
1 

 

The search for Minimal Search 

Diego Gabriel Krivochen 

diegokrivochen@hotmail.com 

Abstract 

In this paper we examine Minimal Search, an operation that is at the core of current Minimalist 

inquiry. We argue that, given Minimalist assumptions about structure building consisting of set-

formation, it is not possible to define Minimal Search as a search algorithm, which would partly 

explain the lack of explicit formal characterisations of this operation in the literature. Furthermore, 

some problematic configurations for Minimal Search (namely, {XP, YP} and {X, Y}) are argued to 

be an artefact of these set-theoretic commitments. However, if set-formation is given up as the core 

operation in syntax in favour of directed graphs, Minimal Search can be straightforwardly 

characterised as a search algorithm that applies unambiguously. Its usefulness for syntactic analysis 

may thus go beyond the role it plays in Minimalism. 

Keywords: set theory; graph theory; Minimal Search; phrase structure   

1. Introduction 

Minimal Search (MS henceforth) was introduced in Chomsky (2004: 109) and developed into a 

central part of Minimalist theorising in the context of the Problems of Projection program, as a ‘third 

factor’ property (Chomsky, 2013: 43) which ‘falls under MC [Minimal Computation]’ (Chomsky, 

2015: 6). Similar characterisations of Minimal Search (MS) are to be found e.g. in Epstein et al. 

(2017, 2020), Chomsky (2020a: 36, 2020b), Goto (2019), Komachi et al. (2019), Van Gelderen 

(2019), Larson (2015), Hayashi (2021). MS has become a crucial aspect of Minimalist theorising, as a 

key component of operations like Labelling and Agree: for example, Bauke & Blühmel (2017: 4) 

refer to MS in the context of a presentation of the so-called Labelling Algorithm, echoing Chomsky in 

saying that 

the labelling algorithm based on the notion Minimal Search that implements this requirement 

in a computationally efficient manner  

If Labelling is a properly defined algorithm, as an unambiguous sequence of steps that carries out a 

computational process which maps an input to an output of specific kinds (in this case, labelling 

would be a function from syntactic objects into labels), then MS being such a central component 

should also be properly defined. Similarly, Collins (2017) appeals to MS in a definition of 

linearisation procedures under a strong set-theoretical commitment: Merge(X, Y) = {X, Y}. Chomsky 

(2013, 2015, 2020a, b) resorts to MS in the discussion about subject movement (from Spec-vP to 

mailto:diegokrivochen@hotmail.com


2 

 

Spec-TP, seeking to eliminate the EPP), labelling, accessibility in successive cyclic movement 

(2020a: 36), and possibly other processes. In this context, is it surprising that there is no formal 

definition of MS to be found (Collins & Stabler’s 2016 formalisation of Minimalist Syntax does not 

even mention MS). Characterisations in the literature are at best informal, as in Chomsky (2020a: 36): 

[MS is] a third factor principle, that says look for the closest copy and don’t look any further 

Or Vercauteren (2017: 70) (here, MS is again invoked in relation to Labelling): 

the head that is closest to the node to be labeled will provide the label for the whole structure 

But most times, MS is simply assumed, without even being informally characterised. Concepts like 

‘distance’ and ‘computational efficiency’ (or ‘Minimal Computation’) appear scattered in these 

informal characterisations, but are themselves not defined (see Lappin et al., 2001; Postal, 2004 for a 

detailed critique of similar formal imprecisions regarding ‘perfection’ and ‘virtual conceptual 

necessity’, notions independent from empirical concerns). It is not entirely difficult to see why: given 

contemporary Minimalism’s axiomatic commitment to sets (such that binary set formation would be, 

by hypothesis, the ‘simplest’ possible operation; Chomsky, 2013: 42; 2020a: 22), the issue becomes 

defining distances in sets without having a mathematical framework to do so. 

In current Minimalist theorising, MS is relegated to the realm of the ‘third factor’, which comprises 

3. Principles not specific to the faculty of language. 

The third factor falls into several subtypes: (a) principles of data analysis that might be used 

in language acquisition and other domains; (b) principles of structural architecture and 

developmental constraints that enter into canalization, organic form, and action over a wide 

range, including principles of efficient computation, which would be expected to be of 

particular significance for computational systems such as language. (Chomsky, 2005: 6) 

These characterisations give MS an ex machina flavour, which is -needless to say- undesirable. What 

can be done, then? Is there a way to define MS in the context of contemporary Minimalism in a way 

that is both formally explicit and empirically fruitful? Here we will argue that MS cannot be formally 

defined as a search algorithm under current Minimalist assumptions, and that it is the very nature of 

the computational system in the most recent incarnation of generative grammar that prevents an 

appropriate definition from being possible. In other words, there can be no ‘search’ in MS under 

Minimalist assumptions. A proper characterisation of MS requires a departure from some core tenets 

of Minimalism with respect to the format of structural descriptions and the properties that a search 

algorithm has. 



3 

 

Let us begin with some general considerations about MS and the framework in which it is 

currently used. ‘Minimal’ suggests that the search space should be bounded, stopping at the closest 

element that satisfies whatever requirement is involved in the ‘Search’: specifically, Chomsky (2013: 

43) suggests that MS stops when it finds a head; Chomsky (2020a: 48) establishes that it stops once it 

reaches the head of a chain (which may or may not be a head in the sense of ‘terminal node’). We will 

come back to the issue of deciding what counts as ‘minimal’ below. Now, we begin with the ‘search’: 

we need to ask how exactly this ‘search’ would take place and how we can provide a formal definition 

of this process. To address this question, we will introduce search algorithms and some crucial 

differences in the formal relations that can be defined under different approaches to what the 

generative procedure generates in Section 2. In order to evaluate the applicability of search algorithms 

to syntactic representations, we need to consider what kinds of objects the search would operate over. 

This will be the topic of Section 3. 

We need to make some preliminary considerations, to be expanded on in Section 2. Contemporary 

Minimalist theory assumes (by axiom) that the generative procedure produces sets: Merge / MERGE 

are instances of an allegedly irreducible operation of set formation over elements in a workspace 

(Chomsky, 2019, 2020a, b). In set-theoretic syntax, the structural description for a sentence like The 

man falls is as in (1) (taken from Collins, 2017: 65): 

1) {{the, man}, {{φ, T}, {fall, {the man}}}} 

Note the use of unordered set notation: the sets produced by Merge / MERGE are not ordered: this is 

an important point to which we will return. To Chomsky, order (which is usually conflated with linear 

precedence) is not part of the computational system. This is a consequence of adopting sets as a 

model of syntax, and a crucial ingredient of our argument: it is of course possible to define an order 

over a set that is not precedence. For example, McCawley’s (1968) graph-based approach (which 

interprets phrase structure rules as admissibility conditions for local trees) defines two distinct two-

place relations: precedes and node dominates. The former pertains to linear order in a string, the latter, 

to relations in structural descriptions. Similarly, some versions of Dependency Grammars (e.g., 

Kahane & Lareau, 2016) and Metagraph Grammar (Postal, 2010: 26) formulate linear precedence 

statements that do not impact on structural relations; these frameworks have in common the focus on 

graphs rather than on sets. The distinction between set-based and graph-based syntax will become 

very relevant shortly.  

1.1 What is a search algorithm? 

Before addressing any issues pertaining to Agree, Move, etc., we need to establish what it means to 

‘search’ in a formal context. In this work we will pursue the possibility that MS is actually intended 



4 

 

as a search algorithm. What is, then, a search algorithm? In computer science, a search algorithm is a 

sequence of well-defined, implementable instructions that retrieves some information stored in a data 

structure; in other words, a sequence of steps to locate a memory address and retrieve the information 

contained in that address (Sedgewick & Wayne, 2017; Knuth, 1998; Stephen, 1994). Simplifying a 

bit, a search algorithm probes into a sequence of ‘addresses’ or ‘keys’, where it looks for a target 

value. If the target value is found after a finite number of comparisons between the target value and 

values in the input data, the search is successful. This process can be expressed in terms of string 

searches, such that given a string s we can look for the first occurrence of substring u of arbitrary 

length (shorter than s).  

A simple search algorithm can be exemplified as follows: suppose we have a set of values 

{V1, …Vn}, each of which is assigned a key (an address that allows us to retrieve the value) {K1, 

…Kn}. Then, a search algorithm may be called upon to find a specific Kx. The algorithm starts at Ki, 

checks whether Ki = Kx, and if it is, the procedure terminates. If not, it proceeds to Ki+1 and checks 

again; the procedure is repeated until reaching Kn. This kind of search algorithm is called sequential 

search. Note that the algorithm knows what to find (namely, key Kx), and includes a procedure of 

comparison such that each key in the sequence is compared with the target value. Furthermore, the 

sequence is ordered, such that the search can proceed from Ki (i = 1) all the way to the end of the 

input sequence (Kn) and not leave anything unchecked. Variations of this algorithm are possible if the 

keys are themselves ordered in an increasing order (such that instead of {Ki, … Kn} we have Ki < Kj < 

… Kn; this order may be alphabetical, numerical, etc.), if the algorithm is sensitive to the number of 

times a particular key has been accessed, etc. Most search algorithms are optimised such that 

backtracking is avoided if at all possible (this includes a preference for memory-less devices).  

Search algorithms have been devised not only for table-ordered datasets (e.g., a phonebook), 

but also for datasets structured in tree form. Prima facie, it seems that we should focus on tree-search 

algorithms given the format of structural descriptions in generative grammar. However, this is 

misleading. As we will see in the next section, the Minimalist framework within which considerations 

of MS arise is strongly committed to the idea that structural descriptions are sets, not graphs. But we 

do need to introduce the basics of tree search algorithms, since it will help in making the case for the 

crucial differences between set-based syntax and graph-based syntax clearer, and the feasibility of MS 

in both. In order to do that, we must define some concepts from graph theory. 

1.2 Graphs and sets 

A graph is a pair G = (V, E), where V is a set of vertices (also called nodes) and E is a set of 

edges; v ∈ V is a vertex, and e ∈ E is an edge. An edge e joining vertices a and b is notated e = <a, b>, 

and a and b are said to be adjacent vertices. The neighbour set of v is the set of adjacent vertices to v, 



5 

 

usually notated N(v), and the degree of v is the number of edges connected to it. For example, a vertex 

v with degree 2 and neighbourhood set 2(v) has two edges connected to it, and two vertices which are 

adjacent. The indegree of a vertex vx is the number of edges that go from another vertex to vx; the 

outdegree of vx is the number of edges that go from vx to some other vertex (Van Steen, 2010). There 

is not necessarily a correspondence between degree and neighbourhood set, since a vertex v1 may be 

connected to v2 by two distinct edges (in which case the neighbourhood set of v1 would be 1 and its 

degree, 2). Let v1 and v2 be two (not necessarily distinct) vertices in G: a v1-v2 walk in G is a finite 

ordered alternating sequence of vertices and edges that begins in v1 and ends in v2. A trail is a walk 

without repeating edges, and a path is a walk without repeating vertices. Trees are, technically, 

specific kinds of graphs. A tree T is a graph that has no loops (there is no path in T that begins and 

ends in the same vertex) and is connected (for every two vertices vx, vy there is a finite path from vx to 

vy or vice-versa). Van Steen (2010: 113) puts it in the following terms: 

A graph G is a tree if and only if there exists exactly one path between every two vertices u 

and v. 

The kinds of trees used as diagrams of sentence structure in generative grammar are, in addition, 

simple (no vertex can appear more than once), directed (such that edges have directionality; this 

defines the binary asymmetric relation dominates for every two adjacent vertices; a graph that 

contains directed edges is a directed graph or digraph), and rooted (there is a node that is not 

dominated by any other node). We can illustrate these notions. Consider the tree in (2): 

2)  

 

 

 

In (2), V = {a, b, c, A, S}. Nodes A and S have degree 2, whereas nodes a, c, and b have degree 1. S 

is the root of the graph. 

In X-bar-style trees, heads always have degree 1, and non-heads always have degree 2: there 

is no unary branching or n-ary branching (for n > 2); this has been a staple of Merge since its 

inception, and continues to be an axiom of structure building under MERGE (Chomsky, 2020a: 22).  

