
A formalization of Agree as a derivational operation1

(Formerly:“Agree as derivational operation: Its definition and discontents”)2

Daniel Milway3

30th July 20214

Abstract5

Using the framework laid out by Collins and Stabler (2016), I develop a formal6

definition of Agree as a syntactic operation. I begin by constructing a formal definition7

a version of long-distance Agree in which a higher object values a feature on a lower8

object, and modify that definition to reflect various several versions of Agree that have9

been proposed in the “minimalist” literature. I then discuss the theoretical implications10

of these formal definitions, arguing that Agree (i) muddies our understanding of the11

evolution of language, (ii) requires a new conception of the lexicon, (iii) objectively12

and significantly increases the complexity of syntactic derivations, and (iv) unjustifiably13

violates NTC in all its non-vacuous forms.14

Keywords: theory, formalization, minimalism, agree, derivations15

16

1 Introduction17

Being computational theories of grammar, minimalist Principles & Parameters theories deal18

mainly in procedures which generate linguistic expressions from atoms in an incremental19

1

fashion. That is, these theories traffic in computational procedures that relate stage n of20

a derivation to stage n + 1 of that same derivation in a regular well-defined way. From21

this perspective, Merge is the crown jewel of these theories—it has been developed with the22

twin goals of (a) ensuring that for an arbitrary derivation stage, any application of Merge23

would have a single predictable result, even if that result is failure, while (b) maintaining its24

descriptive adequacy. Much of the current literature in minimalist P&P grammar, however,25

assumes the existence of a second core procedure, Agree, which, I argue in this paper, has26

yet to be sufficiently defined as a computational procedure.27

The correct characterization of Agree ultimately depends on empirical and theoretical28

considerations and, while virtually the entire contemporary Agree literature focuses on the29

former to the exclusion of the latter, this paper seeks to contribute to the latter.1 The30

assertion that the Agree literature is primarily focused on empirical concerns to the exclusion31

of theoretical ones, seems to be contradicted by the sheer number of theories of Agree that32

have been proposed—Chomsky (2000) begins with what might be called Classical Agree, and33

scholars later propose Cyclic Agree (Béjar and Rezac 2009), Local Agree (Hornstein 2009),34

Fallible Agree (Preminger 2014), and Upward Agree (Bjorkman and Zeijlstra 2014; Zeijlstra35

2012), just to name those theories of Agree which have names. In fact, the proliferation36

of such theories is to be expected when inquiry is guided by the empirical rather than the37

theoretical, just as the proliferation of empirical predictions is to be expected when inquiry38

is guided by the theoretical.39

This proliferation of theories of Agree is further exacerbated by the fact that, since its40

inception, Generative Grammar has always had both derivational and representational ex-41

pressions. In the theory used in Aspects (Chomsky 1965), for instance, (1) can be given three42

1“Theory” and its derived terms are widely misunderstood within contemporary syntactic research. I
take “theory” to refer to a logical system which is hypothesized to explain some domain of nature, and
“theoretical” work to refer to work that investigates the internal logical properties of a theory. The work
that is taken to fall under the umbrella of “theoretical syntax,” however, is more often than not data analysis
work—i.e., empirical work—which (a) does not involve quantitative analysis—as opposed to “corpus work”—
and (b) ignores the method of gathering the analyzed data—to differentiate it from “experimental work”
and “field work.” See Chametzky (1996) for related discussion.

2

formal expressions—one derivational expression in (2), and two representational expressions43

in (3) and (4).44

(1) Sincerity may frighten the boy.45

(2) a. S → NP_Aux_VP (Chomsky 1965, p. 68)46

VP→V_NP47

NP→Det_N48

NP→N49

Det→the50

Aux→M51

b. M→may52

N→sincerity53

N→boy54

V→frighten55

(3) [S [NP SincerityN] [Aux mayM] [VP frightenV [NP [Det the] boyN]]]56

(4) S

NP

N

sincerity

Aux

M

may

VP

V

frighten

NP

Det

the

N

boy

57

Since Generative Grammar is a computational theory, the derivational expression of a given58

analysis has always been the ultimate expression. The representational expressions, on the59

other hand, are much more concise and accessible, so they have been overwhelmingly used as60

shorthands for the derivational expressions, but they are useful as short-hands only insofar61

as they are isomorphic with the derivational expressions.62

3

These representational expressions become problematic, however, when they are aug-63

mented for the sake of clarity. For instance movement/Internal Merge can be represented64

without arrows as in (5), but more often arrows will be added for ease of understanding as65

in (6), though (5) and (6) are assumed to be equivalent.66

(5) TP

NPi T’

T VP

V 〈NPi〉

67

(6) TP

NPi T’

T VP

V 〈NPi〉

68

It is, perhaps, understandable that Agree, commonly represented by arrows similar to move-69

ment arrows as in (7), is assumed to have the same level of theoretical underpinning as70

movement.71

(7) T’

T VP

V NP

72

To date, though, there has been no proposal for a derivational expression of the arrow in73

(7). The task of this paper in part, then, is to remedy this oversight.74

4

To that end, I will be expanding the formal grammar developed by Collins and Stabler75

(2016). I sketch out this grammar, which is based on a more-or-less contemporary theory76

within the minimalist program, in section 2, and extend it to include Agree in section 3.77

While I focus on what I call Long-distance Downward Valuing (LDDV) Agree, I also discuss78

how my definitions could be adjusted to reflect other theories such as those that assume79

feature checking or upward valuation, as well as local varieties of Agree. In section 4 I80

consider the theoretical implications of my definition of Agree, including its relation to Merge,81

its computational complexity, and its relation to the No Tampering Condition. Finally, in82

section 6 I give some concluding remarks.83

2 What does a definition look like?84

Collins and Stabler (2016) provide a framework for formal definition. This formal definition85

uses sets and their basic predicates, relations, and operations (membership, subset, Set86

difference, etc) and finite sequences referred to as “pairs,” “triples,” and so on depending87

on their size. Using these formal notions, the grammar they define is such that a number of88

organizing principles of minimalist theories are provable as theorems of this system. I will89

be defining Agree in this framework, and in order to understand what it means to define90

a derivational operation, I must first lay out some basic definitions Starting with Universal91

Grammar (UG) in (8).92

(8) Universal Grammar is a 6-tuple: 〈PHON-F, SYN-F, SEM-F, Select, Merge, Transfer〉93

PHON-F, SYN-F, and SEM-F are universal sets of phonetic, syntactic, and semantic features,94

respectively; Select, Merge, and Transfer are operations. I will begin the outline of the formal95

grammar with the feature sets, postponing discussion of the operations for now. Collins and96

Stabler (2016) (hereafter C&S) also define the set PHON-F* as the set of all possible phonetic97

strings. These feature-sets are grouped together to form lexical items, which are grouped98

5

into a lexicon, which effectively defines individual grammars, as in (9)–(11).299

(9) A lexical item is a triple: LI = 〈PHON, SYN, SEM〉100

where SEM and SYN are finite sets such that SEM ⊂ SEM-F, SYN ⊂ SYN-F, and101

PHON ∈ PHON-F*.102

(10) A lexicon is a finite set of lexical items.103

(11) An I-Language is a pair 〈Lex, UG〉, where Lex is a lexicon and UG is Universal104

Grammar.105

In order to capture the Copy/Repetition distinction, C&S introduce lexical item tokens,106

defined in (12), which are the atoms of syntactic computation. C&S, also define several107

other useful terms using LI tokens.3108

(12) A lexical item token is a pair: LIk = 〈LI, k〉, where LI is a lexical item, and k is an109

integer.110

(13) A lexical array is a finite set of lexical item tokens.111

(14) X is a syntactic object iff:112

i. X is a lexical item token, or113

ii. X is a set of syntactic objects.114

(15) Let A and B be syntactic objects, then B immediately contains A iff A∈B.115

(16) Let A and B be syntactic objects, then B contains A iff116

i. B immediately contains A, or117

ii. for some syntactic object C, B immediately contains C and C contains A.118

C&S then define a generative framework, wherein complex syntactic objects are derived in119

stages.120

2The grammar C&S formalize seems to assume an “early-insertion” theory of morphology. Under a “late-
insertion” theory of morphology (Halle and Marantz 1993; Starke 2010), LIs would be pairs of syntactic and
semantic features 〈SYN, SEM〉. While such a move would likely require C&S to reformulate Transfer, it will
be largely irrelevant to the task at hand.

3See Collins and Groat (2018) for a survey of the various approaches to capture the Copy/Repetition
distinction.

