 
(wav) 

Cleanfeed 
(wav) 

Messenger 
(wav) 

Skype (.mp4) Zoom (.wav) 

Consonant 
Duration 

  ***(shorter) ***(shorter) ***(shorter) 

Vowel 
Duration 

  ***(longer) ***(longer) ***(longer) 

Consonant 
Intensity 

 ***(lower) ***(lower) ***(lower) ***(lower) 

Vowel 
Intensity 

 ***(lower) ***(lower) ***(lower) ***(lower) 

Mean Vowel 
f0 

     

Peak f0 
timing 

    **(later) 

Jitter      

Spectral tilt **(underesti
mate) 

**(underesti
mate) 

***(overesti
mate) 

**(underesti
mate) 

***(underesti
mate) 

Harmonics-
to-noise ratio 

  ***(higher)   

F1   *(lower)   

F2   *(higher)   
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Center of 
Gravity 
(frics) 

  **(lower)  *(higher) 

Signal to 
noise ratio 

 *** (higher) *** (higher) *** (higher) *** (higher) 

 

Duration and intensity measures were often affected, even in cases where the recording signal is 

supposedly uncompressed, as in the Zoom condition where audio compression options were 

unchecked. This could be the result of the background noise and highpass filters leading p2fa to 

identify CV transitions in different places. Most of the programs do not record a significant 

difference between software conditions when it comes to f0 and formants. However, this lack of 

significant difference is not because these measurements were unaffected. Across different 

vowels, frequency was sometimes overestimated and sometimes underestimated; the lack of 

significant overall differences is due to the effects not being systematic across different vowels. 

Section 3.3 provides a discussion of how formant measurements for different vowels were 

impacted differently by the software conditions. 

 

Contrasts were generally still captured, even for characteristics that were influenced by the 

recording condition. Just as in Phase 1, there was some variation across conditions that did not 

reach significance. Additionally, Messenger failed to capture the effect of stress on vowel 

intensity and the difference in COG between /s/ and /ʃ/.  

 

The gold standard H4n recorder did not have the highest signal to noise ratio; it was actually 

lower than any of the software program conditions. The highest signal to noise ratio comes from 

the Zoom condition, presumably as an effect of the Zoom software suppressing background 

noise. While filtering background noise or amplifying frequencies that are typical of speech 

increases the signal to noise ratio, this filtering alters the acoustic signal and could potentially 

influence the results in misleading ways. Having a higher SNR is not necessarily indicative of a 

higher fidelity recording, even if the suppression of certain frequencies increases perceptual 

clarity for listeners. 
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3.3 Combined Acoustic Metrics 

While the previous section discussed absolute measurements of a range of acoustic phenomena, 

in this section we examine another facet of the data: how clearly phonetic cues to phonological 

contrasts are separated in each condition. That is, are features of the speech signal that mark 

phonological contrasts sufficiently recoverable to allow linguists to do phonological 

documentation? A few contrasts are presented here as examples; the full results testing the 

measurement of contrasts are given in the Supplementary Materials.10 

 

 

 
Figure 3: Aggregated stressed vs unstressed vowel duration across Phase 1 devices. Measured 

vowel duration as predicted by device and stress. Pooled raw data, not the model results. 

Whiskers indicate the standard error and the dot is the average. 

 

Figure 3 illustrates vowel duration differences between stressed and unstressed vowels across 

Phase 1 devices, while Figure 4 illustrates vowel duration differences between stressed and 

unstressed vowels across Phase 2 recording software. In all cases, the contrast is recovered, 

 
10 Note that this set of contrasts is limited to English contrasts, based on the language of the experiment.  We did 
aim to include examples of contrasts that depend on different types of acoustic characteristics, including duration, 
frequency of periodic waves, and intensity of periodic and aperiodic components of the signal. However, it is 
possible that contrasts other than the particular ones we measured here might behave differently. 
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though note that the category separation differs among conditions in both Phase 1 and Phase 2. 

As discussed in Section 3.2, vowel duration measurements are lengthened (though not always 

significantly) and that can be seen from these results as well. The device results have a higher 

variance than the software conditions. 

 

 
Figure 4: Aggregated stressed vs unstressed vowel duration across Phase 2 applications. The 

dots represent the average duration and the whiskers the standard error. 

 

 

Figure 5 gives the vowel spaces for each speaker as measured in Phase 1 (by-Device). Since the 

speakers come from different regions of the English-speaking world, we separate the vowel 

spaces by speaker. 
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Figure 5: Vowel spaces for each of the three speakers as measured in Phase 1 (comparisons by 

Device).  

 

The device conditions in Phase 1 all clearly pick out a recognizable vowel space. However, some 

of the vowels are shifted enough that they would likely cause problems for analysis. In 

particular, F2 measurements for /u/ and /ou/ were very high in many of the conditions. While 

other vowels did not exhibit systematic effects, there are several vowels that have strikingly 

variable measurements across conditions. Including the interaction between device and vowel 

significantly improved the model for F2, indicating that the differences in F2 between vowels 

were measured differently by different devices. There was less evidence for an interaction with 

F1. 

 

Vowel spaces from Phase 2 exhibit considerable variation across different software applications. 

Figure 6 gives vowel spaces for each speaker as measured in Phase 2 (by-Program). Including 

the interaction between device and vowel significantly improved the model for both F1 and F2, 

indicating that the differences in formants between vowels were measured differently by 

different devices. 

 



21 

 
Figure 6: Vowel spaces for each of the three speakers as measured in Phase 2 (comparisons by 

Program).  

 

Many of the conditions produce measurements that substantially shift a vowel far into the region 

of a different vowel. While clusters for measurements of each vowel are mostly apparent, 

Messenger is a clear outlier for most of the vowels for most of the speakers.  

 

It is important to note that the lack of overall effect in a measurement across vowels or other 

categories does not indicate that each individual data point is reliable; formant measurements 

have no main effect for most devices or programs because different vowels are impacted in 

different ways. These inconsistent effects across vowels are in fact likely to cause more issues 

than consistent effects, because they could obscure or exaggerate phonological contrasts, while a 

consistent shift would be more likely to preserve contrasts. 

 

4 Discussion, Implications, and Recommendations 

4.1 Implications of the results 

As seen from the previous section, both device and software altered the recording in ways that 

affected the retrieval of measurements and the instantiation of contrasts (though not, by and 

large, the contrasts themselves). Some of the effects of different devices and recording programs 

were very large and could produce misleading phonetic results. Contrasts generally remained 
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clear, because effects were largely consistent across different items, but some contrasts were 

exaggerated or underestimated. The main – and important – implication of the results is that it 

will be difficult to directly combine or compare data gathered “in person” in the field with data 

gathered remotely, even if recorded from the same speaker. Even the relatively reliable 

conditions produced measurement differences that will need to be taken into account in any 

analyses.  

 

The variation across recording conditions problematizes research that, for example, asks 

participants to record themselves and upload recordings, if that recording is done on different 

devices. It also means that the findings of cross-linguistic phonetic comparisons, such as Salesky 

et al (2020), should be evaluated in the context of possibly substantial interference from 

differences in measurements resulting from the circumstances of recording. This is particularly 

an issue for work on endangered languages, where a small number of speakers may be taken as 

“representative” of the language, further confounding differences between speakers, languages, 

and devices. 

 

Secondly, fieldworkers should be wary about combining recordings from the same speaker that 

were made in person and remotely at different times. That is, recordings made from the same 

person but with different devices are likely to show differences that are not features of the 

person’s speech. 

 

Thirdly, this work raises questions for any work that requires stable identification of features 

across devices or programs. While our discussion focuses on implications for fieldwork and 

language documentation, these effects are similarly relevant for sociophonetics research, online 

phonetic production experiments, and (perhaps most importantly) forensic phonetics, where the 

variation identified here (based on device and software) should be taken into consideration in 

voice comparisons.  

 

In the following sections we make some recommendations for field linguists looking to minimize 

the impact of device or software bias on their recordings. 
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4.2 Documenting recording set-up 

Documenting the recording set-up is crucial: what microphone was used, what program was 

used, and any settings for programs that allow multiple settings. Even if effects of these 

conditions do not have a large impact on comparisons within a recording, documenting the 

recording conditions will facilitate interpretation of results and comparisons across recordings, 

both for fieldworkers themselves and for others using their data in the future. The recordings 

being made now are the archival data for the future, so it is important to provide as much 

information as possible to make these recordings interpretable. The more we know about the 

effects of particular recording conditions, the better our ability to make comparisons across 

different recordings.  

 

One should always be cautious about comparing measurements from one set of recordings to 

measurements from another set of recordings, particularly if there is no documentation of what 

recording set-up was used to create a set of recordings. Our results suggest that the recording set-

up should generally not have a substantial impact on being able to identify contrasts; most of 

these methods will recover most phonological contrasts, so comparisons within a recording are 

likely to be usable. However, the magnitude of the effects may be estimated differently, and the 

precise measurements will vary across devices and software programs. The raw measurements 

are unreliable for a range of factors across many conditions. 

 

For language documentation, online recording can be used to recover phonemic contrasts and for 

broad description of linguistic processes, though the data might not reliably demonstrate the 

specific acoustic phonetic realization of each category. Researchers making comparisons across 

individual speakers (for example, in sociolinguistics or in comparative phonetics) or comparisons 

across languages need to be particularly aware of these issues. It is important to consider 

potential effects of the recording set-up, particularly if it varies across speakers. If information 

about the recording set-up is not available, it will be very difficult to distinguish between effects 

of the set-up and effects of the speaker or the speaker’s language. 
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4.3 General recommendations 

Based on the conditions we tested, we have a few specific recommendations for fieldworkers, 

sociolinguists, and anyone else conducting phonetic research.  

 

Because of the substantial differences across different recording conditions, it is important to 

make comparisons within the same recording whenever possible, and to use the same set-up 

when making multiple recordings that will be compared with one another, e.g. when recording 

multiple speakers in documentary and sociolinguistic tasks. When making long-distance 

recordings, ensure that the setup is the same on both ends (their set-up and yours) for all speakers 

being recorded.  

 

If using different devices or programs is unavoidable, this will, most likely, limit possibilities for 

making comparisons across different individuals, because individual differences will be 

confounded with differences due to the recording conditions. It will nonetheless be particularly 

important to include participant/recording as a factor in analyses. Given that linguistic fieldwork, 

particularly for endangered languages, is often conducted with few individuals, “pandemic 

recordings” from different speakers using different platforms may mean that in the future we will 

be unable to distinguish between individual speaker differences and individual software 

differences in much of this data. This risk is especially problematic for endangered languages, 

which are already severely phonetically underdocumented (Whalen et al 2020). 

