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Abstract5

Using the framework laid out by Collins and Stabler (2016), I formalize Agree as a syntactic operation.6

I begin by constructing a formal definition a version of long-distance Agree in which a higher object values7

a feature on a lower object, and modify that definition to reflect various several versions of Agree that8

have been proposed in the “minimalist” literature. I then discuss the theoretical implications of these9

formal definitions, arguing that Agree (i) muddies our understanding of the evolution of language, (ii)10

requires a new conception of the lexicon, (iii) objectively and significantly increases the complexity of11

syntactic derivations, and (iv) unjustifiably violates NTC in all its non-vacuous forms. I conclude that12

Agree, as it is commonly understood, should not be considered a narrowly syntactic operation.13

1 Introduction14

Being computational theories of grammar, minimalist P&P theories deal mainly in procedures which generate15

linguistic expressions from atoms in an incremental fashion. That is, these theory traffic in computational16

procedures that relate stage n of a derivation to stage n + 1 of that same derivation in a regular definite17

way. From this perspective, Merge is the crown jewel of these theories—it has been developed with the twin18

goals of (a) ensuring that for an arbitrary derivation stage, any application of Merge would have a single19

predictable result, even if that result is failure, while (b) maintaining its descriptive adequacy. Much of the20

current literature in minimalist P&P grammar, however, assumes the existence of a second core procedure,21

Agree, which, I argue in this paper, has yet to be sufficiently defined as a computational procedure.22

The correct characterization of Agree ultimately depends on empirical and theoretical considerations23

and, while virtually the entire contemporary Agree literature focuses on the former to the exclusion of the24
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latter, this paper seeks to contribute to the latter.1 The assertion that the Agree literature is primarily25

focused on empirical concerns to the exclusion of theoretical ones, seems to be contradicted by the sheer26

number of theories of Agree that have been proposed—Chomsky (2000) begins with what might be called27

Classical Agree, and scholars later propose Cyclic Agree (Béjar and Rezac 2009), Local Agree (Hornstein28

2009), Fallible Agree (Preminger 2014), and Upward Agree (Bjorkman and Zeijlstra 2014; Zeijlstra 2012),29

just to name those theories of Agree which have names. In fact, the proliferation of such theories is to be30

expected when inquiry is guided by the empirical rather than the theoretical, just as the proliferation of31

empirical predictions is to be expected when inquiry is guided by the theoretical.32

This proliferation of theories of Agree is further exacerbated by the fact that, since its inception, Gen-33

erative Grammar has always had both derivational and representational expressions. In the theory used in34

Aspects (Chomsky 1965), for instance, (1) can be given three formal expressions—one derivational expression35

in (2), and two representational expressions in (3) and (4).36

(1) Sincerity may frighten the boy.37

(2) a. S → NP_Aux_VP (Chomsky 1965, p. 68)38

VP→V_NP39

NP→Det_N40

NP→N41

Det→the42

Aux→M43

b. M→may44

N→sincerity45

N→boy46

V→frighten47

(3) [S [NP SincerityN ] [Aux mayM ] [VP frightenV [NP [Det the] boyN]]]48

1“Theory” and its derived terms are widely misunderstood within contemporary syntactic research. I take “theory” to refer
to a logical system which is hypothesized to explain some domain of nature, and “theoretical” work to refer to work that
investigates the internal logical properties of a theory. The work that is taken to fall under the umbrella of “theoretical syntax,”
however, is more often than not data analysis work—i.e., empirical work—which (a) does not involve quantitative analysis—as
opposed to “corpus work”—and (b) ignores the method of gathering the analyzed data—to differentiate it from “experimental
work” and “field work.” See Chametzky (1996) for related discussion.
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(4) S

NP

N

sincerity

Aux

M

may

VP

V

frighten

NP

Det

the

N

boy

49

Since Generative Grammar is a computational theory, the derivational expression of a given analysis has50

always been the ultimate expression. The representational expressions, on the other hand, are much more51

concise and accessible, so they have been overwhelmingly used as shorthands for the derivational expressions,52

but they are useful as short-hands only insofar as they are isomorphic with the derivational expressions.53

These representational expressions become problematic, however, when they are augmented for the sake54

of clarity. For instance movement/Internal Merge can be represented without arrows as in (5), but more often55

arrows will be added for ease of understanding as in (6), though (5) and (6) are assumed to be equivalent.56

(5) TP

NPi T’

T VP

V 〈NPi〉

57

(6) TP

NPi T’

T VP

V 〈NPi〉

58

It is, perhaps, understandable that Agree, commonly represented by arrows similar to movement arrows as59

in (7), is assumed to have the same level of theoretical underpinning as movement.60
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(7) T’

T VP

V NP

61

To date, though, there has been no proposal for a derivational expression of the arrow in (7). The task of62

this paper in part, then, is to remedy this oversight.63

To that end, I will be expanding the formal grammar developed by Collins and Stabler (2016). I sketch64

out this grammar, which is based on a more-or-less contemporary theory within the minimalist program, in65

section 2, and extend it to include Agree in ??. While I focus on what I call Long-distance Downward Valuing66

(LDDV) Agree, I also discuss how my definitions could be adjusted to reflect other theories such as those67

that assume feature checking or upward valuation, as well as local varieties of Agree. In section 4 I consider68

the theoretical implications of my definition of Agree, including its relation to Merge, its computational69

complexity, and its relation to the No Tampering Condition. Finally, in section 5 I give some concluding70

remarks.71

2 What does a definition look like?72

Collins and Stabler (2016) provide a framework for formal definition. This formal definition uses sets and73

their basic predicates, relations, and operations (membership, subset, Set difference, etc) and finite sequences74

referred to as “pairs,” “triples,” and so on depending on their size. Using these formal notions, the grammar75

they define is such that a number of organizing principles of minimalist theories are provable as theorems of76

this system. I will be defining Agree in this framework, and in order to understand what it means to define77

a derivational operation, I must first lay out some basic definitions Starting with Universal Grammar (UG)78

in (8).79

(8) Universal Grammar is a 6-tuple: 〈PHON-F, SYN-F, SEM-F, Select, Merge, Transfer〉80

PHON-F, SYN-F, and SEM-F are universal sets of phonetic, syntactic, and semantic features, respectively;81

Select, Merge, and Transfer are operations. I will begin the outline of the formal grammar with the feature82

sets, postponing discussion of the operations for now. Collins and Stabler (2016) (hereafter C&S) also define83

the set PHON-F* as the set of all possible phonetic strings. These feature-sets are grouped together to form84

lexical items, which are grouped into a lexicon, which effectively defines individual grammars, as in (9)–(11).85

(9) A lexical item is a triple: LI = 〈PHON, SYN, SEM〉86
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where SEM and SYN are finite sets such that SEM ⊂ SEM-F, SYN ⊂ SYN-F, and PHON ∈ PHON-87

F*.88

(10) A lexicon is a finite set of lexical items.89

(11) An I-Language is a pair 〈Lex, UG〉, where Lex is a lexicon and UG is Universal Grammar.90

In order to capture the Copy/Repetition distinction, C&S introduce lexical item tokens, defined in (12),91

which are the atoms of syntactic computation. C&S, also define several other useful terms using LI tokens.292

(12) A lexical item token is a pair: LIk = 〈LI, k〉, where LI is a lexical item, and k is an integer.93

(13) A lexical array is a finite set of lexical item tokens.94

(14) X is a syntactic object iff:95

i. X is a lexical item token, or96

ii. X is a set of syntactic objects.97

(15) Let A and B be syntactic objects, then B immediately contains A iff A∈B.98

(16) Let A and B be syntactic objects, then B contains A iff99

i. B immediately contains A, or100

ii. for some syntactic object C, B immediately contains C and C contains A.101

C&S then define a generative framework, wherein complex syntactic objects are derived in stages.102

