
A formalization of Agree as a derivational operation1

2

December 20, 20223

Abstract4

Using the framework laid out by Collins and Stabler (2016), I develop a formal definition of5

Agree as a syntactic operation. I begin by constructing a formal definition of a version of long-6

distanceAgree inwhich a structurally higher element values a feature on a structurally lower element,7

andmodify that definition to reflect various versions of Agree that have been proposed in the “mini-8

malist” literature. I then discuss the theoretical implications of these formal definitions, arguing that9

Agree requires a new conception of the lexicon, and unjustifiably violatesNTC in all its non-vacuous10

forms.11

Keywords: theory, formalization, minimalism, agree, derivations12

13

1 Introduction14

Minimalist Principles & Parameters theories of grammar deal mainly in procedures which generate lin-15

guistic expressions from atoms in an incremental fashion. That is, these theories traffic in computational16

procedures, in the sense of Turing, Church, Post, et al.,1 that relate stage n of a derivation to stage n+117

1This has been true of generative grammars since their inception.Chomsky’s early major publications, for instance, are re-
plete with references to “technical devices for expressing a system of recursive processes”(1965, p8) stemming from then-recent
“work in logic and foundations of mathematics” (1957, p22), which contemporary reader would have no doubt understood as
reference to the work of these authors. See alsoHarris (2002) and Pullum (2011) for discussion of the links between generative
linguistics and the work of these scholars.

1

of that same derivation in a regular well-defined way. From this perspective, Merge is the crown jewel18

of these theories. It has been developed with the two main goals of formal explicitness and descriptive19

adequacy. Much of the current literature in minimalist P&P grammar, however, assumes the existence20

of a second core procedure, Agree.21

As its name suggests, Agree is the operation that causes grammatical agreement—subject-predicate22

agreement, casemarking, etc.—which, I argue in this paper, has yet to be sufficiently defined in such away23

as to properly analyze its theoretical and empirical properties.2 The correct characterization of Agree, as24

with theoretical proposal, ultimately depends on empirical and theoretical considerations. Virtually the25

entire contemporary Agree literature, however, focuses on empirical concerns to the exclusion of theo-26

retical questions.3 This paper seeks to remedy this gap somewhat. The assertion that the Agree literature27

is primarily focused on empirical concerns to the exclusion of theoretical ones, seems to be contradicted28

by the sheer number of theories of Agree that have been proposed—Chomsky (2000) begins with what29

might be called Classical Agree, and scholars later propose Cyclic Agree (Béjar & Rezac, 2009), Local30

Agree (Hornstein, 2009), Fallible Agree (Preminger, 2014), and Upward Agree (Bjorkman & Zeijlstra,31

2014; Zeijlstra, 2012), just to name those theories of Agree which have names. In fact, the proliferation of32

such theories is to be expected when inquiry is guided by the empirical rather than the theoretical, just as33

the proliferation of empirical predictions is to be expected when inquiry is guided by the theoretical.34

Take, for instance, the recent debate regarding Upward vs Downward Agree (Preminger, 2013; Zeijl-35

stra, 2012). This debate turns entirely on whether one version of Agree can capture a certain set of data36

while the other cannot. The debate tacitly assumes that both versions are definable given shared theoret-37

ical assumptions, and makes no real effort to investigate what if any implications either might have for38

the broader grammatical theory in which it is embedded. Indeed, the contrast between the two types of39

Agree seems to be an unquestioned theoretical assumption, which perhaps need not be made.40

This lack of theoretical assesment of Agree is troubling, since the operation has been implicated in41

2 Ermolaeva (2018) definesAgree in the framework ofMinimalistGrammar (MG) (Stabler, 1997). This framework, despite
its name and as Collins and Stabler (2016) argue, is only tangentially related tominimalist theory and has substantially different
goals and concerns. I set Ermolaeva’s work aside for this reason. I also set aside alternatives to Agree embedded in other
theoretical frameworks for the same reason.

3See Chametzky (1996) for discussion on the distinction between theoretical work and empirical work.

2

a wide range of grammatical phenomena beyond the morphological agreement phenomena from which42

it gets its name. Agree has been argued to be necessary to explain movement/Internal Merge (Chomsky,43

1995, 274ff)4, binding (Rooryck & Wyngaerd, 2011), External Merge (Wurmbrand, 2014), among many44

other phenomena. Indeed, it is difficult to find a single phenomenon that falls under the umbrella of45

syntax which has not been given an Agree-based analysis.46

This proliferation of theories of Agree is further exacerbated by the fact that, since its inception,47

analyses in Generative Grammar have always had both derivational and representational expressions. In48

the theory used inAspects (Chomsky, 1965), for instance, (1) can be given three formal expressions—one49

derivational expression in (2), and two representational expressions in (3) and (4).50

(1) Sincerity may frighten the boy.51

(2) S (by S→NP�Aux�VP) (cf Chomsky, 1965, p. 68)

NP�Aux�VP (by VP→V�NP)

NP�Aux�V�NP (by NP→Det�N)

NP�Aux�V�Det�N (by NP→N)

N�Aux�V�Det�N (by Det→the)

N�Aux�V�the�N (by Aux→M)

N�M�V�the�N (byM→may)

N�may�V�the�N (by N→sincerity)

sincerity�may�V�the�N (by N→boy)

sincerity�may�V�the�boy (by V→frighten)

sincerity�may�frighten�the�boy (by V→frighten)

52

(3) [S [NP SincerityN] [Aux mayM] [VP frightenV [NP [Det the] boyN]]]53

4Chomsky calls the operation Attract in this work.