 

Researchers doing virtual recordings should consider testing their own setup for which effects 

are likely to be present, by comparing a field recorder to the setup the linguistic consultants are 

using. The stimuli used here are available for download as part of the supplementary materials if 

readers would like to directly compare their setup with the results here. 

 

4.4 Recommendations about devices and local settings 

For recording devices, an external computer microphone is preferable to the internal microphone, 

even for a relatively new computer with a high quality microphone. Avoid compression if 

possible, and use lossless formats; this difference is reflected by the difference between our iPad 
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and iPhone conditions. This will mean that recording file size may become an issue and external 

storage may be necessary. 

 

Our device recording tests suggest relatively little overall difference between devices, apart from 

intensity measures, which could simply be due to the different distances each device had from 

the speaker. This is good news for making recordings in the field, and suggests that if possible, 

the best way to record remotely is to have research participants make recordings on their own 

devices (including phones or tablets) and transfer those recording files via file upload. We 

understand, however, that such a recommendation may not be feasible in many areas, given the 

costs of data plans, or the technical knowledge needed to transfer recordings. Furthermore, 

although most differences in recording devices were not significant, that does not mean that there 

were no differences in measurements. 

 

4.5 Recommendations about software programs 

For online recording, Cleanfeed performed overall the closest to the gold standard solid state 

recordings. However, this program does not make video recordings. We understand that using 

audio recording alone is problematic for general language documentation, and that there are 

many advantages to being able to see one’s interlocutor, as well as the screen-sharing and other 

features that programs like Zoom and Skype bring. However, if the primary goal is comparable 

acoustic phonetic measurements, Cleanfeed is preferable. Other video-based services (that we 

did not test) may also be preferable to Zoom or Skype. Facebook Messenger should be avoided; 

it consistently produced measurements that substantially differed from our solid state recorder 

and which were often very different from the measurements produced by other programs and 

devices. These issues seem to be traceable to Messenger and not to Audacity, given the more 

limited effects of using Audacity alone.  

 

If video is necessary, Skype and Zoom are similar to each other in reliability.  Both produce 

some artefacts, so it is very important to document what software was used.  The two programs 

handle noise differently, in a way that produces divergent COG effects and might also produce 

differences in other measurements. 
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In order to facilitate comparisons across different recordings, it is important to use the same 

software program across speakers and across recording sessions. While the absolute 

measurements are altered to some degree by all of these applications, using the same application 

for all recordings will at least ensure that artefacts do not produce apparent variability across 

speakers, across tasks, or based on other factors that also vary between recordings. 

 

One additional factor to consider that was not addressed within our study is the internet 

connection. All of our virtual recordings were made over stable high-speed11 connections. When 

the connection is weak, many issues are likely to arise from the speech signal cutting out, which 

can cause major distortions or omit words entirely. Some programs include greater compression 

to handle slower connections, so measurements that were reliable for recordings made over a fast 

connection will not necessarily be reliable when made over a slower connection. Thus, it is 

preferable to record locally whenever possible and subsequently share those recordings, rather 

than making the recording over an internet connection.  

 

5 Conclusions 

The ubiquity and relative auditory fidelity of online voice platforms and portable devices have 

led linguists to be more comfortable using such systems in field research. Covid-related 

restrictions and lockdowns have made it difficult or impossible to conduct in-person field 

research. We tested the feasibility of using these online solutions in a remote recording situation, 

by comparing a recording made on a solid-state recorder against the same recording after being 

fed through various software programs and recorded on different devices. We found that all 

options distort the signal in some fashion, and give recommendations for best practices: local 

recordings are best when possible, and the recording set-up should be consistent across recording 

sessions. For all recordings, both in-person and remote, researchers should document all aspects 

of the recording setup, including devices and software programs, in order to facilitate future 

interpretation of the data. 

 
11 Broad-band cable internet at one end, fiber-optic-to-curb at the other. 
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Supplementary Materials 
 
The supplementary materials contain further information about the statistical models used to test 
each effect and further discussion of the results from individual measurements, including effects 
which did not reach significance. See the main text (Section 3) for an overview of the results.  

Some of the points that are included in the main text are also presented in the 
supplementary materials, in order to provide a complete presentation of the results here. 
 

1 Further information about recording devices and software 

Table S1 below provides further information about the devices used in Phase 1 of the recording. 
The numbers refer to the photograph of the setup in Figure 1 of the main text.  
 
Table S1. Specifications for recorders used. 

Numbe
r 

Device Specifications Output 

1 Zoom 
H4n 

uncompressed, 44,100 Hz sampling rate, internal 
microphone; recorder is c. 3 years old 

wav 

2 iPad 8th generation, iOS 14, on airplane mode, using 
VoiceMemos, internal microphone, “compressed” setting 

m4a 

3 Macbook 
Pro 

running OS 10.15 (Catalina), using internal microphone 
recording to Audacity, running Psychopy to present the 
stimuli 

wav 

4 Macbook 
Pro 

running OS 10.15 (Catalina), using external microphone 
recording to Audacity, recording with mid 2015 Audio 
Technica headset microphone using iXr external sound card 

wav 

5 Android 
phone 

model LM-X320TA, running Android version 9, recording 
with the built-in application Audio Recorder (the settings do 
not give options for compression) 

m4a 

6 iPhone iPhone 6s, iOS 14, recording with internal microphone using 
VoiceMemos, uncompressed format 

m4a 
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For the software conditions (Phase 2 of the recording), we chose to test video conferencing 
software that, we believe, are commonly being used in remote field recordings. These included 
Zoom, Skype, Facebook Messenger (recorded through Audacity, because it does not have an in-
app recording option), the web-based podcast program Cleanfeed,1 and Audacity (without any 
virtual transmission, to distinguish between effects of Messenger and effects of Audacity).  We 
chose only free recording programs. Since the settings of some of these software programs can 
vary results substantially, we specify our recording setup below. All settings and program 
versions were up to date as of November 2020. 
 
Zoom (v 5.3.1): We tested three configurations: remote recording vs locally recorded; and in the 
remote condition, compressed vs “original sound”2 (without echo cancellation), and extracted 
from video vs audio only. The two remote recordings were done on a Mac and a Windows PC, 
with the former being set to “original sound” and the latter recording with the default, 
compressed settings. The local recording was also done on a Mac. Files were output as wav 
(audio only) or mp4 (audio and video) 
 
Skype: We recorded the call using Skype’s built-in recording feature that captures audio and 
video. The local recording was done on a Mac running 10.14, and the remote recording on a PC 
with Windows 10 (Skype v 8.65.0.78.). Files are saved as mp4. 
 
Messenger/Audacity: Facebook Messenger is a widely used application for linguistic fieldwork. 
Although there is no built-in recording system, we used Audacity (version 2.4.2) running in the 
background of the remote recorder’s PC to record the call's audio. Audacity is widely used by 
fieldworkers as a way to record audio directly from a computer sound card (cf. Mihas 2012; 
Johnson et al 2018; Purnell et al 2013). Files were saved in Audacity as uncompressed 16bit 
wav. To distinguish between effects of Messenger and effects of Audacity, a second condition 
used Audacity alone; as in the other condition, the sound card was treated as audio input to the 
Audacity program. 

 
1 Since consultants may use their phones during remote elicitation sessions, we also considered 
the inclusion of phone apps in our remote recording conditions (that is, where the audio signal is 
played through the cellphone or tablet and recorded remotely). However, logistical issues with 
recording and the already ballooning number of testing configurations led us to exclude this 
condition from Phase 2. For example, Messenger’s mobile app also does not seem to allow 
recording apps to run in the background and record the call. Some other apps on iOS devices are 
allowed to run in the background while recording, but they use the Voice memo app, which was 
already tested in our “device” condition in Phase 1. Most crucially, our method of using the H4n 
to play our recordings was unreliable on phones and tablets, where the external source did not 
reliably select the device as the microphone input. An external sound card would have perhaps 
allowed this, at the expense of testing the device audio itself. 
2 According to Zoom’s settings, the “original sound” option “disables noise suppression, 
removes high pass filtering, and automatic gain control.” 
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CleanFeed: This is an online platform (https://cleanfeed.net/) that allows the user who initiates 
the call to manage the settings and make audio recordings. In our case, the “remote” recorder (in 
the role of fieldworker) initiated and recorded the call, and this was done on a PC running 
Windows 10. Cleanfeed also has options of muting speakers and selecting which channel to 
record. Our settings were such that the remote recorder was muted and only the audio stream 
playing the stimuli was recorded. Files are saved as wav. 
 
The recordings from CleanFeed and Messenger (through Audacity) did not include videos. 
Software such as Zoom and Skype provide the option to extract audio tracks, but given that a) 
the quality of the audio file is not altered by the presence or absence of video and b) remote 
fieldworkers may find videos useful to see certain articulatory features (such as rounding), 
facilitate general communication with the linguistic consultant, or for sign language research, we 
included video recording where possible. However, we did not further analyze the video 
recordings except to extract the audio signal. Similar issues raised in this paper for audio 
fieldwork probably also apply to fieldwork with sign languages, particularly the horizontal 
compression identified in Section 3 below. See Lucas et al (2013) for further discussions of sign 
language fieldwork, and Hou et al (2020) on strategies for web-based sign language data 
collection and annotation. 

2 Results 

2.1 Effects of Device 

Because of a technical issue, one of the recordings for one of the speakers was lost, so the 
analyses of effects by device only include two speakers instead of three.  

2.1.1 Overall device effects 
 
Table S2 presents the summary of a linear mixed effects model for consonant duration (in ms) as 
predicted by the device. There was a random intercept for speaker.  
 Several of the conditions found significantly different consonant duration than the 
baseline H4n recorder, as is discussed in the main text. 
 
Table S2. Linear mixed effects model for consonant duration (in milliseconds) 
          Estimate  SE t-value p  

(Intercept)       116.611 2.549 45.755  < 2e-16  

Device Android      -2.837 3.604 -0.787 0.43135 

Device ExternalComputerMic  4.736 3.604 1.314 0.18900 
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Device InternalComputerMic    -9.567 3.604 -2.654 0.00799 

Device iPad   -9.038 3.604 -2.508 0.01221 

Device iPhone -4.880 3.604 -1.354 0.17589 
 Reference level Program = zoomH4n 
 
 
Table S3 presents the summary of a linear mixed effects model for vowel duration (in ms) as 
predicted by the device. There was a random intercept for speaker.  
 Vowels were significantly longer than the baseline standard in the iPad condition. The 
differences in consonant duration seen above appear to be largely offset by the differences in 
vowel duration. That is, those conditions where the vowels are shorter are the same ones where 
the consonants are longer. Note, however, that the magnitude of the effects is overall quite small; 
less than 10 ms for most cases (which is the level of resolution of the forced aligner). 
 