A set theoretic representation of (2) would be (3): 

3) {S, {b, {A, {a, c}}}} 

In (3), A contains {a, c} and is a subset of S, which contains {b} and the set {A, {a, c}}; in graph-

theoretic terms A is a sub-graph of S iff V(A) ⊂ V(S) and E(A) ⊂ E(S). From this perspective, both 

S 

A 

c a 

b 



6 

 

approaches allow us to capture the same relation. In graph-theoretic terms, we define the root of a 

directed tree as a designated node that is not dominated by any other node (Wilson, 1996: 56) or -

more relevantly in the present context- in terms of the definition of paths in G: 

A digraph [directed graph] G(V, E) is said to have a root τ if τ ∈ V and every vertex v ∈ V is 

reachable from τ; that is, there is a directed path that starts in τ and ends in v [for all v]. (Even 

& Even, 2012: 37) 

This notion has a set-theoretic analogue in syntactic theory: 

K is the root iff: 

for any Z, Z a term of K, every object that Z is a term of is a term of K. (Epstein et al., 2012: 

262)  

Chomsky (1995: 226) offers a direct translation between a tree diagram (note: not necessarily a tree in 

the graph-theoretic sense) and its set-theoretic interpretation: 

Suppose that we have the structure represented informally as (9), with x, y, z, w terminals 

 

 

 

 

Here ZP = {z, {z , w}}, X’ = {x , {x , y}}, XP = {x , {ZP, X’}}; more accurately, the tree with 

ZP as root corresponds to {z , {z , w }}, and so on, the labels of the roots having no status, 

unlike standard phrase markers. Note that w and y are both minimal and maximal; z and x 

are minimal only. 

In the set-theoretic representation, the status of ZP, X’, and XP is unclear: they seem to be used as 

proxies for subsets, as informal ways to ‘refer to’ sets (Chomsky says they have ‘no status’, but then it 

is not clear why they are used at all). The ‘name’ of the set, in other words. But, as per bare phrase 

structure (Chomsky, 1994), they are not part of the syntactic representation stricto sensu. This is a 

very important difference with a graph-theoretic interpretation of a diagram like Chomsky’s (9): in a 

graph, every node counts since it is part of the formal definition of a graph.  

Chomsky’s fragment may lead some readers to believe that sets and graphs are always equivalent, and 

that the choice between sets and graphs as the format of linguistic descriptions is merely notational. 

However, this is not the case. A crucial issue is there are relations that we can define in objects like 

(2) (graphs) but not in objects like (3) (sets); if these relations are relevant for the definition of MS, 



7 

 

then a set-theoretic stance runs into trouble given the centrality of MS in the definition of other 

syntactic processes. For example, in (2) we can define a path P between nodes b and c as an ordered 

set of nodes and edges: 

4) Pb, c = <e<b, B>, e<S, A>, e<A, c>> 

In (4) we defined an ordered set of directed edges: e<x, y>, for all x, y, is an edge from x to y. It is not 

possible, however, to define such a path for a pure set-theoretic representation, as in (3). Set-theory 

allows us to work in terms of membership (which in turn has been used to define the binary relation 

term of; Chomsky, 1995: 227; 2020a: 22). However, between members of an unordered set, it is not 

possible to define a sequence of terms in any way other than containment: this is the core of, for 

example, Kitahara’s (2020) approach to MS, which we will come back to below. The possibility of 

defining paths will become fundamental for a proper definition of MS. 

The fact that different relations can be defined in graphs and sets has led, in our opinion, to some 

confusion. For example, Collins & Groat (2018) argue against multidominance approaches (which 

allow any node to have an indegree greater than 1) by rejecting graph-theoretical approaches 

altogether based on the definition of Merge:  

One issue that comes up right away is that [a multidominance tree] is a graph theoretic 

object. In minimalism, Merge forms sets {X, Y} 

The argument proceeds without considering the consequences of a graph-theoretic approach; rather, 

the authors focus on the problems that emerge with a set like {John1 {T, {be, {seen, John1}}}} as the 

structural description for the sentence John was seen. Collins & Groat correctly point out that the only 

way to make it work in Minimalism (where syntactic terminals are lexical tokens) is by introducing 

indices, thus violating the Inclusiveness Condition (a point also made in Krivochen, 2015). The reason 

indices are required is that otherwise we would be forced into the uncomfortable position of saying 

that {John} belongs to the set {seen, John} and doesn’t at the same time. As we argued in Krivochen 

(2021), many problems related to the distinction between copies and repetitions arise precisely 

because of the set-theoretic commitments underlying Merge. In graph-theoretic terms, the structural 

representation for John was seen, assuming a more or less traditional generative tree, could go along 

the lines of (5) 

5)  

 

 

 

TP 

John 

VP was 

seen 



8 

 

If loops are allowed, then there is an edge from TP to John (which would correspond to Collins & 

Groat’s leftmost ‘John1’) e<TP, John> and an edge from VP to John (which would correspond to 

Collins & Groat’s rightmost ‘John1’) e<VP, John>. No diacritics are needed, because we can define 

two distinct directed edges that just so happen to converge at the same node; a graph-theoretic 

approach removes the necessity to have movement+indexing operations. The membership paradox 

that emerges in a pure set-theoretic approach dissolves under graph-theoretic assumptions (see also 

Krivochen, 2018b for an extensive presentation of empirical phenomena analysed in graph-theoretic 

terms). We have yet another example of the lack of direct translations between set-theoretic syntax 

and graph-theoretic syntax. 

There are some issues that arises when trees are used to represent set-theoretic Merge (that is, 

when trees are used as diagrams of L-trees: the former being drawings and the latter being formal 

objects; see Postal, 2010: 7, ff.). Suppose that we Merge X and Y, yielding the set {X, Y}. How is 

that diagrammed? By using a binary-branching tree, as in (6): 

6)  

 

From a set-theoretic perspective, (6) may be seen as a graphical representation of the set {X, Y} (and 

it is assumed to be so in the Minimalist literature). However, from a graph-theoretic perspective we 

need to consider the fact that (6) has three nodes, not two. The tree in (5) is rooted, because there are 

two edges, each edge connecting two nodes. Since the edges converge, it means that there is a node 

(which we will call ●, remaining agnostic about the indexed category it is to be assigned to) such that 

e1 <●, X> and e2 <●, Y>. The formal object defined as the set {X, Y} and the graph in (5) are thus 

distinct, if both sets and graphs are taken seriously. A more accurate representation of Merge(X, Y) = 

{X, Y} would perhaps be (7) (see McKinney-Bock & Vergnaud, 2013: 219, ff. for a representation 

along these lines): 

7)  

here no new nodes are introduced, we have just the input of Merge and an edge connecting the two 

terms involved in the operation (see Krivochen, 2018b: appendix A for extensive discussion). Trees 

and sets are not equivalent, and the choice between one and the other as the basis for syntactic theory 

has far-reaching consequences in terms of the relations and operations that can be defined in each. 

Much discussion pending, we intend this brief note to highlight the differences between set-theoretic 

and graph-theoretic approaches: this is important since part of our goal is evaluate the feasibility of 

MS as a search algorithm defined over sets formed by Merge/MERGE.  

Above we introduced some fundamentals of search algorithms for sequences, now we need to 

do the same for trees. Tree search algorithms are broadly divided in two kinds: breadth-first and 

X Y 

X Y 



9 

 

depth-first. Both have access to every node in a connected tree, but differ in terms of the order in 

which the search proceeds (see Branan & Erlewine, 2021 for an discussion of these algorithms in the 

context of feature checking operations; they however do not provide a formal definition of MS and 

restrict the search to probe-goal relations, without mentioning labelling by MS). A breadth-first 

search goes ‘in waves’ from the root, searching each generation from left to right (or right to left) 

before proceeding to the next generation. A node is marked as the start node, then all nodes adjacent 

to it are accessed one by one (and their values are added to a queue) until exhausting the set of nodes 

adjacent to the starting node. Then, the process continues at the next generation. A depth-first search 

also starts from the root (in a preorder transversal1), but instead of going through all the nodes in a 

generation before proceeding to the next, it explores the leftmost branch exhaustively before 

backtracking to the last branching parent node visited and proceeding with the immediately adjacent 

branch (Even & Even, 2012: 11, 46-49; Cormen et al. 2001: 531, ff.). We can illustrate the order in 

which nodes are visited in a simple tree for both search algorithms given a rooted, directed tree: 

8)  

 

 

 

 

 

 

 

 

 
1 Strictly speaking, there are three possible ways to implement a depth-first algorithm. If we take a simple 

branching node as an example: 

 
A preorder transversal defines the sequence: A B C (root, left, right) 

An inorder transversal defines the sequence: B A C (left, root, right) 

A postorder transversal defines the sequence B C A (left, right, root) 

The choice of preorder transversals in this paper obeys considerations of how the graph has been constructed 

and what MS is supposed to accomplish: for purposes of labelling, for instance, if we follow the generative 

literature, B and C are already labelled. The node that should be looking for a target is A, not B or C; thus, it 

makes sense to start from A. The same transversal would apply to a system where all predicates dominate their 

arguments, as in Dependency Grammars or the graph-theory based model in Krivochen (2018b).  

 

6 9 

2 

1 

5 

3 4 

7 8 

Depth-first 

6 7 

2 

1 

3 

4 5 

8 9 

Breadth-first 

X’ KP 

YP 

R 

XP 

Y Z 

X W 

a.  

b.  c.  



10 

 

In this context, we can define the length of the path between the root and any other node in the tree, as 

a sequence of nodes and edges. Suppose that the target value for the search algorithm is Y. A depth-

first algorithm would define the following search sequence Σ: 

9) Σ = e<R, YP>, e<YP, Y> 

We can simplify (9) notationally, by indicating only the nodes in the order they are visited (omitting 

mention to edges, since we know already that any two adjacent nodes in a graph are linked by an 

edge), thus we get (10) 

10) Σ = <R, YP, Y> 

The algorithm would, at every node visited, compare the element in its input (the node) with its target 

value (a head). If the scanned symbol matches the target value, the algorithm halts; otherwise it keeps 

going. This mechanism underlies both depth-first and breadth-first algorithms, the only thing that 

changes is the order in which nodes are visited. For a breadth-first algorithm, the sequence would be: 

11) Σ = <R, XP, YP, Y, Z, X’, KP, X, W> 

In this particular example, it just so happens that both algorithms find Y (bolded in (10) and (11)) 

before any other head; however, a depth-first algorithm finds Y after visiting two nodes, where as a 

breadth-first algorithm finds Y after visiting three. From the outside, we would prefer a depth-first 

since the target (which we know beforehand) is reached sooner. However, the argument does not 

carry over to the syntactic computation automatically: we have the luxury of looking at the structure 

as a whole, compare both methods (thus applying a transderivational operation of sorts), and choose 

exactly the one that finds an element that we can identify as a ‘head’ while defining the shortest path. 

But MS as a syntactic algorithm does not have access to the same kind of information we do: even 

recognising that something is a ‘head’ is far from a trivial task (the same issue arises is MS searches 

for features instead of heads: the system needs to know what it is looking for). To a great extent, this 

depends on the properties of the operation that generates the structure that the search algorithm is 

going to explore.  

2. Merge: what it is and what it can do 

It is necessary then to characterise the generative operation in order to evaluate the feasibility of 

defining a search algorithm for its output. Collins (2017: 50-53) gives a list of the properties of 

Merge: summarising,  

• Merge is iterable (can apply to its own output) 

• Merge is binary (the input of Merge is always a pair of objects) 



11 

 

• Merge is commutative (Merge(X, Y) = Merge(Y, X)) 

• (The output of) Merge is unspecified for linear order (see also Chomsky, 2013: 40; 2020b) 

• (The output of) Merge is not assigned a label 

• Merge is not triggered (by a head, a feature, etc.) 

• Merge is never counter-cyclic 

• Merge is all there is structure building-wise: there is no Move or Copy (just Merge + Agree) 

• Merge cannot produce {XP, YP} or {X, Y} objects (where X and Y are heads) 

• Merge allows (somehow2) to dispense with traces, indices, and copies 

• Merge allows (somehow) to dispense with the notion of Chain 

We will not argue for or against these properties, as it goes beyond the scope of this paper. They 

simply constitute the background against which the definition and role of MS can be evaluated. 

Collins’ paper differs from Chomsky (2013, 2015, 2020a, b) in explicitly defining the object of study 

and its properties, which makes it a better candidate to begin our inquiry; the properties of Collins-

style Merge that matter for our purposes also hold for Epstein et al.’s Simplest Merge3. Chomsky’s 

recent works (2019, 2020a, b) propose a version of the generative engine called MERGE, which 

involves -as usual- set formation plus removal from a workspace. MERGE would apply as follows: 

12) Workspace (WS) contains X and Y: [WS X, Y] 

MERGE(X, Y) = [WS {X, Y} X, Y] (form a set containing X and Y)4 

Remove X, Y from WS = [WS {X, Y}] 

 
2 Collins (2017: 53) claims that the non-existence of traces, indices, or copies (previously banned by the 

Inclusiveness Condition) follows from the definition of Merge:  

there is no need to stipulate the inclusiveness condition as part of UG. Rather, it follows as a theorem 

from the definition of Merge. 