6

(17) A stage is a pair S = 〈LA, W〉, where LA is a lexical array and W is a set of syntactic121

objects. We call W the workspace of S.122

The operations Merge, Select, and Transfer operate on stages and derive new stages. Merge is123

binary set-formation, Select moves lexical item tokens from the lexical array to the workspace,124

and Transfer converts syntactic objects into interface objects. Merge and Select are rather125

simple, as shown in (18) and (19). Transfer, on the other hand, is more complicated—C&S126

devote 5 sections of their paper to developing its definition—and, quite frankly, irrelevant to127

our discussion here. I will therefore omit the definition of Transfer from this paper.128

(18) Given any two distinct syntactic objects A, B, Merge(A,B) = {A,B}.129

(19) Let S be a stage in a derivation S = 〈LA, W〉.130

If lexical token A ∈ LA, then Select(LA, S) = 〈LA – {A}, W∪{A}〉131

Thus, we can define the central notion of derivation in (20)132

(20) A derivation from lexicon L is a finite sequence of stages 〈S1, . . . , Sn〉, for n ≥ 1,133

where each Si = 〈LAi,Wi〉, such that134

i. For all LI and k such that 〈LI,k〉 ∈ LA1, LI ∈ L,135

ii. W1 = {} (the empty set),136

iii. for all i, such that 1 ≤ i < n, either137

(derive-by-Select) for some A∈LA i , 〈LAi+1,Wi+1〉 = Select(A, 〈LAi,Wi〉), or138

(derive-by-Transfer) . . . , or139

(derive-by-Merge) LAi=LAi+1, and the following conditions hold for some A,B:140

a. A∈Wi141

b. Either A contains B or Wi immediately contains B, and142

c. Wi+1 = (Wi − {A,B}) ∪ {Merge(A,B)}143

C&S’s formalization is open for some refinements, such as those that Chomsky (2020)144

suggests, and extensions, but it provides us with a framework for those refinements and145

7

extensions. In order to add Agree to the formal grammar, for instance, we would need to146

define it as a function from stages to stages to be added as a derive-by-Agree clause to (20),147

and in order to define such a function, as we shall see, we will need a formal definition of148

features.149

3 Defining Agree150

Agree can be very broadly described as an operation that modifies a syntactic object X151

iff X stands in a particular formal/structural relation and a particular substantive relation152

with another syntactic object Y. So, in order to define Agree, we must formalize (a) the153

formal/structural prerequisite—Probe or Search—(b) the substantive prerequisite—Match—154

and (c) the process of modifying the object in question—Value or Check—each of which155

has, in a sense, been the focus of its own debate in the literature. As a starting point, I will156

formalize Long-Distance Downward Valuation Agree (LDDV-Agree), which is more or less157

the version of Agree put forth by Wurmbrand (2014) and which has the following properties.158

LDDV-Agree is long-distance in that it does not require a strictly local relation between159

the Agreeing objects, rather the Probe and Goal, as they are commonly called, stand in a160

c-command-plus-relativized-minimality relation as specified in (21).161

(21) A Probe P and Goal G can Agree iff, P c-commands G, G Matches P, and there is162

no head H such that H Matches P, P c-commands H and H c-commands G.163

LDDV-Agree is downward in the sense that it modifies the c-commanded Goal, and it is164

valuation-based in the sense that the Goal is modified by converting one of its unvalued165

feature into a valued one as specified in (22) and (23).166

(22) A Goal G Matches a Probe P for feature F iff P has [F:val] and G has [F:]167

(23) If P and G Agree for feature F then [F:] on G becomes [F:val]168

The first thing we must do, is formalize the notion of “feature” as used here. By (8),169

there are three sets of features in Universal Grammar—PHON-F, SYN-F, SEM-F. Setting170

8

aside PHON-F as irrelevant to the current paper, our task is to formalize the members of171

SYN-F and SEM-F. Generally, a given syntactic or semantic feature is describable with172

reference to its interpretability, its type, and its value (or lack thereof). Interpretability can173

be taken care of by simple set membership—interpretable features are members of SEM-F,174

uninterpretable features are members of SYN-F—leaving us with type and value. We can175

define features, then, as in (24).4176

(24) A feature is a pair 〈F, v〉, where v is an integer. F is called the feature type, v is the177

feature value.178

(25) For all feature types F, 〈F, 0〉 is an unvalued F feature.179

(26) For lexical item LI = 〈PHON, SYN, SEM〉, feature Fv is a feature of LI, iff Fv ∈SYN180

or Fv ∈SEM.181

(27) For lexical item token LIk = 〈LI, k〉, feature Fv is a feature of LIk, iff Fv is a feature182

of LI.183

The choice to formalize feature values as integers is made only to allow for a perspicuous184

way of defining unvalued features. We could use any type of discrete symbol to represent185

values, provided it had a special symbol for “unvalued.”186

We can define Match as in (28).187

(28) For any two lexical item tokens P, G feature type F,188

Match(P, G, F) = 1 iff for feature value v 6= 0 〈F, v〉 is a feature of P and 〈F, 0〉 is189

a feature of G.190

Value is essentially a replacement operation—operating on a lexical item token, swapping191

an unvalued feature with a valued counterpart. This is defined in (29).192

(29) For lexical item token LIk=〈〈SEM, SYN, PHON〉, k〉, and feature 〈F, v〉,193

Value(LIk, 〈F, v〉) = 〈〈SEM, (SYN−{〈F, 0}〉)∪{〈F, v〉}, PHON〉 k〉194

4An anonymous reviewer points out that features are more commonly assumed to be organized into
hierarchical feature geometries (Béjar 2003; Harbour 2007; Harley and Ritter 2002). In section 5 discuss the
formalization of one such feature theory and its limited effect on the overall formal definition of Agree.

9

The last portion of Agree to be defined is Probe, which is an instance of “Minimal Search”195

(Chomsky 2004) an algorithm that requires some discussion.196

3.1 Minimal Search197

The term Minimal Search, as its usually used in minimalist syntactic theory, refers to an198

algorithm that retrieves the “highest” object in a structure that meets some particular199

criterion. In the case of Probe, that criterion is Match as defined in (28). In order to200

properly define such an algorithm we must first consider some test cases as follows.201

Each case is a complex abstract syntactic object containing two objects—G and H—202

each of which meets the search criterion. Each case is represented both as a binary set as203

constructed by Merge and a binary tree. The first case in (30) is the most straightforward—G204

asymmetrically c-commands H, so Minimal Search retrieves G and not H.205

(30) Case 1: G is retrieved.206

a. {X, {G, {Y,H}}}207

b.

X

G

Y H

208

The second case in (31) is slightly more complicated—G does not c-command H, but Minimal209

Search should retrieve G because it is immediately contained in an object that asymmetrically210

c-commands H.211

(31) Case 2: G is retrieved.212

a. {X, {{G,Y} {{H,Z} ,W}}}213

10

b.

X

G Y

H Z

W

214

Other cases, though, will give ambiguous results. These are cases in which G and H are215

equidistant from the root. In (32), for instance G and H are siblings, while in (33) they are216

immediately contained, respectively, by siblings.217

(32) Case 3: Both G and H are retrieved.218

a. {X, {G,H}}219

b.

X

G H

220

(33) Case 4: Both G and H are retrieved.221

a. {X {{G,Y} , {H,Z}}}222

b.

X

G Y H Z

223

Our goal, then, is to construct an algorithm that has the above-defined results. There224

are two broad classes of search algorithms appropriate to our task—Depth-First Search225

11

(DFS) and Breadth-First Search (BFS). DFS starts at the root of an object and searches226

to a terminal node before backtracking, as represented in (34), where the arrows and the227

numbers indicated the search order.228

(34) 1

2 3

4

5 6

7

8 9

229

A DFS algorithm can be made minimal by designing it to stop as soon as it finds a node230

that meets its criterion. So, a Minimal DFS on Case 1 would be proceed as in (35) selecting.231

(35)

X

G

Y H

232

However in an ambiguous case, like Case 4, a Minimal DFS will incorrectly retrieve just a233

single object as shown in (36).234

(36)

X

G Y H Z

235

A Minimal DFS algorithm, then is over-definite—it gives a definite result where we expect236

an ambiguous one.237

12

There is also a deeper problem with DFS as applied to syntactic objects, and that is its238

reliance on linear order as well as structure. In the examples above, whenever the algorithm239

reaches a branching node, it takes the left branch first. If it, instead, took the right branch240

first, the result would be different—in both (35) and (36), a right-to-left Minimal DFS would241

retrieve H rather than G. The problem is made worse by the fact that, the structures that242

we are searching are constructed by Merge and, therefore, do not have a linear order. In243

order for our algorithm to make a decision at a “branch,” then, it would have to be a random244

decision. Therefore, the result of a DFS for a given syntactic object may be different each245

time it is run. Given these issues, I will set aside DFS.246

Breadth-first Search (BFS) algorithms, on the other hand, searches neighbour nodes247

before proceeding lower in the tree as represented in (37), where the arrows and the numbers248

indicated the search order.249

(37) 1

2 3

5

6 7

4

8 9

250

Again, this can be made minimal by requiring that the algorithm stop immediately upon251

finding an object that matches the search criterion. A Minimal BFS on Case 2, then, is252

represented in (38).253

13

(38)