3

(4) S

NP

N

sincerity

Aux

M

may

VP

V

frighten

NP

Det

the

N

boy

54

The formal expression in (2) to (4) are all roughly equivalent, though each highlights a different aspect of55

the analysis they represent.56

Since Generative Grammar within the P&P tradition is a computational theory, the derivational ex-57

pression of a given analysis has always been the ultimate expression—a representation is only a valid anal-58

ysis in such theory, insofar as it can be derived in that theory. The representational expressions, on the59

other hand, are muchmore concise and accessible, so they have been overwhelmingly used as shorthands60

for the derivational expressions, but they are useful as shorthands only insofar as all of the information61

they encode can also be represented with the derivational expressions.62

These representational expressions become problematic, however, when they are augmented for the63

sake of clarity. For instance movement/Internal Merge can be represented without arrows as in (5), but64

more often arrows will be added for ease of understanding as in (6), though (5) and (6) are assumed to be65

equivalent.66

(5) TP

NPi T’

T VP

V ⟨NPi⟩

67

4

(6) TP

NPi T’

T VP

V ⟨NPi⟩

68

It is, perhaps, understandable that Agree, commonly represented by arrows similar to movement arrows69

as in (7), is assumed to have the same level of theoretical underpinning as movement.70

(7) T’

T VP

V NP

71

To date, though, there has been no proposal for a derivational expression of the arrow in (7). The task of72

this paper in part, then, is to remedy this oversight.73

To that end, I will be expanding the formalization of minimalist syntax developed by Collins and74

Stabler (2016). I sketch out this formalization, which is based on a more-or-less contemporary theory75

within the minimalist program, in section 2, and extend it to include Agree in section 3. While I focus on76

what I call Long-DistanceDownwardValuing (LDDV)Agree, I also discuss howmy definitions could be77

adjusted to reflect other theories such as those that assume feature checking or upward valuation, as well78

as local varieties of Agree. In section 4 I consider the theoretical implications of my definition of Agree,79

including its relation to Merge, its implications for the Lexicon, and its relation to the No Tampering80

Condition. Finally, in section 6 I give some concluding remarks.81

5

2 What does a definition look like?82

Collins and Stabler (2016) provide a framework for formal definition. This formal definition uses sets83

and their basic predicates, relations, and operations (membership, subset, set difference, etc) and finite84

sequences referred to as “pairs,” “triples,” and so on depending on their size. Using these formal notions,85

the grammar they define is such that a number of organizing principles ofminimalist theories are provable86

as theorems of this system. I will be defining Agree in this framework, and in order to understandwhat it87

means to define a derivational operation, Imust first lay out somebasic definitions startingwithUniversal88

Grammar (UG) in (8).89

(8) Universal Grammar is a 6-tuple: ⟨PHON-F, SYN-F, SEM-F, Select, Merge, Transfer⟩90

PHON-F, SYN-F, andSEM-Fareuniversal sets of phonetic, syntactic, and semantic features, respectively;91

Select,Merge, andTransfer are operations. Iwill begin the outline of the formal grammarwith the feature92

sets, postponing discussion of the operations for now. Collins and Stabler (2016) (hereafter C&S) also93

define the set PHON-F* as the set of all possible phonetic strings. These feature-sets are grouped together94

to form lexical items, which are grouped into a lexicon, which effectively defines individual grammars, as95

in (9)–(11).596

(9) A lexical item is a triple: LI = ⟨PHON, SYN, SEM⟩97

where SEM and SYN are finite sets such that SEM ⊂ SEM-F, SYN ⊂ SYN-F, and PHON ∈98

PHON-F*.99

(10) A lexicon is a finite set of lexical items.100

(11) An I-Language is a pair ⟨Lex, UG⟩, where Lex is a lexicon and UG is Universal Grammar.101

In order to capture the Copy/Repetition distinction, C&S introduce lexical item tokens, defined in (12),102

which are the atoms of syntactic computation. C&S, also define several other useful terms using LI to-103

kens.6104

5The grammarC&S formalize seems to assume an “early-insertion” theory ofmorphology. Under a “late-insertion” theory
of morphology (Halle & Marantz, 1993; Starke, 2010), LIs would be pairs of syntactic and semantic features ⟨SYN, SEM⟩.
While such a move would likely require C&S to reformulate Transfer, it will be largely irrelevant to the task at hand.

6See Collins and Groat (2018) for a survey of the various approaches to capturing the Copy/Repetition distinction.

6

(12) A lexical item token is a pair: LIk = ⟨LI, k⟩, where LI is a lexical item, and k is an integer.105

(13) A lexical array is a finite set of lexical item tokens.106

(14) X is a syntactic object iff:107

i. X is a lexical item token, or108

ii. X is a set of syntactic objects.109

(15) Let A and B be syntactic objects, then B immediately contains A iff A∈B.110

(16) Let A and B be syntactic objects, then B contains A iff111

i. B immediately contains A, or112

ii. for some syntactic object C, B immediately contains C and C contains A.113

C&S then define a generative framework, wherein complex syntactic objects are derived in stages.114

(17) A stage is a pair S = ⟨LA, W⟩, where LA is a lexical array [a possibly ordered set of lexical item115

tokens] andW is a set of syntactic objects. We call W the workspace of S.116

The operations Merge, Select, and Transfer operate on stages and derive new stages. Merge is binary117

set-formation, Select moves lexical item tokens from the lexical array to the workspace7, and Transfer118

converts syntactic objects into interface objects. Merge and Select are rather simple, as shown in (18)119

and (19). Transfer, on the other hand, is more complicated—so much so that C&S devote 5 sections of120

their paper to developing its definition. Since Transfer is not strictly relevant to this paper, I will omit its121

definition.122

(18) Given any two distinct syntactic objects A, B, Merge(A,B) = {A,B}.123

(19) Let S be a stage in a derivation S = ⟨LA, W⟩.124

If lexical token A∈ LA, then Select(A, S) = ⟨LA – {A}, W∪{A}⟩125

Thus, we can define the central notion of derivation in (20)126

7The operation Select is not to be confused with (c-/s-)selection. The first, indicated by capitalization, is a purely for-
mal/theoretical construct, while the latter is an empirical generalization about categorial/semantic restrictions on phrase struc-
ture.