(17) A stage is a pair S = 〈LA, W〉, where LA is a lexical array and W is a set of syntactic objects. We103

call W the workspace of S.104

The operations Merge, Select, and Transfer operate on stages and derive new stages. Merge is binary set-105

formation, Select moves lexical item tokens from the lexical array to the workspace, and Transfer converts106

syntactic objects into interface objects. Merge and Select are rather simple, as shown in (18) and (19).107

Transfer, on the other hand, is more complicated—C&S devote 5 sections of their paper to developing its108

definition—and, quite frankly, irrelevant to our discussion here. I will therefore omit the definition of Transfer109

from this paper110

(18) Given any two distinct syntactic objects A, B, Merge(A,B) = {A,B}.111

(19) Let S be a stage in a derivation S = 〈LA, W〉.112

If lexical token A ∈ LA, then Select(LA, S) = 〈LA – {A}, W∪{A}〉113

Thus, we can define the central notion of derivation in (20)114

2See Collins and Groat (2018) for a survey of the various approaches to capture the Copy/Repetition distinction.

5



(20) A derivation from lexicon L is a finite sequence of stages 〈S1, . . . ,Sn〉, for n ≥ 1,115

where each Si = 〈LAi,Wi〉, such that116

i. For all LI and k such that 〈LI,k〉 ∈ LA1, LI ∈ L,117

ii. W1 = {} (the empty set),118

iii. for all i, such that 1 ≤ i < n, either119

(derive-by-Select) for some A∈LA i , 〈LAi+1,Wi+1〉 = Select(A, 〈LAi,Wi〉), or120

(derive-by-Transfer) . . . , or121

(derive-by-Merge) LAi=LAi+1, and the following conditions hold for some A,B:122

a. A∈Wi123

b. Either A contains B or Wi immediately contains B, and124

c. Wi+1 = (Wi − {A,B}) ∪ {Merge(A,B)}125

C&S’s formalization is open for some refinements, such as those that Chomsky (2020) suggests, and126

extensions, but it provides us with a framework for those refinements and extensions. In order to add Agree127

to the formal grammar, for instance, we would need to define it as a function from stages to stages to be128

added as a derive-by-Agree clause to (20), and in order to define such a function, as we shall see, we will129

need a formal definition of features.130

3 Defining Agree131

Agree can be very broadly described as an operation that modifies a syntactic object X iff X stands in a132

particular formal/structural relation and a particular substantive relation with another syntactic object Y.133

So, in order to define Agree, we must formalize (a) the formal/structural prerequisite—Probe or Search—(b)134

the substantive prerequisite—Match—and (c) the process of modifying the object in question—Value or135

Check—each of which has, in a sense, been the focus of its own debate in the literature. As a starting136

point, I will formalize Long-Distance Downward Valuation Agree (LDDV-Agree), which is more or less the137

version of Agree put forth by Wurmbrand (2014) and which has the following properties. LDDV-Agree is138

long-distance in that it does not require a strictly local relation between the Agreeing objects, rather the139

Probe and Goal, as they are commonly called, stand in a c-command-plus-relativized-minimality relation as140

specified in (21).141

(21) A Probe P and Goal G can Agree iff, P c-commands G, G Matches P, and there is no head H such142

that H Matches P, P c-commands H and H c-commands G.143
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LDDV-Agree is downward in the sense that it modifies the c-commanded Goal, and it is valuation-based in144

the sense that the Goal is modified by converting one of its unvalued feature into a valued one as specified145

in (22) and (23).146

(22) A Goal G Matches a Probe P for feature F iff P has [F:val ] and G has [F: ]147

(23) If P and G Agree for feature F then [F: ] on G becomes [F:val ]148

The first thing we must do, is formalize the notion of “feature” as used here. By (8), there are three sets149

of features in Universal Grammar—PHON-F, SYN-F, SEM-F. Setting aside PHON-F as irrelevant to the150

current paper, our task is to formalize the members of SYN-F and SEM-F. Generally, a given syntactic or151

semantic feature is describable with reference to its interpretability, its type, and its value (or lack thereof).152

Interpretability can be taken care of by simple set membership—interpretable features are members of SEM-153

F, uninterpretable features are members of SYN-F—leaving us with type and value. We can define features,154

then, as in (24).155

(24) A feature is a pair 〈F, v〉, where v is an integer. F is called the feature type, v is the feature value.156

(25) For all feature types F, 〈F, 0〉 is an unvalued F feature.157

(26) For lexical item LI = 〈PHON, SYN, SEM〉, feature Fv is a feature of LI, iff Fv ∈SYN or Fv ∈SEM.158

(27) For lexical item token LIk = 〈LI, k〉, feature Fv is a feature of LIk, iff Fv is a feature of LI.159

The choice to formalize feature values as integers is made only to allow for a perspicuous way of defining160

unvalued features. We could use any type of discrete symbol to represent values, provided he had a special161

symbol for “unvalued.”162

We can define Match as in (28).163

(28) For any two lexical item tokens P, G feature type F,164

Match(P, G, F) = 1 iff for feature value v 6= 0 〈F, v〉 is a feature of P and 〈F, 0〉 is a feature of G.165

Value is essentially a replacement operation—operating on a lexical item token, swapping an unvalued feature166

with a valued counterpart. This is defined in (29).167

(29) For lexical item token LIk=〈〈SEM, SYN, PHON〉, k〉, and feature 〈F, v〉,168

Value(LIk, 〈F, v〉) = 〈〈SEM, (SYN−{〈F, 0}〉)∪{〈F, v〉}, PHON〉 k〉169

The last portion of Agree to be defined is Probe, which is an instance of “Minimal Search” (Chomsky 2004)170

an algorithm that requires some discussion171
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3.1 Minimal Search172

The term Minimal Search, as its usually used in minimalist syntactic theory, refers to an algorithm that173

retrieves the “highest” object in a structure that meets some particular criterion. In the case of Probe, that174

criterion is Match as defined in (28). In order to properly define such an algorithm we must first consider175

some test cases as follows.176

Each case is a complex abstract syntactic object containing two objects—G and H—each of which meets177

the search criterion. Each case is represented both as a binary set as constructed by Merge and a binary178

tree. The first case in (30) is the most straightforward—G asymmetrically c-commands H, so Minimal Search179

retrieves G and not H.180

(30) Case 1: G is retrieved181

a. {X, {G, {Y,H}}}182

b.

X

G

Y H

183

The second case in (31) is slightly more complicated—G does not c-command H, but Minimal Search should184

retrieve G because it is immediately contained in an object that asymmetrically c-commands H.185

(31) Case 2: G is retrieved.186

a. {X, {{G,Y} {{H,Z} ,W}}}187

b.

X

G Y

H Z

W

188

Other cases, though, will give ambiguous results. These are cases in which G and H are equidistant from the189

root. In (32), for instance G and H are siblings, while in (33) they are immediately contained, respectively,190

by siblings.191
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(32) Case 3: Both G and H are retrieved.192

a. {X, {G,H}}193

b.

X

G H

194

(33) Case 4: Both G and H are retrieved.195

a. {X {{G,Y} , {H,Z}}}196

b.