Exactly how, it is not made explicit. See Postal (2004: Chapter 9) for a critique of this kind of statement. 
3 Specifically, Epstein et al. (2015: 202) define Simplest Merge as follows: 

1) Merge (α, β) → {α, β} 

Given (1), a syntactic object SO constructed from α and β by Merge is just {α, β}. Merge puts the two 

objects α and β into a relation, the output being represented as a two-membered set. Nothing more. Thus, 

unlike the output of Merge in Chomsky [The Minimalist Program, Cambridge, Mass.: MIT Press] and 

much subsequent work, the output of Merge in this conception does not overtly encode a label; contra 

Chomsky’s […] notation, there is no constructed set {δ, {α, β }}, where δ represents the label (as either 

H(α) or H(β)) identifying the relevant properties of {δ, {α, β }} […]. Rather, under simplest Merge there 

is just {α, β}. 

4 Strictly speaking, Chomsky (2020a, b) formulates the input of the operation as MERGE(X, Y, WS), as if WS 

was a syntactic object.  



12 

 

The basic properties of regular Merge are still there, in particular binarity. The removal of X and Y 

from the workspace intends to restrict the probing space and the number of elements available for 

further computations. Chomsky seems to equate ‘size of the workspace’ with ‘cardinality of the set 

defined in the workspace’, or, more simply, ‘number of elements in the workspace’. This equation is 

not innocent: the size of the workspace need not coincide with the probing space that an operation has 

access to within the workspace. A Turing machine has an infinite tape, but at any given time a single 

symbol can be read (see Krivochen, 2021 for extensive discussion about the formalisation of 

properties of the workspace). 

According to Chomsky, if X and Y were not removed from WS, then we would have the set 

{X, Y}, the element X, and the element Y all accessible in the workspace (see the second line in 

(11)). Because accessibility in the workspace is equated to recursion (Chomsky, 2019: 280), the idea 

is that natural language’s use of a removal operation sets NL recursion apart from ‘general recursion’ 

(Chomsky, 2019: 277-278; 2020a: 34)5, 6. Interestingly, Chomsky (2019: 279) rejects that the new 

system requires a removal operation (as the 1995 definition of Merge did), but rather MERGE 

replaces X and Y with {X, Y}. It is unclear how to formalise this, and if there is any formal substance 

in the use of replace instead of remove, but for our purposes it makes no difference. Chomsky (2020a) 

refers to so-called third factor properties and MS, our current focus.  

 
5 There are numerous problems with this formulation, some of which we have analysed in depth in Krivochen 

(2021). One of them is that the notion of ‘workspace’ is left undefined. Another is that if X and Y in {X, Y} are 

not independently accessible, an operation of Copy becomes inescapable for instances of displacement, which in 

turn raises problems pertaining to copies vs. repetitions (Collins & Groat, 2018), the need to keep copies active 

for a number of derivational steps (copy something while it is still accessible, maintain it active somehow and 

somewhere, and then re-introduce it in the structural description; furthermore, you need a way to relate both 

copies in different phases) and more fundamentally a multiplication of entities beyond necessity. This is a 

consequence of a strong commitment to the idea that syntactic structure takes the form of sets (of sets). In this 

context, for cases of so-called movement (or, more theory-neutrally, extraction, as in Postal, 1998), copies and 

Internal Merge are unavoidable. This commitment is by no means the only possible choice. However, 

alternatives are not welcome: 

there is a proposal, very widely used in the literature that we are talking about, which says we can 

overcome this by developing a new theory of movement, one which doesn’t involve Internal Merge. So 

suppose we bar Internal Merge and develop a representational theory of movement, which just involves 

External Merge. That’s very widely used, in multidimensionality. That’s a terrible idea: it violates every 

condition you can think of, and it has its own problems (Chomsky, 2019: 278) 

Exactly what those problems are, which conditions are violated and how, and how the new theory of MERGE 

would account for the empirical insights from the approaches hereby rejected (multidominance, sidewards 

movement, non-transformational models) is not made explicit. It is doubtful, whether MERGE constitutes an 

instance of scientific progress (in the sense of Lakatos, 1978 and much related work; see also Lappin et al. 2001 

for a similar point about some foundational Minimalist claims). 
6 If MERGE is like normal general recursion (e.g. proof theory), then WS' will contain a and b as well as {a, b}. 

But as Chomsky points out, this makes it possible to generate illegitimate structures that violate well established 

linguistic constraints (Fiengo, introduction to Chomsky, 2020a: vi) 

What those linguistic constraints are specifically, and exactly how they would be violated, is not made explicit 

in currently available publications.  



13 

 

This latest version of Minimalism differs quite substantially from previous stages of the theory. 

In the first incarnation of Minimalism, the generative operation Merge was defined as follows: 

Applied to two objects α and β, Merge forms the new object K, eliminating α and β. (Chomsky, 

1995: 223)  

Furthermore, due to the fact that syntactic objects are interpreted at the C-I and A-P interfaces 

differently depending on whether they are verbal, nominal, etc. (Chomsky, Op. Cit.), the object K was 

defined to be a set {γ, {α, β}}, with γ the label of {α, β}. Chomsky proceeds by saying that 

K must therefore at least (and we assume at most) be of the form {γ, {α , β}}, where γ identifies 

the type to which K belongs, indicating its relevant properties. (Op. Cit.) 

The status of labels in the theory has changed greatly since the early days (where labels were simply 

nonterminal nodes in the sense of formal language theory), to the current situation where unlabelled 

objects are allowed (and in fact label-less objects seem to be desired) in syntactic derivations. 

In any event, MERGE(X, Y) = {X, Y}. Overall, there seems to be nothing in Chomsky’s recent 

papers and talks that constitutes a break with Collins’ positions. Thus, we will refer to the outputs of 

generative operations, these unordered, unlabelled objects, as ‘Chomsky-Collins sets’. 

How do we know that the search is successful? This is possibly the only point that has been addresses 

explicitly: MS looks for a head bearing relevant features. If in the domain of the search a suitable 

head is found, other rules may apply (labelling, Agree, Internal Merge, etc.). For example, for 

purposes of labelling, 

LA [the Labelling Algorithm] is trivial for {H, XP} structures, H a head. In this case, LA selects 

H and the usual operations apply (Chomsky, 2015: 7) 

But exactly how ‘trivial’ is it? In order for things to work the way Chomsky and others have 

suggested, it must be possible for the labelling algorithm, given a syntactic object, to determine 

whether there is a head: it means that the notion head needs to be hard-wired into the system. Suppose 

that we have the output of MERGE(A, B) = {A, B}. How do we know if either A or B is a head? If 

we are building sets, it matters greatly whether a syntactic terminal is a singleton or not. Suppose that 

we have  

13) {read, {the, book}} 

As the output of MERGE(read, {the book}). Do we want to consider read to be a unary set? This is 

important because if lexical terminals are singletons, then determining whether something is a head or 

not requires some additional operation apart from MERGE: for instance, the algorithm must be 



14 

 

capable of evaluating the cardinality of a set. A head would be a set of cardinality 1, a non-head 

would be a set of cardinality greater than 1. At this point, Chomsky (2020a: 37) claims that 

We want to say that [X], the workspace which is a set containing X is distinct from X. 

[X] ≠ X 

We don’t want to identify a singleton set with its member. If we did, the workspace itself would 

be accessible to MERGE. However, in the case of the elements produced by MERGE, we want 

to say the opposite. 

{X} = X 

We want to identify singleton sets with their members 

If MERGE involves an operation of removal or replacement (more on this below) such that a 

workspace containing a and b, notated [a, b] contains the set {a, b} with a and b removed from the 

workspace as the output of MERGE, then determining what is a head and what is not requires 

precisely the kind of cardinality-sensitive procedure sketched above. Sets are sets, and a priori there is 

no difference between a set with one member and a set with thirty unless you look inside the set and 

count its members. Let us make this more concrete. Suppose the workspace contains, as before, 

{read} and the set {some, books}: 

14) Workspace: [{read}, {some, books}] 

Then, MERGE replaces this pair of objects with a set containing them: 

15) MERGE({read}, {some, books}) = [{{read}, {some, books}] 

Determining whether {read} is a head involves (i) establishing its cardinality, and (ii) comparing that 

cardinality with the cardinality of the other set in the workspace, {some, books}. This is far from a 

trivial operation, and exactly how it could be accomplished is not clear in the current version of the 

theory. Collins (2017: 56) provides a picture that is compatible with our characterisation: 

A ∈ {A, B} is final in SO iff there is no C contained in (or equal to) SO [Syntactic Objects] such 

that A ∈ C, and C contains {A, B}. Otherwise, A is non-final in SO. 

Which is exactly what we have sketched above: it is necessary to be able to determine if a set is a 

singleton or not; the system must probe into a set, determine its cardinality to be greater than 1, and 

define it as ‘final’/a ‘head’. 

If we do not want to identify a lexical item with a singleton (that is, if we go the opposite way 

with respect to the quotation from Chomsky, 2020a above), then when we have {read {some, books}} 



15 

 

the system may simply find the object that is not a set: given Merge(A, B), establish which of those is 

not a set. If it is not a set, it is a head (i.e., a lexical item). There are multiple problems with 

identifying ‘head’ with ‘lexical item’ in the absence of a proper definition of ‘lexical item’ (e.g., do 

we define them as terminal nodes? What do we do with idioms and other multi-word basic 

expressions?), but here we consider a purely formal issue: how exactly would MS determine that 

something is not a set? And, even if that could be solved (e.g., by some feature), would it not require a 

complication in the generative procedure? This last point can be fleshed out somewhat. Suppose that 

the only difference between XP and X is that the former is a set, but the latter is not (again, as the 

logical alternative to the scenario sketched in the previous paragraph). Then, Merge(H, XP) involves 

merging a non-set and a set; Merge(XP, YP) involves merging two sets; and Merge(H, H) involves 

merging two non-sets (the outputs of these operations are always sets, however). This means that 

Merge/MERGE should be formulated in such a way that it is specified that its output is always a set, 

but its input need not be: it can be a pair of non-sets, a pair of sets, or a set and a non-set. If Merge is 

limited to set + non-set situations, it would exclude any version of Pair-Merge (or equivalent 

operations to yield sister-adjunction and Chomsky-adjunction). More generally, it is not clear how we 

could introduce external arguments in the structure, since a DP subject would always be a set and the 

introduction of this DP would generate a set-set object: {DP, vP}. Interestingly, the configurations 

that have been dubbed ‘problematic’ (or ‘ambiguous’) for MS (e.g., in Chomsky, 2013, 2015; Epstein 

et al., 2015; Van Gelderen, 2019; Kitahara, 2020, among others) are the ones that involve either two 

sets ({XP, YP}) or two non-sets ({X, Y}). We will come back to this below, revisiting the notion of 

‘head’ in graph-theoretic terms.  

A further issue that impacts on the implementation of MS is that the identification of heads 

seems to be completely independent from semantics. Thus, in determining a label for the output of 

MERGE({read}, {that}), it is not sufficient to determine the cardinality of a set, since both sets are 

unary. Several options become available, most of which involve transforming a relation between two 

singletons into a relation between a singleton and a set with a greater cardinality: add more structure 

(possibly in the form of functional projections). There is no mention of the role of argument structure 

in the generative procedure in Chomsky (2019, 2020a, b), mainly because that would entail (as it did 

in the original Minimalist Program) that Merge can be motivated by the need to satisfy the valency of 

a predicate, against the idea that Merge is free, non-triggered (Chomsky, 2004 and subsequent works). 