X

G Y

H Z

W

254

Like the Minimal DFS, the Minimal BFS, as represented in (37) and (38) assumes that nodes255

are linearly ordered, even if that order is arbitrary. Unlike the Minimal DFS, the order of256

the neighbour nodes does not matter, at least for definite cases like Case 1 and Case 2. To257

demonstrate this, consider the reverse version of (38) in (39).258

(39)

X

G Y

H Z

W

259

In an ambiguous case, though, Minimal BFS suffers the same fate as Minimal DFS—it is260

over-definite. So, in Case 3, Minimal BFS will wrongly retrieve either G or H depending on261

the ordering of nodes, as shown in (40) and (41).262

(40)

X

G H

263

14

(41)

X

G H

264

This flaw, however, can be overcome if, instead of traversing each node, we treat the sets of265

neighbour nodes as tiers, as in (42).266

(42) 1

2 2

3

4 4

3

4 4

267

Minimal Tiered BFS, then, would visit each tier and extract the subset of that tier whose268

members all matched the search criterion, and stop as soon at it extracts a non-null subset.269

Thus we can define a definite search result as in (43), an ambiguous search result as in (44),270

and a failed search as in (45).271

(43) For a syntactic object SO and criterion P, Search(SO,P) is definite iff |Search(SO,P)|=1272

(44) For a syntactic object SO and criterion P, Search(SO,P) is ambiguous iff |Search(SO,P)| >273

1274

(45) For a syntactic object SO and criterion P, Search(SO,P) is failed iff Search(SO,P)= {}275

Minimal Tiered BFS, then, will be our choice of Search algorithm. The next step is to276

formally define it.277

In order to define Search, then, we need to be able to properly generate search tiers. So,278

for instance, the tiers for (31) are given in (46)279

(46) Tier 1 = {X, {{G,Y} , {{H,Z} ,W}}}280

15

Tier 2 =

{G,Y} ,

{{H,Z} ,W}

281

Tier 3 =

G,Y,

{H,Z} ,

W

282

Tier 4 = {H,Z}283

Tier 5 ={}284

For a given Tier Ti, we can generate Ti+1 by first removing all the terminal nodes from Ti285

and performing what is called an arbitrary union which is defined in (47).286

(47) For a set X={x0, . . . , xn} the arbitrary union of X,
⋃

X=x0 ∪ · · · ∪ xn.287

Therefore we can define a procedure NextTier in (48) and with it, Search in (49).288

(48) For T, a set of syntactic objects, NextTier(T)=
⋃
{SO∈T: SO is not a lexical item289

token}.290

(49) For S, a set of syntactic objects, and Crit, a predicate of lexical item tokens,291

Search(S,Crit) =

{} if S = {}

{SO ∈ S : Crit(SO) = 1} if {SO ∈ S : Crit(SO) = 1} 6= {}

Search(NextTier(S), Crit) otherwise

292

Probe, then is a special type of Search, where the search criterion is based on Match, is293

shown in (50).294

(50) For F, a feature type, and SO, a syntactic object that immediately contains P, a295

lexical item token,296

Probe(SO,P,F) = Search(SO, (λx) (Match(P, x, F)))297

With our definition of Probe in place, we can turn to our final definition of Agree which I298

turn to shortly in section 3.2.299

16

3.1.1 The appeal of DFS and attempts to rescue it300

Although DFS is emprically/descriptively inadequate—given the theoretical assumptions of301

this paper—it retains a certain theoretical and aesthetic appeal. This appeal may come from302

the fact that it can be given a simple recursive definition using only the primitive concepts303

such as set-membership. In contrast, BFS as defined in (49) requires the definition of the304

ad hoc notion of a tier, which I have implicitly defined in (48) using an arbitrary union—a305

function whose computational definition is likely more complex than the
⋃

symbol lets on.306

It’s no surprise, then, that Branan and Erlewine (forthcoming) and Preminger (2019) do307

not embrace BFS as a minimal search algorithm, with Preminger defining a version of DFS308

and Branan and Erlewine making no firm decision between the two options. This is not to say309

that the authors are not aware of the problems of DFS that I outline above. On the contrary,310

Branan and Erlewine explicitly addresses these issues and they and Preminger both argue311

that the weaknesses of DFS can be avoided if certain parts of a structure are inaccessible to312

Search, however neither provide a principled way of so restricting the DFS algorithim—at313

least, not given the theretical assumptions of the current paper. Preminger proposes that314

specifiers are not searched, while Branan and Erlewine suggest that left-branches might not315

be searched. Both of these proposals, though, depend on an assumption that syntactic316

objects produced by Merge are inherently asymmetric, while the present paper assumes the317

exact oppposite.318

Ke (2019, pp. 47–49), on the other hand, attempts to split the difference by modelling BFS319

as a parallelized DFS. This solves the issue of the unordered nature of syntactic objects—320

when faced with two “branches” the algorithm does not need to make a choice, it searches321

both simultaneously. Unfortunately, Ke is not explicit about his model of parallel com-322

putation, so it is difficult to assess its empirical and theoretical consequences. If such an323

algorithm can be shown to be adequate in those respects, it has the potential to be a better324

model of BFS—one without the need for auxiliary notions like tiers.325

It would be a mistake, though, to declare DFS fully discredited on the basis these argu-326

17

ments. The theoretical and aesthetic appeal that I describe above must be answered and the327

hypotheses that Branan and Erlewine and Preminger put forth to rescue it have empirical328

backing. What is needed, though, is a principled theory that predicts rather than declares,329

for example, that the internal structure of a specifier is inaccessible to minimal search. Since330

I know of no such theory, I will assume that DFS is inadequate as a model of minimal search.331

3.2 A formal definition of Agree332

If and when an instance of Probe retrieves a goal, that goal must be modified—at least333

according to most versions of Agree.5 More precisely, the Goal must be modified in place.334

That is, if goal G is in position Q in stage Si, then the modified goal G′ must be in position335

Q in stage Si+1. Furthermore, if copies of G are in multiple positions (Q, Q′, Q′′. . .) in336

Si, then copies of G′ must be in those same positions in Si+1. In order to do this we must337

traverse the syntactic object in question and replace every instance of G with G′, the result338

of Value. Thus we can define Agree as in (51).339

(51) For lexical item P, syntactic object SO={P, . . . }, and feature type F, and lexical-item340

G, the sole member of Probe(SO,P,F),341

Agree(SO, P, Fv) =

Value(SO,〈F, v〉)if SO=G

SO if SO is a lexical item token

Merge(Agree(A, P, Fv),Agree(B, P, Fv)) for A,B ∈ SO such that A 6= B

342

As defined, Agree is a non-minimal DFS—it has no notion of tiers, only differentiating lexical343

item tokens from complex syntactic objects. While minimalist considerations might suggest344

that a single search algorithm be selected for the grammar, DFS is ill-suited for Probe, as345

discussed above, and BFS is ill-suited for Agree. The reason we cannot use BFS for Agree346

is because Agree must retain the structure of its inputs—it needs to put things back where347

it found them—something that BFS cannot do. Consider, for instance, Tier 3 in (46)—a348

5If we wished to define Agree purely as a relation—i.e. an n-place predicate (n>1)—we could simply
define it as Agree?(P, G, F) iff Probe(P, F) = G.

18

4-member set which could be reconstructed into a proper syntactic object a number of ways.349

Thus, we need both DFS and BFS to be active in the grammar.350

We have arrived at a formal definition of one variety of Agree (LDDV-Agree) which we351

will use in the the following section as a basis for defining other varieties,352

3.3 Upward Valuation353

In defining a Downward Valuation Agree, we considered syntactic objects such as the one354

schematized in (52) which immediately contain lexical item tokens bearing a valued feature355

Fv and which contain a lexical item token bearing an unvalued feature F0.356

(52) {PF:v, {. . .GF:0}}357

In an Upward Valuation, the relevant features of P and G are swapped, as in (53).358

(53) {PF:0, {. . .GF:v}}359

In order to capture Upward Valuation, then we need first modify the Match criterion of360

Probe as in (54), moving P to the second argument position.361

(54) For F, a feature type, and SO, a syntactic object that immediately contains P, a362

lexical item token,363

ProbeUV(SO, P, F) = Search(SO, (λx) (Match(x, P, F))).364

Thus, ProbeUV gives a definite result {G} only if P contains an unvalued F feature and G365

contains a valued F feature. Since, by definition, the relevant unvalued feature in AgreeUV is366

at the top of the structure, we might think that no exhaustive DFS is required. Unfortunately,367

though, the same concern with valuing copies is with us—just because a lexical item token368

is at the top of a tree doesn’t mean there isn’t a copy of it at the bottom. Therefore, our369

definition of AgreeUV in (55) look similar to that in (51).370

(55) For lexical item P, syntactic object SO={P, . . . }, and feature type F, and lexical-item371