7

(20) A derivation from lexicon L is a finite sequence of stages ⟨S1, . . . , Sn⟩, for n ≥ 1,127

where each Si = ⟨LAi,Wi⟩, such that128

i. For all LI and k such that ⟨LI,k⟩ ∈ LA1, LI ∈ L,129

ii. W1 = {} (the empty set),130

iii. for all i, such that 1 ≤ i < n, either131

(derive-by-Select) for some A∈LA i , ⟨LAi+1,Wi+1⟩ = Select(A, ⟨LAi,Wi⟩), or132

(derive-by-Transfer) …, or133

(derive-by-Merge) LAi=LAi+1, and the following conditions hold for some A,B:134

a. A∈Wi135

b. Either A contains B [Internal Merge] or Wi immediately contains B [External Merge],136

and137

c. Wi+1 = (Wi − {A,B}) ∪ {Merge(A,B)}138

So, abstracting away from certain representational complexities, the sentence Brian smiles would be de-139

rived as in (21).140

(21) (S1) ⟨{TPres, smile,Brian}LA1
, {}W1

⟩ (by Select(Brian, S1))

(S2) ⟨{TPres, smile}LA2
, {Brian}W2

⟩ (by Select(smile, S2))

(S3) ⟨{TPres}LA3
, {Brian, smile}W3

⟩ (byMerge(smile, Brian))

(S4) ⟨{TPres}LA4
, {{Brian, smile}}W4

⟩ (by Select([Pres], S4))

(S5) ⟨{}LA5
, {TPres, {Brian, smile}}W5

⟩ (byMerge([Pres], {smile,Brian}))

(S6) ⟨{}LA6
, {{TPres, {Brian, smile}}}W6

⟩ (byMerge(Brian, {TPres, . . .}))

(S7) ⟨{}LA7
, {{Brian, {TPres, {Brian, smile}}}}W7

⟩

141

C&S’s formalization is open for some refinements, such as those that Chomsky (2020) suggests, and ex-142

tensions, but it provides uswith a framework for those refinements and extensions. In order to addAgree143

to the formal grammar, for instance, we would need to define it as a function from stages to stages to be144

added as a derive-by-Agree clause to (20), and in order to define such a function, as we shall see, we will145

need a formal definition of features.146

8

3 Defining Agree147

Agree can be very broadly described as an operation that modifies a syntactic object X iff X stands in a148

particular formal/structural relation and a particular substantive relationwith another syntactic object Y.149

So, in order to defineAgree, wemust formalize (a) the formal/structural prerequisite—Probe, a species of150

Search—(b) the substantive prerequisite—Match—and (c) the process of modifying the syntactic object151

in question—Value or Check—each of which has, in a sense, been the focus of its own debate in the lit-152

erature. As a starting point, I will formalize Long-Distance Downward Valuation Agree (LDDV-Agree),153

which is more or less the version of Agree put forth by Wurmbrand (2014) and which has the following154

properties. LDDV-Agree is long-distance in that it does not require a strictly local relation between the155

Agreeing syntactic objects, rather two elements stand in a c-command-plus-relativized-minimality rela-156

tion as specified in (22).8157

(22) Two elements X and Y can Agree iff X c-commands Y, Y Matches X, and there is no element H158

such that HMatches X, X c-commands H and H c-commands Y.159

LDDV-Agree is downward in the sense that it modifies the c-commanded element, and it is valuation-160

based in the sense that the element is modified by converting one of its unvalued feature into a valued161

one as specified in (23) and (24).162

(23) XMatches Y for feature F iff X has [F:val] and Y has [F:].9163

(24) If X and Y Agree for feature F then [F:] on Y becomes [F:val].164

The first thingwemust do, is formalize the notion of “feature” as used here. By (8), there are three sets165

of features inUniversalGrammar—PHON-F, SYN-F, SEM-F. Setting aside PHON-F as irrelevant to the166

current paper, our task is to formalize the members of SYN-F and SEM-F. Generally, a given syntactic or167

semantic feature is describablewith reference to its interpretability, its type, and its value (or lack thereof).168

8The two elements participating in Agree are commonly referred to as the probe and the goal respectively. The term
“probe” is also often used to refer to the search process associated with Agree. To avoid this confusing ambiguity, I do not use
“probe” and “goal” to refer to elements.

9Multiple commentators have noted that a more intuitive and simple definition ofMatch would allow an Xwith [F:val]
toMatch a Y with [F:val]. Such a definition, though would be inconsistent with the contemporary theories of Agree that are
being formalized here—theories in which Agree is the process by which an element with a valued feature values an unvalued
feature on different element.

9

Interpretability can be taken care of by simple set membership—interpretable features are members of169

SEM-F, uninterpretable features aremembers of SYN-F—leaving uswith type and value.10 Keepingwith170

Wurmbrand (2014) as our basis, then, we can define features as in (25) along with a few auxiliary notions171

defined in (26) to (28).11172

(25) A feature is a pair ⟨F, v⟩—hereafter abbreviated Fv—where v is an integer. F is called the feature173

type, v is the feature value.174

(26) For all feature types F, ⟨F, 0⟩ is an unvalued F feature.175

(27) For lexical itemLI = ⟨PHON, SYN, SEM⟩, feature Fv is a feature of LI, iff Fv ∈SYNor Fv ∈SEM.176

(28) For lexical item token LIk = ⟨LI, k⟩, feature Fv is a feature of LIk, iff Fv is a feature of LI.177

So, for instance, English present tense might have roughly the lexical representation in (29).178

(29) ⟨PHON, {. . . ⟨φ, 0⟩ . . . } , {. . . ⟨T, 1⟩ . . . }⟩179

This lexical itemhas some phonetic features, an unvalued uninterpretableφ-feature, and an interpretable180

T feature with the value 1, which we can stipulate is interpreted as present tense. The choice to formalize181

feature values as integers is made only to allow for a perspicuous way of defining unvalued features. We182

could use any type of discrete symbol to represent values, provided it had a special symbol for “unvalued.”183

We can define Match as in (30).184

(30) For any two lexical item tokens X, G and feature type F,185

Match(X, G, F) = 1 iff for some feature value v ̸= 0, ⟨F, v⟩ is a feature of X and ⟨F, 0⟩ is a feature186

of G.187

Under this definition, an English finite T head will match a non-Case-marked pronoun but not a Case-188

marked one, as demonstrated in (31)189

10 The fact that SYN-F and SEM-F seem to be disjoint subsets of a natural class of features seems to indicate that they are
not independent of each other. Indeed, the Strong Minimalist Thesis (SMT) would say that there is only one set of features
in UG—SEM-F. This, of course raises a number of fascinating questions which are beyond the scope of this paper.

11An anonymous reviewer points out that, although Wurmbrand (2014) represents features as name-value pairs, they are
more commonly assumed to be organized into hierarchical feature geometries (Béjar, 2003; Harbour, 2007; Harley & Ritter,
2002). In section 5 discuss the formalization of one such feature theory and its limited effect on the overall formal definition
of Agree.