X

G Y H Z

197

Our goal, then, is to construct an algorithm that has the above-defined results. There are two broad classes198

of search algorithms appropriate to our task—Depth-First Search (DFS) and Breadth-First Search (BFS).199

DFS, starts at the root of an object and searches to a terminal node before backtracking, as represented in200

(34), where the arrows and the numbers indicated the search order.201

(34) 1

2 3

4

5 6

7

8 9

202

A DFS algorithm can be made minimal by designing it to stop as soon as it finds a node that meets its203

criterion. So, a Minimal DFS on Case 1 would be proceed as in (35) selecting.204

(35)

X

G

Y H

205
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However in an ambiguous case, like Case 4, a Minimal DFS will incorrectly retrieve just a single object as206

shown in (36).207

(36)

X

G Y H Z

208

A Minimal DFS algorithm, then is over-definite—it gives a definite result where we expect an ambiguous209

one.210

There is also a deeper problem with DFS as applied to syntactic objects, and that is its reliance on linear211

order as well as structure. In the examples above, whenever the algorithm reaches a branching node, it takes212

the left branch first. If it, instead, took the right branch first, the result would be different—in both (35)213

and (36), a right-to-left Minimal DFS would retrieve H rather than G. The problem is made worse by the214

fact that, the structures that we are searching are constructed by Merge and, therefore, do not have a linear215

order. In order for our algorithm to make a decision at a “branch,” then, it would have to be a random216

decision. Therefore, the result of a DFS for a given syntactic object may be different each time it is run.217

Given these issues, I will set aside DFS.218

Breadth-first Search (BFS) algorithms, on the other hand, searches neighbour nodes before proceeding219

lower in the tree as represented in (37), where the arrows and the numbers indicated the search order.220

(37) 1

2 3

5

6 7

4

8 9

221

Again, this can be made minimal by requiring that the algorithm stop immediately upon finding an object222

that matches the search criterion. A Minimal BFS on Case 2, then, is represented in (38).223
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(38)

X

G Y

H Z

W

224

Like the Minimal DFS, the Minimal BFS, as represented in (37) and (38) assumes that nodes are linearly225

ordered, even if that order is arbitrary. Unlike the Minimal DFS, the order of the neighbour nodes does not226

matter, at least for definite cases like Case 1 and Case 2. To demonstrate this, consider the reverse version227

of (38) in (39).228

(39)

X

G Y

H Z

W

229

In an ambiguous case, though, Minimal BFS suffers the same fate as Minimal DFS—it is over-definite. So,230

in Case 3, Minimal BFS will wrongly retrieve either G or H depending on the ordering of nodes, as shown231

in (40) and (41).232

(40)

X

G H

233

(41)

X

G H

234

This flaw, however, can be overcome if, instead of traversing each node, we treat the sets of neighbour nodes235

as tiers, as in (42).236
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(42) 1

2 2

3

4 4

3

4 4

237

Minimal Tiered BFS, then, would visit each tier and extract the subset of that tier whose members all238

matched the search criterion, and stop as soon at it extracts a non-null subset. Thus we can define a definite239

search result as in (43), an ambiguous search result as in (44), and a failed search as in (45).240

(43) For a syntactic object SO and criterion P, Search(SO,P) is definite iff |Search(SO,P)|=1241

(44) For a syntactic object SO and criterion P, Search(SO,P) is ambiguous iff |Search(SO,P)| > 1242

(45) For a syntactic object SO and criterion P, Search(SO,P) is failed iff Search(SO,P)= {}243

Minimal Tiered BFS, then, will be our choice of Search algorithm. The next step is to formally define it.244

In order to define Search, then, we need to be able to properly generate search tiers. So, for instance,245

the tiers for (31) are given in (46)246

(46) Tier 1 = {X, {{G,Y} , {{H,Z} ,W}}}247

Tier 2 =

{G,Y} ,{{H,Z} ,W}

248

Tier 3 =


G,Y,

{H,Z} ,

W

249

Tier 4 = {H,Z}250

Tier 5 ={}251

For a given Tier Ti, we can generate Ti+1 by first removing all the terminal nodes from Ti and performing252

what is called an arbitrary union which is defined in (47).253

(47) For a set X={x0, . . . , xn} the arbitrary union of X,
⋃

X=x0 ∪ · · · ∪ xn.254

Therefore we can define a procedure NextTier in (48) and with it, Search in (49).255

(48) For T, a set of syntactic objects, NextTier(T)=
⋃
{SO∈T: SO is not a lexical item token}.256
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(49) For S, a set of syntactic objects, and Crit, a predicate of lexical item tokens,257

Search(S,Crit) =


{} if S = {}

{SO ∈ S : Crit(SO) = 1} if {SO ∈ S : Crit(SO) = 1} 6= {}

Search(NextTier(S), Crit) otherwise

258

Probe, then is a special type of Search, where the search criterion is based on Match, is shown in (50).259

(50) For F, a feature type, and SO, a syntactic object that immediately contains P, a lexical item token,260

Probe(SO,P,F) = Search(SO, (λx) (Match(P, x, F)))261

With our definition of Probe in place, we can turn to our final definition of Agree which I turn to shortly in262

section 3.2.263

3.1.1 The appeal of DFS and attempts to rescue it264

Although DFS is emprically/descriptively inadequate—given the theoretical assumptions of this paper—it265

retains a certain theoretical and aesthetic appeal. This appeal may come from the fact that it can be given266

a simple recursive definition using only the primitive concepts such as set-membership. In contrast, BFS267

as defined in (49) requires the definition of the ad hoc notion of a tier, which I have implicitly defined in268

(48) using an arbitrary union—a function whose computational definition is likely more complex than the269 ⋃
symbol lets on.270

It’s no surprise, then, that Branan and Erlewine (forthcoming) and Preminger (2019) do not embrace271

BFS as a minimal search algorithm, with Preminger defining a version of DFS and Branan and Erlewine272

making no firm decision between the two options. This is not to say that the authors are not aware of the273

problems of DFS that I outline above.3 On the contrary, Branan and Erlewine explicitly addresses these274

issues and they and Preminger both argue that the weaknesses of DFS can be avoided if certain parts of275

a structure are inaccessible to Search, however neither provide a principled way of so restricting the DFS276

algorithim—at least, not given the theretical assumptions of the current paper. Preminger proposes that277

specifiers are not searched, while Branan and Erlewine suggest that left-branches might not be searched.278

Both of these proposals, though, depend on an assumption that syntactic objects produced by Merge are279

inherently asymmetric, while the present paper assumes the exact oppposite.280

It would be a mistake, though, to declare DFS fully discredited on the basis these arguments. The281

theoretical and aesthetic appeal that I describe above must be answered and the hypotheses that Branan282

and Erlewine and Preminger put forth to rescue it have empirical backing. What is needed, though, is a283

principled theory that predicts rather than declares, for example, that the internal structure of a specifier284

3cf Ke (2019, pp. 47–49) for a different expression of these problems.
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is inacceible to minimal search. Since I know of no such theory, I will assume that DFS is inadequate as a285

model of minimal search.286

3.2 A formal definition of Agree287

If and when an instance of Probe retrieves a goal, that goal must be modified—at least according to most288

versions of Agree.4 More precisely, the Goal must be modified in place. That is, if goal G is in position Q289

in stage Si, then the modified goal G′ must be in position Q in stage Si+1. Furthermore, if copies of G are290

in multiple positions (Q, Q′, Q′′. . . ) in Si, then copies of G′ must be in those same positions in Si+1. In291

order to do this we must traverse the syntactic object in question and replace every instance of G with G′,292

the result of Value Thus we can define Agree as in (51).293

(51) For lexical item P, syntactic object SO={P, . . . }, and feature type F, and lexical-item G, the sole294

member of Probe(SO,P,F),295

Agree(SO, P, Fv) =


Value(SO,〈F, v〉)if SO=G

SO if SO is a lexical item token

Merge(Agree(A, P, Fv),Agree(B, P, Fv)) for A,B ∈ SO such that A 6= B

296

As defined, Agree is a non-minimal DFS—it has no notion of tiers, only differentiating lexical item tokens297

from complex syntactic objects. While minimalist considerations might suggest that a single search algorithm298

be selected for the grammar, DFS is ill-suited for Probe, as discussed above, and DFS is ill-suited for Agree.299