Table S3. Linear mixed effects model for vowel duration (in milliseconds) 
          Estimate  SE t-value p  

(Intercept)       164.275 12.762 12.872 0.0245 

Device Android      4.292 7.009 0.612 0.5404 

Device ExternalComputerMic  -4.906 7.009 -0.700 0.4841 

Device InternalComputerMic    8.160 7.009 1.164 0.2445 

Device iPad   15.519 7.009 2.214 0.0270 

Device iPhone 6.085 7.009 0.868 0.3855 
 Reference level Program = zoomH4n 
 
Table S4 presents the summary of a linear mixed effects model for consonant intensity as 
predicted by the device. There was a random intercept for speaker. 
 Intensity of consonants was substantially lower in all of the test conditions than in the 
baseline standard. Of course, the crucial measurement of intensity for acoustic analysis is not the 
absolute intensity but in relative intensity across segments, which will be addressed in 
subsequent sections. Other factors such as distance from the microphone also impact intensity. 
The H4n device was closest to the speaker, apart from the headset audio, but all other devices 
were positioned to be a reasonable recording distance from the speaker and showed “reasonable” 
levels when tested (see also the signal-to-noise ratio tests below). 
 
Table S4. Linear mixed effects model for consonant intensity (in dB) 
          Estimate  SE t-value p  

(Intercept)       66.4853 1.3796 48.19 0.0097 
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Device Android      -6.5904 0.4263 -15.46  <2e-16  

Device ExternalComputerMic  -26.3420 0.4263 -61.79  <2e-16  

Device InternalComputerMic    -15.9723 0.4263 -37.47  <2e-16  

Device iPad   -5.3903 0.4263 -12.64  <2e-16  

Device iPhone -8.0363 0.4263 -18.85  <2e-16  
 Reference level Program = zoomH4n 
 
Table S5 presents the summary of a linear mixed effects model for vowel intensity as predicted 
by the device. There was a random intercept for speaker.  
 Intensity of vowels was substantially lower in all of the test conditions than in the 
baseline standard. As for consonants, the crucial aspects of intensity are not in the absolute 
intensity but in relative intensity, which will be addressed in subsequent sections.  
 
Table S5. Linear mixed effects model for vowel intensity (in dB) 
          Estimate  SE t-value p  

(Intercept)       76.7020 0.6484 118.30 0.00199 

Device Android      -6.0573 0.3117 -19.43  < 2e-16  

Device ExternalComputerMic  -23.3246 0.3117 -74.83  < 2e-16  

Device InternalComputerMic    -19.3934 0.3117 -62.22  < 2e-16  

Device iPad   -7.8537 0.3117 -25.20  < 2e-16  

Device iPhone -10.6683 0.3117 -34.23  < 2e-16  
 Reference level Program = zoomH4n 
 
Table S6 presents the summary of a linear mixed effects model for mean f0 (in Hz) in vowels as 
predicted by the device. There was a random intercept for speaker.  
 There were no significant effects of Device on mean f0, though f0 was marginally lower 
in the iPad and iPhone conditions. In a larger dataset, the effect might reach significance.  
However, it is worth noting that the differences in measured f0 are small relative to the expected 
size of phonological f0 patterns. 
 Figure S1 presents the distribution of f0 measurements for each speaker. Given the 
similar distributions across conditions, the different results are unlikely to be the result of pitch 
tracking errors. None of the conditions excluded more than 5 tokens as unmeasurable, so the 
results are also not the result of different exclusions. The differences might be related to the 
differing boundary assignments in each condition, as also reflected in the duration differences.  
Different boundaries could reduce extrinsic f0 effects of voicing of the neighboring consonants.  
 
Table S6. Linear mixed effects model for mean f0 (in Hz) in vowels  



6 

          Estimate  SE t-value p  

(Intercept)       180.4255 5.1420 35.089 0.0105 

Device Android      1.0195 2.1640 0.471 0.6377 

Device ExternalComputerMic  0.9822 2.1745 0.452 0.6516 

Device InternalComputerMic    -0.9832 2.1666 -0.454 0.6501 

Device iPad   -3.3059 2.1666 -1.526 0.1273 

Device iPhone -3.5911 2.1666 -1.657 0.0977 
 Reference level Program = zoomH4n 
 

 
Figure S1. Density plots for the mean f0 
 
Table S7 presents the summary of a linear mixed effects model for peak timing (in ms) -- the 
position of the maximum f0 relative to the beginning of the vowel, as predicted by the recording 
program. There was a random intercept for speaker. 

There were no significant effects of Device on peak timing, but there were suggestive 
trends for Android and ExternalComputerMic which could be expected as a side effect of 
differences in vowel duration, because when the beginning of the vowel is put earlier, then the 
peak occurs later relative to that boundary. The size of the differences are small, though they are 
large enough relative to the size of actual peak timing effects that they could alter results.  Many 
of the differences are due to how many items identify the peak f0 as occurring at the beginning 
of the vowel, which could be a result of the differences in the boundary identified for the 
beginning of the vowel. 
 
Table S7. Linear mixed effects model for f0 peak timing (in milliseconds) 
          Estimate  SE t-value p  
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(Intercept)       27.5097 3.1934 8.615  <2e-16  

Device Android      6.5905 4.5161 1.459 0.145 

Device ExternalComputerMic  7.3755 4.5379 1.625 0.104 

Device InternalComputerMic    -2.8760 4.5215 -0.636 0.525 

Device iPad   -0.5996 4.5215 -0.133 0.895 

Device iPhone -4.4420 4.5215 -0.982 0.326 
 Reference level Program = zoomH4n 
 
Table S8 presents the summary of a linear mixed effects model for jitter in vowels as predicted 
by the device, i.e. the cycle-to-cycle variation in f0. There was a random intercept for speaker.  

There were no significant effects of Device on jitter measurements, which is consistent 
with generally reliable f0 measurements. 
 
Table S8. Linear mixed effects model for jitter in vowels 
          Estimate  SE t-value p  

(Intercept)       2.096E-02 1.707E-03 12.279 0.00251 

Device Android      3.099E-04 1.614E-03 0.192 0.84781 

Device ExternalComputerMic  -1.174E-03 1.622E-03 -0.724 0.46920 

Device InternalComputerMic    -9.038E-04 1.614E-03 -0.560 0.57567 

Device iPad   2.17E-03 1.614E-03 1.344 0.17910 

Device iPhone 1.878E-03 1.614E-03 1.163 0.24491 
 Reference level Program = zoomH4n 
 
Table S9 presents the summary of a linear mixed effects model for spectral tilt (H1-H2) in 
vowels as predicted by the device. There was a random intercept for speaker.  

Spectral tilt was significantly lower in the Android condition, and marginally higher in 
the iPhone condition. Even the differences that were not significant are rather large relative to the 
size of meaningful spectral tilt differences. The differences might indicate variation in how well 
the devices record higher and lower frequencies. The differences do not seem to be the result of 
distance from the speaker; the phones and the baseline H4n device were similarly close to the 
speaker, and the phones have opposite effects. 
  
Table S9. Linear mixed effects model for spectral tilt in vowels 
          Estimate  SE t-value p  

(Intercept)       -2.0230 1.9575 -1.033 0.4793 
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Device Android      -1.4641 0.5865 -2.496 0.0127 

Device ExternalComputerMic  -0.9286 0.5865 -1.583 0.1136 

Device InternalComputerMic    -0.5693 0.5865 -0.971 0.3319 

Device iPad   0.4055 0.5865 0.691 0.4895 

Device iPhone 1.0142 0.5865 1.729 0.0840 
 Reference level Program = zoomH4n 
 
Table S10 presents the summary of a linear mixed effects model for Harmonics-to-Noise Ratio 
(HNR) in vowels as predicted by the device. There was a random intercept for speaker. HNR 
was significantly lower in the InternalComputerMic condition, indicating more noise in this 
condition than the baseline condition. This might be due to distance from the speaker; this 
microphone was the furthest from the speaker (see the setup diagram in Figure 1 of the main 
text). Impressionistically, internal computer microphones also pick up more noise from computer 
fans. 
 
Table S10. Linear mixed effects model for HNR in vowels 
          Estimate  SE t-value p  

(Intercept)       6.44752 1.30502 4.941 0.115 

Device Android      0.59172 0.36914 1.603 0.109 

Device ExternalComputerMic  0.03904 0.37002 0.106 0.916 

Device InternalComputerMic    -1.53328 0.36914 -4.154 3.49E-05 

Device iPad   -0.33760 0.36914 -0.915 0.361 

Device iPhone -0.23160 0.36914 -0.627 0.531 
 Reference level Program = zoomH4n 
 
Table S11 presents the summary of a linear mixed effects model for F1 in vowels as predicted by 
the device. There was a random intercept for speaker.  

Overall, there weren’t significant effects of device on F1, though there was a trend in the 
iPhone condition for lower F1. These results might be related to the trend also found in spectral 
tilt; formant measurements are influenced by how the formants align with the harmonics (Chen, 
Whalen & Shadle 2019). The lack of effect doesn’t necessarily indicate that formants were being 
measured accurately, just that errors are not consistent across different vowels. Differences in 
how each vowel is impacted by condition are presented at the end of Section 2.1.2. 
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Table S11. Linear mixed effects model for F1 in vowels 
          Estimate  SE t-value p  

(Intercept)       632.378 31.818 19.875 0.0154 

Device Android      -7.270 16.535 -0.440 0.6602 

Device ExternalComputerMic  -8.698 16.535 -0.526 0.5990 

Device InternalComputerMic    -19.802 16.535 -1.198 0.2313 

Device iPad   -15.204 16.535 -0.920 0.3580 

Device iPhone -25.717 16.535 -1.555 0.1201 
 Reference level Program = zoomH4n 
 
Table S12 presents the summary of a linear mixed effects model for F2 in vowels as predicted by 
the device. There was a random intercept for speaker.  

F2 was significantly lower than the baseline measurement in the InternalComputerMic 
condition, significantly higher in the iPad condition, and marginally higher in the iPhone 
condition. The results vary substantially for different vowels, as is presented at the end of 
Section 2.1.2 below. The largest effects seem to be attributable to diphthongization of high and 
mid-high tense vowels, so failure to capture the trajectory of the formants within the vowel 
results in altered estimation of the mean F2. 
  
Table S12. Linear mixed effects model for F2 in vowels 
          Estimate  SE t-value p  

(Intercept)       1946.291 63.350 30.723 0.006240 

Device Android      56.771 38.047 1.492 0.135916 

Device ExternalComputerMic  -33.536 38.047 -0.881 0.378246 

Device InternalComputerMic    -77.405 38.047 -2.034 0.042113 

Device iPad   145.046 38.047 3.812 0.000144 

Device iPhone 70.555 38.047 1.854 0.063913 
 Reference level Program = zoomH4n 
 
Table S13 presents the summary of a linear mixed effects model for Center of Gravity (COG) in 
fricatives as predicted by the device. There was a random intercept for speaker.  