The 1995 version of Merge was asymmetric: 

The operation Merge(α , β) is asymmetric, projecting either α or β , the head of the object that 

projects becoming the label of the complex formed (Chomsky, 1995: 227) 



16 

 

But, as we have seen, more recent developments have contested this asymmetry (MERGE, Simplest 

Merge, etc.). In this context, it is not clear how to interpret the claim that External Merge gives us 

argument structure, since argument structure is based on the idea of a predicate subcategorising 

for/selecting arguments. In other words, argument structure is inherently asymmetric: some things are 

selected, some things are selectors. External Merge in the context of symmetric set formation may 

create configurations within which the valency of a predicate is satisfied, but that is a very different 

claim. In a further departure from theoretical developments in Chomskyan Minimalism, Minimalist 

Grammars (of the kind in Stabler, 2011 and related literature, see fn. 7) implement feature-driven 

Merge, which makes selectional requirements easy to model. The idea that Merge is simply unordered 

set formation brings about a number of complications, somewhat paradoxically. 

The final difficulty that we will consider is precisely that search algorithms are defined for 

structured data. If the generative procedure is reduced to set formation, and those sets are unordered, 

then a search algorithm cannot apply: it would be akin to defining a search over a random array of 

data. If a search algorithm can be defined, it is because the data that constitutes the probing space for 

that algorithm is ordered. We have a first hurdle in a proper definition of MS: we need to specify the 

kind of formal objects defined by the generative operation (MERGE / Merge / Simplest Merge, etc.).  

How can we apply a search mechanism in this scenario? One way is to impose an order to the 

sets, such that a search sequence can be defined. Considering only containment will not work: if we 

order syntactic objects in terms of proper containment, sister nodes cannot be ordered, since neither is 

a subset of the other. However, if the order in the output of Merge is given by labelling, such that {X, 

Y} is either {X, {X, Y}} or {Y, {X, Y}} (thus <X, Y> or <Y, X> by the pairing axiom; see e.g. 

Krivine, 1971: 2-3), then MS cannot be a pre-condition for a labelling algorithm, nor can MS be the 

labelling algorithm itself. If Merge/MERGE creates Chomsky-Collins sets, and a search algorithm is 

to be defined over those sets, they have to be ordered. That order comes with labels. However, if 

labelling is driven in some way by MS (Epstein et al., 2013, 2015, 2020; Chomsky, 2015; 

Vercauteren, 2017), then MS cannot be a search algorithm in the technical sense used in computer 

science: before labelling, the result of Merge is an unordered array.  

We need to analyse labelling in some more detail, to the extent that it is perhaps the realm of 

the theory where MS features most prominently. Chomsky (2013, 2015) takes labelling to be the 

result of MS, which finds a head in a syntactic object formed by Merge. In this view, MS is part of the 

labelling algorithm. For a syntactic object SO, 

Suppose SO = {H, XP}, H a head and XP not a head. Then LA will select H as the label, and 

the usual procedures of interpretation at the interfaces can proceed. (Chomsky, 2013: 43) 



17 

 

Let us analyse this situation in some more detail. Suppose we have a local tree of the form 

16)  

  

Where Y and Z may be internally complex, i.e., Y may be the root of a sub-tree and so may Z. We 

will first explore the case where Y is a head and Z a non-head. Y is a symbol assigned to a category, 

which rules can operate over. So is Z. The question is, what is the indexed category assigned to an 

expression of the form [Y Z] (which will determine the kind of syntactic rules that can affect that 

object, the rules of semantic interpretation that will apply, its distributional properties, etc.)? That is 

the way in which we understand the problem. For example, if Y = v and Z = VP, then X = vP, because 

minimal search finds v as the label of SO since v is unambiguously identifiable (Epstein et al., 

2015: 203) 

Why cannot an object embedded in VP provide a label? Because 

in any {H, XP}, the head H is always found with “less search” than any feature bearing (hence 

relevant information-bearing) element within XP. (Op. Cit.) 

This does not help in understanding how ‘search’ is implemented, but the idea sounds intuitive 

enough. It imposes some requirements over specific configurations: for example, an implementation 

of this idea requires us to assume that carefully in read a paper carefully cannot be introduced in the 

derivation as a head, but rather (i) as a full phrase or (ii) by means of some additional operation (e.g., 

Pair-Merge). This is so because if read a paper is a VP, Merge of (carefully, VP) would incorrectly 

label the resulting SO as AdvP. Chomsky (2020a: 48-49) proposes that MERGE comes in two 

flavours: symmetric and asymmetric:  

In symmetrical MERGE, if you happen to have a head and an XP, then the head will provide 

the label – in earlier versions, what projects. But that’s a case of MS (like most topics, not 

without some questions when we think about it carefully).   

This distinction seems to refer back to Set-Merge vs. Pair-Merge (Chomsky, 2004; see Langendoen, 

2003 for a technical discussion), but if so, the new terminology is unexplained. It is unclear exactly 

what is symmetrical about {H, XP} constructions: in {read, {some, {papers}}, read subcategorises 

for an NP complement, not the other way around. From the point of view of linearisation, read 

asymmetrically c-commands some papers, and thus a procedure like Kayne’s (1994) Linear 

Correspondence Axiom can apply yielding the string read+some+papers (where + is adjacency). 

X 

Y Z 



18 

 

How it is a case of MS is not explained. It is relevant to note that the original 1995 definition of 

Merge argues for the asymmetry of the operation:  

The operation Merge(α , β) is asymmetric, projecting either α or β , the head of the object that 

projects becoming the label of the complex formed. If α projects, we can refer to it as the target 

of the operation’ (Chomsky, 1995: 225)  

Labelling in the context of bare phrase structure (Chomsky 1994) was encoded in Merge itself, with 

some versions requiring Merge to be triggered by featural requirements (Di Sciullo & Isac, 2008; 

Wurmbrand, 2014; Pesetsky & Torrego, 2006; see also the references in fn. 6). Citko (2011) adopts 

the idea that labels are necessary in the syntax (thus rejecting explicitly the idea that Merge(X, Y) = 

{X, Y}), but allows for Merge(X, Y) to yield a ‘complex label’ {X, Y} for instances of Chomsky-

adjunction: in the cases considered by Citko (2011: 178), X = Y. Despite being an argument in favour 

of symmetry in syntax, Citko-symmetry is clearly different from Chomsky-symmetry: there seems to 

be no symmetry in {H, XP} constructions in Citko’s sense. But the precise nature of the relation 

between the symmetry or asymmetry of Merge and the definition of MS is unclear, not least because 

the role of MS in the kind of formal objects created by Merge is itself obscure. 

In any case, the situation first explored by Chomsky (namely, {H, XP}) seems, prima facie, 

simple enough: if an object built by Merge contains a head and a non-head, the labelling algorithm, 

which works by MS, finds that head and labels the SO. However, formally expressing that is not a 

trivial task. The first question is how exactly the search would take place: in other words, how to 

define each step that makes up the ‘algorithm’. This is not specified in the Minimalist literature. 

Above, when defining a search algorithm, we specified that it needs some way to compare inputs with 

the target of the search (the case of MS applied to features, where probes search for matched features 

that need valuation, is considered in Branan & Erlewine, 2021); we can adapt the simplest sequential 

search algorithm presented in Knuth (1998: 396) to the present context: 

17) Given a sequence of syntactic objects SO1, SO2, …SOn, the algorithm searches for a head.  

Step 1: Initialise. Set i ← 1  

Step 2: Compare. If SO1 is a head, terminate. 

Step 3: Advance. Increase i by 1, proceed to S2. 

Step 4: End of input – terminate.  

It should be evident that the main problem with this algorithm (in addition to the issue, noted 

above, that if Merge yields unordered sets it is not possible to arrange terms in a unique sequence) is 

that the system must know somehow what a head is, and how to determine, given a syntactic object, 



19 

 

whether it is a head or not. In set-theoretic syntax, as pointed out above, this requires at a minimum 

that the system be capable of evaluating the cardinality of a set. This is hardly something that ‘blind’ 

or ‘free’ Merge could do. Indeed, some computational implementations of the ideas in Chomsky 

(2013, 2015) need to do away with blind Merge (e.g., Ginsburg, 2016).  

It is worth pointing out that in rewriting terms, the ‘labelling’ problem does not exist, because 

in a phrase marker like (16) X is introduced in the derivation one turn before Y and Z, and this 

introduction is precisely calling the indexed category to which X belongs. The problem of labelling 

appears only if the derivation proceeds bottom-up, step-by-step (in other words: in a top-down model, 

labelling is not a problem). Here, it is necessary to provide a label to an object after that object has 

been created by Merge / MERGE, etc.; it has furthermore been proposed that syntactic objects may 

remain label-less (Chomsky, 1994; Collins, 2002; Citko, 2008; Hornstein, 2009). The idea of label-

less objects pushes contemporary Minimalism even farther away from the well-defined grammars in 

canonical form that Chomsky himself studied in the ‘50s, and the advantages of pursuing such an 

approach are still unclear7. If a syntactic object is not labelled, they should not be able to be 

manipulated by syntactic operations, assuming that these are formulated as functions with an input 

and an output characterised as sequences of indexed categories. In set-theoretic terms, the ‘label’ is a 

member of the set, but in graph-theoretic terms a label is a node, the root of a subgraph. In other 

words: the label of a syntactic object is the node that is the root of the local tree that defines that 

syntactic object. Thus, if an operation takes that syntactic object as part of its input, the structural 

description of that operation will refer to the root of the syntactic object, not to every subpart of it. For 

example, if we have a rule of NP movement, the structural description of the rule does not refer to 

every possible set of nodes (and expressions in those nodes) that can be dominated (directly or 

transitive) by a node NP, it just refers to ‘NP’. In set-theoretic terms, there has to be a way to refer to 

sets in a more abstract way; a variable over sets as it were. It is unclear how approaches with 

 
7 It is worth noting that computationally explicit implementations of Minimalism, so-called Minimalist 

Grammars (Stabler, 2011; Graf, 2021; Michaelis, 2001; Gärtner & Michaelis, 2007; Kobele, 2009, among many 

others) assume a feature-rich system with a designated set of labels and projection indicated at every point in the 

tree (so does the Minimalist Machine in Fong & Ginsburg, 2020). There is, to the best of our knowledge, an 

implementation of MS-based labelling (and label-less Minimalism) in the context of Minimalist Grammars. 

Similarly, Ginsburg’s (2016) proposal, inspired heavily in Chomsky (2013, 2015) finds itself forced to resign 

‘free Merge’: This type of free merge would create a huge computational burden because our model would have 

to compute an enormous number of unsuccessful derivations in order to arrive at a successful derivation. While 

free merge may have its merits (such as eliminating the need for movement operations to be motivated by 

feature checking, etc.), at this point, it is not clear to us how to implement free merge in a computationally 

efficient manner. (fn. 14). Even when a root is ‘unlabelled’, it may enter further computations because the 

computational system is fed a single lexical item at a time; this presupposes the kind of Select operations that 

Chomsky et al. (2019: 245) consider unnecessary. 



20 

 

unlabelled objects actually make this work8. For example, Ott (2015: 194) provides the following 

derivation fragment: suppose that we have an object like (18) created by Merge: 

18)  

 

None of the objects is a head, so the LA cannot apply. The object in (18) gets (somehow) merged with 

V, yielding (19): 

19)  

 

At this point, we can ask exactly how the operation that produces (19) from (18) is formulated. How 

is the input for Merge specified? This is not clear, given that there is no obvious way to refer to the 

object in (18) as a unit for purposes of further computation (such as merge with V): the object in (18), 

as is, has no identifying address. What to do, then? Epstein et al. (2015), building on Chomsky (2013), 

propose that 

Suppose SO = {XP, YP}, neither a head. Here minimal search is ambiguous, locating the 

heads X, Y of XP, YP, respectively. There are, then, two ways in which SO can be labeled: (A) 

modify SO so that there is only one visible head, or (B) X and Y are identical in a relevant 

respect, providing the same label, which can be taken as the label of the SO. (Epstein et al. 

2015: 202. Our highlighting) 

Collins (2017: 53) presents a very similar picture of Chomsky’s LA: 

If SO = {XP, YP} and neither is a head, then 

a. if XP is a lower copy, Label(SO) = Label(YP). 

b. if Label(XP) and Label(YP) share a feature F by Agree, Label(SO) = <F,F>. 

As in Moro (2000), a point of symmetry is broken via movement. In (20), then, after further structure 

is built, the DP may move, thus leaving the QP to be projected as a label: 

 
8 In some recent Minimalist works (e.g., Chomsky, 2008; Ott, 2015), label is taken to be equivalent to head, 

which is a sense of label very different from the well-defined use in formal language theory (e.g., Hopcroft & 

Ullman, 1969: 19). In these works, an ‘unlabelled’ object is an object where no head can be ‘detected by 

Minimal Search’ (Ott, 2015). Without a formal definition of MS, this approach turns out to be hard to evaluate. 