The reason we cannot use DFS for Agree, is because Agree must retain the structure of its inputs—it needs300

to put things back where it found them—something that DFS cannot do. Consider, for instance, Tier 3 in301

(46)—a 4-member set which could be reconstructed into a proper syntactic object a number of ways. Thus,302

we need both DFS and BFS to be active in the grammar.303

We have arrived at a formal definition of one variety of Agree (LDDV-Agree) which we will use in the304

the following section as a basis for defining other varieties,305

3.3 Upward Valuation306

In defining a Downward Valuation Agree, we considered syntactic objects such as the one schematized in307

(52) which immediately contain lexical item tokens bearing a valued feature Fv and which contain a lexical308

item token bearing an unvalued feature F0.309

(52) {PF:v, {. . .GF:0}}310

4If we wished to define Agree purely as a relation—i.e. an n-place predicate (n>1)—we could simply define it as Agree?(P,
G, F) iff Probe(P, F) = G.
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In an Upward Valuation, the relevant features of P and G are swapped, as in (53).311

(53) {PF:0, {. . .GF:v}}312

In order to capture Upward Valuation, then we need first modify the Match criterion of Probe as in (54),313

moving P to the second argument position.314

(54) For F, a feature type, and SO, a syntactic object that immediately contains P, a lexical item token,315

ProbeUV(SO, P, F) = Search(SO, (λx) (Match(x, P, F))).316

Thus, ProbeUV gives a definite result {G} only if P contains an unvalued F feature and G contains a valued317

F feature. Since, by definition, the relevant unvalued feature in AgreeUV is at the top of the structure,318

we might think that no exhaustive DFS is required. Unfortunately, though, the same concern with valuing319

copies is with us—just because a lexical item token is at the top of a tree doesn’t mean there isn’t a copy of320

it at the bottom. Therefore, our definition of AgreeUV in (55) look similar to that in (51).321

(55) For lexical item P, syntactic object SO={P, . . . }, and feature type F, and lexical-item G, the sole322

member of ProbeUV(P,F) and v the value of the F feature on G,323

AgreeUV(SO, P, Fv) =


Value(SO,〈F, v〉)if SO=P

SO if SO is a lexical item token

Merge(AgreeUV(A, P, Fv),AgreeUV(B, P, Fv)) for A,B ∈ SO such that A 6= B

324

3.4 Feature Checking325

Versions of Agree that causes feature checking rather than valuation assume that all formal features—i.e.,326

members of SYN-F—are valued, but must be checked by Agree. In order to formalize such a feature checking327

operation, AgreeX, we must reformulate our notion of features and our Match predicate, and replace Value328

with Check. Formal features and their related notions, then, are defined as in (56) and (57), with semantic329

features retaining their definition in (24).330

(56) A formal feature is a triple 〈c?, F, v〉, where c? is 1 or 0 and v is an integer. F is called the feature331

type, v is the feature value.332

(57) For all feature types F and values v, 〈 0, F, v〉 is an unchecked Fv feature, and 〈 1, F, v〉 is checked333

Fv feature.334

MatchX, then, compares a semantic feature of one lexical item token with a formal feature of another335

succeeding if both features have the same type and value and the formal feature is unchecked, as defined in336

(58)337
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(58) For any two lexical item tokens P, G feature type F and value v,338

MatchX(P, G, F) = 1 iff 〈F, v〉 is a feature of P and 〈0, F, v〉 is a feature of G.339

Finally, Check is a simple matter of flipping a 0 to a 1 as in (59).340

(59) For a formal feature Fv=〈c?, F, v〉,341

Check(Fv) = 〈1, F, v〉.342

These newly defined functions can be slotted into our formalized definitions of Agree, perhaps with a few343

other alterations, which I leave as an exercise for the interested reader.344

3.5 Local Agree345

Early minimalist theories of agreement (e.g Chomsky 1993) continued the GB assumption that agreement346

was limited to a spec-head relation. So, for example, subject-predicate agreement was assumed to occur347

because the subject moves to the specifier of the predicate head (T or I), in contrast to later theories in348

which subjects move because they agree. Similarly, Case licensing, in these theories, is usually taken to occur349

under a spec-head relation. In this section, I will formalize this conception of Agree.350

On its surface, Local Agree, as described above, has the advantage of not requiring an arbitrary search of351

the entire derived expression. Instead, the search is strictly ans specifically limited to the very top of object.352

The canonical case of spec-head agreement is the finite subject merged with the finite predicate, shown in353

(60)354

(60) TP = {{D, . . . }, {T, . . . }}355

Restricting our discussion to Case, we can see that the Agree operation is an interaction between the lexical356

item token immediately contained in one member of TP and the lexical item token contained in the other357

member of TP. We can define ProbeLocal, then, as in (61).358

(61) For feature type F, lexical item tokens P and G, and syntactic object SO={X, Y},359

ProbeLocal(SO, P, F) =


G if P ∈ X,G ∈ Y, and Match(P, G, F)

undefined otherwise

360

Since spec-head structures, especially those associated with Case and agreement, are often formed by Internal361

Merge, our final version of AgreeLocal, much like long-distance Agree, will need to replace every instance of362

the object being valued/checked. Therefore, our final version of AgreeLocal, like our baseline Agree in (51),363

will be recursively defined—the main difference between the two will be their respective Probe prerequisites.364

Other changes must be made to Agree though. Recall, for instance, that, in order to account for am-365

biguous searches, Search was defined in (49) such that its output was a set of lexical item tokens, and Agree366
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was defined in (51) so that it only proceeds when the output of Probe—a species of Search—is a singleton367

set. ProbeLocal does not have to account for ambiguous searches—either the appropriate G is the head of368

the specifier of P, or it isn’t. Therefore, the Probe prerequisite of AgreeLocal must be rewritten. This is a369

relatively minor rewrite, but a rewrite nonetheless.370

3.6 Summary371

I this section, I provided a formal definition of one particular conception of Agree—Long-Distance Downward372

Valuation Agree—by first breaking it into individual pieces—Probe, Match, Value—which I gave formal373

definitions, and then assembling those definitions in such a way as they define Agree. I then discussed a few374

alternative conceptions of Agree, showing how they could be defined by altering the previous definitions as375

minimally as possible. This description of the definition process might suggest that Agree is modular—that376

it consists of several independent operations that can be mixed and matched—but this is not the case.377

Rather, while the discussion of each alternative tended to focus on a single operation, the changes to that378

operation was such that it necessitated minor modifications to Agree as a whole. Agree, then, does seem to379

be real operation, albeit a rather complex one, as I will demonstrate in the next section.380

4 UGAgree381

With the Agree operation properly formalized, we can give a definition of UGAgree in (62) and derivation in382

(63).383

(62) Universal Grammar is a 7-tuple: 〈PHON-F, SYN-F, SEM-F, Select, Merge, Transfer, Agree〉384