The overall measurements were far higher in the ExternalComputerMic and 
InternalComputerMic conditions. The other effects aren’t significant, but that is mostly a side 
effect of the very large standard error when we pool across fricatives. The main effects were 
driven by the alveolars. Measurement of COG in alveolars was probably somewhat unstable 
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because all of the recordings were downsampled to 16000 Hz, which cut off some of the 
frication of alveolars, leaving them more susceptible to being influenced by noise. 
  
Table S13. Linear mixed effects model for COG for fricatives 
          Estimate  SE t-value p  

(Intercept)       2840.269 457.272 6.211 0.037050 

Device Android      440.275 339.894 1.295 0.195755 

Device ExternalComputerMic  1172.508 339.894 3.450 0.000605 

Device InternalComputerMic    1115.225 339.894 3.281 0.001100 

Device iPad   -196.658 339.894 -0.579 0.563108 

Device iPhone 125.322 339.894 0.369 0.712488 
 Reference level Program = zoomH4n 
 

2.1.2 Impact on contrasts 

 
Effects in these characteristics are primarily a concern if they alter our ability to find contrasts.  
In this section, we test whether contrasts depending on these characteristics are altered by the 
recording device. These contrasts were selected as contrasts that are known to exist in English 
and which should be reflected by the measurements that we are using. When the regression 
models found no significant interaction between Device and the phonological categories, the 
results are illustrated just with a figure. 
 
Stress in vowels 
 
Figure S2 illustrates vowel duration as influenced by stress. The device did not have any 
substantial impact on these measurements, even though the overall vowel duration measurements 
were influenced by device. The effect of stress is significant or marginally significant in all 
conditions, and of a similar size. 
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Figure S2. Measured vowel duration as predicted by device and stress. Pooled raw data, not the 
model results. Whiskers indicate the standard error. 
 
Figure S3 illustrates vowel intensity as influenced by stress. While the differences between the 
devices aren’t significant, the effect of stress is reduced in the internal computer mic condition 
and only marginally significant when examined in that condition. However, it is important to 
note that the extremely large variation in absolute intensity as measured by the different devices 
causes the differences in relative intensity to differ by condition, so the results could differ based 
on whether intensity is measured relatively or absolutely. 
 

 
Figure S3. Measured vowel intensity as predicted by device and stress. Pooled raw data, not the 
model results. Whiskers indicate the standard error. 
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Figure S4 illustrates maximum f0 in vowels as influenced by stress. There are no substantial 
effects; all of the conditions find a significant effect, of a similar size. 
 

 
 
Figure S4. Measured F0 maximum as predicted by device and stress. Pooled raw data, not the 
model results. Whiskers indicate the standard error. 
 
 
Coda voicing 
 
Figure S5 illustrates vowel duration as influenced by coda voicing. There are no substantial 
effects, although overall vowel duration differs across devices; all of the conditions find a 
significant effect, though some of them seem to be overestimating the effect, which could be a 
concern. 
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Figure S5. Measured vowel duration as predicted by device and coda voicing. Pooled raw data, 
not the model results. Whiskers indicate the standard error. 
 
 Table S14 presents the summary of a linear mixed effects model for HNR in vowels as 
predicted by the device and the coda voicing. There was a random intercept for speaker.  
 Vowels followed by voiceless codas generally have a lower HNR than vowels before 
voiced codas. None of the interactions reach significance, though several of the conditions seem 
to be underestimating the size of the effect, which is consistent with those conditions overall 
having more noise and thus lower HNR.  Figure S6 illustrates HNR in vowels as influenced by 
coda voicing. 

 
Table S14. Linear mixed effects model for HNR in vowels, including coda voicing as a factor 
          Estimate  SE t-value p  

(Intercept)       8.67151 1.15165 7.530 0.04715 

Device Android      0.54697 0.61259 0.893 0.37216 

Device ExternalComputerMic  0.38014 0.61259 0.621 0.53506 

Device InternalComputerMic    -1.99212 0.61259 -3.252 0.00119 

Device iPad   -0.89867 0.61259 -1.467 0.14272 

Device iPhone -0.55193 0.61259 -0.901 0.36784 

FollowingVoicing Voiceless         -4.10680 0.52975 -7.752 2.37E-14 

Device 
Android:FollowingVoicing 
Voiceless  

0.03413 0.74908 0.046 0.96367 

Device -0.66437 0.74967 -0.886 0.37573 
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ExternalComputerMic:Followin
gVoicing Voiceless  

Device 
InternalComputerMic:Following
Voicing Voiceless  

0.61367 0.74908 0.819 0.41286 

Device iPad:FollowingVoicing 
Voiceless      

0.82612 0.74908 1.103 0.27038 

Device 
iPhone:FollowingVoicing 
Voiceless   

0.43339 0.74908 0.579 0.56302 

 Reference level Program = zoomH4n, FollowingVoicing = voiced 
 

 
Figure S6. Measured HNR as predicted by device and coda voicing. Pooled raw data, not the 
model results. Whiskers indicate the standard error. 
 
Onset voicing 
 
Table S15 presents the summary of a linear mixed effects model for HNR in vowels as predicted 
by the device and the onset voicing. There was a random intercept for speaker.  

As with coda voicing, the HNR differences between voiced and voiceless onsets are 
decreased for the InternalComputerMic, iPad and iPhone devices, but the difference was only 
marginally significant even in the baseline condition. The issue here might be about boundary 
assignment, if vowels are only considered to begin when there is clear modal voicing. Figure S7 
illustrates HNR in vowels as influenced by onset voicing. 
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Table S15. Linear mixed effects model for HNR in vowels, including onset voicing as a factor 
          Estimate  SE t-value p  

(Intercept)       6.9262 1.3827 5.009 0.08642 

Device Android      0.7046 0.6822 1.033 0.30200 

Device ExternalComputerMic  0.1822 0.6852 0.266 0.79039 

Device InternalComputerMic    -1.7703 0.6822 -2.595 0.00962 

Device iPad   -0.5400 0.6822 -0.792 0.42886 

Device iPhone -0.4673 0.6822 -0.685 0.49357 

PrecedingVoicing Voiceless        -1.3364 0.6213 -2.151 0.03177 

Device 
Android:PrecedingVoicing 
Voiceless  

-0.2049 0.8787 -0.233 0.81570 

Device 
ExternalComputerMic:Preceding
Voicing Voiceless  

-0.3530 0.8820 -0.400 0.68908 

Device 
InternalComputerMic:Preceding
Voicing Voiceless  

0.5297 0.8787 0.603 0.54678 

Device iPad:PrecedingVoicing 
Voiceless      

0.3498 0.8787 0.398 0.69063 

Device 
iPhone:PrecedingVoicing 
Voiceless   

0.4118 0.8787 0.469 0.63948 

 Reference level Program = zoomH4n, PrecedingVoicing = voiced 
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Figure S7. Measured HNR as predicted by device and onset voicing. Pooled raw data, not the 
model results. Whiskers indicate the standard error. 
 
 Table S16 presents the summary of a linear mixed effects model for spectral tilt in 
vowels as predicted by the device and the onset voicing. There was a random intercept for 
speaker.  

The effect is only marginally significant in the baseline condition; it is only a small 
effect, but has been established elsewhere (e.g. Kong, Beckman & Edwards 2012). Though most 
of the differences are not significant, it is important to note that they are large relative to the size 
of the actual effect; there are clear distortions of spectral tilt, which are likely to obscure 
measurements. Figure S8 illustrates spectral tilt in vowels as influenced by onset voicing. 

 
Table S16. Linear mixed effects model for spectral tilt in vowels, including onset voicing as a 
factor 
          Estimate  SE t-value p  

(Intercept)       -2.4475 2.1516 -1.138 0.4235 

Device Android      -1.2556 1.0935 -1.148 0.2512 

Device ExternalComputerMic  -1.2714 1.0935 -1.163 0.2453 

Device InternalComputerMic    -0.4183 1.0935 -0.383 0.7022 

Device iPad   0.2316 1.0935 0.212 0.8323 

Device iPhone 0.8566 1.0935 0.783 0.4336 

PrecedingVoicing Voiceless        1.7847 0.9960 1.792 0.0735 

Device 
Android:PrecedingVoicing 

-0.9828 1.4085 -0.698 0.4855 
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Voiceless  

Device 
ExternalComputerMic:Preceding
Voicing Voiceless  

0.1420 1.4085 0.101 0.9197 

Device 
InternalComputerMic:Preceding
Voicing Voiceless  

-0.9713 1.4085 -0.690 0.4906 

Device iPad:PrecedingVoicing 
Voiceless      

-0.2053 1.4085 -0.146 0.8841 

Device 
iPhone:PrecedingVoicing 
Voiceless   

-0.2397 1.4085 -0.170 0.8649 

 Reference level Program = zoomH4n, PrecedingVoicing = voiced 
 

 
Figure S8. Measured spectral tilt as predicted by device and onset voicing. Pooled raw data, not 
the model results. Whiskers indicate the standard error. 
 
Figure S9 illustrates maximum f0 in vowels as influenced by onset voicing. None of the effects 
are significant, but there is variation in how large the effect is estimated to be. 
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Figure S9. Measured f0 maximum as predicted by device and onset voicing. Pooled raw data, 
not the model results. Whiskers indicate the standard error. 
 
Consonant manner 
Table S17 presents the summary of a linear mixed effects model for COG in /s/ vs. /ʃ/ as 
predicted by the device. There was a random intercept for speaker.  
 The model finds the same effect noted above for overall COG measurements: The COG 
for /s/ is overestimated in the ExternalComputerMic condition and the InternalComputerMic 
condition. The interactions show that /ʃ/ isn’t as affected. Figure S10 illustrates COG by 
fricative. 

 
Table S17. Linear mixed effects model for COG in sibilant fricatives, including particular 
fricative as a factor 
          Estimate  SE t-value p  

(Intercept)       5053.707 559.032 9.040 0.057593 

Device Android      632.701 181.621 3.484 0.000577 

Device ExternalComputerMic  1723.132 181.621 9.488  < 2e-16  

Device InternalComputerMic    1359.688 181.621 7.486 1.01E-12 

Device iPad   -460.416 181.621 -2.535 0.011810 

Device iPhone 226.556 181.621 1.247 0.213330 

Segment /ʃ/        -1689.318 254.164 -6.647 1.66E-10 

Device Android:Segment /ʃ/  -496.482 359.437 -1.381 0.168341 

Device 
ExternalComputerMic:Segment 

-1587.648 359.437 -4.417 1.45E-05 



19 

/ʃ/  

Device 
InternalComputerMic:Segment 
/ʃ/  

-763.061 359.437 -2.123 0.034673 

Device iPad:Segment /ʃ/      301.010 359.437 0.837 0.403085 

Device iPhone:Segment /ʃ/   -253.777 359.437 -0.706 0.480775 
 Reference level Program = zoomH4n, Segment = /s/ 
 

 
Figure S10. Measured center of gravity as predicted by device and segment, among fricatives. 
Pooled raw data, not the model results. Whiskers indicate the standard error. 
 