G, the sole member of ProbeUV(P,F) and v the value of the F feature on G,372

19

AgreeUV(SO, P, Fv) =

Value(SO,〈F, v〉)if SO=P

SO if SO is a lexical item token

Merge(AgreeUV(A, P, Fv),AgreeUV(B, P, Fv)) for A,B ∈ SO such that A 6= B

373

3.4 Feature Checking374

Versions of Agree that causes feature checking rather than valuation assume that all formal375

features—i.e., members of SYN-F—are valued, but must be checked by Agree. In order376

to formalize such a feature checking operation, AgreeX, we must reformulate our notion of377

features and our Match predicate, and replace Value with Check. Formal features and their378

related notions, then, are defined as in (56) and (57), with semantic features retaining their379

definition in (24).380

(56) A formal feature is a triple 〈c?, F, v〉, where c? is 1 or 0 and v is an integer. F is381

called the feature type, v is the feature value.382

(57) For all feature types F and values v, 〈 0, F, v〉 is an unchecked Fv feature, and 〈 1,383

F, v〉 is checked Fv feature.384

MatchX, then, compares a semantic feature of one lexical item token with a formal feature385

of another succeeding if both features have the same type and value and the formal feature386

is unchecked, as defined in (58)387

(58) For any two lexical item tokens P, G feature type F and value v,388

MatchX(P, G, F) = 1 iff 〈F, v〉 is a feature of P and 〈0, F, v〉 is a feature of G.389

Finally, Check is a simple matter of flipping a 0 to a 1 as in (59).390

(59) For a formal feature Fv=〈c?, F, v〉,391

Check(Fv) = 〈1, F, v〉.392

These newly defined functions can be slotted into our formalized definitions of Agree, perhaps393

with a few other alterations, which I leave as an exercise for the interested reader.394

20

3.5 Local Agree395

Early minimalist theories of agreement (e.g Chomsky 1993) continued the GB assumption396

that agreement was limited to a spec-head relation. So, for example, subject-predicate397

agreement was assumed to occur because the subject moves to the specifier of the predicate398

head (T or I), in contrast to later theories in which subjects move because they agree.399

Similarly, Case licensing, in these theories, is usually taken to occur under a spec-head400

relation. In this section, I will formalize this conception of Agree.401

On its surface, Local Agree, as described above, has the advantage of not requiring an402

arbitrary search of the entire derived expression. Instead, the search is strictly ans specifically403

limited to the very top of object. The canonical case of spec-head agreement is the finite404

subject merged with the finite predicate, shown in (60)405

(60) TP = {{D, . . . }, {T, . . . }}406

Restricting our discussion to Case, we can see that the Agree operation is an interaction407

between the lexical item token immediately contained in one member of TP and the lexical408

item token contained in the other member of TP. We can define ProbeLocal, then, as in (61).409

(61) For feature type F, lexical item tokens P and G, and syntactic object SO={X, Y},410

ProbeLocal(SO, P, F) =

G if P ∈ X,G ∈ Y, and Match(P, G, F)

undefined otherwise

411

Since spec-head structures, especially those associated with Case and agreement, are often412

formed by Internal Merge, our final version of AgreeLocal, much like long-distance Agree,413

will need to replace every instance of the object being valued/checked. Therefore, our final414

version of AgreeLocal, like our baseline Agree in (51), will be recursively defined—the main415

difference between the two will be their respective Probe prerequisites.416

Other changes must be made to Agree though. Recall, for instance, that, in order to417

account for ambiguous searches, Search was defined in (49) such that its output was a set of418

lexical item tokens, and Agree was defined in (51) so that it only proceeds when the output419

21

of Probe—a species of Search—is a singleton set. ProbeLocal does not have to account for420

ambiguous searches—either the appropriate G is the head of the specifier of P, or it isn’t.421

Therefore, the Probe prerequisite of AgreeLocal must be rewritten. This is a relatively minor422

rewrite, but a rewrite nonetheless.423

3.6 Summary424

I this section, I provided a formal definition of one particular conception of Agree—Long-425

Distance Downward Valuation Agree—by first breaking it into individual pieces—Probe,426

Match, Value—which I gave formal definitions, and then assembling those definitions in such427

a way as they define Agree. I then discussed a few alternative conceptions of Agree, showing428

how they could be defined by altering the previous definitions as minimally as possible. This429

description of the definition process might suggest that Agree is modular—that it consists430

of several independent operations that can be mixed and matched—but this is not the case.431

Rather, while the discussion of each alternative tended to focus on a single operation, the432

changes to that operation was such that it necessitated minor modifications to Agree as a433

whole. Agree, then, does seem to be real operation, albeit a rather complex one, as I will434

demonstrate in the next section.435

4 UGAgree436

With the Agree operation properly formalized, we can give a definition of UGAgree in (62)437

and derivation in (63).438

(62) Universal Grammar is a 7-tuple: 〈PHON-F, SYN-F, SEM-F, Select, Merge, Transfer,439

Agree〉440

(63) A derivation from lexicon L is a finite sequence of stages 〈S1, . . . , Sn〉, for n ≥ 1,441

where each Si = 〈LAi,Wi〉, such that442

i. For all LI and k such that 〈LI,k〉 ∈ LA1, LI ∈ L,443

22

ii. W1 = {} (the empty set),444

iii. for all i, such that 1 ≤ i < n, either445

(derive-by-Select) for some A∈LA i , 〈LAi+1,Wi+1〉 = Select(A, 〈LAi,Wi〉), or446

(derive-by-Transfer) . . . ,447

(derive-by-Merge) LAi=LAi+1, and the following conditions hold for some A,B:448

a. A∈Wi449

b. Either A contains B or Wi immediately contains B, and450

c. Wi+1 = (Wi − {A,B}) ∪ {Merge(A,B)}451

(derive-by-Agree) or LAi=LAi+1 and the following conditions hold for some SO,452

P, G and F:453

a. SO∈Wi454

b. SO immediately contains P455

c. Probe(SO,P,F) = {G}456

d. Wi+1 = (Wi − {SO}) ∪ {Agree(SO,P,G,F)}457

This definition of a derivation uses the names of its procedures, but in the case of Merge458

and Select, one could just as easily expand them to give there full definition in intension.459

Agree is ultimately defined recursively, as is its prerequisite Probe, so such an expansion is460

not possible. This is a crucial difference between Agree and the other generative operations.461

While we could conceivably rank Select, Internal-, and External-Merge by complexity, such462

a ranking would be one of degree. Agree, however, with its recursive definition is a different463

kind of operation. Interestingly, C&S also define Transfer recursively. It follows then that464

Transfer should also be considered a different kind to operation—a conclusion also predicted465

by the fact that Transfer is generally considered an operation of the interfaces rather than466

Narrow Syntax.467

Beyond its recursive definition, there are a number of properties that set Agree apart from468

its fellow operations. First, since performing Agree on a syntactic object entails searching469

23

the object, modifying certain constituents, and putting the object back together, Agree470

entails Merge. This is reflected in definitions (51) and (55) and concurs with Hornstein471

(2009, pp. 126–154) who notes that the minimal c-command relation required by Agree472

(Specifically non-local Agree, or AGREE in his terminology) is exactly the same as the one473

that is assumed to hold in all cases of Internal-Merge (which he calls “Move”). Hornstein’s474

critique, that Agree and Internal-Merge are redundant, is actually complementary to the475

fact that Agree as defined entails Merge. The former suggests that either Agree or Internal476

Merge should be eliminated, while the latter rules out eliminating Internal-Merge.477

Agree being dependent on Merge also raises a biolinguistic critique. Chomsky (2020, and478

elsewhere) proposes the following evolutionary narrative of the language faculty. The faculty479

of language (i.e., Merge) evolved quite suddenly 40 000–50 000 years ago in humans as a480

purely internal instrument of thought. It was only later, after humans began migrating out481

of Africa, that externalized language emerged (Huybregts 2017). This narrative explains the482

fact that much, perhaps most, of our use of language is strictly internal to our individual483

minds—that language is independent of externalization. Or, put another way, this story484

of the evolution of the language faculty correctly predicts that the set of externalized lin-485

guistic objects (LOs)—i.e., the set of expressions which have been actually spoken, signed,486

or written by actual humans—is a subset of the set of actually generated linguistic objects487

as in figure 1. The fact that Agree entails Merge suggests either that it emerged as part

Linguistic Objects

Externalized
Linguistic Objects

Figure 1: The relation between LOs and externalized LOs

488

of externalization—which I address later—or it emerged separately from both Merge and489

Externalization. The latter option includes two suboptions—either Agree emerged as an490

augmentation to Merge and Externalization emerged as an augmentation to Merge+Agree,491

24

or Agree and Externalization emerged as separate augmentations to Merge. The former op-492

tion would predict that the set of Agreeing LOs is a subset of the set of LOs and a superset493

of the set of externalized LOs, as shown in figure 2. The latter option would predict that

Linguistic Objects

Agreeing
Linguistic Objects

Externalized
Linguistic Objects

Figure 2: A possible relation between LOs, Agreeing LOs and externalized LOs

494

the set of Agreeing LOs and the set of Externalized LOs are each a subset of the set of LOs,495

though neither is a subset of the other, as shown in figure 3. Note that the overlap between