(63) A derivation from lexicon L is a finite sequence of stages 〈S1, . . . ,Sn〉, for n ≥ 1,385

where each Si = 〈LAi,Wi〉, such that386

i. For all LI and k such that 〈LI,k〉 ∈ LA1, LI ∈ L,387

ii. W1 = {} (the empty set),388

iii. for all i, such that 1 ≤ i < n, either389

(derive-by-Select) for some A∈LA i , 〈LAi+1,Wi+1〉 = Select(A, 〈LAi,Wi〉), or390

(derive-by-Transfer) . . . ,391

(derive-by-Merge) LAi=LAi+1, and the following conditions hold for some A,B:392

a. A∈Wi393

b. Either A contains B or Wi immediately contains B, and394

c. Wi+1 = (Wi − {A,B}) ∪ {Merge(A,B)}395
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(derive-by-Agree) or LAi=LAi+1 and the following conditions hold for some SO, P, G and F:396

a. SO∈Wi397

b. SO immediately contains P398

c. Probe(SO,P,F) = {G}399

d. Wi+1 = (Wi − {SO}) ∪ {Agree(SO,P,G,F)}400

This definition of a derivation uses the names of its procedures, but in the case of Merge and Select, one could401

just as easily expand them to give there full definition in intension. Agree is ultimately defined recursively,402

as is its prerequisite Probe, so such an expansion is not possible. This is a crucial difference between Agree403

and the other generative operations While we could conceivably rank Select, Internal-, and External-Merge404

by complexity, such a ranking would be one of degree. Agree, however, with its recursive definition is a405

different kind of operation. Interestingly, C&S also define Transfer recursively. It follows then that Transfer406

should also be considered a different kind to operation—a conclusion also predicted by the fact that Transfer407

is generally considered an operation of the interfaces rather than Narrow Syntax.408

Beyond its recursive definition, there are a number of properties that set Agree apart from its fellow409

operations. First, since performing Agree on a syntactic object entails searching the object, modifying certain410

constituents, and putting the object back together, Agree entails Merge. This is reflected in definitions (51)411

and (55) and concurs with Hornstein (2009, pp. 126–154) who notes that the minimal c-command relation412

required by Agree (Specifically non-local Agree, or AGREE in his terminology) is exactly the same as the413

one that is assumed to hold in all cases of Internal-Merge (which he calls “Move”). Hornstein’s critique, that414

Agree and Internal-Merge are redundant, is actually complementary to the fact that Agree as defined entails415

Merge. The former suggests that either Agree or Internal Merge should be eliminated, while the latter rules416

out eliminating Internal-Merge.417

Agree being dependent on Merge also raises a biolinguistic critique. Chomsky (2020, and elsewhere)418

proposes the following evolutionary narrative of the language faculty. The faculty of language (i.e., Merge)419

evolved quite suddenly 40 000–50 000 years ago in humans as a purely internal instrument of thought. It420

was only later, after humans began migrating out of Africa, that externalized language emerged (Huybregts421

2017). This narrative explains the fact that much, perhaps most, of our use of language is strictly internal422

to our individual minds—that language is independent of externalization. Or, put another way, this story423

of the evolution of the language faculty correctly predicts that the set of externalized—i.e., spoken, signed,424

written—linguistic objects (LOs) is a subset of the set of linguistic objects as in figure 1. The fact that Agree425

entails Merge suggests either that it emerged as part of externalization—which I address later—or it emerged426

separately from both Merge and Externalization. The latter option includes two suboptions—either Agree427
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Linguistic Objects

Externalized
Linguistic Objects

Figure 1: The relation between LOs and externalized LOs

emerged as an augmentation to Merge and Externalization emerged as an augmentation to Merge+Agree, or428

Agree and Externalization emerged as separate augmentations to Merge. The former option would predict429

that the set of Agreeing LOs is a subset of the set of LOs and a superset of the set of externalized LOs, as430

shown in figure 2. The latter option would predict that the set of Agreeing LOs and the set of Externalized

Linguistic Objects

Agreeing
Linguistic Objects

Externalized
Linguistic Objects

Figure 2: A possible relation between LOs, Agreeing LOs and externalized LOs

431

LOs are each a subset of the set of LOs, though neither is a subset of the other, as shown in figure 3. Note

Linguistic Objects

Agreeing
Linguistic Objects

Externalized
Linguistic Objects

Figure 3: A possible relation between LOs, Agreeing LOs and externalized LOs

432

that the overlap between Agreeing LOs and Externalized LOs is not theoretically or logically guaranteed,433

but rather is an empirical fact. Each of these options predicts that non-external LOs can be divided into434

Agreeing and non-Agreeing LOs, while the latter further predicts that external LOs show the same division.435

These are, in principle, empirical predictions albeit not yet practically so, as it is not clear what non-Agreeing436

LOs, either internal or externalized, look like in this context.437

19



4.1 The Non-Closure of Agree438

Since a computational procedure is essentially the repeated application of an operation, or set of operations,439

with each application providing the input for the following application, the domain of a given computational440

operation must be closed under that operation. In the case of our syntactic derivations, our domain is the441

set of stages, which C&S demonstrate are closed under derive-by-Select and derive-by-Merge. I have thus442

far been assuming that it is also closed under derive-by-Agree, but that assumption is perhaps not strictly443

true, under our present definitions.444

As defined, derive-by-Agree is a function from stages to stages that modifies a stage’s workspace, by445

performing Agree on a syntactic object in that workspace. Therefore, the set of stages is closed under446

derive-by-Agree iff the set of syntactic objects is closed under Agree. For it’s part, Agree operates on a given447

syntactic object SO by applying Value to SO if SO is an appropriate lexical item token, or to the appropriate448

lexical item tokens contained in SO otherwise. Therefore the set of syntactic objects is closed under Agree449

iff the set of lexical item tokens is closed under Value. We need only consider a simple instance of Value to450

see that this is not the case.451

Consider the lexical item token Xk, defined in (64), which has only one syntactic feature, [F:0].452

(64) Xk = 〈〈PHONX, {〈F, 0〉}, SEMX〉, k〉453

where PHONX∈PHON-F*, SEMX⊂SEM-F, k is an integer, and 〈F, 0〉 ∈SYN-F.454

What about the result of applying Value to Xk, given in (65)?455

(65) Value(Xk, 〈F, v〉) = 〈〈PHONX, {〈F, v〉}, SEMX〉, k〉456

where v is a non-zero integer.457

Since PHONX, SEMX, and k are unchanged, the new object is a lexical item token iff 〈F, v〉 ∈SYN-F. That458

is, the set of lexical item tokens is closed under Value only if the universal set of syntactic features in UGAgree459

contains both valued and unvalued features. However, if we hypothesize that SYN-F contains valued and460

unvalued features, we are faced with something of a theoretical quandary In this system, language acquisition461

is a process of constructing lexical items from universal feature sets so that they match tokens in the primary462

linguistic data. The basic premise of Agree theory, though, is that a unvalued features cannot surface. If463

this is the case, then there are no tokens of unvalued features in the primary linguistic data. Why, then,464

would a language acquirer ever construct a lexical item with an unvalued feature?465

To take a concrete case, consider the English third person singular present agreement morpheme -s.466

Taking for granted that an English acquirer can give a proper phonological and semantic analysis of the467

morpheme, there are two possible lexical items they could construct, given in (66) and (67).468
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Closed
under
Merge

Closed
under
Select

Closed
under
Agree

Syntactic Objects Yes Yes No
Valued Syntactic Objects Yes Yes No

Syntactic Objects
∪

Valued Syntactic Objects

Yes Yes Yes

Table 1: The closure properties of Merge, Select, and Agree

(66) 〈[z], {〈π, 3〉, 〈#, 1〉}, {〈T, 1〉}〉469

(67) 〈[z], {〈π, 0〉, 〈#, 0〉}, {〈T, 1〉}〉470

The lexical item in (66), would be the result of a surface analysis of the data, while the one in (67) would471

require a deeper analysis. So, in order to predict the acquisition of (67), we would need a theory of acquisition472

that systematically does not match lexical items to surface phenomena.473

Supposing on the contrary, that we bite the bullet and allow for valued lexical items to be acquired,474

even if we stipulate that unvalued lexical items are also acquired, economy considerations would suggest475

that those unvalued lexical items would never be used. In such a situation, every complex expression of476

a language would be derivable in at least two ways—one that begins with a lexical array containing only477

unvalued lexical item tokens and one that begins with a lexical array containing only valued lexical item478

tokens.5 Each derivation will have the same number of Merge steps and Select steps but the fist derivation479

will also have Agree steps, while the second will have no Agree steps. Thus, for any expression of a language,480

the second type of derivation will always have fewer steps than the first. So paradoxically, expanding our481

universal feature sets to allow for Agree in this way, effectively rules out Agree.482