10

(31) a. Match(T, 3SgF[Case:_], Case) =190

Match

⟨⟨PHONT, SYNT, {. . . , ⟨Case, 1⟩, . . . }⟩, k⟩,

⟨⟨PHON3sgF, {. . . , ⟨Case, 0⟩, . . . } , SEM3SgF⟩, k⟩,Case

 = 1191

b. Match(T, 3SgF[Case:ACC], Case) =192

Match

⟨⟨PHONT, SYNT, {. . . , ⟨Case, 1⟩, . . . }⟩, k⟩,

⟨⟨PHON3sgF, {. . . , ⟨Case, 2⟩, . . . } , SEM3SgF⟩, k⟩,Case

 = 0193

Value is essentially a replacement operation—operating on a lexical item token, swapping an unvalued194

feature with a valued counterpart. This is defined in (32).195

(32) For lexical item token LIk=⟨⟨PHON, SYN, SEM⟩, k⟩, and feature ⟨F, v⟩,196

Value(LIk, ⟨F, v⟩) = ⟨⟨PHON, (SYN−{⟨F, 0⟩}) ∪ {⟨F, v⟩}, SEM⟩, k⟩197

So, an instance of Value associated with subject-predicate agreement, ignoring Case, might look some-198

thing like (33).199

(33) Where TPres = (29) and ⟨φ, 31⟩ corresponds to 3rd person singular,200

Value(⟨TPres, 4⟩, ⟨φ, 31⟩)→ ⟨⟨PHON, {. . . ⟨φ, 31⟩ . . . } , {. . . ⟨T, 1⟩ . . . }⟩, 4⟩201

The resulting lexical item token still has an interpretable tense feature and an uninterpretable φ feature202

but the latter now has the value 31, which we stipulate corresponds to 3rd person singular.203

Note that, while I have been tacitly assuming that (un)valued-ness and (un)interpretability are corre-204

lated in the lexicon—that all and only unvalued features are members of SYN-F—the definition of Value205

in (32) contradicts this assumption, since the result of Value is an element that contains at least one valued206

uninterpretable feature.207

In fact, any attempt to make the assumption that all uninterpretable features are unvalued hold in208

general runs into issues. We could save it by eliminating Value, but this would contradict one of the209

core premises of Agree theory—that Agree modifies lexical item tokens mid-derivation. Alternatively,210

We could save it by re-defining Value, say as Value′ in (34) which removes the unvalued feature from SYN211

and adds a valued feature to SEM.212

(34) For lexical item token LIk=⟨⟨PHON, SYN, SEM⟩, k⟩, and feature ⟨F, v⟩,213

Value′(LIk, ⟨F, v⟩) = ⟨⟨PHON, SYN−{⟨F, 0⟩}), SEM∪{⟨F, v⟩}⟩, k⟩214

11

With this definition though, our subject-predicate agreement would look like (35), which seems to create215

a T head which is semantically 3rd person singular—something that does not exist, at least in English.216

(35) Where TPres = (29) and ⟨φ, 31⟩ corresponds to 3rd person singular,217

Value′(⟨TPres, 4⟩, ⟨φ, 31⟩)→ ⟨⟨PHON, {. . . } , {. . . ⟨T, 1⟩, ⟨φ, 31⟩ . . . }⟩, 4⟩218

The operation defined in (32), then, seems tomatch the notion of valuation generally assumed in theories219

of UGwith Agree. It does, however have a problematic prediction that I address in section 4.3.220

The last portion of Agree to be defined is what is often called “Probe”, which is an instance of “Min-221

imal Search” (Chomsky, 2004) an algorithm that requires some discussion.222

3.1 Minimal Search223

The term Minimal Search, as its usually used in minimalist syntactic theory, refers to an algorithm that224

retrieves the “highest” object in a structure that meets some particular criterion. While such an algorithm225

is almost certainly required for Agree, it is not required only for Agree. Indeed, Minimal Search is impli-226

cated in at least Internal Merge (Chomsky, 2020) and labelling (Chomsky, 2013).227

The criterion for a given instance of Search, it seems, depends on the purpose of that search. For In-228

ternalMerge, following a Free-Merge theory, the Search criterion ismore or less identity—InternalMerge229

of X and Y requires a successful Search of X for Y or vice versa—Chomsky’s (2013) Labelling Algorithm230

Searches for any lexical item token, and a Search in service of Agree will useMatch as defined in (30) as its231

criterion. Thus, our definition of Search, while guided by the present goal of formalizing Agree, must be232

general.233

In order to properly define a Minimal Search algorithm we must first consider some test cases as234

follows. Each case is a complex abstract syntactic object containing twoobjects—GandH—eachofwhich235

meets the search criterion. Each case is represented both as a binary set as constructed by Merge and236

a binary tree. The first case in (36) is the most straightforward—G asymmetrically c-commands H, so237

Minimal Search retrieves G and not H.238

(36) Case 1: G is retrieved.239

12

a. {X, {G, {Y,H}}}240

b.

X

G

Y H

241

The second case in (37) is slightly more complicated—G does not c-command H, but Minimal Search242

should retrieve G because it is immediately contained in an object that asymmetrically c-commands an243

object that immediately contains H.244

(37) Case 2: G is retrieved.245

a. {X, {{G,Y} , {W, {{H,Z} ,U}}}}246

b.

X

G Y
W

H Z

U

247

Other cases, though, will give ambiguous results. These are cases in which G andH are equidistant from248

the root. In (38), for instance G and H are siblings, while in (39) they are immediately contained, respec-249

tively, by siblings.250

(38) Case 3: Both G and H are retrieved.251

a. {X, {G,H}}252

13

b.

X

G H

253

(39) Case 4: Both G and H are retrieved.254

a. {X {{G,Y} , {H,Z}}}255

b.