Linguistic Objects

Agreeing
Linguistic Objects

Externalized
Linguistic Objects

Figure 3: A possible relation between LOs, Agreeing LOs and externalized LOs

496

Agreeing LOs and Externalized LOs is not theoretically or logically guaranteed, but rather is497

an empirical fact. Each of these options predicts that non-external LOs can be divided into498

Agreeing and non-Agreeing LOs, while the latter further predicts that external LOs show499

the same division. These are, in principle, empirical predictions albeit not yet practically500

so, as it is not clear what non-Agreeing LOs, either internal or externalized, look like in this501

context.502

25

4.1 The Non-Closure of Agree503

Since a computational procedure is essentially the repeated application of an operation, or504

set of operations, with each application providing the input for the following application,505

the domain of a given computational operation must be closed under that operation. In the506

case of our syntactic derivations, our domain is the set of stages, which C&S demonstrate507

are closed under derive-by-Select and derive-by-Merge. I have thus far been assuming that it508

is also closed under derive-by-Agree, but that assumption is perhaps not strictly true, under509

our present definitions.510

As defined, derive-by-Agree is a function from stages to stages that modifies a stage’s511

workspace, by performing Agree on a syntactic object in that workspace. Therefore, the set512

of stages is closed under derive-by-Agree iff the set of syntactic objects is closed under Agree.513

For it’s part, Agree operates on a given syntactic object SO by applying Value to SO if SO is514

an appropriate lexical item token, or to the appropriate lexical item tokens contained in SO515

otherwise. Therefore the set of syntactic objects is closed under Agree iff the set of lexical516

item tokens is closed under Value. We need only consider a simple instance of Value to see517

that this is not the case.518

Consider the lexical item token Xk, defined in (64), which has only one syntactic feature,519

[F:0].520

(64) Xk = 〈〈PHONX, {〈F, 0〉}, SEMX〉, k〉521

where PHONX∈PHON-F*, SEMX⊂SEM-F, k is an integer, and 〈F, 0〉 ∈SYN-F.522

What about the result of applying Value to Xk, given in (65)?523

(65) Value(Xk, 〈F, v〉) = 〈〈PHONX, {〈F, v〉}, SEMX〉, k〉524

where v is a non-zero integer.525

Since PHONX, SEMX, and k are unchanged, the new object is a lexical item token iff526

〈F, v〉 ∈SYN-F. That is, the set of lexical item tokens is closed under Value only if the527

universal set of syntactic features in UGAgree contains both valued and unvalued features.528

26

However, if we hypothesize that SYN-F contains valued and unvalued features, we are faced529

with something of a theoretical quandary. In this system, language acquisition is a process530

of constructing lexical items from universal feature sets so that they match tokens in the531

primary linguistic data. The basic premise of Agree theory, though, is that a unvalued532

features cannot surface. If this is the case, then there are no tokens of unvalued features in533

the primary linguistic data. Why, then, would a language acquirer ever construct a lexical534

item with an unvalued feature?535

To take a concrete case, consider the English third person singular present agreement536

morpheme -s. Taking for granted that an English acquirer can give a proper phonological537

and semantic analysis of the morpheme, there are two possible lexical items they could538

construct, given in (66) and (67).539

(66) 〈[z], {〈π, 3〉, 〈#, 1〉}, {〈T, 1〉}〉540

(67) 〈[z], {〈π, 0〉, 〈#, 0〉}, {〈T, 1〉}〉541

The lexical item in (66), would be the result of a surface analysis of the data, while the542

one in (67) would require a deeper analysis. So, in order to predict the acquisition of (67),543

we would need a theory of acquisition that systematically does not match lexical items to544

surface phenomena.545

Supposing on the contrary, that we bite the bullet and allow for valued lexical items546

to be acquired, even if we stipulate that unvalued lexical items are also acquired, economy547

considerations would suggest that those unvalued lexical items would never be used. In such548

a situation, every complex expression of a language would be derivable in at least two ways—549

one that begins with a lexical array containing only unvalued lexical item tokens and one550

that begins with a lexical array containing only valued lexical item tokens.6 Each derivation551

will have the same number of Merge steps and Select steps but the fist derivation will also552

have Agree steps, while the second will have no Agree steps. Thus, for any expression of553

a language, the second type of derivation will always have fewer steps than the first. So554

6Setting aside the possibility of lexical items without syntactic features.

27

Closed
under
Merge

Closed
under
Select

Closed
under
Agree

Syntactic Objects Yes Yes No
Valued Syntactic Objects Yes Yes No

Syntactic Objects
∪

Valued Syntactic Objects

Yes Yes Yes

Table 1: The closure properties of Merge, Select, and Agree

paradoxically, expanding our universal feature sets to allow for Agree in this way, effectively555

rules out Agree.556

To get out of this paradox, we could simply expand the domain of Merge, Select, and557

Agree to encompass the union of the set of lexical items and the set of valued lexical items.558

This would fix the problem in an engineering sense—we would be able to derive expressions559

in our formalism—but it would only serve to formalize the theoretical concerns that I have560

been addressing. It would do so because it highlights the fact that UG with only Merge and561

Select is a fully self-consistent system whose domain must be augmented to accommodate562

Agree. This situation, which can be seen in table 1, is hardly surprising considering the very563

nature of the operations—Merge combines objects without changing them, Select rearranges564

objects without changing them, Agree changes objects.565

4.2 Agree as a prerequisite for Merge566

Early in the minimalist program, Chomsky (2000) proposed that Agree was a prerequisite for567

Move—that Move was a reflex of Agree. Merge—what we now call External Merge—on the568

other hand, was free to apply without Agree. Once Internal Merge was discovered, though,569

theorist were faced with a dilemma—if Merge and Move were truly a single operation, they570

couldn’t very well have different prerequisites. There are two ways out of this dilemma—571

either all instances of Merge are free, or all instances of Merge require Agree.7 Since C&S’s572

7Wurmbrand (2014) contains the most explicit argument in favour of the latter stance, but see Boeckx
(2010) for a broader discussion of the schism.

28

formalization and my extension of it assume that all operations, except perhaps Transfer,573

are free, I will not discuss the former way out of the dilemma. Rather, in this section, I574

will discuss the barriers to modifying the formal grammar to make Agree a prerequisite for575

Merge.576

The principle barrier to making Agree a prerequisite for Merge is that, as defined in (63),577

the derivation is a computational procedure and, therefore, is strictly incremental. That578

is, the validity of a given stage Sn (n6=1) depends solely on its form and the form of the579

immediately preceding stage Sn-1. Requiring every instance of Merge to be preceded by an580

instance of Agree, however, would mean that the validity of a stage Sn (n6=1) depends on581

its two preceding stages Sn-1 and Sn-2. A derivation, then, would need memory, albeit a very582

small amount of it.583

On its face, this does not seem to be an insurmountable barrier, but as we shall see,584

it will end up ruling out the first instance of Merge in any derivation. To begin with, we585

reformulate our definition of derivation by adding a line in our derive-by-Merge clause in586

(68).587

(68) A derivation from lexicon L is a finite sequence of stages 〈S1, . . . , Sn〉, for n ≥ 1,588

where each Si = 〈LAi,Wi〉, such that589

i. For all LI and k such that 〈LI,k〉 ∈ LA1, LI ∈ L,590

ii. W1 = {} (the empty set),591

iii. for all i, such that 1 ≤ i < n, either592

(derive-by-Select) for some A∈LAi , 〈LAi+1,Wi+1〉 = Select(A, 〈LAi,Wi〉), or593

(derive-by-Transfer) . . . ,594

(derive-by-Merge) LAi=LAi+1, and the following conditions hold for some A,B:595

a. A∈Wi596

b. Either A contains B or Wi immediately contains B,597

c. 〈Wi, LAi〉 is derived by Agree from 〈Wi−1, LAi−1〉, and598

29

d. Wi+1 = (Wi − {A,B}) ∪ {Merge(A,B)}599

(derive-by-Agree) or LAi=LAi+1 and the following conditions hold for some SO,600

P, G and F:601

a. SO∈Wi602

b. SO immediately contains P603

c. Probe(SO,P,F) = {G}604

d. Wi+1 = (Wi − {SO}) ∪ {Agree(SO,P,G,F)}605

Now, lets consider an abstract subderivation of the syntactic object {X, Y} where X and Y606

are lexical item tokens. We start in S1, given in (69) with an empty workspace and a lexical607

array containing at least X and Y.608

(69)
S1 = 〈W1,LA1〉

= 〈{} , {X, Y, Z . . . }〉
609

Next we perform Select twice, to bring X and Y into the workspace.610

(70)
S2 = Select(X, S1)

= 〈{X} , {Y, Z . . . }〉
611

(71)
S3 = Select(Y, S2)

= 〈{X, Y} , {Z . . . }〉
612

Under a free Merge grammar, we would, at this point simply Merge X and Y, but this option613

is not available to us, since derive-by-Merge in (68) requires an Agree step. A Select step is614

possible here, but that would only postpone our dilemma. We need to perform Agree next.615