 
Vowel quality 
Figure S11 illustrates F1 and F2 as influenced by vowel quality and device.  Adding the 
interaction between vowel quality and device does not significantly improve the model for F1 (χ2 
= 53.0, df = 55, p = 0.55), likely because there are many combinations of vowel quality and 
device, with relatively few data points for each one. The interaction between vowel quality and 
device does significantly improve the model for F2 (χ2 = 171.8, df = 55, p < 0.0001); the 
measured F2 varies considerably across conditions for some vowels. 

The device conditions in phase 1 all clearly pick out a recognizable vowel space. 
However, some of the vowels are shifted enough that they would be likely to cause problems for 
analysis.  In particular, F2 measurements for /u/ and /ou/ were very high in many of the 
conditions; this is likely due to issues in identifying boundaries or tracking low-intensity 
formants, which altered which part of the diphthong were measured.  Many of the words with /u/ 
lacked codas, so failure to capture the back portion of the offglide of the vowel resulted in only 
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measuring the fronter beginning portion.  While other vowels didn’t exhibit systematic effects, 
there are several vowels that have strikingly variable measurements across conditions. 
 

 
Figure S11. Vowel spaces for each speaker as measured in Phase 1 (by-Device). 
 
Figure S12 illustrates F1 and F2 as influenced by vowel quality and device, pooled across the 
two speakers for whom there was data from all devices. 
 

 
Figure S12: Vowel spaces pooled across speakers in Phase 1 (comparisons by Device). Only 
two speakers are included, because data for one condition was missing for one speaker. 
 

2.2 Effects of Program 

There were five software conditions compared to the H4n reference condition: Zoom, Skype, 
Cleanfeed, Facebook Messenger (recorded through Audacity, because it does not have an in-app 
recording option), and AudacityAlone.  Note that four of these are testing applications for online 
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transmission, while AudacityAlone is present to test whether the Audacity program causes 
effects in itself, to clarify how to interpret the results of the Messenger condition. 

For these comparisons, we used a single Zoom condition, recording locally with the 
default audio settings. Although we tested several different Zoom conditions, there were no 
differences between any of them: Local vs. remote, operating system, conversion from mp4, or 
the “Original Audio” setting. None of the characteristics measured exhibited significant effects 
of recording condition. The models comparing Zoom conditions to each other are presented in 
Section 1.3 below. 

2.2.1 Overall effects 
Table S17 presents the summary of a linear mixed effects model for consonant duration as 
predicted by the recording program. There was a random intercept for speaker.  

There were no significant consonant duration differences between the baseline recording 
and the recording made through Cleanfeed or Audacity alone. However, consonant durations 
were significantly shorter in all of the other conditions. Recall that boundaries were created with 
forced alignment, as described above; the significant effects on duration suggest that the 
programs produced other effects, on intensity for example, which altered the boundaries 
identified by forced alignment. Some of the differences in duration might also reflect actual 
duration differences created by compression algorithms. 
 
Table S17. Linear mixed effects model for consonant duration (in milliseconds) 
          Estimate  SE t-value p 

(Intercept)       106.8277 10.2552 10.417 0.00721 

Program 
AudacityAlone 

1.0855 2.8667 0.379 0.70497 

Program 
Cleanfeed      

-0.4416 2.8656 -0.154 0.87752 

Program 
Messenger  

-11.5773 2.8656 -4.040 5.45E-05 

Program Skype       -8.5174 2.8656 -2.972 0.00297 

Program Zoom       -11.2303 2.8656 -3.919 9.05E-05 
 Reference level Program = zoomH4n 
 
Table S18 presents the summary of a linear mixed effects model for vowel duration as predicted 
by the recording program. There was a random intercept for speaker. 
As for consonant duration, there were no significant vowel duration differences between the 
baseline recording and the recording made through Cleanfeed or AudacityAlone. However, 
vowel durations were significantly longer in all of the other conditions.  
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Table S18. Linear mixed effects model for vowel duration (in milliseconds) 
          Estimate  SE t-value p 

(Intercept)       157.1634 12.2843 12.794 0.00254 

Program 
AudacityAlone 

-0.8359 6.0478 -0.138 0.89008 

Program 
Cleanfeed      

0.3715 6.0478 0.061 0.95102 

Program 
Messenger  

17.4613 6.0478 2.887 0.00393 

Program Skype       19.7833 6.0478 3.271 0.00109 

Program Zoom       31.4551 6.0478 5.201 2.19E-07 
 Reference level Program = zoomH4n 
 
Table S19 presents the summary of a linear mixed effects model for consonant intensity as 
predicted by the recording program. There was a random intercept for speaker. 
 All of the programs exhibited significantly lower consonant intensity than the baseline 
recording, except for AudacityAlone. 
 
Table S19. Linear mixed effects model for consonant intensity (in dB) 
          Estimate  SE t-value p 

(Intercept)       67.11613 0.76802 87.388 1.31E-05 

Program 
AudacityAlone 

0.03219 0.42150 0.076 0.939 

Program 
Cleanfeed      

-3.78338 0.42133 -8.980  < 2e-16  

Program 
Messenger  

-27.28925 0.42133 -64.769  < 2e-16  

Program Skype       -4.53062 0.42133 -10.753  < 2e-16  

Program Zoom       -6.60118 0.42133 -15.668  < 2e-16  
 Reference level Program = zoomH4n 
 
Table S20 presents the summary of a linear mixed effects model for vowel intensity as predicted 
by the recording program. There was a random intercept for speaker. 
 All of the programs exhibited significantly lower vowel intensity than the baseline 
recording, except for AudacityAlone. 
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Table S20. Linear mixed effects model for vowel intensity (in dB) 
          Estimate  SE t-value p 

(Intercept)       77.1778 0.3852 200.346 2.91E-10 

Program 
AudacityAlone 

0.3338 0.3489 0.957 0.339 

Program 
Cleanfeed      

-3.0245 0.3489 -8.669  < 2e-16  

Program 
Messenger  

-28.1522 0.3489 -80.693  < 2e-16  

Program Skype       -3.3331 0.3489 -9.554  < 2e-16  

Program Zoom       -6.1096 0.3489 -17.512  < 2e-16  
 Reference level Program = zoomH4n 
 
Table S21 presents the summary of a linear mixed effects model for the mean f0 in vowels, as  
predicted by the recording program. There was a random intercept for speaker. 
 There was no significant effect on mean f0 in any of the conditions. 
 
Table S21. Linear mixed effects model for mean f0 (in Hz) in vowels  
          Estimate  SE t-value p 

(Intercept)       181.0594 3.7589 48.168 0.000178 

Program 
AudacityAlone 

0.1701 1.4690 0.116 0.907816 

Program 
Cleanfeed      

-0.1390 1.4656 -0.095 0.924473 

Program 
Messenger  

-1.2796 1.4667 -0.872 0.383088 

Program Skype       0.3327 1.4656 0.227 0.820425 

Program Zoom       0.6292 1.4656 0.429 0.667743 
 Reference level Program = zoomH4n 
 
Table S22 presents the summary of a linear mixed effects model for peak timing -- the position 
of the maximum f0 relative to the beginning of the vowel, as predicted by the recording program. 
There was a random intercept for speaker. 
 The peak timing was significantly later for Zoom than the baseline condition. This is 
probably due to the overestimated vowel duration, described above.  Because the beginnings of 
the vowels were placed earlier, the peak f0 was later relative to that starting point.  However, it is 
worth considering why none of the other conditions have effects on peak timing, when several of 
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them did have duration effects.  The different results might be due to the size of the effect; 
MessengerThroughAudacity and Skype had smaller effects on duration than Zoom did, so the 
corresponding differences in peak timing are smaller and don’t reach significance. 
 
Table S22. Linear mixed effects model for f0 peak timing (in milliseconds) 
          Estimate  SE t-value p 

(Intercept)       33.68737 6.49173 5.189 0.01376 

Program 
AudacityAlone 

-0.92653 4.33582 -0.214 0.83081 

Program 
Cleanfeed      

-0.07265 4.32559 -0.017 0.98660 

Program 
Messenger  

6.52137 4.32899 1.506 0.13212 

Program Skype       4.96764 4.32559 1.148 0.25093 

Program Zoom       14.20237 4.32559 3.283 0.00104 
 Reference level Program = zoomH4n 
 
Table S23 presents the summary of a linear mixed effects model for jitter in vowels, as predicted 
by the recording program. There was a random intercept for speaker. 
 There was no significant effect of jitter, though there was a marginal effect of the Zoom 
condition, finding more jitter than the H4n recorder. 
 
Table S23. Linear mixed effects model for jitter in vowels 
          Estimate  SE t-value p 

(Intercept)       1.869E-02 3.319E-03 5.630 0.0233 

Program 
AudacityAlone 

7.49E-04 1.198E-03 0.625 0.5320 

Program 
Cleanfeed      

1.1E-03 1.195E-03 0.920 0.3575 

Program 
Messenger  

7.978E-04 1.196E-03 0.667 0.5049 

Program Skype       3.855E-04 1.196E-03 0.322 0.7473 

Program Zoom       2.261E-03 1.195E-03 1.891 0.0587 
 Reference level Program = zoomH4n 
 
Table S24 presents the summary of a linear mixed effects model for spectral tilt (H1-H2) in 
vowels, as predicted by the recording program. There was a random intercept for speaker. 



25 

 All of the programs exhibited effects of spectral tilt. Most of them underestimated 
spectral tilt, while MessengerThroughAudacity overestimated it. The effects suggest that 
transmission for many of these programs is worse for lower frequencies. Notably, this effect is 
even present in the AudacityAlone condition.  On the other hand, the higher spectral tilt in the 
MessengerThrough Audacity condition might suggest that Messenger is amplifying low 
frequencies. 
 
Table S24. Linear mixed effects model for spectral tilt in vowels 
          Estimate  SE t-value p 

(Intercept)       -1.6438 1.5670 -1.049 0.396287 

Program 
AudacityAlone 

-1.4486 0.5042 -2.873 0.004110 

Program 
Cleanfeed      

-1.3150 0.5026 -2.616 0.008960 

Program 
Messenger  

4.5964 0.5026 9.145  < 2e-16  

Program Skype       -1.6829 0.5026 -3.348 0.000829 

Program Zoom       -1.9654 0.5026 -3.910 9.53E-05 
 Reference level Program = zoomH4n 
 
Table S25 presents the summary of a linear mixed effects model for the Harmonics-to-Noise 
Ratio (HNR) in vowels, as predicted by the recording program. There was a random intercept for 
speaker. 
 MessengerThroughAudacity exhibited a much higher HNR than the baseline condition. 
None of the other effects were significant, but they all have the trend towards being somewhat 
lower than the baseline, indicating more noise.  The higher value for the 
MessengerThroughAudacity condition must have a different explanation. It isn’t the result of 
excluding unmeasurable items; none of the conditions excluded more than 3 tokens. The result 
might come from amplification of low frequencies, like the spectral tilt effect; low frequencies 
include the clearest harmonics, so if these frequencies are amplified, the HNR would appear to 
be higher. 
 