X

G Y H Z

256

Our goal, then, is to construct an algorithm that has the above-defined results. There are two broad257

classes of search algorithms appropriate to our task—Depth-First Search (DFS) and Breadth-First Search258

(BFS). DFS starts at the root of an object and searches to a terminal node before backtracking, as repre-259

sented in (40), where the arrows and the numbers indicated the search order.260

(40) 1

2 3

4

5 6

7

8 9

261

A DFS algorithm can be made minimal by designing it to stop as soon as it finds a node that meets its262

criterion. So, a Minimal DFS on Case 1 would be proceed as in (41) selecting.263

14

(41)

X

G

Y H

264

However in an ambiguous case, like Case 4, a Minimal DFS will incorrectly retrieve just a single object as265

shown in (42).266

(42)

X

G Y H Z

267

AMinimal DFS algorithm, then is over-definite—it gives a definite result where we expect an ambiguous268

one.269

There is also a deeper problemwithDFS as applied to syntactic objects, and that is its reliance on linear270

order as well as structure. In the examples above, whenever the algorithm reaches a branching node, it271

takes the left branch first. If it, instead, took the right branch first, the result would be different—in both272

(41) and (42), a right-to-left Minimal DFS would retrieve H rather than G. The problem is made worse273

by the fact that, the structures that we are searching are constructed byMerge and, therefore, do not have274

a linear order. In order for our algorithm to make a decision at a “branch,” then, it would have to be a275

random decision. Therefore, the result of a DFS for a given syntactic object may be different each time it276

is run. Given these issues, I will set aside DFS.12277

12WhileBranan andErlewine (forthcoming),Ke (2019), andPreminger (2019) allmake reference to the issueswith aminimal
DFS, none opt for a BFS, with Preminger and Ke each defining a version of DFS and Branan and Erlewine making no firm
decision between the two options. Branan and Erlewine and Preminger both argue that the weaknesses ofDFS can be avoided
if certain parts of a structure are inaccessible to Search, however neither provide a principled way of so restricting the DFS
algorithm. Preminger proposes that specifiers are not searched, while Branan and Erlewine suggest that left-branches might

15

Breadth-first Search (BFS) algorithms, on the other hand, searches neighbour nodes before proceed-278

ing lower in the tree as represented in (43), where the arrows and the numbers indicated the search order.279

(43) 1

2 3

5

6 7

4

8 9

280

Again, this canbemademinimal by requiring that the algorithm stop immediately upon finding anobject281

that matches the search criterion. AMinimal BFS on Case 2, then, is represented in (44).282

(44)

X

G Y
W

H Z

U

283

Like the Minimal DFS, the Minimal BFS, as represented in (43) and (44) assumes that nodes are linearly284

ordered, even if that order is arbitrary. Unlike the Minimal DFS, the order of the neighbour nodes does285

not matter, at least for definite cases like Case 1 and Case 2. To demonstrate this, consider the reverse286

not be searched. Both of these proposals, though, depend on an assumption that syntactic objects produced by Merge are
inherently asymmetric, while the present paper assumes the exact opposite.
Ke (2019, pp. 46–49), on the other hand, claims to propose a BFS algorithm but, in fact, proposes a parallelized DFS. This

solves the issue of the unordered nature of syntactic objects—when faced with two “branches” the algorithm does not need
to make a choice, it searches both simultaneously. Unfortunately, Ke is not explicit about his model of parallel computation.
Specifically, he does not define how multiple processes running in parallel are able to communicate with each other so that,
say, one process can report success and cause the overall process to halt.

16

version of (44) in (45).287

(45)

X

G Y
W

H Z

U

288

In an ambiguous case, though, Minimal BFS suffers the same fate as Minimal DFS—it is over-definite.289

So, in Case 3, Minimal BFS will wrongly retrieve either G or H depending on the ordering of nodes, as290

shown in (46) and (47).291

(46)

X

G H

292

(47)

X

G H

293

This flaw, however, can be overcome if, instead of traversing each node, we treat the sets of neighbour294

nodes as tiers, as in (48).295

17

(48) 1

2 2

3

4 4

3

4 4

296

Minimal Tiered BFS, then, would visit each tier and extract the subset of that tier whose members all297

matched the search criterion, and stop as soon at it extracts a non-null subset. Thus we can define a298

definite search result as in (49), an ambiguous search result as in (50), and a failed search as in (51).299

(49) For a syntactic object SO and criterion P, Search(SO,P) is definite iff |Search(SO,P)|=1300

(50) For a syntactic object SO and criterion P, Search(SO,P) is ambiguous iff |Search(SO,P)| > 1301

(51) For a syntactic object SO and criterion P, Search(SO,P) is failed iff Search(SO,P)= {}302

Minimal Tiered BFS, then, will be our choice of Search algorithm. The next step is to formally define it.303

In order to define Search, then, we need to be able to properly generate search tiers. So, for instance,304

the tiers for (37) are given in (52)305

(52) Tier 1 = {X, {{G,Y} , {W, {{H,Z} ,U}}}}306

Tier 2 =

{G,Y} ,

{W, {{H,Z} ,U}}

307

Tier 3 =


G,Y,

{{H,Z} ,U}

W

308

Tier 4 =

{H,Z} ,

U

309

Tier 5 ={H,Z}310

Tier 6 ={}311

18

For a givenTierTi, we can generateTi+1 by first removing all the terminal nodes fromTi and performing312

what is called an arbitrary union which is defined in (53).313

(53) For a set of sets X̄ = {X0, . . . , Xn} the arbitrary union of X̄,
∪
X̄ = X0 ∪ · · · ∪Xn.314

Therefore we can define a procedure NextTier in (54) and with it, Search in (55).315

(54) For T, a set of syntactic objects,316

NextTier(T)=
∪
{SO∈T: SO is not a lexical item token}.317

(55) For S, a set of syntactic objects, and Crit, a predicate of lexical item tokens,318

Search(S,Crit) =


{} if S = {}

{SO ∈ S : Crit(SO) = 1} if {SO ∈ S : Crit(SO) = 1} ̸= {}

Search(NextTier(S), Crit) otherwise

319

Probe, then is a special type of Search, where the search criterion is based onMatch as shown in (56).320

(56) For F, a feature type, and SO, a syntactic object that immediately contains X, a lexical item token,321

Probe(SO,X,F) = Search(SO, MatchX,F)322

where MatchX,F = 1 iff X contains a feature g such that Match(X, g, F) = 1.13323

With our definition of Probe in place, we can turn to our final definition of Agree which I turn to shortly324

in section 3.2.325

3.2 A formal definition of Agree326

If and when an instance of Probe retrieves a lexical item token, that token must be modified—at least327

according to most versions of Agree.14 More precisely, the token must be modified in place. That is, if328

token G is in position Q in stage Si, then the modified token G′ must be in position Q in stage Si+1.329

Furthermore, if copies of G are in multiple positions (Q, Q′, Q′′…) in Si, then copies of X′ must be in330

13MatchX,F can be formally defined using the technique of λ-abstraction as (λg.(Match(X, g, F))). See Church (1941) or
Partee et al. (1990) for an introduction to the lambda calculus.