Assuming that X could value Y for feature F—i.e., Match(X, Y, F) = 1—let’s consider616

the structural prerequisites. As stated in (68), X and Y must be contained in the same617

syntactic object SO, which, in turn, must be a member of the workspace. In S3, however,618

both X and Y are members of the workspace, and there is no SO to speak of. No stage S4,619

then, can be derived by Agree.620

We’ve arrived then at an instance of circularity—every instance of Merge requires a621

30

preceding instance of Agree, and every instance of Agree requires a preceding instance of622

Merge. First Merge, then, is impossible if the definition of a derivation in (68) holds.623

This is not to say that tying Agree to Merge in some way will always be a dead-end. On624

the contrary, one of for instance Hornstein’s (2009) critiques of long-distance Agree is that625

it ties Agree to loosely to Merge. Merge creates the structural conditions for Agree—a point626

which Local Agree more or less explicitly acknowledges. This leads one to wonder why we627

consider Merge and Agree to be distinct operations—why Agree is not treated as a reflex of628

Merge. The obvious response to this is that there do seem to be instances of long-distance629

agreement that do not involve movement. This objection, however, only holds if we rule out630

the covert movement hypothesis, which that, though it has fallen out of fashion, faces fewer631

theoretical hurdles than long-distance Agree in my opinion.8632

4.3 Computational Complexity633

With our definitions of the derivation in (20) and (63) we can give a quantitative estimate634

of the computational complexity of a given derivation, and with that, a measure of the635

complexity of the grammars overall. As is common in computer science, we will use time-636

complexity as a proxy. The time complexity of an algorithm is a measurement of how the637

run-time an algorithm—the length of time it takes to run the algorithm—increases relative638

to the size of its input.639

To assess time complexity we must first identify the primitive operation(s) of an algo-640

rithm, which we assign a runtime of 1, and the primitive unit of data, which we assign a size641

of 1. In our derivations the primitive operations are Merge and Select as neither is defined642

in terms of the other, while Agree is defined in terms of Merge. Each instance of Merge or643

Select, then, will incur a time cost of 1—the time cost of Agree will be calculated below, and644

that of Transfer will be ignored. The input size will be a measure of the size of the derived645

syntactic object which will have two components—the number of lexical item tokens L, and646

8Strictly speaking, covert A-movement has fallen into disuse. Covert Ā-movement operations, like Quan-
tifier raising, and covert Wh-movement in wh-in-situ languages, are still considered respectable hypotheses.

31

the number of syntactic objects J. The two numbers are related only insofar as they limit647

each other (L≤J). In practice, though, we will care less about J than the number of derived648

syntactic objects M=J-L. So, the objects in (72) all have different L,J, and M values.649

(72) a. A (L=1,J=1,M=0)650

b. {A, B} (L=2,J=3,M=1)651

c. {A, {A, B}} (L=2,J=4,M=2)652

d. {B, {B, {A, B}}} (L=2,J=5,M=3)653

e. {C, {B, {A, B}}} (L=3,J=6,M=3)654

Before we assess UGAgree, though, we will consider plain UG to see how we would calculate655

the run-time of a given derivation. So, for a derivation D, the run-time R will be the sum of656

µ—the number Merge operations performed in D—and σ—the number of Select operations657

performed in D.658

(73) RD = µ+ σ for UG659

In order to calculate µ and σ, we step through each stage Sn of D, keeping a running tally660

of each operation.661

(74) µSn =

0 if n=1

µn−1 + 1 if Snis derived by Merge

µn−1 otherwise

662

(75) σSn =

0 if n=1

σn−1 + 1 if Snis derived by Select

σn−1 otherwise

663

Since each Select operation in a derivation is associated with a distinct lexical item token, σ664

for that derivation will equal L for the derived object. Similarly, each Merge operation in a665

derivation creates a distinct new syntactic object, so the µ for for that derivation will equal666

32

M for the derived object. Therefore, under UG, the runtime of the derivation for a syntactic667

object will be J for that object. So, if we take J to be our measure of the input size for a668

derivation, we can see that UG derivations run in what is called linear time.669

In order to assess UGAgree we need a way to measure the run-time of Agree. For simplic-670

ity’s sake, I will not consider the run-times of Value, Match, or Probe, or rather, I will take671

them to be zero. So, this simplified Agree, when applied to a lexical item token, returns that672

token, and when applied to a derived object, recursively performs Agree on the members of673

the object and Merges the results. When applied to an object X then, Agree runs a Merge674

operation for each derived syntactic object in X.675

We can define our running tally for Agree in (76) with the final calculation of run-time676

in (77)677

(76) αSn =

0 if n=1

αn−1 + µn−1 if Snis derived by Merge

αn−1 otherwise

678

(77)679

(78) RD = µ+ σ + α for UGAgree680

Since UGAgree does not specify when Agree applies, it allows for derivations where Agree681

does not apply at all. These cases will run in linear time, and will be our lower bound for682

time complexity. As our upper-bound, consider the cases in which every instance of Merge683

is followed immediately by an instance of Agree. Since µ determines the rate of increase684

for α and µ increases linearly during the course of the, α will increase quadratically, and685

therefore, R will increase quadratically relative to the number of stages. The run-time of such686

a derivation is demonstrated in figure 4. Since the number of stages here is proportional to687

the size of the derived object, the time-complexity of this type of derivation is also quadratic.9688

9More precisely, the run-time of this type of derivation as a function of object size is resembles the
triangular number series (1).

33

0 20 40 60 80 100

0

200

400

600

Stage number

R
u
n

T
im

e

R
α
µ
σ

Figure 4: The run-time of a derivation in UGAgree following a Select-Merge-Agree cycle

Of course, the Select-Merge-Agree cycle that this assumes is not a realistic characteri-689

zation of an actual syntactic derivation for a number of reasons. For one, it represents a690

derivation with only External Merge, while the overwhelming evidence suggests that actual691

expressions are always derived with a mix of internal and external. Also, it is likely not the692

case that every instance of Merge is followed by an instance of Agree. For example, cyclic693

movement through non-licensing positions could be argued to involve Merge but not Agree.694

Even including all of these caveats, the facts that the run-time of a single instance of Agree is695

proportional to the size of the object it operates on and that the size of that object steadily696

increases throughout any derivation mean that no derivation which includes more than one697

non-consecutive instance of Agree will operate in linear-time.698

4.4 Agree and the NTC699

One of the theorems of C&S’s formal grammar is the No Tampering Condition defined by700

Chomsky (2007, p. 8) as follows: “Suppose X and Y are merged. Evidently,efficient com-701

putation will leave X and Y unchanged (the No-Tampering Condition NTC). We therefore702

(1)

n∑
i=0

i(i + 1)

2

34

assume that NTC holds unless empirical evidence requires a departure from [the strong min-703

imalist thesis] in this regard, hence increasing the complexity of UG.” C&S’s formulation of704

NTC, which they prove as a theorem of UG, is given in (79).705

(79) For any two consecutive stages in a derivation S1 = 〈LA1, W1〉 and S2 = 〈LA2, W2〉,706

for all A contained in W1 , A is contained in W2.707

Since the effect of every form of Agree defined in this paper is to replace all instances of708

some lexical item token G in a workspace with a distinct item G’, Agree violates NTC709

by design. The increased computational complexity of UGAgree discussed above, then, is710

predicted by Chomsky’s conjecture that the NTC is linked to computational efficiency. There711

are essentially two ways of dealing with this result—either we take the approach that C&S712

take with Transfer and modify Agree so that it does not violate NTC, or we argue that713

“empirical evidence requires a departure from” NTC. I will discuss each of these options in714

turn below.715

4.4.1 NTC-Respecting Agree716

A straightforward way of constructing an Agree operation that respects the NTC is to717

formally separate the content of a derived expression from its structure in some way with718

Merge manipulating the structure and Agree manipulating the content. A stage of the719

derivation, then would consist of a lexical array, a workspace, and ledger as in the definition720

in (80)721

(80) A stage is a triple S = 〈LA, W, L〉, where LA is a lexical array, W is a set of syntactic722

objects, and L is a set of pairs of lexical item tokens. We call W the workspace of S723

and L the ledger of S.724

Rather than modifying lexical item tokens in place, Agree would add a pair 〈LIk, LI′k〉, where725

LIk is a lexical item token contained in the workspace and LI′k is the result of Valuing LIk726

for some feature. The ledger, then, postpones the tampering of Agree, either until Transfer,727

35

or until the SM and/or the CI system and thereby rescues the NTC.728

This sort of move also fixes a number of issues already discussed regarding Agree. A729

version of agree that respects NTC does not alter the workspace—it merely constructs an730

ordered pair and adds it to the ledger. It does not take apart and put back together an731

already constructed syntactic object, as standard Agree as defined in (51) does. Therefore732

it does not need to be recursively defined, and it does not need to refer to Merge in its733

definition. As a result, it does not carry the same time-costs as standard Agree.734