DP QP 

VP 

V 

DP QP 



21 

 

20)  

 

 

 

This process involves much backtracking: the object {DP, QP} 

must remain somehow active, requiring a label (despite the fact that it has entered further 

computations, which means there has to be a way to refer to it), and the system must be able to 

modify a previously generated object (this kind of operation required by the system in Chomsky, 

2013, 2015, as noted in Ginsburg, 2016, is inherently counter-cyclic, with Ginsburg’s proposal being 

‘an improvement over the manner in which feature checking occurs in POP’ by virtue of restricting 

probing to a root node, but not a true alternative to counter-cyclicity). Among the multiple issues that 

emerge in this picture, we will solely focus on whether {XP, YP} and {X, Y} situations are indeed as 

problematic for a search algorithm as theoretical Minimalist work suggests. 

2.1 What is ‘minimal’ in MS? Some considerations about ‘distance’ in Minimalism 

How can we determine that a search has been ‘minimal’? The grammar must be capable of 

determining the length of a path between nodes (and potentially comparing a number of paths to 

establish the shortest one). This is a weird thing to ask of the computational system (however it is 

formalised): once a suitable target has been found by some method, the only way to determine that 

this target is in some sense ‘minimal’ is to find a second target and compare the distances between the 

initial point of the search (possible, a probe) and target 1 and the same initial point and target 2. This 

seems a far cry from a ‘perfect’ faculty of language: why not stop the search on the first target?9 

Hornstein (2009: 38) proposes that distance is based on comparing the set of nodes involved in a 

movement path for possible targets, with shorter paths being properly contained in longer paths. The 

grammar must then contain a mechanism that evaluates the relation between two (or more) sets and is 

capable of identifying if one of those sets is a subset of the other (e.g., by defining an injective 

function from one into the other). Again, we are faced with the issue of requiring the grammar to be 

able to evaluate the cardinality of a set. This runs into difficulties, which can be illustrated with the 

use of equidistance in the formulation of operations like Agree. In these cases, there is a probe and 

 
9 This issue arises more frequently than we may think. Consider economy principles like Minimal Link or 

Shortest Move: they are based on the assumption that short-distance dependencies are preferable to long-

distance dependencies. However, unless a number of possible dependencies are compared in terms of length, it 

is unclear how exactly these principles (now subsumed to Third Factor/Minimal Computation principles) would 

actually work.  



22 

 

multiple goals that, despite occupying distinct positions in a binary-branching phrase marker (and thus 

being more or less distant from the probe in terms of number of nodes/edges), are considered to be at 

the same distance from that probe for purposes of some specific operation. Let us illustrate the 

relevant configuration: 

21)  

 

 

 

 

 

Let the domain of X as the set of nodes contained in the maximal projection of X (i.e., XP) which 

excludes X. Furthermore, let the minimal domain of Z be the set of categories that are only locally 

related to the head10. Consider now the case where X is a probe for movement: will it target YP or 

WP? Chomsky (1995: 169) says 

If α, β are in the same minimal domain, they are equidistant from γ. 

In particular, two targets of movement are equidistant if they are in the same minimal domain. 

(Chomsky, 1995: 169) 

(see also Lasnik, 2009; Hornstein 2009: 42, ff.; Boeckx, 2008: 145; for similar definitions of 

equidistance) 

This means that YP and WP are equidistant for purposes of operations at X, despite the fact that, 

strictly speaking, YP c-commands WP asymmetrically (at least if each ZP is a structural token, but 

see below). The theory of locality sketched in Chomsky (1995) requires this notion of equidistance 

for reasons related to feature-checking and movement (thus, intra-theoretical requirements). We may 

provide a couple of examples (which can also be found in the references above). In a case like 

22) T seem [to himi] [theyk to like John*i/j] 

 
10 Symbolically, 

The minimal domain Min(δ(CH)) of CH is the smallest subset K of δ(CH) such that for any γ ∈ δ(CH), 

some β ∈ K reflexively dominates γ. (Chomsky, 1995: 274) 

YP ZP 

ZP … 

… X 

XP 

WP Z’ 

Z 



23 

 

The question Chomsky considers is whether there is anything blocking raising of they to Spec-T: note 

that there seems to be a Principle C violation if John is coindexed with him, which suggests that him 

c-commands John; crucially, Chomsky assumes that seem ‘has two internal arguments’ (1995: 280), 

the PP [to him] and the clause [they to like John] (i.e., the experiencer is not an adjunct). Under this 

assumption, a possible ‘solution’ (the details of which we will not consider here) is that they and him 

are equidistant, which allows they to move to Spec-T to check a Case feature without him being an 

intervening element in terms of Minimality.  

Under set-theoretic assumptions, if multiple specifiers of Z are equidistant to X since their 

paths are not proper subsets of each other (unless diacritics are added, ZP need not be counted twice 

in each set, by the axiom of extensionality; see also Kitahara, 2020 for a different, but related, set-

theoretic perspective), then (21) is equivalent to (23) (note that WP and YP are both neighbours of 

ZP): 

23)  

 

 

 

 

(23) violates the venerable axiom of ‘binary branching all the way down’: graph-theoretically, the 

outdegree of ZP is 3, not 2. This leads us to a further conundrum: extra structure between YP and WP 

is needed for linearisation purposes (if the process follows Kayne’s 1994 LCA; see also Uriagereka, 

2002, 2012) but not for the computation of paths? 

An interesting issue that emerges in the literature is that when MS needs to be made somewhat 

explicit, the issues we pointed towards in the previous section do appear, but the inconsistencies 

between maintaining strict set-theoretic unordered Merge and applying a search algorithm are not 

recognised. For instance, consider the following abstract structure and fragment, from Hayashi (2021: 

22) 

[(31)] {β X {α Y {Z, W}}} (α=Y, β=X)  

 

[…] In (31), MS is required to refer to set β to locate the LI X: let us call it PATH (X) = β. 

Locating Y, in turn, requires MS to refer to sets β and α: PATH (Y) = (β, α). Here, PATH (X) is 

a proper subset of PATH (Y), where we can conclude that MS locates X prior to Y and that 

YP WP 

ZP … 

… X 

XP 

Z’ 

Z 



24 

 

label β becomes X. In determining label α, X is irrelevant since it is not a member of set α. 

Since PATH (Y) = α and PATHs of the other competitors (Z and W, which are contained in the 

merge-mate set of Y) will include sets other than α, Y serves as label α. 

This approach is similar to Hornstein’s (2009), and as mentioned before, if understood in strict set-

theoretic terms, requires the system to look into a set and determine the number of members. This is 

called a ‘path’: the ‘path’ of α is the set of all syntactic objects of which α is a term (thus, a path is a 

set of sets). In this context, and following Kitahara (2020), Hayashi (2021) characterises the 

‘problematic’ objects for MS as in (24) (adapted from Hayashi, 2021: 22): 

24) a. {α X, Y} (both heads): Path(X) = Path(Y) = α 

b. {γ {β X, …} {α Y, …}}: Path(X) = (γ, β), Path(Y) = (γ, α) 

In the cases in (24), neither ‘path’ is a subset of the other, thus the difficulties for MS. This way of 

calculating the success of MS is precisely the kind of procedure that is hard to picture unless the 

grammar incorporates a counting and comparison operation. That is: in order for the syntactic 

component of the grammar to know that Path(A) is greater than, smaller than, or equal to, Path(B), for 

any A, B, it is necessary to count the number of sets that we need to refer to in order to locate a lexical 

item X within A, B. Kitahara (2020) explicitly recognises this: when considering a syntactic object 

like (25) (taken from Kitahara, 2020: 210) 

25)  

 

 

 

 

Kitahara claims that 

MS selects H over X because the path of H (={SO1}) is a proper subset of the path of X (={SO1, 

SO2}); hence, only H counts as an accessible head for labelling 

This is a curious claim. As noted before, establishing that Path(H) is a proper subset of Path(X) 

requires us to define both, and compare them. Why the computational component would define more 

than one search sequence after finding a suitable target is not clear. As we said before, the information 

that we have as external observers is not necessarily the one that the algorithm has access to. A system 

that includes these kinds of comparisons is akin to a generative grammar with transderivational 

constraints, like Minimal Link or Shortest Move (see Jacobson, 1997 for extensive discussion).  

In addition to these issues, note that Kitahara’s path comparison works only for structures generated 

via monotonic Merge: the structure must necessarily grow one terminal node at a time. Otherwise, 

α X 

SO2 H 

SO1 



25 

 

paths cannot be defined as subsets of each other. For example, in (26) below (adapted minimally from 

Kitahara, 2020: 201) neither Path(X) and Path(Y) is a subset of the other:  

26)  

 

 

 

 

Path(X) = {SO1, SO2}; Path(Y) = {SO1, SO3} (unordered set notation is used in Kitahara, 

2020) 

 

When this happens, Kitahara says (echoing Chomsky, 2013, 2015 and much related work), both 

objects are located by MS and ‘count as accessible for labelling and valuation’. This configuration is 

the ‘problematic’ one for labelling, and these problems are claimed to be due to an ambiguity in MS. 

Is this really the case? We will explore this question in the following section. 

3. Graphs and MS: the ‘ambiguity’ of {XP, YP} and {X, Y} 

Above we introduced the concept of search algorithms for trees, in two variants: breadth-first and 

depth-first. We reviewed the difficulties of defining a search for unordered sets, but, what if 

Minimalist trees were taken as more than just graphical aids, notational variants of sets (diagrams of 

L-trees, in the words of Postal, 2010)? In other words, what if Minimalist trees were interpreted in all 

seriousness, as graphs? Assuming that MS is not an operation triggered by a head, the ‘search’ should 

start from the root. This is the path (pun intended) taken by Kitahara (2020): the Path(X) for any X is 

defined counting from the root. If there's a head involved in labelling (such that labelling a syntactic 

object is equated to finding the least embedded head within that syntactic object), then we are asking 

about the distance between that root R and a head H. However it is measured, let us notate that as d(R, 

H). If the search (for purposes of labelling or feature valuation) is triggered by a specific head (as in 

Branan & Erlewine, 2021 for the case of feature valuation) not much changes as far as the 

formalisation of searching goes, as we will see. 

Then, we may characterise MS as a procedure that searches through a tree and finds a head H, 

and determines d(R, H): the length of the unique path that goes from R to H (see Krivochen, 2021 for 

extensive discussion about the properties of the workspace where such distance can be defined). In a 

multidominance digraph the walk is not unique, but it is still possible to define trails that define 

dependencies between expressions (binding, reconstruction, etc.); a proper definition of a search 

algorithm seems to be useful in the characterisation of phenomena that arise independently of set-

theory based syntax.  

SO2 SO3 

SO1 

X α Y β 



26 

 

If we follow the Minimalist proposals, once a head is found the algorithm terminates: in this 

sense, the qualification ‘minimal’ in MS seems superfluous (as observed in the previous section). This 

can be generalised for any specified target: once the algorithm finds an object in the input that 

matches its target, the search halts. If we go back to the definition of a path in graph-theory, as a 

sequence of nodes and edges in a digraph, Kitahara’s proposal can be readily formulated. As an 

additional advantage, in a rooted digraph there is always a unique path from R to any node. However, 

there is no need to establish a ‘preference’ between paths: if MS is indeed an algorithm, it halts as 

soon as it finds a key that coincides with the target. This brings up the additional problem of having 

the system know what it is looking for a priori, which we addressed above. Still, we have not 

provided a way for the algorithm to determine what a ‘head’ is: we did point out some problems that 

arise in a strict set-theoretical approach to syntax, but, can graph-theory make things easier?  

In Section 1.2 we introduced the notions of indegree and outdegree of a vertex, furthermore, we 

argued that since edges are part of the formal definition of a graph (as opposed to mere graphical aids 

in the diagrammatic representation of a set), they have the same formal status as vertices. In this 

context, we can provide some revised definitions: 

• The root of a tree is a node with indegree 0 and outdegree nonzero 

• A head is a node with indegree non-zero and outdegree 0 

• Intermediate nodes are nodes with indegree non-zero and outdegree nonzero 

In the specific case of Minimalist structures, which are rigidly binary-branching and obey the so-

called Single Mother Condition, then the outdegree of any node is either 0 or 2, and the indegree of a 

node is either 0 or 111. We have now a graph-theoretic definition of head that uses nothing more than 

the tools already available to us to characterise the format of syntactic structures. MS, in this context, 

can be characterised as a search algorithm (possibly depth-first, possibly breadth-first) that, applying 

in a tree T (and assuming the SMC and binary branching just for the sake of exposition), defines a 

sequence Σ of alternating nodes and edges which specifies a unique walk from the root (the unique 

node with indegree 0 and outdegree 2) to a node with indegree 1 and outdegree 0: a ‘head’. 