14If we wished to define Agree purely as a relation—i.e. an n-place predicate (n>1)—we could simply define it as
Agreepred(SO, X, Y, F) iff Probe(SO, X, F) = Y.

19

those same positions in Si+1. In order to do this we must traverse the syntactic object in question and331

replace every instance of G with G′, the result of Value.332

Note that each copy of G must be replaced to maintain their copy-hood. Taking, for example, the333

pronoun her in (57), which has at least two copies as indicated in (58).334

(57) We expect her to be hired.335

(58)
{
. . .

{
Voice,

{
expect,

{
3SgF[Case:_],

{
. . .

{
hire, 3SgF[Case:_]

}
. . .

}}}}
. . .

}
336

If accusativeCasemarkingwasperformedby a “minimal”Agree—one that only valued thehighest copy—337

then the result would be the syntactic object in (59) in which the two instances of the third person femi-338

nine pronoun are distinct from each other and, therefore, no longer copies in any sense.339

(59)
{
. . .

{
Voice,

{
expect,

{
3SgF[Case:acc],

{
. . .

{
hire, 3SgF[Case:_]

}
. . .

}}}}
. . .

}
340

The pronouns 3SgF[Case:acc] and 3SgF[Case:_] are clearly distinct—one is Case-marked, the other isn’t—341

and furthermore, they have divergent derivational histories—one has undergone Value, the other hasn’t.342

What’s more is that the lower pronoun is not Case-marked and should therefore cause a crash at the343

interfaces. In order to maintain the identity between copies, then, Agree must be maximal—it must344

Value every copy.345

Thus we can define Agree as in (60).346

(60) Where SO is a syntactic object F is a feature type, and v is a feature value ̸= 0 and G is a lexical347

item token such that Probe(α, X, Fv) = {G}, where SO = αor SO is contained in α348

Agree(SO, G, Fv) =


Value(SO,⟨F, v⟩) if SO=G (a)

SO if SO is a lexical item token (b)

{Agree(A, G, Fv),Agree(B, G, Fv)} if SO = {A,B} (c)

349

Agree, according to (60), is defined for three cases. In Case (60a), where SO is an instance of G—350

the lexical item token to be valued, the output of Agree is the valued version of G—Agree applies non-351

vacuously. In Case (60b), where SO is a lexical item token, but not an instance of G, the output of Agree352

is SO—Agree applies vacuously. In Case (60c), where SO is a set, Agree is applied to eachmember of SO,353

20

and a new set containing the respective outputs of those Agree operations is constructed—Agree applies354

recursively. Note also, that the result of Case (60c)—binary set-formation—is an instance of Merge, and355

I will treat it as such below.356

To see how Agree works, consider accusative Case marking in the sentence Brian kisses him as an357

instance of Agree operating on the structure in (61) yielding the structure in (62).358

(61)
{

αVoice,
{

βkiss, 3SgM[Case:_]

}}
359

a. Voice = ⟨⟨PHONVoice, SYNVoice, {. . . , ⟨Case, 2⟩, . . .}⟩, k⟩360

(Voice contains an Accusative Case feature in its SEM)361

b. 3SgM[Case:_] = ⟨⟨PHON3SgM, {. . . , ⟨Case, 0⟩, . . .} , SEM3SgM⟩, k′⟩362

(The 3rd person singular masculine pronoun contains an unvalued Case feature in its SYN)363

(62)
{

αVoice,
{

βkiss, 3SgM[Case:acc]

}}
364

The first step of this instance of Agree is to Probe for unvalued Case features, as in (63)365

(63) Probe(α, Voice, Case) =
{
3SgM[Case:_]

}
366

The non-case-marked pronoun—i.e., the sole member of the result of Probe—stands in for G in (60) for367

our instance of Agree. Since α is a complex SO, the first instance of Agree, as shown in (64), proceeds368

by recursively performing Agree on α’s constituent parts—Voice and β—andMerging the results. Since369

Voice is a lexical item token but not our target for Agree, Agree does not change it, as shown in (65), and370

we can simplify our first iteration of Agree as in (66).371

(64) Agree(α, 3SgM[Case:_], ACC) = (by (60c))372

Merge(Agree(Voice, 3SgM[Case:_], ACC), Agree(β, 3SgM[Case:_], ACC))373

(65) Agree(Voice 3SgM[Case:_], ACC) = Voice (by (60b))374

(66) Merge(Agree(Voice, 3SgM[Case:_], ACC), Agree(β, 3SgM[Case:_], ACC)) = (by (65))375

Merge(Voice, Agree(β, 3SgM[Case:_], ACC))376

We then perform Agree on β which contains the verb and the direct object pronoun.377

21

(67) Agree(β, 3SgM[Case:_],Caseacc) = (by (60c))378

Merge(Agree(kiss, 3SgM[Case:_],Caseacc), Agree(3SgM[Case:_], 3SgM[Case:_],Caseacc))379

(68) Agree(kiss, 3SgM[Case:_],Caseacc) = kiss (by (60b))380

(69) Agree(3SgM[Case:_], 3SgM[Case:_],Caseacc) = (by (60a))381

Value(3SgM[Case:_],Caseacc) = (by (32))382

3SgM[Case:acc]383

(70) Merge(Agree(kiss, 3SgM[Case:_],Caseacc), Agree(3SgM[Case:_], 3SgM[Case:_],Caseacc)) = (by (68),384

(69))385

Merge(kiss, 3SgM[Case:acc])386

Then, having reached the “bottom” of our structure, we are left with two simpleMerge operations which387

yield (62) as shown in (71).388

(71) Merge(Voice, Agree(β, 3SgM[Case:_], ACC)) = (by (70))389

Merge(Voice, Merge(kiss, 3SgM[Case:acc])) = (by (18))390

Merge(Voice,
{
kiss, 3SgM[Case:acc]

}
) = (by (18))391 {

Voice,
{
kiss, 3SgM[Case:acc]

}}
= (62)392

393

We have arrived at a formal definition of one variety of Agree (LDDV-Agree) which we will use in394

the the following section as a basis for defining other varieties.395

3.3 Upward Valuation396

In defining a Downward Valuation Agree, we considered syntactic objects such as the one schematized397

in (72) which immediately contain lexical item tokens bearing a valued feature Fv and which contain a398

lexical item token bearing an unvalued feature F0.399

(72) {XF:v, {. . .GF:0}}400

In an Upward Valuation, the relevant features of X and G are swapped, as in (73).401