This improvement aside, however, it also lays bare the fact that Agree as a syntactic-735

derivational operation is fundamentally redundant. The prerequisites for Agree are a struc-736

tural relation (Search) and content relation (Match) between two lexical item tokens. So,737

suppose P and G are lexical item tokens and, for some feature F, Match(P,G,F)=1. Further738

suppose that stage Sn in derivation D is derived by Merge(P, X), where X contains G and739

no lexical item token H, such that Match(P,H,F)=1. At this point, our prerequisites are met740

and we can perform Agree, but supposing instead we derive stages Sn+1 and Sn+2 by Select-741

ing and Merging another lexical item token. By the NTC, the object {P, X} is contained in742

the root object of Sn+2, and therefore all of the structural and content relations that held at743

Sn still hold at Sn+2 including the prerequisites for P to Agree with G for F.10 By extension,744

we can continue to postpone Agree at least until the next instance of Transfer without losing745

the prerequisites for Agree. It seems, then, that, while we can certainly define Agree so that746

it respects NTC, if we have NTC, we don’t need Agree as a derivational operation.747

4.4.2 Agree instead of the NTC?748

Even as stated by Chomsky (2007), the NTC is not an absolute law akin, say, to the law of749

non-contradiction. Rather, he proposes that we assume the NTC “unless empirical evidence750

requires a departure from [the strong minimalist thesis] in this regard.” In one sense, this is a751

very low bar, since NTC is a universal statement, which only requires a single counterexample752

10See theorems 2 and 3 in Collins and Stabler (2016).

36

to invalidate. In practice though, it is far from obvious what sort of evidence would count753

as counterexample.754

The relative ubiquity of morphological agreement, for instance, might seem to be the755

sort of evidence we need, but it is not sufficient to invalidate NTC. Consider, as a parallel,756

linear order. It is a plain fact that external linguistic expressions have linear order, yet757

that linear order is still assumed to be absent in the grammar—at least in standard Merge-758

based grammars. Yet, as Chomsky (2020) citing McCawley (1968) points out, adverbs like759

respectively, which depend on linear order for their interpretation, provide evidence that760

conjunction structures have inherent linear order.761

(81) Beth and Sara met Hanako and Máire respectively.762

a. = Beth met Hanako and Sara met Máire.763

b. 6= Beth met Máire and Sara met Hanako.764

What we need, then, is evidence that standard Agree is occurring in a derivation inter-765

spersed with Merge. Preminger (2014) argues that we have exactly such evidence in the766

interrelation of morphological case, ϕ-agreement, and subject position.11 The form of the767

argument is given in (82)768

(82) a. Morphological case feeds ϕ-agreement in quirky-subject languages.769

b. Φ-agreement feeds movement to canonical subject in non-quirky-subject lan-770

guages.771

c. The functioning of the grammar is uniform across languages (The Uniformity772

Principle).773

d. Therefore, morphological case and ϕ-agreement precede movement to subject.774

e. Therefore, morphological case and ϕ-agreement are part of the narrow syntax.775

11An anonymous reviewer points out that the evidence that Richards (2001) adduces for “tucking-in” is
perhaps stronger evidence of a violation of NTC. I address Preminger’s argument here because it has to do
directly with agreement and is therefore germane to the topic at had. See Hornstein (2009) for a proposal
that predicts the effects of tucking-in without tucking-in.

37

The argument is logically sound, but it depends on an analysis of the evidence that is776

plausible, but not the only possible analysis. That is, it depends of the truth of the first two777

premises, which are empirical statements. Despite being empirical statements, though, they778

depend on two theoretical notions—“quirky subjects” and “canonical subject position”—to779

even be coherent. I will take for granted that the term “quirky subject” is coherent, and780

focus on “canonical subject position.”12
781

One property of canonical subject position that Preminger is clear about is that it is782

syntactic—he says of movement to canonical subject position that it is “clearly syntactic783

(since it creates new binding configurations, for example)” (p177) and that it “is a syntac-784

tic process par excellence” (p184). We further know, based on the second premise of (82),785

which Preminger claims as an empirical result, that canonical subjects in non-quirky-subject786

languages should always trigger ϕ-agreement. Since this latter requirement is an empirical787

claim, though, it should not be too directly tied to our definition lest our reasoning be circu-788

lar. We can construct our definition by applying these two desiderata to some representative789

data.790

Our representative data is given in (83), where the underlined subexpression is could be791

or has been considered a subject in English.792

(83) a. The city is bustling.793

b. There seem to be unicorns in my house.794

c. The dog running down the street was quite a sight.795

d. They seemed t to leave.796

e. I expect t/PRO to leave shortly.797

f. We believed them to be a capable team.798

12It should be noted that the modifiers “quirky” and “canonical” both subjective in nature—they denote
degrees of conformity to some norm—suggesting that the phenomena that they refer to have not yet been
given a theoretical explanation, just as the terms “Exceptional Case Marking” and the “Extended Projection
Principle” indicated problematic data—explananda, rather than explanantia (Chomsky 2013, p. 35).

38

I believe that it is quite safe to label the city in (83a) as a canonical subject13—it is the799

specifier of TP and it triggers ϕ-agreement on the finite auxiliary. On the other hand, the800

existential associate unicorns in (83b) is likely not in a canonical subject position.14 In801

fact, existential associates not being in canonical subject position gives force to the second802

premise of (82)—in order for ϕ-agreement to feed movement to canonical subject position,803

agreement must be necessary but not sufficient for movement and existential clauses show804

this only if we assume that their associates are not (possibly covertly) in canonical subject805

position.15806

This leaves us with non-finite subjects in (83c) to (83f). In each of these cases, the807

underlined expression could reasonably be said to be in a subject position, and to have808

moved there, yet there is no apparent ϕ-agreement associated with that move. We could809

reasonably reject the dog in (83c) as a canonical subject, since it is not a specifier to a810

TP, leaving us with the null subjects in (83d) to (83e) and the ECM subject in (83f). In811

a summarizing table, though, Preminger (2014, p. 164) seems to assert that, in English,812

only nominatives are candidates for movement to canonical subject. This would rule out813

traces/PRO and ECM subjects as canonical subjects.814

Canonical subject position, then, seems to refer to the specifier of finite T, at least in815

English. Assuming such a position can be defined well enough to support generalizations such816

as Preminger’s premises,16 the Uniformity Principle—Preminger’s third premise—demands817

that we treat movement to the specifier of finite T as a grammatical process, which, in the818

current system, means treating it as a derivational procedure distinct from Merge, Select,819

Agree and Transfer. So, if we keep strictly to the theory assumed in this paper, Preminger’s820

13We might call it the canonical canonical subject.
14See Hornstein (2009, pp. 130–134), though, for discussion to the contrary.
15The expletive there in (83b) seems to be in canonical subject position—if unicorns was there it would be

the canonical subject—but it does not trigger ϕ-agreement. This, however, does not contradict (82b), which
links ϕ-agreement with movement to canonical subject position, not to the position itself, if we assume that
expletives are inserted in subject position, not moved there.

16Chomsky (2013), for instance, argues that “specifier” is not definable in a theory based on simplest
Merge, such as the one assumed in this paper. This is not strictly true but, whereas “specifier” was trivially
definable in a system like X-Bar, which takes labelling as a primitive, any definition of “specifier” in the
present system would likely consist of the coordination of multiple predicates.

39

argument does not go through.17821

To recap, Preminger’s argument as given in (82), while logically sound, rests on the as-822

sumption that movement to canonical subject position is a bona fide syntactic operation,823

distinct from other types of movement. This assumption would be a departure from the824

theory assumed here, which takes all movement operations to be instances of Merge. Pre-825

minger’s conclusion, that agreement takes place in the syntax taken with my argument above826

that Agree violates the NTC, implies the conclusion that the NTC should be at least weak-827

ened18—another departure from the theory. It would seem, then, that one departure from828

theory begets other departures—a result that is far from surprising and, in fact, indicates the829

internal unity of the theory of grammar assumed here. More importantly, Preminger’s ar-830

gument, the most explicitly fleshed out empirical argument in favour of Agree as a syntactic831

operation, should not be taken as a falsification of NTC or SMT.832

5 Modularity and the paths not taken833

Throughout the exercise in formalization, many choices were made that could have been834

made differently with various levels of consequence for the overall system. For instance, the835

choice, adopted from C&S, to include PHON as part of the LI was essentially the choice of836

an “early-insertion” theory of morphology. This choice, however, was of little consequence837

for the formalization of Agree, since it dealt exclusively with the SYN ans SEM features838

of LIs. The choice to formalize features as type-value pairs, though, does have relevant839

consequences.840

17It might be argued that the theory assumed here cannot account for the range of data that Preminger
discusses and should, therefore, be rejected. Such an objection, I would argue, mistakes entirely the nature
of scientific, and more broadly rational, inquiry. While a full airing of this argument is beyond the scope of
this paper, I will merely ask the reader to consider two points:

1. No scientific theory is or has ever enjoyed complete empirical coverage, even within its own domain.

2. Despite common narratives to the contrary, progress in the sciences is almost always led by theoretical
progress rather than the collection of novel data.