Not much changes in terms of the straightforwardness of searching in monotonically growing trees: 

given a tree like (27) 

 

 
11 This restriction is, however, not always empirically motivated: theories of multidominance and n-ary 

branching have been successfully used to describe linguistic phenomena and should not, in our opinion, be 

rejected on non-grammatical basis (e.g., reference to ‘evolvability’, ‘perfection’, etc.); see Lappin et al. (2000) 

for a related perspective. 



27 

 

27)  

 

 

 

The search sequence from the root up until the first node with outdegree 0 would be Σ = <XP, X>, 

both under depth-first and breadth-first algorithms.  

The first question that we want to address in this section is whether objects of the type {XP, YP} 

are indeed ambiguous for MS. Let us see how the search algorithms we saw before would work. 

Suppose that XP and YP both have a head and a complement, such that: 

28) XP = {X, WP} 

YP = {Y, ZP} 

And we merge XP and YP to create {XP, YP}, as in (29): 

29)  

 

 

An important aspect of (29) that we will come back to is that the p-marker has been construed 

assuming that we are dealing with a head-first language, where complements appear at the right of the 

heads that subcategorise for them. Given a structure like (29), suppose that the label of the node 

created by this merger, ●, is to be determined by MS. In this situation, a depth-first search over the 

structure just described would follow the sequence Σ until finding the first node with outdegree 0: 

30) Σ = <●, XP, X> 

And a breadth-first search would follow Σ’: 

31) Σ’ = <●, XP, YP, X> 

Importantly, in neither case is there an ambiguity: when the algorithm finds an object that matches the 

target, the search stops. In both cases, depth-first and breadth-first, X is found, and the search should 

stop there. It is not necessary to count nodes, or to compare the distance between the root and X vs. 

the root and Y; if MS is only search, then no ambiguity arises. If the system can ignore a target and 

Z … 

ZP Y 

YP X 

XP 

WP X 

YP XP 

● 

ZP Y 



28 

 

keep looking in a different branch of the graph, it is a departure from the simplest case that should (in 

accord with the Minimalist viewpoint) be justified. This may be the case if the specification of the 

target of the search includes the requirement that, in addition to being a node with outdegree 0, the 

target have a specific featural makeup. The same principle applies if the target of the search is 

something else: for instance, a node with indegree 1, outdegree 2, and a wh-feature. If an adequately 

restrictive meta-theory of features is devised (see Panagiotidis, 2021 for discussion), such a possibility 

is not unreasonable. What to do after that node has been found is a different matter: it is copied and 

re-merged at the root (i.e., movement)? Is a new edge created between the root and the target (i.e., 

multidominance)? Are some features copied and made into a label? The characterisation of MS in this 

paper is compatible with these and possibly other options: defining the search algorithm is 

independent from defining what the system does with what it has found. Note that in neither breadth-

first nor depth-first searches is {XP, YP} problematic: if syntactic objects are defined in graph-

theoretic terms, the search parameters can be characterised unambiguously. Importantly, it is not 

possible for a search algorithm (or for any computable function in a grammar in canonical form) to 

explore both branches simultaneously: from ● we cannot go at the same time to XP and to YP. That 

would amount to simultaneity in rule application: this is a property of certain formal systems (e.g., 

cellular automata, Lindenmayer grammars) but not systems in canonical form; these include all 

formalisms in the Chomsky Hierarchy. In a tree like (30), it is true that both XP and YP are accessible 

for the search algorithm, but it does not mean that it is an ambiguous configuration that needs to be 

reorganised (e.g., via movement of one of the terms): either XP or YP will be probed into first. 

Mapping (29) into a structure where either XP or YP have moved is certainly possible; as a matter of 

fact, it seems to be the preferred way in the Minimalist literature. However, the justification for such 

movement is not found in the search algorithm, since there is nothing wrong with the configuration 

itself. The argument is equally valid if the search starts above ●. For example, if we take a concrete 

case of (29), adapted from Van Gelderen (2020): 

32)   

 

The theory in Chomsky (2013, 2015) and related works requires that (i) the new node created by 

merging DP and v*P be left unlabelled, (ii) with the introduction of a subsequent head, T, DP moves 

to Spec-TP, leaving behind a copy, and (iii) the object in (32) is labelled v*P because the copy would 

be ‘invisible’ for the labelling algorithm. It seems clear that this reasoning does not hold under the 

present view of how MS is defined, as a search algorithm: both the head D of DP and v* of v*P are 

‘accessible’ (in the sense that they can be found by the algorithm), but one of them will necessarily be 

found first. If the search sequence is defined from left to right, then the head that will be found is D. If 

defined from right to left, it will be v*. But moving DP in order to get a configuration where only v* 

v*P DP 

? 



29 

 

can be found is a stipulation that is independent from the formal definition of MS (plus the additional 

stipulation that a copies are invisible, which is an arcane point without a proper definition of 

‘visibility’; see also Van Gelderen, 2020 for an overview of criticisms of the theory in Chomsky, 

2013, 2015).  

Just as the definition of MS says nothing about what to do if a target is found (label, move, 

delete…), the question of exactly how much probing space is available for MS is independent from 

the definition of MS itself; rather, it depends on the system in which it is implemented. For example, 

MS in the context of Minimalism would be restricted by phase theory: only nodes within a tree with a 

phase head in its frontier would be within the search space of the algorithm. In this case, v* and C (in 

the traditional version of phase theory) delimit the set of accessible nodes: the sister of v* and C 

would be impenetrable for purposes of a search triggered by a node higher up in the structure (see 

Branan & Erlewine, 2021: §4.1 for discussion). A radical version of this proposal would be Epstein & 

Seely’s (2006: 12; Chapter 5) ‘every phrase is a phase’, which would restrict MS to the extremely 

local level. An intermediate stance, as suggested in Branan & Erlewine (2021) may wait until some 

additional structure has been introduced (specifically, a specifier) after a probe is merged to start the 

search; here there are additional considerations of look-ahead to be made (why would a probe wait? 

How would the system know that a specifier is coming?) We may also consider traditional bounding 

nodes S and NP, etc. In other words: the definition of exactly how big the search space is is 

independent from the formal definition of MS. 

Alternative visions of locality (which interests us to the extent that the theory of locality defines 

the probing space for MS) are of course possible, and may be preferable empirically. Let us give a 

couple of examples. Under strongly cyclic interface-driven approaches, like Uriagereka’s (2002, 

2012) Multiple Spell-Out (MSO), or the lexicalised system explored in Krivochen (2019), the subject 

DP in a configuration like (32) would not be internally accessible for independent reasons. Because 

these systems are based on very different assumptions, it is useful to see how they restrict probing 

space in a way that is different from mainstream phase theory: both of these systems can be said to be 

interface-driven. In Uriagereka’s system (in which Multiple Spell-Out is driven by linearisation), 

specifiers are Spelled-Out independently from the derivational cascade in which they are introduced, 

being assembled in a separate derivational space. Suppose that we have a phrase YP which needs to 

merge as the specifier of XP: a symmetry point between XP and YP does not allow an LCA-based 

linearisation algorithm to apply. Uriagereka’s solution is to restrict the application of the LCA to local 

units where asymmetric c-command relations are unambiguous: these are called command units. We 

can diagram the order of operations in (33) (Uriagereka, 2002: 51):    



30 

 

33)  

 

 

 

In Uriagereka’s system, Spell-Out ‘collapses’ a phrase marker (here, YP) into something ‘akin to 

a word’ (Uriagereka, 2002: 49), without accessible internal syntactic complexity. This collapsed 

phrase marker can be merged to another syntactic term, once the linearisation paradox has been 

solved. MSO makes, essentially, a graph into a node (or, rather, a set of arbitrary cardinality into a 

singleton; Uriagereka, 2002: 50 explicitly takes set-theory seriously in his discussion). Specifiers and 

adjuncts are in distinct ‘derivational cascades’ with respect to the monotonically growing clausal 

spine of heads and complements; in the MSO framework, this makes them inaccessible for probing 

since probe and goal must be in the same derivational space.  

In a lexicalised Tree Adjoining Grammar (LTAG; Frank, 2002, 2013; Joshi & Schabes, 1991; 

XTAG-group, 2001; Krivochen & García Fernández, 2019, 2020) the units of the syntactic 

computation are elementary trees defined as the extended projection of a single head: the version in 

Krivochen & García Fernández (2019, 2020) specifies that only lexical predicates may define 

elementary trees; Frank (2002, 2013) generalises to all lexical heads, predicates or not. Such 

elementary trees may be defined as the probing space for MS as well as the establishment of syntactic 

dependencies (see fn. 12). As pointed out in Frank (2006, 2013), elementary trees need not coincide 

with phases: they may be bigger or smaller than phases, depending on the ‘density’ of lexical heads in 

a particular derivation.  

The lexicalised proposal explored in Krivochen (2019) (building on the aforementioned works) 

restricts the size of the elementary units of the grammar to the extended projection of lexical 

predicates: the building blocks of syntax are graphs that contain a single lexical predicate, functional 

modifiers (e.g., temporal / aspectual auxiliaries), and arguments of that predicate. Elementary trees 

can be composed by means of generalised transformations: substitution (at the frontier or the root) and 

adjunction (at the non-root). Locality-wise, the proposal is that adjunction and substitution make a 

syntactic object equally opaque for operations triggered at the target of generalised transformations. 

Specifically,  

Let γ and β be two elementary trees such that g contains a node X that corresponds to the root of β. 

A singulary transformation TS triggered from γ can affect β iff TS is intrinsically ordered after an 

embedding transformation that adjoins β to γ at X. (Krivochen, 2019: 59) 



31 

 

We refer to this process as atomisation in Krivochen (2018a): a complex syntactic object becomes a 

computational atom. What singulary transformations cannot have access to is elements embedded 

within β; only β as a whole can be targeted by such operations. In Krivochen (2019) this provides a 

way of explanation for why resultative constructions are islands:  

34) a. John hammered the metal flat / burnt the toast black 

b. The river froze solid 

c. Mary shouted herself hoarse 

35) a. *What did John burn the toast / hammer the metal? (answer: ‘black / flat’) 

b. *What did the river freeze? (answer: ‘solid’) 

c. *What did Mary shout herself? (answer: ‘hoarse’) 

36) a. */%…that / because, the metal, John hammered t flat. 

b. */%…that / because, the river, t froze solid. 

 c. *…that / because, herself, Mary shouted t hoarse. 

Summarising much discussion, the argument in Krivochen (2019) shows that if [the metal BECOME 

flat], [the river BECOME solid], and [Mary BECOME hoarse] are elementary trees derived in parallel 

with respect to the structures (technically, initial trees) [John hammered the metal], [the river froze], 

and [Mary shouted], then the adjunction of the former to the latter makes them opaque for extraction 

of syntactic terms embedded in the adjoined elementary trees, namely flat, solid, and hoarse (as 

exemplified in (35) and (36)). In the present context, it may be the case that generalised 

transformations (i.e., rules that relate distinct elementary trees) make auxiliary trees opaque for 

purposes of MS triggered at the initial tree that is targeted by adjunction. In both MSO and our cyclic 

lexicalised TAG approaches the crucial factor for the establishment of dependencies is that all terms 

of the relevant dependency (operator-variable, antecedent-anaphor, predicate-argument, etc.) be in the 

same elementary syntactic structure: a command unit in MSO (which derives the opacity of subjects 

and adjuncts for purposes of extraction), an elementary tree in LTAG12. In graph-theoretic terms, MS 

may apply only within the boundaries of a local graph or be restricted to access the root of a distinct 

graph (but not embedded nodes).  

The point is that whatever opacity conditions may hold for {XP, YP} cases, they can be defined 

independently of the definition of the search algorithm: these pertain to the probing space for the 

 
12 Frank (2002; 2013: 233) formulates this requirement explicitly: 

Fundamental TAG hypothesis: 

Every syntactic dependency is expressed locally within a single elementary tree 

This also entails that all dependencies are local once recursive structure is factored out, something that a graph-

theoretic approach can capture much better than a set-theoretic one. 