22

(73) {XF:0, {. . .GF:v}}402

In order to capture Upward Valuation, then we need first modify theMatch criterion of Probe as in (74),403

moving X to the second argument position.404

(74) For F, a feature type, and SO, a syntactic object that immediately contains X, a lexical item token,405

ProbeUV(SO, X, F) = Search(SO, MatchX, F).406

Thus, ProbeUV gives a definite result {G} only ifX contains an unvalued F feature andG contains a valued407

F feature. Since, by definition, the relevant unvalued feature in AgreeUV is at the top of the structure, we408

might think that no exhaustive DFS is required. Unfortunately, though, the same concern with valuing409

copies is with us—just because a lexical item token is at the top of a tree doesn’t mean there isn’t a copy410

of it at the bottom. Therefore, our definition of AgreeUV in (75) look similar to that in (60).411

(75) For lexical item token X, syntactic object SO={X, …}, and feature type F, and lexical item token412

G such that ProbeUV(α, X, Fv) = {G}, where SO = αor SO is contained in α,413

AgreeUV(SO, X, Fv) =


Value(SO,⟨F, v⟩)if SO=X (a)

SO if SO is a lexical item token (b)

Merge(AgreeUV(A, X, Fv),AgreeUV(B, X, Fv)) if SO = {A,B} (c)

414

3.4 Feature Checking415

VersionsofAgreewhose effects are feature checking rather thanvaluation assume that all formal features—416

i.e., members of SYN-F—are valued, butmust be checked byAgree (Chomsky, 1995). In order to formal-417

ize such a feature checking operation, Agree✓, wemust reformulate our notion of features and ourMatch418

predicate, and replace Value with Check. Formal features and their related notions, then, are defined as419

in (76) and (77), with semantic features retaining their definition in (25).420

(76) A formal feature is a triple ⟨c?, F, v⟩, where c? is 1 or 0 and v is an integer. F is called the feature421

type, v is the feature value.422

(77) For all feature types F and values v, ⟨ 0, F, v⟩ is an unchecked Fv feature, and ⟨ 1, F, v⟩ is checked Fv423

feature.424

23

Match✓, then, compares a semantic feature of one lexical item token with a formal feature of another425

succeeding if both features have the same type and value and the formal feature is unchecked, as defined426

in (78)427

(78) For any two lexical item tokens X and G, feature type F and value v,428

Match✓(X, G, F) = 1 iff ⟨F, v⟩ is a feature of X and ⟨0, F, v⟩ is a feature of G.429

Finally, Check is a simple matter of flipping a 0 to a 1 or leaving a 1 as a 1 as in (79). Note, though, that430

Checkwill never apply to an already checked feature, sinceMatch is a prerequisite for Check andwill only431

succeed if the feature in question is unchecked.432

(79) For a lexical item token SO=⟨⟨PHON, SYN, SEM⟩, k⟩, and formal feature Fv=⟨c?, F, v⟩,433

Check(SO, Fv) = ⟨⟨PHON, (SYN− Fv) ∪ {⟨1, F, v⟩} , SEM⟩, k⟩434

These newly defined functions can be slotted into our formalized definitions of Agree as in (80) to give a435

definition of Agree✓, where G is the result of Probing based onMatch✓.436

(80) Where SO is a syntactic object Fv is feature, and G is a lexical item token such that Probe✓(α, X,437

Fv) = {G}, where SO = αor SO is contained in α,438

Agree(SO, G, Fv) =


Check(SO,Fv) if SO=G (a)

SO if SO is a lexical item token (b)

Merge(Agree✓(A, G, Fv),Agree✓(B, G, Fv)) if SO = {A,B} (c)

439

3.5 Local Agree440

Earlyminimalist theories of agreement (e.g.Chomsky, 1993) continued theGBassumption that agreement441

was limited to what was called a “spec-head” relation. So, for example, subject-predicate agreement was442

assumed to occur because, in the terminology of the day, the subjectmoves to the specifier of the predicate443

head (T or I), in contrast to later theories in which subjects move because they agree. Similarly, Case444

licensing, in these theories, is usually taken to occur under a “spec-head” relation. In this section, I will445

formalize this conception of Agree.446

24

On its surface, Local Agree, as described above, has the advantage of not requiring an arbitrary search447

of the entire derived expression. Instead, the search is strictly and specifically limited to the very top of448

object. The canonical case of so-called “spec-head” agreement is the finite subject merged with the finite449

predicate, shown in (81)450

(81) TP = {{D, …}, {T, …}}451

Restricting our discussion to Case, we can see that the Agree operation is an interaction between the452

lexical item token immediately contained in one member of TP and the lexical item token contained in453

the other member of TP. We can define ProbeLocal, then, as in (82).454

(82) For feature type F, lexical item tokens X and Y, and syntactic object SO={U,W},455

ProbeLocal(SO, X, F) =


Y if X ∈ U,Y ∈ W, andMatch(X, Y, F)

undefined otherwise
456

It should be noted that ProbeLocal makes no use of the notions “specifier” or “head.” Indeed, it assumes457

no structural asymmetry at all, only the valued-unvalued asymmetry.458

It should also be noted that, since so-called “spec-head” structures, especially those associated with459

Case and agreement, are often formed by Internal Merge, our final version of AgreeLocal, much like long-460

distance Agree, will need to replace every instance of the object being valued/checked. Therefore, our461

final version of AgreeLocal, is defined as in (83).462

(83) Where SO is a syntactic object F is a feature type, and v is a feature value ̸= 0 and G is a lexical463

item token such that ProbeLocal(α, X, F) = G, where SO = αor SO is contained in α,464

AgreeLocal(SO, G, Fv) =


Value(SO,⟨F, v⟩) if SO=G (a)

SO if SO is a lexical item token (b)

Merge(Agree(A, G, Fv),Agree(B, G, Fv)) if SO = {A,B} (c)

465

3.6 Summary466

In this section, I provided a formal definition of one particular conception of Agree—Long-Distance467

Downward Valuation Agree—by first breaking it into individual pieces—Probe, Match, Value—which468