To get out of this paradox, we could simply expand the domain of Merge, Select, and Agree to encompass483

the union of the set of lexical items and the set of valued lexical items. This would fix the problem in an484

engineering sense—we would be able to derive expressions in our formalism—but it would only serve to485

formalize the theoretical concerns that I have been addressing. It would do so because it highlights the fact486

that UG with only Merge and Select is a fully self-consistent system whose domain must be augmented to487

accommodate Agree. This situation, which can be seen in table 1, is hardly surprising considering the very488

nature of the operations—Merge combines objects without changing them, Select rearranges objects without489

changing them, Agree changes objects.490

5Setting aside the possibility of lexical items without syntactic features.
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4.2 Agree as a prerequisite for Merge491

Early in the minimalist program, Chomsky (2000) proposed that Agree was a prerequisite for Move—that492

Move was a reflex of Agree. Merge—what we now call External Merge—on the other hand, was free to apply493

without Agree. Once Internal Merge was discovered, though, theorist were faced with a dilemma—if Merge494

and Move were truly a single operation, they couldn’t very well have different prerequisites. There are two495

ways out of this dilemma—either all instances of Merge are free, or all instances of Merge require Agree.6496

Since C&S’s formalization and my extension of it assume that all operations, except perhaps Transfer, are497

free, I will not discuss the former way out of the dilemma. Rather, in this section, I will discuss the barriers498

to modifying the formal grammar to make Agree a prerequisite for Merge.499

The principle barrier to making Agree a prerequisite for Merge is that, as defined in (63), the derivation500

is a computational procedure and, therefore, is strictly incremental. That is, the validity of a given stage501

Sn (n6=1) depends solely on its form and the form of the immediately preceding stage Sn-1. Requiring every502

instance of Merge to be preceded by an instance of Agree, however, would mean that the validity of a stage503

Sn (n6=1) depends on its two preceding stages Sn-1 and Sn-2. A derivation, then, would need memory, albeit504

a very small amount of it.505

On its face, this does not seem to be an insurmountable barrier, but as we shall see, it will end up ruling506

out the first instance of Merge in any derivation. To begin with, we reformulate our definition of derivation507

by adding a line in our derive-by-Merge clause in (68).508

(68) A derivation from lexicon L is a finite sequence of stages 〈S1, . . . ,Sn〉, for n ≥ 1,509

where each Si = 〈LAi,Wi〉, such that510

i. For all LI and k such that 〈LI,k〉 ∈ LA1, LI ∈ L,511

ii. W1 = {} (the empty set),512

iii. for all i, such that 1 ≤ i < n, either513

(derive-by-Select) for some A∈LAi , 〈LAi+1,Wi+1〉 = Select(A, 〈LAi,Wi〉), or514

(derive-by-Transfer) . . . ,515

(derive-by-Merge) LAi=LAi+1, and the following conditions hold for some A,B:516

a. A∈Wi517

b. Either A contains B or Wi immediately contains B,518

c. 〈Wi, LAi〉 is derived by Agree from 〈Wi−1, LAi−1〉, and519

d. Wi+1 = (Wi − {A,B}) ∪ {Merge(A,B)}520

6Wurmbrand (2014) contains the most explicit argument in favour of the latter stance, but see Boeckx (2010) for a broader
discussion of the schism.
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(derive-by-Agree) or LAi=LAi+1 and the following conditions hold for some SO, P, G and F:521

a. SO∈Wi522

b. SO immediately contains P523

c. Probe(SO,P,F) = {G}524

d. Wi+1 = (Wi − {SO}) ∪ {Agree(SO,P,G,F)}525

Now, lets consider an abstract subderivation of the syntactic object {X, Y} where X and Y are lexical item526

tokens. We start in S1, given in (69) with an empty workspace and a lexical array containing at least X and527

Y.528

(69)
S1 = 〈W1,LA1〉

= 〈{} , {X, Y, Z . . . }〉
529

Next we perform Select twice, to bring X and Y into the workspace.530

(70)
S2 = Select(X,S1)

= 〈{X} , {Y, Z . . . }〉
531

(71)
S3 = Select(Y,S2)

= 〈{X, Y} , {Z . . . }〉
532

Under a free Merge grammar, we would, at this point simply Merge X and Y, but this option is not available533

to us, since derive-by-Merge in (68) requires an Agree step. A Select step is possible here, but that would534

only postpone our dilemma. We need to perform Agree next.535

Assuming that X could value Y for feature F—i.e., Match(X, Y, F) = 1—let’s consider the structural536

prerequisites. As stated in (68), X and Y must be contained in the same syntactic object SO, which, in turn,537

must be a member of the workspace. In S3, however, both X and Y are members of the workspace, and538

there is no SO to speak of. No stage S4, then, can be derived by Agree.539

We’ve arrived then at an instance of circularity—every instance of Merge requires a preceding instance of540

Agree, and every instance of Agree requires a preceding instance of Merge. First Merge, then, is impossible541

if the definition of a derivation in (68) holds.542

This is not to say that tying Agree to Merge in some way will always be a dead-end. On the contrary,543

one of for instance Hornstein’s (2009) critiques of long-distance Agree is that it ties Agree to loosely to544

Merge. Merge creates the structural conditions for Agree—a point which Local Agree more or less explicitly545

acknowledges. This leads one to wonder why we consider Merge and Agree to be distinct operations—why546

Agree is not treated as a reflex of Merge The obvious response to this is that there do seem to be instances547

of long-distance agreement that do not involve movement. This objection, however, only holds if we rule548
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out the covert movement hypothesis, which that, though it has fallen out of fashion, faces fewer theoretical549

hurdles than long-distance Agree in my opinion.7550

4.3 Computational Complexity551

With our definitions of the derivation in (20) and (63) we can give a quantitative estimate of the com-552

putational complexity of a given derivation, and with that, a measure of the complexity of the grammars553

overall. As is common in computer science, we will use time-complexity as a proxy. The time complexity554

of an algorithm is a measurement of how the run-time an algorithm—the length of time it takes to run the555

algorithm—increases relative to the size of its input.556

To assess time complexity we must first identify the primitive operation(s) of an algorithm, which we557

assign a runtime of 1, and the primitive unit of data, which we assign a size of 1. In our derivations the558

primitive operations are Merge and Select as neither is defined in terms of the other, while Agree is defined559

in terms of Merge. Each instance of Merge or Select, then, will incur a time cost of 1—the time cost of Agree560

will be calculated below, and that of Transfer will be ignored. The input size will be a measure of the size561

of the derived syntactic object which will have two components—the number of lexical item tokens L, and562

the number of syntactic objects J. The two numbers are related only insofar as they limit each other (L≤J).563

In practice, though, we will care less about J than the number of derived syntactic objects M=J-L. So, the564

objects in (72) all have different L,J, and M values565

(72) a. A (L=1,J=1,M=0)566

b. {A, B} (L=2,J=3,M=1)567

c. {A, {A, B}} (L=2,J=4,M=2)568

d. {B, {B, {A, B}}} (L=2,J=5,M=3)569

e. {C, {B, {A, B}}} (L=3,J=6,M=3)570

Before we assess UGAgree, though, we will consider plain UG to see how we would calculate the run-time571

of a given derivation. So, for a derivation D, the run-time R will be the sum of µ—the number Merge572

operations performed in D—and σ—the number of Select operations performed in D.573