Table S25. Linear mixed effects model for HNR in vowels 
          Estimate  SE t-value p 

(Intercept)       7.2775 1.0350 7.032 0.0164 

Program 
AudacityAlone 

-0.3402 0.2915 -1.167 0.2434 

Program -0.2428 0.2906 -0.836 0.4035 
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Cleanfeed      

Program 
Messenger  

1.2241 0.2906 4.213 2.64E-05 

Program Skype       -0.3030 0.2906 -1.043 0.2972 

Program Zoom       -0.3992 0.2910 -1.372 0.1703 
 Reference level Program = zoomH4n 
 
Table S26 presents the summary of a linear mixed effects model for F1, as predicted by the 
recording program. There was a random intercept for speaker. 
 F1 was significantly lower in the MessengerThroughAudacity condition. The cause of the 
effect is somewhat unclear.  This is addressed in more detail at the end of section 1.2.2, where 
formant effects are separated by vowel. 
 
Table S26. Linear mixed effects model for F1 in vowels 
          Estimate  SE t-value p 

(Intercept)       639.5869 21.7862 29.357 0.000119 

Program 
AudacityAlone 

0.8942 13.7503 0.065 0.948153 

Program 
Cleanfeed      

2.6690 13.7503 0.194 0.846114 

Program 
Messenger  

-30.9754 13.7503 -2.253 0.024390 

Program Skype       -0.3665 13.7503 -0.027 0.978739 

Program Zoom       -7.4189 13.7503 -0.540 0.589577 
 Reference level Program = zoomH4n 
 
Table S27 presents the summary of a linear mixed effects model for F2, as predicted by the 
recording program. There was a random intercept for speaker. 
 F2 was overestimated in all of the conditions, though the effect was smallest in the 
Cleanfeed condition. Section 1.2.2 addresses formant effects in more detail, separated by vowel.   
 
Table S27. Linear mixed effects model for F2 in vowels 
          Estimate  SE t-value p 

(Intercept)       1937.355 83.931 23.083 0.00105 

Program 
AudacityAlone 

37.563 30.170 1.245 0.21327 
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Program 
Cleanfeed      

37.638 30.170 1.248 0.21236 

Program 
Messenger  

65.234 30.170 2.162 0.03073 

Program Skype       48.223 30.170 1.598 0.11012 

Program Zoom       51.135 30.170 1.695 0.09026 
 Reference level Program = zoomH4n 

 
Table S28 presents the summary of a linear mixed effects model for center of gravity (COG) in 
fricatives, as predicted by the recording program. There was a random intercept for speaker. 
 COG was significantly lower in the MessengerThroughAudacity condition, and higher in 
the Zoom condition. As in the Device comparisons, the largest effects are on /s/ and /z/, 
consistent with this being about the interpretation of noise when some of the main frication noise 
is cut off due to the sampling rate. Further analysis of differences between fricatives are 
presented in section 2.2.2. 
 
Table S28. Linear mixed effects model for COG for fricatives 
          Estimate  SE t-value p 

(Intercept)       2652.604 201.695 13.152 3.2E-07 

Program 
AudacityAlone 

234.445 228.455 1.026 0.30509 

Program 
Cleanfeed      

-80.609 228.045 -0.353 0.72382 

Program 
Messenger  

-618.922 228.045 -2.714 0.00678 

Program Skype       -50.513 228.045 -0.222 0.82475 

Program Zoom       447.841 228.045 1.964 0.04988 
 Reference level Program = zoomH4n 
 

2.2.2 Impact on contrasts 

As for the comparisons by device, effects in these characteristics are primarily a concern if they 
alter our ability to find contrasts. In this section, we test whether contrasts depending on these 
characteristics are altered by the recording device.  
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Stress in vowels 
 
Figure S13 illustrates vowel duration as influenced by stress.  The program did not have any 
substantial impact on these measurements, even though the overall vowel duration measurements 
were influenced by device.  The effect of stress is significant or marginally significant in all 
conditions, and of a similar size.   
 
 

 
Figure S13. Measured vowel duration as predicted by program and stress. Pooled raw data, not 
the model results. Whiskers indicate the standard error. 
 
Figure S14 illustrates F0 in vowels as influenced by stress.  The program did not have any 
substantial impact on these measurements; there was a clear separation between stressed and 
unstressed vowels in all conditions, though there is some variation in the size of the effect. 
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Figure S14. Measured f0 maximum as predicted by program and stress. Pooled raw data, not 
the model results. Whiskers indicate the standard error. 
 
Table S29 presents the summary of a linear mixed effects model for intensity in vowels, as 
predicted by the recording program and stress. There was a random intercept for speaker. 
 The effect of stress on intensity is almost entirely eliminated in the 
MessengerThroughAudacity condition, which also has a very large overall effect on intensity. 
Figure S15 illustrates intensity in vowels as influenced by stress. 
 
Table S29. Linear mixed effects model for intensity in vowels, including stress as a factor 
          Estimate  SE t-value p 

(Intercept)       78.3957 0.7219 108.601  < 2e-16  

Program 
AudacityAlone 

0.9572 1.0209 0.938 0.34906 

Program 
Cleanfeed      

-3.0543 1.0209 -2.992 0.00296 

Program 
Messenger  

-28.6849 1.0209 -28.098  < 2e-16  

Program Skype       -2.7085 1.0209 -2.653 0.00832 

Program Zoom       -5.6518 1.0209 -5.536 5.85E-08 

Stress Unstressed          -2.2565 1.0209 -2.210 0.02769 

Program 
AudacityAlone:St
ress Unstressed    

-0.6752 1.4437 -0.468 0.64029 
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Program 
Cleanfeed:Stress 
Unstressed     

-0.1677 1.4437 -0.116 0.90762 

Program 
Messenger:Stress 
Unstressed  

2.0610 1.4437 1.428 0.15427 

Program 
Skype:Stress 
Unstressed      

-0.3784 1.4437 -0.262 0.79340 

Program 
Zoom:Stress 
Unstressed       

0.2081 1.4437 0.144 0.88546 

 Reference level Program = zoomH4n 
 

 
Figure S15. Measured vowel intensity as predicted by program and stress. Pooled raw data, not 
the model results. Whiskers indicate the standard error. 
 
Coda voicing 
 
Figure S16 illustrates vowel duration as influenced by coda voicing.  The program did not have 
any substantial impact on these measurements, though there was variation in the size of the 
effect, and some conditions were substantially overestimating overall vowel duration. 
 



31 

 
Figure S16. Measured vowel duration as predicted by program and coda voicing. Pooled raw 
data, not the model results. Whiskers indicate the standard error. 
 
Figure S17 illustrates HNR in vowels as influenced by coda voicing. The program did not have 
any substantial impact on these measurements; the effect was a similar size in all conditions. 
 

 
Figure S17. Measured HNR as predicted by program and coda voicing. Pooled raw data, not 
the model results. Whiskers indicate the standard error. 
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Onset voicing 
 
Figure S18 illustrates HNR in vowels as influenced by onset voicing.  The program did not have 
any substantial impact on these measurements; the effect was a similar size in all conditions, 
even though MessengerThroughAudacity substantially overestimated HNR for vowels in both 
environments. 
 

 
Figure S18. Measured HNR as predicted by program and onset voicing. Pooled raw data, not 
the model results. Whiskers indicate the standard error. 
 
Figure S19 illustrates spectral tilt in vowels as influenced by onset voicing.  The program did not 
have any substantial impact on these measurements; the effect was a similar size in all 
conditions, even though MessengerThroughAudacity substantially overestimated spectral tilt for 
vowels in both environments. 
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Figure S19. Measured spectral tilt as predicted by program and onset voicing. Pooled raw data, 
not the model results. Whiskers indicate the standard error. 
 
Figure S20 illustrates maximum F0 as influenced by onset voicing.  The program did not have 
any substantial impact on these measurements; the effect was a similar size in all conditions. 
 

 
Figure S20. Measured f0 maximum as predicted by program and onset voicing. Pooled raw 
data, not the model results. Whiskers indicate the standard error. 
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Consonant manner 
 
Table S30 presents the summary of a linear mixed effects model for COG in /s/ and /ʃ/, as 
predicted by the recording program and segment. There was a random intercept for speaker. 
 MessengerThroughAudacity was substantially underestimating /s/, to the point where it 
has a slightly lower cog than /ʃ/, and they don’t substantially differ. Figure S21 illustrates COG 
across all fricatives. Zoom, Skype, and MessengerThrough Audacity were also substantially 
overestimating the COG for /f/.  Because the frication for /f/ is rather diffuse, this could be the 
result of amplifying lower frequencies, or filtering out higher frequency aperiodic noise as 
“background noise.” 
 
Table S30. Linear mixed effects model for COG in sibilant fricatives, including particular 
fricative as a factor 
          Estimate  SE t-value p 

(Intercept)       4735.873 224.220 21.122 9.72E-06 

Program 
AudacityAlone 

194.358 197.660 0.983 0.3260 

Program 
Cleanfeed      

-301.293 197.660 -1.524 0.1282 

Program 
Messenger  

-1676.704 197.660 -8.483 3.84E-16 

Program Skype       -380.368 197.660 -1.924 0.0550 

Program Zoom       509.264 197.660 2.576 0.0103 

Segment /ʃ/          -1544.664 279.542 -5.526 5.78E-08 

Program 
AudacityAlone:S
egment /ʃ/ 

73.227 395.320 0.185 0.8531 

Program 
Cleanfeed:Segme
nt /ʃ/ 

465.019 395.320 1.176 0.2401 

Program 
Messenger:Segm
ent /ʃ/ 

1744.020 395.320 4.412 1.31E-05 

Program 
Skype:Segment 
/ʃ/      

510.392 395.320 1.291 0.1974 

Program 
Zoom:Segment 

-206.294 395.320 -0.522 0.6021 
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/ʃ/       
 Reference level Program = zoomH4n, Segment = /s/ 
 
 

 
Figure S21. Measured center of gravity as predicted by program and segment, among fricatives. 
Pooled raw data, not the model results. Whiskers indicate the standard error. 
 