32 

 

search, not to the formal definition of the search itself. Optimally, these constraints should have 

independent empirical support (subextraction from subjects in MSO, extraction from resultatives in 

our version of LTAG). Both MSO and adjunction-induced opacity (‘atomisation’) have been defined 

independently of search algorithms or labelling considerations, and on the basis of locality conditions 

that emerge in a strongly derivational minimalist framework (MSO) or a lexicalised graph-theoretic 

TAG (atomisation). MS is a tool that allows us to define dependencies, but these dependencies are 

independently constrained.  

In any event, the important issue is the following: if a situation where two non-terminals are in a 

relation of sisterhood was really ambiguous for MS, and there was no external controller (in Turing’s 

sense) the search procedure would just halt. But it doesn’t, in formal characterisations of search 

algorithms. If MS doesn’t just halt, then we need to assume (under standard computational 

assumptions) that there is either a bias in the algorithm that directs the branch that is to be looked at 

first or there is some external factor that dictates which branch is to be looked into first.  

The same formal argument regarding MS is valid for {X, Y} situations: a node dominating two 

terminals (i.e., two nodes with indegree 1 and outdegree 0 each). However, some additional 

considerations must be made. A situation of the kind {X, Y} emerges, according to Chomsky (2013, 

2015), in two cases: 

i. When a root and a categoriser merge 

ii. In instances of head movement 

Both involve a number of intra-theoretical stipulations that do not really impact on the definition of 

MS (e.g., category-less roots, issues pertaining to head movement being post-syntactic, etc.). 

Presumably, there could be other cases, depending on how much silent structure is there. For example, 

the bolded subsequences in (37a-b) could be said to involve two terminal nodes: 

37) a. I love her 

b. John reads it 

Under bare phrase structure assumptions, love and her should be two heads; merging them generates 

the object {love, her}. If this is correct, then monotransitive verbs with pronominal objects would 

generate {X, Y} situations, unless additional structure for the object is proposed in the form of 

functional nodes. For MS, there is no problem for the reasons explained above. In terms of labelling, a 

system where it is possible to say that the monotransitive verb selects an object, and the pronominal 

object partly satisfies the valency of the verb seems preferable to a system where the syntax is 

independent of such considerations (i.e., a theory of the grammar where it is possible to speak of 

relational networks is preferable to us, empirically, to an unconstrained generator endowed with 



33 

 

arbitrary features). In this case, selection should play a role in labelling, if constituency is to be 

represented: love her, however it is encoded, behaves like an expression that can concatenate with an 

NP to yield a finite clause. In the categorial tradition, this is called an IV (intransitive verb phrase), 

phrase structure grammars traditionally use VP. The treatment of {X, Y} situations in the framework 

of Chomsky (2013, 2015) seems to require more theory-specific auxiliary hypotheses than {XP, YP}, 

and since they do not pertain to the definition of MS, we will not get into them in this paper. 

4. Conclusions and some speculations 

The aim of this paper was to provide a critique of the current Minimalist literature on MS and explore 

the possibilities to define MS as a search algorithm in a theory-neutral way. We argued that MS 

cannot be defined for set-theoretical structural descriptions, given current assumptions about free 

Merge and its unordered output (what we called Chomsky-Collins sets). In other words, the strong 

set-theoretic commitments of mainstream Minimalism (which are not based on a comparison with 

formal alternatives for purposes of empirical analysis, but rather philosophical a priori conditions like 

evolvability and undefined ‘economy’) conspire against a definition of search algorithms over the 

output of Merge13.  

Search algorithms, and thus MS, can be defined over graphs: this entails a departure from the 

aforementioned set-theoretic commitments. The historically peripheral role that graph theory has 

played in the development of generative grammar with respect to operations over strings and sets 

(despite the early work on trees rather than strings and sets thereof as the model of structural 

descriptions; see e.g. Bach, 1964; McCawley, 1968; Zwicky & Isard, 1963) could be reversed as a 

result of pursuing lines of inquiry related to MS. In a graph-theoretic context, MS can be defined as 

either a breadth-first or a depth-first search. If we do, some assertions in the Minimalist literature with 

respect to the ‘problems’ posed by {XP, YP} and {X, Y} objects for purposes of MS need to be 

revised14. 

 
13 Interestingly, Branan & Erlewine (2021) does not specify whether their proposal is compatible with Merge-

as-set-formation; as a matter of fact, they seem to assume that they are dealing with graphs to begin with. 
14 There seems to be at least one {XP, YP} case that is somewhat exceptional: subject-predicate relations. 

Chomsky (2020a: 25) says that subject-predicate is an example of exocentric construction (see also Chomsky, 

2013), which would yield a structure very much in line with early generative grammar’s S → NP, VP (or NP, 

PredP in slightly later developments). The case of exocentric structures poses yet another problem for MS-

driven labelling: how is it possible to label something by MS if the intended label is not a ‘projection’ (or 

percolation, or copy…) of features of any of the syntactic objects involved in the search? In other words: what is 

the target for MS? If subject-predicate objects are not labelled by MS, does that mean that there is a different 

kind of labelling? Or, if subject-predicate objects are not labelled at all, how can they enter further 

computations? Suppose that this issue is circumvented by moving the subject to a higher position (say, Spec-

TP), thus leaving a trace or a copy, and labelling as whatever remains. In order to have this movement, the head 

T must merge with the symmetric object {DP, vP}, which is unlabelled. At this point, {DP, vP} must be treated 

as a unit for purposes of Merge in order to get the operation to remain binary: we can get that if Merge creates 

rooted trees, such that every application of Merge results in an object with two edges and three vertices but not 

if syntactic computation is set-formation. The root of that local tree may not be assigned a category, but it is a 



34 

 

The approach presented here must of course be refined. As part of our conclusion, we want to 

formulate some issues that set the agenda for future research, which at the moment amount to little 

more than speculation. The first issue that we want to address is if there is a way of determining 

whether MS is best modelled as a depth-first or a breadth-first algorithm. It is possible that deciding 

between depth-first or breadth-first is connected to other properties of the grammar. Consider, for 

instance, the approach to non-configurationality in Hale (1983), Austin & Bresnan (1996), and related 

works. If non-configurationality actually implies a radical reorganisation of phrase structure, such that 

syntactic representations in languages like Warlpiri or Jiwarli are ‘flat’ (as proposed in modular 

theories, whereby the representation of argumental relations is in charge of a morphological 

component, whereas the syntactic component can only generate n-ary branching phrase markers), a 

depth-first search may not be the best way to proceed: all targets may be at the same depth. In 

configurational languages, depth-first seems to be by and large assumed even in the informal 

characterisations of MS in the Minimalist literature. may be expressed in terms of preferring a 

breadth-first search, since structures are flat. In a system that is more rigidly organised, more 

‘configurational’ in traditional parlance, depth-first seems to be more convenient. Choosing between 

depth-first and breadth-first may be a source of cross-linguistic variation. 

As we mentioned above, an inherent problem in assuming something like MS for a set-theory 

based syntax is determining how exactly the system knows what a ‘head’ is. Either it is necessary to 

stipulate that (i) heads are not sets (and thus monotonic Merge manipulates a set and a non-set at 

every step) or (ii) the system can determine the cardinality of a set, with heads being singletons (i.e., 

sets of cardinality 1). Alternatively, ‘headhood’ can be encoded in feature form, but that is possibly 

the worst option given how arbitrary and non-explanatory it is. In graph-theoretic terms, however, 

determining headhood is a matter of establishing if a node has outgoing edges. Note that edges are 

part of the formal definition of a graph: they are not merely parts of diagrams. Thus, if the system 

builds graphs, edges are part of the set of objects it operates over. A ‘head’ in this context is a node in 

a digraph that has no outgoing edges, the root of the digraph is a node that has no incoming edges, and 

intermediate nodes have both outgoing and incoming edges. Whether intermediate nodes (which 

correspond to derived but non-final objects) are required for syntactic representations is, again, 

orthogonal to the definition of MS. Models like Arc Pair Grammar and Metagraph grammar (Postal, 

2010), for example, do not use intermediate nodes in the sense PSGs (and some forms of Minimalism) 

do; this does not interfere with the possibility of defining search operations over representations in 

those models.  

 
node in the graph and it bears an identifier, such that it can be used as part of the input for further processes. 

However, this object also must be internally complex, such that the DP is accessible and (under traditional 

Minimalist assumptions) can be extracted and re-merged at Spec-TP.  



35 

 

In the context of defining MS, an issue that emerged is that given a bifurcation, the system must 

decide which branch to explore first. One of the branches will be explored first, and there is no 

ambiguity in the definition of the algorithm, but the issue can be turned into an empirical question 

given specific assumptions. In the formal work on search algorithms, given a preorder transversal 

through a tree, a sequence root-left-right is assumed; however, linguistic considerations may allow for 

a root-right-left transversal under certain conditions. This is an issue that is independent of the formal 

definition of MS, but worth exploring in terms of the linguistic applications of MS. Under more or 

less standard Minimalist assumptions, if MS is looking for heads, the bias may be implemented in a 

parametric system as a so-called head parameter: in traditional PS trees, head-initial structures branch 

to the right, whereas head-final structures branch to the left. This can be expressed in the following 

terms: 

• Head-initial language: given a symmetry point, MS is biased to explore the leftmost branch 

first 

• Head-final language: given a symmetry point, MS is biased to explore the rightmost branch 

first 

This is an oversimplification, however. While there are languages that are consistently head-initial or 

consistently head-final (e.g., Turkish or Japanese are usually characterised as consistently head-final), 

most languages show both head initial phrases and head final phrases (e.g., English is head-final in 

NPs, and head-initial in VPs). The level of granularity at which branch preference should be defined 

in order to implement this idea seems to be construction-specific. 

However it is modelled, the decision of what branch to explore first is not part of the formal 

definition of MS, but part of an appropriate characterisation of its implementation.  

The definition of MS in this paper aims to contribute to the debate of the proper format of syntactic 

representations, in particular siding with those who follow a graph-theoretic approach: issues of MS 

are not necessarily exclusive to Minimalist syntax. We suggest that if operations in Minimalism are as 

based on MS as the literature suggests, then it may be both theoretically and empirically fruitful for 

Minimalists to take graphs seriously. 

 
5. References 

Austin, Peter and Joan Bresnan (1996) Non-configurationality in Australian aboriginal languages. 

Natural Language and Linguistic Theory 14. 215–268. 

Bach, Emmon (1964) An Introduction to Transformational Grammars. New York: Holt, Rinehart & 

Winston.  



36 

 

Boeckx, Cedric (2008) Aspects of the syntax of agreement. London: Routledge.  

Branan, Kenyon & Michael Yoshitaka Erlewine (2021) Locality and (minimal) search. To appear in 

Cambridge Handbook of Minimalism, Kleanthes K. Grohmann & Evelina Leivada (eds.). 

https://ling.auf.net/lingbuzz/005791  

Chomsky, Noam (1994) Bare phrase structure. MIT occasional papers in linguistics 5. 

Chomsky, Noam (1995) The Minimalist Program. Cambridge, Mass.: MIT Press. [cited by the 2nd 

Edition, 2015] 

Chomsky, Noam (2004) Beyond Explanatory Adequacy. In Adriana Belletti (ed.) Structures and 

Beyond. Oxford: OUP. 104–131. 

Chomsky, Noam (2013) Problems of Projection. Lingua 130. 33-49. 

Chomsky, Noam (2015) Problems of Projection: Extensions. In Elisa Di Domenico, Cornelia Hamann 

& Simona Matteini (eds.) Structures, Strategies and Beyond: Studies in honour of Adriana Belletti. 

Amsterdam: John Benjamins. 1-16.  

Chomsky, Noam (2019) Some Puzzling Foundational Issues: The Reading Program. Catalan Journal 

of Linguistics. 263-285. 

Chomsky, Noam (2020a) The UCLA lectures. https://ling.auf.net/lingbuzz/005485  

Chomsky, Noam (2020b) Minimalism: where we are now, and where we are going. Lecture at 161st 

meeting of Linguistic Society of Japan. Available online: 

https://www.youtube.com/watch?v=X4F9NSVVVuw  

Chomsky, Noam, Angel Gallego & Dennis Ott (2019) Generative Grammar and the Faculty of 

Language: Insights, Questions, and Challenges. Catalan Journal of Linguistics. 229-261. 

Citko, Barbara (2008) Missing labels. Lingua 118. 907–944. 

Citko, Barbara (2011) Symmetry in syntax: Merge, move, and labels. Cambridge: CUP. 

Collins, Chris & Edward Stabler (2016) A Formalization of Minimalist Syntax. Syntax, 19(1). 43-78. 