(73) RD = µ+ σ for UG574

In order to calculate µ and σ, we step through each stage Sn of D, keeping a running tally of each operation.575

7Strictly speaking, covert A-movement has fallen into disuse. Covert Ā-movement operations, like Quantifier raising, and
covert Wh-movement in wh-in-situ languages, are still considered respectable hypotheses.
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(74) µSn
=


0 if n=1

µn−1 + 1 if Snis derived by Merge

µn−1 otherwise

576

(75) σSn
=


0 if n=1

σn−1 + 1 if Snis derived by Select

σn−1 otherwise

577

Since each Select operation in a derivation is associated with a distinct lexical item token, σ for that derivation578

will equal L for the derived object. Similarly, each Merge operation in a derivation creates a distinct new579

syntactic object, so the µ for for that derivation will equal M for the derived object. Therefore, under UG,580

the runtime of the derivation for a syntactic object will be J for that object. So, if we take J to be our581

measure of the input size for a derivation, we can see that UG derivations run in what is called linear time.582

In order to assess UGAgree we need a way to measure the run-time of Agree. For simplicity’s sake, I583

will not consider the run-times of Value, Match, or Probe, or rather, I will take them to be zero. So, this584

simplified Agree, when applied to a lexical item token, returns that token, and when applied to a derived585

object, recursively performs Agree on the members of the object and Merges the results. When applied to586

an object X then, Agree runs a Merge operation for each derived syntactic object in X.587

We can define our running tally for Agree in (76) with the final calculation of run-time in (77)588

(76) αSn
=


0 if n=1

αn−1 + µn−1 if Snis derived by Merge

αn−1 otherwise

589

(77)590

(78) RD = µ+ σ + α for UGAgree591

Since UGAgree does not specify when Agree applies, it allows for derivations where Agree does not apply at592

all. These cases will run in linear time, and will be our lower bound for time complexity. As our upper-593

bound, consider the cases in which every instance of Merge is followed immediately by an instance of Agree.594

Since µ determines the rate of increase for α and µ increases linearly during the course of the, α will increase595

quadratically, and therefore, R will increase quadratically relative to the number of stages. The run-time of596

such a derivation is demonstrated in figure 4. Since the number of stages here is proportional to the size of597

the derived object, the time-complexity of this type of derivation is also quadratic.8598

8More precisely, the run-time of this type of derivation as a function of object size is resembles the triangular number series
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Figure 4: The run-time of a derivation in UGAgree following a Select-Merge-Agree cycle

Of course, the Select-Merge-Agree cycle that this assumes is not a realistic characterization of an actual599

syntactic derivation for a number of reasons. For one, it represents a derivation with only External Merge,600

while the overwhelming evidence suggests that actual expressions are always derived with a mix of internal601

and external. Also, it is likely not the case that every instance of Merge is followed by an instance of602

Agree. For example, cyclic movement through non-licensing positions could be argued to involve Merge but603

not Agree. Even including all of these caveats, the facts that the run-time of a single instance of Agree604

is proportional to the size of the object it operates on and that the size of that object steadily increases605

throughout any derivation mean that no derivation which includes more than one non-consecutive instance606

of Agree will operate in linear-time.607

4.4 Agree and the NTC608

One of the theorems of C&S’s formal grammar is the No Tampering Condition defined by Chomsky (2007,609

p. 8) as follows: “Suppose X and Y are merged. Evidently,efficient computation will leave X and Y unchanged610

(the No-Tampering Condition NTC). We therefore assume that NTC holds unless empirical evidence requires611

a departure from [the strong minimalist thesis] in this regard, hence increasing the complexity of UG.” C&S’s612

formulation of NTC, which they prove as a theorem of UG, is given in (79).613

(79) For any two consecutive stages in a derivation S1 = 〈LA1, W1〉 and S2 = 〈LA2, W2〉,614

for all A contained in W1 , A is contained in W2.615

(1).

(1)

n∑
i=0

i(i + 1)

2
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Since the effect of every form of Agree defined in this paper is to replace all instances of some lexical item616

token G in a workspace with a distinct item G’, Agree violates NTC by design. The increased computational617

complexity of UGAgree discussed above, then, is predicted by Chomsky’s conjecture that the NTC is linked618

to computational efficiency. There are essentially two ways of dealing with this result—either we take the619

approach that C&S take with Transfer and modify Agree so that it does not violate NTC, or we argue that620

“empirical evidence requires a departure from” NTC. I will discuss each of these options in turn below.621

4.4.1 NTC-Respecting Agree622

A straightforward way of constructing an Agree operation that respects the NTC is to formally separate the623

content of a derived expression from its structure in some way with Merge manipulating the structure and624

Agree manipulating the content. A stage of the derivation, then would consist of a lexical array, a workspace,625

and ledger as in the definition in (80)626

(80) A stage is a triple S = 〈LA, W, L〉, where LA is a lexical array, W is a set of syntactic objects, and627

L is a set of pairs of lexical item tokens. We call W the workspace of S and L the ledger of S.628

Rather than modifying lexical item tokens in place, Agree would add a pair 〈LIk, LI′k〉, where LIk is a lexical629

item token contained in the workspace and LI′k is the result of Valuing LIk for some feature. The ledger,630

then, postpones the tampering of Agree, either until Transfer, or until the SM and/or the CI system and631

thereby rescues the NTC.632

This sort of move also fixes a number of issues already discussed regarding Agree. A version of agree633

that respects NTC does not alter the workspace—it merely constructs an ordered pair and adds it to the634

ledger. It does not take apart and put back together an already constructed syntactic object, as standard635

Agree as defined in (51) does. Therefore it does not need to be recursively defined, and it does not need to636

refer to Merge in its definition. As a result, it does not carry the same time-costs as standard Agree.637

This improvement aside, however, it also lays bare the fact that Agree as a syntactic-derivational operation638

is fundamentally redundant. The prerequisites for Agree are a structural relation (Search) and content639

relation (Match) between two lexical item tokens. So, suppose P and G are lexical item tokens and, for some640

feature F, Match(P,G,F)=1. Further suppose that stage Sn in derivation D is derived by Merge(P, X), where641

X contains G and no lexical item token H, such that Match(P,H,F)=1. At this point, our prerequisites642

are met and we can perform Agree, but supposing instead we derive stages Sn+1 and Sn+2 by Selecting643

and Merging another lexical item token. By the NTC, the object {P, X} is contained in the root object of644

Sn+2, and therefore all of the structural and content relations that held at Sn still hold at Sn+2 including645
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the prerequisites for P to Agree with G for F.9 By extension, we can continue to postpone Agree at least646

until the next instance of Transfer without losing the prerequisites for Agree. It seems, then, that, while we647

can certainly define Agree so that it respects NTC, if we have NTC, we don’t need Agree as a derivational648

operation.649

4.4.2 Agree instead of the NTC?650

Even as stated by Chomsky (2007), the NTC is not an absolute law akin, say, to the law of non-contradiction.651

Rather, he proposes that we assume the NTC “unless empirical evidence requires a departure from [the strong652

minimalist thesis] in this regard.” In one sense, this is a very low bar, since NTC is a universal statement,653

which only requires a single counterexample to invalidate. In practice though, it is far from obvious what654

sort of evidence would count as counterexample.655

The relative ubiquity of morphological agreement, for instance, might seem to be the sort of evidence we656

need, but it is not sufficient to invalidate NTC. Consider, as a parallel, linear order. It is a plain fact that657

external linguistic expressions have linear order, yet that linear order is still assumed to be absent in the658

grammar—at least in standard Merge-based grammars. Yet, as Chomsky (2020) citing McCawley (1968)659

points out, adverbs like respectively, which depend on linear order for their interpretation, provide evidence660

that conjunction structures have inherent linear order.661

(81) Beth and Sara met Hanako and Máire respectively.662

a. = Beth met Hanako and Sara met Máire.663

b. 6= Beth met Máire and Sara met Hanako.664

What we need, then, is evidence that standard Agree is occurring in a derivation interspersed with665