Vowel quality 
 
Figure S22 illustrates F1 and F2 as influenced by vowel quality and device.  Adding the 
interaction between vowel quality and device significantly improves the model for F1 (χ2 = 
166.9, df = 55, p = < 0.0001). The interaction between vowel quality and device also 
significantly improves the model for F2 (χ2 = 85.9, df = 55, p = 0.0049).  There is substantial 
variation in the measurement of both formants in recordings made by different programs. These 
effects vary by vowel, which is why they did not show up as clearly in the overall models for F1 
and F2 above.  
 
Many of the conditions produce measurements that substantially shift a vowel far into the region 
of a different vowel, which is likely to cause major problems in phonetic analysis and even in 
phonological categorization of tokens. While clusters for measurements of each vowel are 
mostly apparent, Messenger Through Audacity is a clear outlier for most of the vowels. 
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Figure S22. Vowel spaces for each speaker as measured in Phase 2 (by-Program). 
 
Figure S23 illustrates F1 and F2 as influenced by vowel quality and program, pooled across all 
speakers; some of the shifts were similar for all speakers. 
 

 
Figure S23: Vowel spaces pooled across speakers in Phase 2 (comparisons by Program). 
 

2.3 Comparing Zoom Conditions 

This section provides the models comparing measurements across the Zoom conditions -- this 
varied based on whether the recording was local or remote, whether the computer was mac or 
windows, whether the files were converted from mp4 or not, and whether the recording used the 
“Original Audio” setting in Zoom or not. 
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 In most of these measures, there were clearly no effects; the variation between conditions 
is very small.  For duration, two comparisons were marginally significant, but would not 
withstand correction for multiple comparisons. 

Table S31 presents the summary of a linear mixed effects model for consonant duration 
as predicted by the recording condition.  There was a random intercept for speaker.  

There were no significant consonant duration differences between the different 
conditions.  The largest difference, between Mac Local mp4 and Mac Remote wav, is only 
marginally significant. 
 
Table S31. Linear mixed effects model for consonant duration 
                                  Estimate  SE t-value p  

(Intercept)                       95.5668 9.3867 10.181 0.00635 

Condition Mac Local mp4                  -0.7256 3.3926 -0.214 0.83066 

Condition Mac Remote mp4  2.3659 3.3926 0.697 0.48560 

Condition Mac Remote wav                    5.4259 3.3926 1.599 0.10982 

Condition Windows Remote wav                    4.4479 3.3926 1.311 0.18990 

Condition Mac Remote mp4 
OriginalAudio 

1.4826 3.3926 0.437 0.66211 

Condition Mac Remote wav 
OriginalAudio 

1.3832 3.3926 0.408 0.68349 

 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
 
Table S32 presents the summary of a linear mixed effects model for vowel duration as predicted 
by the recording condition.  There was a random intercept for speaker.  

Some of the vowel duration differences were significant, though the effects were small. 
Note that, as seen in the main model for effects of program, all of the Zoom conditions 
overestimated vowel duration, so the shortest values, in the two two Mac Remote 
nonOriginalAudio conditions were the closest to the gold standard. 
 
Table S32. Linear mixed effects model for vowel duration 
                                  Estimate  SE t-value p  

(Intercept)                       188.5685 11.8240 15.948 0.000823 

Condition Mac Local mp4                  -3.1889 7.0258 -0.454 0.649959 

Condition Mac Remote mp4  -13.9319 7.0258 -1.983 0.047492 

Condition Mac Remote wav                    -13.4056 7.0258 -1.908 0.056511 

Condition Windows Remote wav                    -11.1765 7.0258 -1.591 0.111799 
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Condition Mac Remote mp4 
OriginalAudio 

0.2786 7.0258 0.040 0.968368 

Condition Mac Remote wav 
OriginalAudio 

-0.6811 7.0258 -0.097 0.922779 

 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
 
 
Table S33 presents the summary of a linear mixed effects model for consonant intensity as 
predicted by the recording condition.  There was a random intercept for speaker.  

There was no effect of recording condition on consonant intensity. 
 
Table S33. Linear mixed effects model for consonant intensity 
                                  Estimate  SE t-value p  

(Intercept)                       6.049E+01 1.022E+00 59.182 6.97E-05 

Condition Mac Local mp4                  2.796E-01 4.703E-01 0.595 0.552 

Condition Mac Remote mp4  6.637E-01 4.703E-01 1.411 0.158 

Condition Mac Remote wav                    5.013E-01 4.703E-01 1.066 0.287 

Condition Windows Remote wav                    4.066E-01 4.703E-01 0.865 0.387 

Condition Mac Remote mp4 
OriginalAudio 

9.794E-02 4.703E-01 0.208 0.835 

Condition Mac Remote wav 
OriginalAudio 

2.112E-01 4.705E-01 0.449 0.654 

 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
 
Table S34 presents the summary of a linear mixed effects model for vowel intensity as predicted 
by the recording condition.  There was a random intercept for speaker.  

There was no effect of recording condition on vowel intensity. 
 
Table S34. Linear mixed effects model for vowel intensity 
                                  Estimate  SE t-value p  

(Intercept)                       7.105E+01 9.802E-01 72.489 7.37E-05 

Condition Mac Local mp4                  1.752E-01 3.679E-01 0.476 0.634 

Condition Mac Remote mp4  4.7E-01 3.679E-01 1.278 0.201 

Condition Mac Remote wav                    3.248E-01 3.679E-01 0.883 0.377 

Condition Windows Remote wav                    4.407E-01 3.679E-01 1.198 0.231 

Condition Mac Remote mp4 2.881E-02 3.679E-01 0.078 0.938 
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OriginalAudio 

Condition Mac Remote wav 
OriginalAudio 

4.4E-02 3.679E-01 0.120 0.905 

 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
 
Table S35 presents the summary of a linear mixed effects model for mean f0 in vowels as 
predicted by the recording condition.  There was a random intercept for speaker.  

There was no effect of recording condition on f0 mean. 
 
Table S36. Linear mixed effects model for mean f0 in vowels 
                                  Estimate  SE t-value p  

(Intercept)                       181.6879 3.7772 48.102 0.000134 

Condition Mac Local mp4                  -0.3498 1.6447 -0.213 0.831612 

Condition Mac Remote mp4  -0.4635 1.6447 -0.282 0.778104 

Condition Mac Remote wav                    -0.1902 1.6460 -0.116 0.908009 

Condition Windows Remote wav                    -0.5141 1.6447 -0.313 0.754613 

Condition Mac Remote mp4 
OriginalAudio 

0.1005 1.6473 0.061 0.951379 

Condition Mac Remote wav 
OriginalAudio 

0.6872 1.6486 0.417 0.676830 

 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
 
Table S37 presents the summary of a linear mixed effects model for peak timing -- the position 
of the maximum f0 relative to the beginning of the vowel, as predicted by the recording 
condition.  There was a random intercept for speaker.  

There was no effect of recording condition on peak timing 
 
Table S37. Linear mixed effects model for f0 peak timing in vowels 
                                  Estimate  SE t-value p  

(Intercept)                       4.783E-02 7.198E-03 6.645 0.00562 

Condition Mac Local mp4                  2.237E-04 5.036E-03 0.044 0.96458 

Condition Mac Remote mp4  -7.292E-03 5.036E-03 -1.448 0.14777 

Condition Mac Remote wav                    -7.126E-03 5.04E-03 -1.414 0.15755 

Condition Windows Remote wav                    -4.719E-03 5.036E-03 -0.937 0.34888 

Condition Mac Remote mp4 
OriginalAudio 

9.987E-05 5.044E-03 0.020 0.98420 
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Condition Mac Remote wav 
OriginalAudio 

1.182E-03 5.048E-03 0.234 0.81482 

 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
 
Table S38 presents the summary of a linear mixed effects model for jitter in vowels as predicted 
by the recording condition.  There was a random intercept for speaker.  

There was no effect of recording condition on jitter. 
 
Table S38. Linear mixed effects model for jitter in vowels 
                                  Estimate  SE t-value p  

(Intercept)                       2.095E-02 3.48E-03 6.021 0.0198 

Condition Mac Local mp4                  -4.834E-05 1.282E-03 -0.038 0.9699 

Condition Mac Remote mp4  4.426E-05 1.283E-03 0.034 0.9725 

Condition Mac Remote wav                    6.03E-04 1.283E-03 0.470 0.6385 

Condition Windows Remote wav                    -8.33E-04 1.283E-03 -0.649 0.5164 

Condition Mac Remote mp4 
OriginalAudio 

-1.889E-04 1.284E-03 -0.147 0.8831 

Condition Mac Remote wav 
OriginalAudio 

3.224E-04 1.285E-03 0.251 0.8020 

 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
 
Table S39 presents the summary of a linear mixed effects model for spectral tilt (H1-H2) in 
vowels as predicted by the recording condition.  There was a random intercept for speaker.  

There was no effect of recording condition on spectral tilt. 
 
Table S39. Linear mixed effects model for spectral tilt in vowels 
                                  Estimate  SE t-value p  

(Intercept)                       -3.61901 1.87583 -1.929 0.184 

Condition Mac Local mp4                  0.15951 0.54428 0.293 0.769 

Condition Mac Remote mp4  -0.09068 0.54428 -0.167 0.868 

Condition Mac Remote wav                    -0.01968 0.54428 -0.036 0.971 

Condition Windows Remote wav                    -0.25595 0.54428 -0.470 0.638 

Condition Mac Remote mp4 
OriginalAudio 

-0.30535 0.54428 -0.561 0.575 

Condition Mac Remote wav 
OriginalAudio 

-0.03448 0.54428 -0.063 0.949 
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 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
 
Table S40 presents the summary of a linear mixed effects model for Harmonics-to-Noise Ratio 
(HNR) in vowels as predicted by the recording condition.  There was a random intercept for 
speaker.  

There was no effect of recording condition on HNR. 
 
Table S40. Linear mixed effects model for HNR in vowels 
                                  Estimate  SE t-value p  

(Intercept)                       6.88E+00 9.62E-01 7.152 0.0155 

Condition Mac Local mp4                  -4.623E-03 2.793E-01 -0.017 0.9868 

Condition Mac Remote mp4  1.575E-01 2.793E-01 0.564 0.5728 

Condition Mac Remote wav                    1.855E-01 2.797E-01 0.663 0.5073 

Condition Windows Remote wav                    3.098E-01 2.793E-01 1.109 0.2674 

Condition Mac Remote mp4 
OriginalAudio 

1.713E-03 2.797E-01 0.006 0.9951 

Condition Mac Remote wav 
OriginalAudio 

7.772E-04 2.797E-01 0.003 0.9978 

 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
 
Table S41 presents the summary of a linear mixed effects model for F1 in vowels as predicted by 
the recording condition.  There was a random intercept for speaker.  

There was no effect of recording condition on F1. 
 