18Preminger (2018) builds on these results to argue against the SMT. If we do not accept his 2014 argument,
we do not have to accept his later argument that depends on it,

40

Suppose, for instance, I had adopted a geometric feature theory such as the one developed841

by Béjar (2003), where, 2nd person feature is represented as in (84).842

(84) π

participant

addressee

843

One formal definition of feature that would capture this is given in (85), with 2nd person844

feature formalized as in (86)845

(85) X is a feature iff

X ∈ SEM (An atomic feature)

or X is a pair of features. (A complex feature)

846

(86) 〈π, 〈participant,addressee〉〉847

Where {π,participant,addressee} ⊂ SEM848

Quite obviously, this would require us to redefine or replace our auxiliary notions like feature-849

of or unvalued feature and to define new ones like depends-on or entails, but most importantly850

it would require new definitions of Match and Value. Béjar (2003) discusses various parame-851

ters that would determine these definitions—for instance, whether a probe can Match a goal852

that is less specified than it or if goals should be more specified than probes—so I will direct853

readers to that discussion should they wish to formalize Match and Value under this theory854

of features.855

On the other hand, I see no reason to expect that we must alter our Minimal Search856

algorithm in (49) nor our final definition of Agree in (51)to account for alternative theories of857

features. Minimal Search is a general purpose algorithm—it doesn’t depend on the particular858

search criterion—and Agree searches a structure and replaces Matching lexical item tokens859

with the result of Value—as long as Match is a predicate that compares lexical item tokens860

relative to features, and Value is a function from somehow-defective lexical item tokens to861

less-defective lexical item tokens.862

41

Likewise, had were one able to adequately define a minimal DFS algorithm or if one863

adopted a ledger-based model of Agree, there would not necessarily be any reason to abandon864

either the type-value or the geometric theory of features. Agree, Search, and Match/Value,865

then are to a certain extent modular with respect to each other and, while the limits of866

that modularity are a purely theoretical question, the final choice of individual theories will867

depend on a combination of theoretical and empirical concerns.868

6 Concluding remarks869

The task of formalizing a theoretical conjecture occupies an odd place in the sciences. While870

it does generally not bring anything new to the table, it does give us the opportunity to871

objectively assess the validity and theoretical prospects of various informal proposals. By872

formalizing various proposals for Agree as a syntactic operation, we can see that what often873

is shown as a simple curved arrow on tree diagrams is actually a rather complicated compu-874

tational operation. Not only is this complexity apparent simply from the size of the formal875

definition compared, say, to that of Merge, but it can, in a way, be measured and given an876

objective evaluation—in section 4, I showed that derivations with Agree were in a different877

complexity class than those without Agree, and that Agree is incompatible with the NTC, a878

central minimalist tenet. I further showed that, while the set of syntactic objects, as defined879

by Collins and Stabler (2016), is closed under Merge, it is not closed under Agree without880

making some ad-hoc modifications to our theory.881

In its current state, then, Agree should not be taken for granted, even with what seems to882

be overwhelming evidence of its existence. This, however, leaves the theory in an awkward883

position—the phenomena that Agree is supposed to explain appear to be real and rather884

ubiquitous, but our tool for explaining them is not yet ready. If we are engaged in rational885

inquiry (i.e., science) then we should not be surprised to find ourselves in such a position.886

It does not mean that its time to throw up our hands and discard our current theory. It887

42

means that we have plenty of work left—an enviable position to be in.888

References889

Béjar, Susana (2003). ‘Phi-syntax: A theory of agreement’. Doctoral dissertation. University890

of Toronto.891

Béjar, Susana and Milan Rezac (2009). ‘Cyclic agree’. In: Linguistic Inquiry 40.1, pp. 35–73.892

Bjorkman, Bronwyn and Hedde Zeijlstra (2014). Upward Agree is superior.893

Boeckx, Cedric (2010). ‘Reflections on the plausibility of crash-proof syntax, and its free-894

merge alternative’. In: Exploring Crash-Proof Grammars. Ed. by Michael T. Putnam.895

Vol. 3. Language Faculty and Beyond. John Benjamins Publishing Company, pp. 105–896

124.897

Branan, Kenyon and Michael Yoshitaka Erlewine (forthcoming). ‘Locality and (minimal)898

search’. url: https://ling.auf.net/lingbuzz/005791.899

Chametzky, Robert (1996). A theory of phrase markers and the extended base. SUNY Press.900

Chomsky, Noam (1965). Aspects of the theory of syntax. Cambridge: MIT Press.901

— (1993). ‘A minimalist program for linguistic theory’. In: The view from Building 20:902

Essays in linguistics in honor of Sylvain Bromberger. Ed. by Ken Hale and Samuel Jay903

Keyser. MIT press.904

— (2000). ‘Minimalist inquiries: The framework’. In: Step by step: Essays on minimalist905

syntax in honor of Howard Lasnik, pp. 89–155.906

— (2004). ‘Beyond Explanatory Adequacy’. In: Structures and Beyond. Ed. by Adriana907

Belletti. The Cartography of Syntactic Structures 3. Oxford University Press, pp. 104–908

131.909

— (2007). ‘Approaching UG from below’. In: Interfaces + recursion = language? Chomsky’s910

minimalism and the view from syntax-semantics. Ed. by Uli Sauerland and Hans-Martin911

Gärtner. Mouton de Gruyter Berlin, pp. 1–29.912

43

Chomsky, Noam (2013). ‘Problems of projection’. In: Lingua 130, pp. 33–49.913

— (2020). ‘The UCLA Lectures’. url: https://ling.auf.net/lingbuzz/005485.914

Collins, Christopher and Erich Groat (2018). ‘Copies and Repetitions’. url: https://ling.915

auf.net/lingbuzz/003809.916

Collins, Christopher and Edward Stabler (2016). ‘A Formalization of Minimalist Syntax’. In:917

Syntax 19.1, pp. 43–78. doi: 10.1111/synt.12117. eprint: https://onlinelibrary.918

wiley.com/doi/pdf/10.1111/synt.12117. url: https://onlinelibrary.wiley.919

com/doi/abs/10.1111/synt.12117.920

Halle, M and Alec Marantz (1993). ‘Distributed morphology and the pieces of inflection’. In:921

The view from building 20. The MIT Press, pp. 111–176.922

Harbour, Daniel (2007). Morphosemantic number: From Kiowa Noun Classes to UG Number923

Features. The Netherlands: Springer.924

Harley, Heidi and Elizabeth Ritter (2002). ‘Person and number in pronouns: A feature-925

geometric analysis’. In: Language 78.3, pp. 482–526.926

Hornstein, Norbert (2009). A theory of syntax: minimal operations and universal grammar.927

Cambridge: Cambridge University Press.928

Huybregts, M.A.C. (Riny) (2017). ‘Phonemic clicks and the mapping asymmetry: How lan-929

guage emerged and speech developed’. In: Neuroscience & Biobehavioral Reviews 81. The930

Biology of Language, pp. 279–294. issn: 0149-7634. doi: https://doi.org/10.1016/j.931

neubiorev.2017.01.041. url: https://www.sciencedirect.com/science/article/932

pii/S0149763416305450.933

Ke, Hezao (2019). ‘The syntax, semantics and processing of agreement and binding gram-934

matical illusions’. Doctoral dissertation. University of Michigan.935

McCawley, James D. (1968). ‘The Role of Semantics in a Grammar’. In: Universals in Lin-936

guistic Theory. Ed. by E. Bach and R. Harms. New York, NY: Holt, Rinehart & Winston,937

pp. 124–169.938

Preminger, Omer (2014). Agreement and its failures. Vol. 68. MIT press.939

44

Preminger, Omer (2018). ‘Back to the Future: Non-generation, filtration, and the heartbreak940

of interface-driven minimalism’. In: Syntactic Structures after 60 Years: The Impact of941

the Chomskyan Revolution in Linguistics. Studies in Generative Grammar [SGG]. De942

Gruyter, pp. 355–380.943

— (2019). ‘What the PCC tells us about “abstract” agreement, head movement, and local-944

ity’. In: Glossa: A Journal of General Linguistics 4.1, p. 13. doi: 10.5334/gjgl.315.945

Richards, Norvin (2001). Movement in Language: Interactions and architectures. Oxford946

University Press.947

Starke, Michal (2010). ‘Nanosyntax: A short primer to a new approach to language’. In:948

Nordlyd 36.1, pp. 1–6.949

Wurmbrand, Susi (2014). ‘The merge condition : A syntactic approach to selection’. In:950

Minimalism and Beyond: Radicalizing the interfaces. Ed. by P. Kosta et al. Language951

Faculty and Beyond. John Benjamins Publishing Company, pp. 130–166.952

Zeijlstra, Hedde (2012). ‘There is only one way to agree’. In: The linguistic review 29.3,953

pp. 491–539.954

45