Merge. Preminger (2014) argues that we have exactly such evidence in the interrelation of morphological666

case, ϕ-agreement, and subject position. The form of the argument is given in (82)667

(82) a. Morphological case feeds ϕ-agreement in quirky-subject languages.668

b. Φ-agreement feeds movement to canonical subject in non-quirky-subject languages.669

c. The functioning of the grammar is uniform across languages (The Uniformity Principle).670

d. Therefore, morphological case and ϕ-agreement precede movement to subject.671

e. Therefore, morphological case and ϕ-agreement are part of the narrow syntax.672

The argument is logically sound, but it depends on an analysis of the evidence that is plausible, but not673

the only possible analysis. That is, it depends of the truth of the first two premises, which are empirical674

9See theorems 2 and 3 in Collins and Stabler (2016).
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statements. Despite being empirical statements, though, they depend on two theoretical notions—“quirky675

subjects” and “canonical subject position”—to even be coherent. I will take for granted that the term676

“quirky subject” is coherent, and focus on “canonical subject position.”10677

One property of canonical subject position that Preminger is clear about is that it is syntactic—he678

says of movement to canonical subject position that it is “clearly syntactic (since it creates new binding679

configurations, for example)” (p177) and that it “is a syntactic process par excellence” (p184). We further680

know, based on the second premise of (82), which Preminger claims as an empirical result, that canonical681

subjects in non-quirky-subject languages should always trigger ϕ-agreement. Since this latter requirement is682

an empirical claim, though, it should not be too directly tied to our definition lest our reasoning be circular.683

We can construct our definition by applying these two desiderata to some representative data.684

Our representative data is given in (83), where the underlined subexpression is could be or has been685

considered a subject in English.686

(83) a. The city is bustling.687

b. There seem to be unicorns in my house.688

c. The dog running down the street was quite a sight.689

d. They seemed t to leave.690

e. I expect t/PRO to leave shortly.691

f. We believed them to be a capable team.692

I believe that it is quite safe to label the city in (83a) as a canonical subject11—it is the specifier of TP and693

it triggers ϕ-agreement on the finite auxiliary. On the other hand, the existential associate unicorns in (83b)694

is likely not in a canonical subject position.12 In fact, existential associates not being in canonical subject695

position gives force to the second premise of (82)—in order for ϕ-agreement to feed movement to canonical696

subject position, agreement must be necessary but not sufficient for movement and existential clauses show697

this only if we assume that their associates are not (possibly covertly) in canonical subject position.13698

This leaves us with non-finite subjects in (83c) to (83f). In each of these cases, the underlined expression699

could reasonably be said to be in a subject position, and to have moved there, yet there is no apparent700

ϕ-agreement associated with that move. We could reasonably reject the dog in (83c) as a canonical subject,701

10It should be noted that the modifiers “quirky” and “canonical” are both subjective in nature, suggesting that the phenomena
that they refer to have not yet been given a theoretical explanation.

11We might call it the canonical canonical subject.
12See Hornstein (2009, pp. 130–134), though, for discussion to the contrary.
13The expletive there in (83b) seems to be in canonical subject position—if unicorns was there it would be the canonical

subject—but it does not trigger ϕ-agreement. This, however, does not contradict (82b), which links ϕ-agreement with movement
to canonical subject position, not to the position itself, if we assume that expletives are inserted in subject position, not moved
there.
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since it is not a specifier to a TP, leaving us with the null subjects in (83d) to (83e) and the ECM subject702

in (83f). In a summarizing table, though, Preminger (2014, p. 164) seems to assert that, in English, only703

nominatives are candidates for movement to canonical subject. This would rule out traces/PRO and ECM704

subjects as canonical subjects.705

Canonical subject position, then, seems to refer to the specifier of finite T, at least in English. Assuming706

such a position can be defined well enough to support generalizations such as Preminger’s premises,14 the707

Uniformity Principle—Preminger’s third premise—demands that we treat movement to the specifier of finite708

T as a grammatical process, which, in the current system, means treating it as a derivational procedure709

distinct from Merge, Select, Agree and Transfer. So, if we keep strictly to the theory assumed in this paper,710

Preminger’s argument does not go through.15711

To recap, Preminger’s argument as given in (82), while logically sound, rests on the assumption that712

movement to canonical subject position is a bona fide syntactic operation, distinct from other types of713

movement. This assumption would be a departure from the theory assumed here, which takes all movement714

operations to be instances of Merge. Preminger’s conclusion, that agreement takes place in the syntax taken715

with my argument above that Agree violates the NTC, implies the conclusion that the NTC should be at716

least weakened16—another departure from the theory. It would seem, then, that one departure from theory717

begets other departures—a result that is far from surprising and, in fact, indicates the internal unity of the718

theory of grammar assumed here. More importantly, Preminger’s argument, the most explicitly fleshed out719

empirical argument in favour of Agree as a syntactic operation, should not be taken as a falsification of NTC720

or SMT.721

5 Concluding remarks722

The task of formalizing a theoretical conjecture occupies an odd place in the sciences. While it does generally723

not bring anything new to the table, it does give us the opportunity to objectively assess the validity and724

14Chomsky (2013), for instance, argues that “specifier” is not definable in a theory based on simplest Merge, such as the
one assumed in this paper. This is not strictly true but, whereas “specifier” was trivially definable in a system like X-Bar,
which takes labelling as a primitive, any definition of “specifier” in the present system would likely consist of the coordination
of multiple predicates.

15It might be argued that the theory assumed here cannot account for the range of data that Preminger discusses and should,
therefore, be rejected. Such an objection, I would argue, mistakes entirely the nature of scientific, and more broadly rational,
inquiry. While a full airing of this argument is beyond the scope of this paper, I will merely ask the reader to consider two
points:

1. No scientific theory is or has ever enjoyed complete empirical coverage, even within its own domain.

2. Despite common narratives to the contrary, progress in the sciences is generally led by theoretical progress rather than
the collection of novel data.

16Preminger (2018) builds on these results to argue against the SMT. If we do not accept his 2014 argument, we do not have
to accept his later argument that depends on it,
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theoretical prospects of various informal proposals. By formalizing various proposals for Agree as a syntactic725

operation, we can see that what often is shown as a simple curved arrow on tree diagrams is actually a726

rather complicated computational operation. Not only is this complexity apparent simply from the size727

of the formal definition compared, say, to that of Merge, but it can, in a way, be measured and given an728

objective evaluation—in section 4, I showed that derivations with Agree were in a different complexity class729

than those without Agree, and that Agree is incompatible with the NTC, a central minimalist tenet. I730

further showed that, while the set of syntactic objects, as defined by Collins and Stabler (2016), is closed731

under Merge, it is not closed under Agree without making some ad-hoc modifications to our theory.732

In its current state, then, Agree should not be taken for granted. This, however, leaves the theory in an733

awkward position—the phenomena that Agree is supposed to explain appear to be real and rather ubiquitous,734

but our tool for explaining them is not yet ready. If we are engaged in rational inquiry (i.e., science) then735

we should not be surprised to find ourselves in such a position. It does not mean that its time to throw up736

our hands and discard our current theory. It means that we have plenty of work left—an enviable position737

to be in.738
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