Table S41. Linear mixed effects model for F1 in vowels 
                                  Estimate  SE t-value p  

(Intercept)                       632.1407 20.6590 30.599 0.000109 

Condition Mac Local mp4                  -1.7226 12.7756 -0.135 0.892753 

Condition Mac Remote mp4  -0.4777 12.7756 -0.037 0.970176 

Condition Mac Remote wav                    0.7096 12.7756 0.056 0.955711 

Condition Windows Remote wav                    -0.5826 12.7756 -0.046 0.963632 

Condition Mac Remote mp4 
OriginalAudio 

-1.2682 12.7756 -0.099 0.920933 

Condition Mac Remote wav 
OriginalAudio 

5.4891 12.7756 0.430 0.667490 

 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
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Table S42 presents the summary of a linear mixed effects model for F2 in vowels as predicted by 
the recording condition.  There was a random intercept for speaker.  

There was no effect of recording condition on F2. 
 
Table S42. Linear mixed effects model for F2 in vowels 
                                  Estimate  SE t-value p  

(Intercept)                       1988.306 87.521 22.718 0.00113 

Condition Mac Local mp4                  -11.572 30.086 -0.385 0.70054 

Condition Mac Remote mp4  -19.920 30.086 -0.662 0.50798 

Condition Mac Remote wav                    -18.964 30.086 -0.630 0.52855 

Condition Windows Remote wav                    -13.574 30.086 -0.451 0.65190 

Condition Mac Remote mp4 
OriginalAudio 

-6.369 30.086 -0.212 0.83237 

Condition Mac Remote wav 
OriginalAudio 

7.407 30.086 0.246 0.80555 

 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
 
Table S43 presents the summary of a linear mixed effects model for Center of Gravity (COG) in 
fricatives as predicted by the recording condition.  There was a random intercept for speaker.  

There was no effect of recording condition on COG. 
 
Table S43. Linear mixed effects model for COG in fricatives 
                                  Estimate  SE t-value p  

(Intercept)                       3100.437 226.059 13.715 9.13E-08 

Condition Mac Local mp4                  32.669 256.421 0.127 0.899 

Condition Mac Remote mp4  -5.229 256.421 -0.020 0.984 

Condition Mac Remote wav                    -52.408 256.421 -0.204 0.838 

Condition Windows Remote wav                    7.509 256.421 0.029 0.977 

Condition Mac Remote mp4 
OriginalAudio 

18.048 256.421 0.070 0.944 

Condition Mac Remote wav 
OriginalAudio 

-6.542 256.421 -0.026 0.980 

 Reference level Condition = Local, macOSX, not “original audio”, not from mp4 
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2.4 Signal to noise ratio 

Figure S24 plots the average signal to noise ratio across each condition. It was calculated by 
measuring the mean energy in the “signal” (that is, from the words used in the analysis) 
compared to the background noise, as measured in intervals labeled as silence, using the 
following formula. 
 
(1)  SNR = 20log(Psignal/Pnoise) 

 
Figure S24. Signal to noise ratio by condition, across all devices and programs 
 
Signal to noise ratio should be above 50 DH for adequate recordings. Here the highest signal to 
noise ratios come from the zoom recordings, presumably as an effect of the zoom software 
suppressing background noise. Our gold standard recording did not have a particularly high 
signal to noise ratio, compared to some of the other recording devices used in the live recording 
condition. This is probably due in part to the sensitivity of the H4n’s microphone and picking up 
background noise from the air conditioning system and external traffic noise.3 Some of the 
software programs include filters to amplify what is identified as speech or suppress sounds that 
are identified as background noise; while this may improve perceptual clarity, it is altering the 

 
3 As mentioned in the main article, we attempted to mimic a reasonable field situation in that we 
recorded in a “quiet” room but did not attempt to remove all background noise. While the 
building was quiet, there was both noise from the building’s air conditioning system and traffic 
noise from the street outside.  
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acoustic signal and could potentially influence the results in misleading ways, so having a higher 
SNR is not necessarily indicative of a better recording. 
 
Table S44 presents the summary of a linear mixed effects model for SNR as predicted by device.  
SNR was calculated for each sentence, using the maximum amplitude of the target word and of 
the silence following the sentence. As in previous models, there was a random intercept for 
speaker. 
 
Table S44. Linear mixed effects model for SNR 
 
          Estimate  SE t-value p  

(Intercept)       56.954 4.449 12.80 0.0447 

Device Android      10.191 1.012 10.07 <2e-16  

Device ExternalComputerMic  19.223 1.012 18.99 <2e-16  

Device InternalComputerMic    -11.522 1.012 -11.38 <2e-16  

Device iPad   -13.679 1.012 -13.51 <2e-16  

Device iPhone -15.505 1.012 -15.32 <2e-16  
 Reference level Program = zoomH4n 
 
Table S45 presents the summary of a linear mixed effects model for SNR as predicted by 
program.  SNR was calculated for each sentence, using the maximum amplitude of the target 
word and of the silence following the sentence. As in previous models, there was a random 
intercept for speaker. 
 
Table S45. Linear mixed effects model for SNR 
          Estimate  SE t-value p  

(Intercept)       57.861 1.833 31.560 2.97E-05 

Program AudacityAlone 7.426 1.351 5.496 4.48E-08 

Program Cleanfeed      8.541 1.351 6.321 3.31E-10 

Program Messenger 17.380 1.351 12.863  < 2e-16  

Program Skype       21.740 1.351 16.089  < 2e-16  

Program Zoom       41.935 1.351 31.035  < 2e-16  
 Reference level Program = zoomH4n 
 
As can be seen from Figure S25 below, which presents the mean intensity for words recorded by 
each device, the Hn4 had the highest mean intensity measurements out of all the device 
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conditions, implying that the issue is not with low microphone levels (compared to, for example, 
the external microphone). Reduction of noise when there is no speech does not necessarily mean 
that Zoom was equally effective at reducing background noise during speech, or that it removed 
noise in a way that will leave crucial acoustic characteristics of the speech signal intact. 
 

 
Figure S25. Mean intensity by device and speaker 
 
Figure S26 presents the mean intensity measurements for all words in each version of the 
recording, based on the software program and the speaker. While input to all conditions was the 
same (the H4n playing the recordings that were made through its internal microphones), the 
mean intensity differs, implying either that Cleanfeed does a signal boost, or that other programs 
are autolimiting the microphone input. 
 

 
Figure S26. Mean intensity by program and speaker 
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Further indication that programs are playing a role in limiting mic input comes from the mean 
amplitude according to the program condition, where it can be seen that the amplitude 
measurements for the four main conditions vary extensively: 

Differences in the amplitude of the signal and the background noise could directly impact 
some acoustic measures, including intensity, center of gravity, and the harmonics-to-noise ratio, 
which are each discussed above.  Differences in amplitude are also likely to be part of the 
explanation for differences in identification of segment boundaries. 
 
 

2.5 Timing issues  

To account for whether duration differences and other measurement differences were due to how 
the forced aligner was placing boundaries or if they were the result of actual duration differences 
caused by the condition, we combined these recordings with the textgrids produced for the 
baseline conditions. Because the recordings were made under identical conditions (either because 
they were made at the same time or recorded from the H4n recorder’s output), the intervals 
should be identical; if they indeed are the same, the textgrids should align across all recording 
conditions.  

However, the textgrids from the baseline condition do not align with the other conditions. 
Because of the substantial timing differences, it was impossible to use the textgrids from the 
baseline condition to make measurements in the other recording conditions; the interval for a 
segment was often partially or entirely shifted onto another segment. This lack of alignment 
makes clear that the compression/decompression systems of these programs created some 
differences in timing. While the changes for any individual word are somewhat small (about 10 
ms at most), these small mis-alignments can combine to produce substantial misalignment 
between recordings, when the recordings are long. (Note that for analytical purposes all files 
were aligned individually, so these offsets are not driving the differences between results.)  
 The following figures plot the difference between the interval timestamps for the gold 
standard versus three of the recording conditions (Messenger, Cleanfeed, and Zoom), to illustrate 
the extent of the timing issues that were present within the data. Because the order in which the 
stimuli were presented was randomized between speakers, measurements are done separately for 
individual speakers. As can be seen from Figures S27 and S28, the Zoom condition (in black) is 
very close to the boundaries in recordings from the “gold standard” H4n recorder. The 
Messenger and Cleanfeed conditions, however, can be off by several hundred milliseconds.  
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Figure S27. Difference in alignment between the H4n and three Program conditions (Messenger, 
Cleanfeed, and Zoom) for Speaker 1 (CS) 
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Figure S28. Difference in alignment between the H4n and three Program conditions (Messenger, 
Cleanfeed, and Zoom) for Speaker 2 (CB) 
 

3 Additional comments on software 

Here we offer some additional impressionistic summary comments about the software options 
and their relative reliability and ease of use, for researchers who are intending to make online 
recordings. 
 
Cleanfeed was very user-friendly and performed well overall. It is probably the least well known 
of the set of software options tested here (but is used in podcasting interviews). It was 
straightforward to set up. The software allows the user to choose which speakers to record and 
how to record them (separate tracks, together, etc). Individual participants can be muted. Muting 
individual participants was not particularly important for our tests but using this would allow a 
way to have multiple remote participants while avoiding possible interference. However, it has a 
big drawback that video is not present, which limits its effectiveness. 
 
Skype and Zoom are well known to participants; they are easy to set up and use.  However, they 
exhibit extensive digital artefacts, so it is important to be careful when using these programs. 
Information about the conditions of recording (including any settings) should be included with 
recording metadata. 
 
Facebook Messenger performed poorly in our tests, frequently giving outputs that differ from 
all the other conditions. Because Audacity alone behaves like the gold standard for almost all 
tests, the effects of Messenger recorded through Audacity, the effects cannot be attributed to 
Audacity itself.  However, the effects might be due to how Messenger compresses the audio or in 
how Audacity interacts with audio input from Messenger.  Messenger is widely available, but 
provides little control over recordings and produces unreliable results. 
 

4 List of stimuli 

 

bad cheap fade leave rib ten insult (n.) 

badge chest fan mace rich tick insult (v.) 

base chew file match ridge tongue permit (n.) 

bat chip fuss maze rim tug permit (v.) 
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batch choke fuzz mob rip van survey (n.) 

batch chug gap mop roam vase survey (v.) 

bead clock half neck robe vote suspect (n.) 

bean clog have paid sap wash suspect (v.) 

bet deck jest pet sheep watch torment (n.) 

bid den joke pick ship wish torment (v.) 

bit dip jug pig shoe witch  

boat do lash pile sick zap  

cab edge latch plod sue zip  

cap etch leaf plot tap zoo  

 
The order of items was randomized for each speaker. Words occurred within the frame sentence 
“We say ____ again.” 
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