Collins, Chris (2002) Eliminating Labels. In Samuel D. Epstein and T. Daniel Seely (eds.), Derivation 

and Explanation in the Minimalist Program. Oxford: Blackwell. 42-64. 

Collins, Chris (2017) Merge(X, Y) = {X, Y}. In Leah Bauke & Andreas Blühmel (eds.) Labels and 

Roots. Berlin: Walter de Gruyter. 47-68. 

Collins, Chris & Erich Groat (2018) Distinguishing Copies and Repetitions. 

http://ling.auf.net/lingbuzz/003809  

https://ling.auf.net/lingbuzz/005791
https://ling.auf.net/lingbuzz/005485
https://www.youtube.com/watch?v=X4F9NSVVVuw
http://ling.auf.net/lingbuzz/003809


37 

 

Cormen, Thomas, Charles Leiserson, Ronald Rivest, & Clifford Stein (2001) Introduction to 

Algorithms. [2nd Edition]. Cambridge, Mass.: MIT Press. 

Di Sciullo, Anna-Maria & Daniela Isac (2008) The Asymmetry of Merge. Biolinguistics 2.4: 260–

290. 

Epstein, Samuel D. & T. Daniel Seely (2006) Derivations in Minimalism. Cambridge: CUP. 

Epstein, Samuel; Husatsugu Kitahara & T. Daniel Seely (2013) Structure building that can’t be! In 

Myriam Uribe-Etxebarria and Vidal Valmala (eds.) Ways of structure building. Oxford: OUP.   

Epstein, Samuel; Husatsugu Kitahara & T. Daniel Seely (2015) Labeling by Minimal Search: 

Implications for Successive-Cyclic A-Movement and the Conception of the Postulate “Phase”. In 

Explorations in Maximizing Syntactic Minimization. London: Routledge. 201-221. 

Epstein, Samuel; Hisatsugu Kitahara & T. Daniel Seely (2020) Unifying Labeling under Minimal 

Search in "Single-" and "Multiple-Specifier" Configurations. Coyote Papers: Working Papers in 

Linguistics, 22. 1-11.  

Even, Shimon & Guy Even (2012) Graph algorithms [2nd Edition]. Cambridge: CUP.  

Fong, Sandiway & Jason Ginsburg (2020) Minimalist machine. 

http://elmo.sbs.arizona.edu/sandiway/mpp/mm.html  

Frank, Robert (2002) Phrase Structure Composition and Syntactic Dependencies. Cambridge, Mass.: 

MIT Press. 

Frank, Robert (2006) Phase theory and Tree Adjoining Grammar. Lingua, 116(2). 145–202. 

Frank, Robert (2013) Tree adjoining grammar. In Marcel den Dikken (ed.) The Cambridge Handbook 

of Generative Syntax. Cambridge: CUP. 226-261. 

Gartner, Hans-Martin & Jens Michaelis (2009) Locality Conditions and the Complexity of Minimalist 

Grammars: A Preliminary Survey. Model-Theoretic Syntax at 10, Proceedings of the ESSLLI-

Workshop. 87-98. 

Graf, Thomas (2021) The computational unity of Merge and Move. To appear in Evolutionary 

Linguistic Theory.  

Ginsburg, Jason (2016) Modeling of problems of projection: A non-countercyclic approach. Glossa 

1(1): 7. 1-46. http://dx.doi.org/10.5334/gjgl.22  

Hale, Kenneth (1983) Warlpiri and the grammar of non-configurational languages. Natural Language 

and Linguistic Theory 1, 5-47. 

http://elmo.sbs.arizona.edu/sandiway/mpp/mm.html
http://dx.doi.org/10.5334/gjgl.22


38 

 

Hayashi, Norimasa (2021) Labels at the Interfaces: On the Notions and the Consequences of Merge 

and Contain. PhD dissertation, Kyushu University. 

Hornstein, Norbert (2009) A theory of syntax: minimal operations and Universal Grammar. 

Cambridge: CUP. 

Jacobson, Pauline (1997) Where (if anywhere) is transderivationality located? In Peter Culicover and 

Louise McNally (eds.) The Limits of Syntax. New York: Academic Press. 303-336. 

Joshi, Aravind K. & Yves Schabes (1991) Tree-Adjoining Grammars and Lexicalized Grammars. 

Technical Reports (CIS). Paper 445. http://repository.upenn.edu/cis_reports/445  

Kahane, Sylvain & François Lareau (2016) Word ordering as a graph-rewriting process. In Annie 

Foret, Glyn Morrill, Reinhard Muskens, Rainer Osswald & Sylvain Pogodalla (eds.) Formal 

Grammar. Berlin: Springer. 216–239.  

Kayne, Richard (1994) The antisymmetry of syntax. Cambridge, Mass.: MIT Press. 

Kitahara, Hisatsugu (2020) ‘Multiple specifier’ configurations revisited. Reports of the Keio Institute 

for Cultural and Linguistic Studies 51. 207-216. 

Knuth, Donald (1998) The art of computer programming Vol. 3: Sorting and Searching. [2nd Edition]. 

Reading, Mass.: Addison-Wesley. 

Kobele, Gregory (2009) Syntax and semantics in minimalist grammars. ESSLI ’09. 

https://esslli2009.labri.fr/documents/Kobele06-2.pdf  

Komachi, Masayuki, Hisatsugu Kitahara, Asako Uchibori, and Kensuke Takita (2019) Generative 

procedure revisited. Reports of the Keio Institute of Cultural and Linguistic Studies 50 (2019), 269-

283. 

Krivine, Jean-Louis (1971) Introduction to axiomatic set theory. Dordrecht: Reidel. 

Krivochen, Diego Gabriel (2015) Copies and Tokens: Displacement Revisited. Studia Linguistica 

70(3). 250-296. https://doi.org/10.1111/stul.12044  

Krivochen, Diego Gabriel (2018a) Aspects of emergent cyclicity in language and computation. PhD 

dissertation, University of Reading. 

Krivochen, Diego Gabriel (2018b) Syntax on the edge: a graph-theoretic analysis of English (and 

Spanish) sentence structure. Ms. https://ling.auf.net/lingbuzz/003842  

Krivochen, Diego Gabriel (2019) On trans-derivational operations: Generative Semantics and Tree 

Adjoining Grammar. Language Sciences 74. 47-76. https://doi.org/10.1016/j.langsci.2019.04.002 

http://repository.upenn.edu/cis_reports/445
https://esslli2009.labri.fr/documents/Kobele06-2.pdf
https://doi.org/10.1111/stul.12044
https://ling.auf.net/lingbuzz/003842
https://doi.org/10.1016/j.langsci.2019.04.002


39 

 

Krivochen, Diego Gabriel (2021) Towards a theory of syntactic workspaces: neighbourhoods and 

distances in a lexicalised grammar. Ms. Under review.  

Krivochen, Diego Gabriel & Luis García Fernández (2019) On the position of subjects in Spanish 

periphrases: Subjecthood left and right. Borealis: An international journal of Hispanic 

linguistics, 8(1), 1-33. https://doi.org/10.7557/1.8.1.4687 

Krivochen, Diego Gabriel & Luis García Fernández (2020) Variability in syntactic-semantic cycles: 

evidence from auxiliary chains. In Melvin González-Rivera & Sandro Sessarego (eds.) Interface-

Driven Phenomena in Spanish: Essays in honor of Javier Gutiérrez-Rexach. London: Routledge. 145-

168. 

Lakatos, Imre (1978) The Methodology of Scientific Research Programmes [Vol. 1]. Cambridge: 

CUP. 

Langendoen, D. Terence (2003) Merge. In Formal Approaches to Function in Grammar: In Honor of 

Eloise Jelinek, ed. by Andrew Carnie, Mary Willie and Heidi Harley, 307-318. Amsterdam: John 

Benjamins. 

Lappin, Shalom; Robert D. Levine & David Johnson (2000) The Structure of Unscientific 

Revolutions. Natural Language & Linguistic Theory 18(3). 665–671. 

Larson, Bradley (2015) Minimal search as a restriction on Merge. Lingua 156. 57-69. 

Lasnik, Howard (2009) Shortest Move and Equidistance. Linguistics 611 class notes, University of 

Maryland. 

McCawley, James (1968) Concerning the base component of a transformational 

grammar. Foundations of Language 4. 243-269. 

McKinney-Bock, Katherine & Jean-Roger Vergnaud (2013) Grafts and beyond: Graph-theoretic 

syntax. In Katherine McKinney-Bock & María Luisa Zubizarreta (eds.) Primitive Elements of 

Grammatical Theory. London: Routledge. 207-236. 

Michaelis, Jens (2001) Derivational Minimalism is Mildly Context-Sensitive. In M. Moortgat (ed.), 

Logical Aspects of Computational Linguistics (LACL ’98), Lecture Notes in Artificial Intelligence 

Vol. 2014. 179-198.  

Moro, Andrea (2000) Dynamic antisymmetry. Cambridge, Mass.: MIT Press. 

Ott, Dennis (2015) Symmetric Merge and Local Instability: Evidence from Split Topics. Syntax 18(2). 

269-303. 

https://doi.org/10.7557/1.8.1.4687


40 

 

Panagiotidis, Phoevos (2021) Towards a (minimalist) Theory of Features: preliminary notes. Ms. 

https://ling.auf.net/lingbuzz/005615  

Pesetsky, David and Torrego, Esther (2006) Probes, goals and syntactic categories. In Proceedings of 

the 7th Annual Tokyo Conference on Psycholinguistics. Tokyo: Hituzi Syobo Publishing Company. 

25–60. 

Postal, Paul M. (1998) Three Investigations on Extraction. Cambridge, Mass.: MIT Press. 

Postal, Paul M. (2004) Skeptical Linguistic Essays. Oxford: OUP. 

Postal, Paul M. (2010) Edge-Based Clausal Syntax. Cambridge, Mass.: MIT Press.  

Sedgewick, Robert & Kevin Wayne (2014) Algorithms [2 vols.]. NY: Addison-Wesley. 

Stabler, Edward (2011) Computational perspectives on minimalism. In Cedric Boeckx (ed.) Oxford 

handbook of minimalism. Oxford: Oxford University Press. 617–641. 

Stephen, Graham (1994) String searching algorithms. London: World Scientific. 

Uriagereka, Juan (2002) Multiple Spell-Out. In Uriagereka, J. Derivations: Exploring the Dynamics of 

Syntax. London: Routledge. 45-65. 

Uriagereka, Juan (2012) Spell-Out and the Minimalist Program. Oxford: OUP. 

Van Gelderen, Elly (2019) Cyclical Change and Problems of Projection. In Anne Breitbarth, Miriam 

Bouzouita, Lieven Danckaert, and Elisabeth Witzenhausen (eds.) Cycles in Language Change. 

Oxford: OUP. 13-32. 

Van Gelderen, Elly (2020) Third factors in syntactic variation and change. To appear in CUP. 

Van Steen, Maarten (2010) Graph Theory and Complex Networks: An Introduction. Available for free 

at https://www.distributed-systems.net/index.php/books/gtcn/gtcn/ 

Vercauteren, Aleksandra (2017) Features and labeling: Label-driven movement. In Leah Bauke & 

Andreas Blühmel (eds.) Labels and Roots. Berlin: Walter de Gruyter. 69-90. 

Wilson, Robin (1996) Introduction to Graph Theory. [4th edition]. London: Adison Wesley. 

Wurmbrand, Susi (2014) The Merge Condition: A syntactic approach to selection. In Peter Kosta, 

Steven L. Franks, Teodora Radeva-Bork and Lilia Schürcks (eds.) Minimalism and Beyond: 

Radicalizing the interfaces. Amsterdam: John Benjamins. 130-167. 

XTAG group (2001) A lexicalized TAG for English. Technical report, University of Pennsylvania. 

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1020&context=ircs_reports    

https://ling.auf.net/lingbuzz/005615
https://www.distributed-systems.net/index.php/books/gtcn/gtcn/
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1020&context=ircs_reports


41 

 

Zwicky, Arnold & Stephen Isard (1963) Some aspects of tree theory. Working Paper W-6674, The 

MITRE Corporation, Bedford, Mass. Available at: https://web.stanford.edu/~zwicky/some-aspects-of-

tree-theory.pdf  

 

https://web.stanford.edu/~zwicky/some-aspects-of-tree-theory.pdf
https://web.stanford.edu/~zwicky/some-aspects-of-tree-theory.pdf