25

I gave formal definitions, and then assembling those definitions in such a way as they define Agree. I469

then discussed a few alternative conceptions of Agree, showing how they could be defined by altering470

the previous definitions as minimally as possible. This description of the definition process might sug-471

gest that Agree is modular—that it consists of several independent operations that can be mixed and472

matched—but this is not the case. Rather, while the discussion of each alternative tended to focus on a473

single operation, the changes to that operationwas such that it necessitatedminormodifications toAgree474

as a whole. Agree, then, does seem to be real operation, albeit a rather complex one, as I will demonstrate475

in the next section.476

4 Properties of Agree477

With the Agree operation properly formalized, we are in a position to investigate the operation’s theo-478

retical properties, which have either not been remarked upon in the literature, or been discussed without479

the precision that formalization allows. This section will discuss some of those properties. Rather than480

investigating Agree in isolation and following the premise that Agree is a full-fledged derivational opera-481

tion like Merge, Select and Transfer, this section will focus on those properties of Agree that distinguish482

it from other operations—Merge in particular.483

We will first see, in section 4.1, that Agree differs fromMerge and Select in that it is inherently recur-484

sively defined, while the latter two are defined non-recursively. Related to this, I will argue in section 4.2485

that the fact that our definition of Agree includes instances of Merge effectively rules out any general486

Agree requirement for Merge. In section 4.3, I show that, unlike Merge and Select, Agree does not close487

the set of syntactic objects, and that attempts to rectify this leads to problematic predictions for language488

acquisition. Finally, in section 4.4 I discuss the implications of Agree for the NTC.489

4.1 UGAgree490

In order to do so, though, we must give a definition of UGAgree in (84) and derivation in (85).491

(84) Universal Grammar is a 7-tuple:492

26

⟨PHON-F, SYN-F, SEM-F, Select, Merge, Transfer, Agree⟩493

(85) A derivation from lexicon L is a finite sequence of stages ⟨S1, . . . , Sn⟩, for n ≥ 1,494

where each Si = ⟨LAi,Wi⟩, such that495

i. For all LI and k such that ⟨LI,k⟩ ∈ LA1, LI ∈ L,496

ii. W1 = {} (the empty set),497

iii. for all i, such that 1 ≤ i < n, either498

(derive-by-Select) for some A∈LAi , ⟨LAi+1,Wi+1⟩ = Select(A, ⟨LAi,Wi⟩), or499

(derive-by-Transfer) …,500

(derive-by-Merge) LAi=LAi+1, and the following conditions hold for some A,B:501

a. A∈Wi502

b. Either A contains B or Wi immediately contains B, and503

c. Wi+1 = (Wi − {A,B}) ∪ {Merge(A,B)}504

(derive-by-Agree) or LAi=LAi+1 and the following conditions hold for some SO, X, G and505

Fv:506

a. SO∈Wi507

b. SO immediately contains X508

c. Probe(SO,X,Fv) = {G}509

d. Wi+1 = (Wi − {SO}) ∪ {Agree(SO,G,Fv)}510

This definition of a derivation uses the names of its procedures, but in the case of Merge and Select, one511

could just as easily expand them to give their full definition fully in terms of set-theory because they are512

non-recursive operations. Agree, however, is recursively defined, that is, it is defined in terms of itself—513

“Agree” appears on the left-hand and right-hand side of the equals sign in (60)—so such an expansion514

is not possible. This is a fundamental difference between Agree and the other generative operations—515

Merge and Select are non-recursive functions, while Agree is recursive.15516

15Interestingly, C&S also defineTransfer recursively. It follows then that Transfer should also be considered a different kind
to operation—a conclusion also predicted by the fact that Transfer is generally considered an operation of the interfaces rather
than Narrow Syntax.

27

Beyond its recursive definition, there are a number of properties that set Agree apart from its fellow517

operations. First, since performing Agree on a syntactic object entails searching the object, modifying518

certain constituents, and putting the object back together, and since objects can only be put together519

by applying Merge, every non-trivial application of Agree includes at least one application of Merge.520

This is reflected in definitions (60) and (75)—in which Merge appears in the intension of Agree—and521

concurs with Hornstein (2009, pp. 126–154) who notes that the minimal c-command relation required522

byAgree (Specifically non-local Agree, orAGREE in his terminology) is exactly the same as the one that is523

assumed to hold in all cases of Internal-Merge (which he calls “Move”). Hornstein’s critique, that Agree524

and Internal-Merge are redundant, is actually complementary to the fact that Agree as defined entails525

Merge. The former suggests that either Agree or Internal Merge should be eliminated, while the latter526

rules out eliminating Internal-Merge.527

4.2 Agree as a prerequisite for Merge528

Early in the minimalist program, Chomsky (2000) proposed that Agree was a prerequisite for Move—529

that Move was a reflex of Agree. Merge—what we now call External Merge—on the other hand, was530

free to apply without Agree. Once Internal Merge was discovered, though, theorists were faced with a531

dilemma—ifMerge andMovewere truly a single operation, they couldn’t verywell have different prereq-532

uisites. There are two ways out of this dilemma—either all instances of Merge are free, or all instances of533

Merge require Agree.16 Although C&S’s formalization andmy extension of it assume that all operations,534

except perhaps Transfer, are free, there are Agree theorists—for instance Wurmbrand (2014)—who take535

Agree to be a prerequisite toMerge. Therefore, in this section, I will discuss the barriers tomodifying the536

formal grammar to make Agree a prerequisite for Merge.537

The principle barrier to making Agree a prerequisite for Merge is that, as defined in (85), the deriva-538

tion is a computational procedure and, therefore, is strictly incremental. That is, the validity of a given539

stage Sn (n̸=1) depends solely on its form and the formof the immediately preceding stage Sn-1. Requiring540

every instance ofMerge to be preceded by an instance of Agree, however, wouldmean that the validity of541

16See Boeckx (2010) for a broader discussion of the schism.

28

a stage Sn (n̸=1) depends on its two preceding stages Sn-1 and Sn-2. That is, Sn can be derived from Sn-1 by542

Merge only if Sn-1 is derived from Sn-2 by Agree. A derivation, then, would need memory, albeit a very543

small amount of it.544

On its face, this does not seem to be an insurmountable barrier, but as we shall see, it will end up545

ruling out the first instance of Merge in any derivation. To begin with, we reformulate our definition of546

derivation by adding the underlined line in our derive-by-Merge clause in (86).547

(86) A derivation from lexicon L is a finite sequence of stages ⟨S1, . . . , Sn⟩, for n ≥ 1,548

where each Si = ⟨LAi,Wi⟩, such that549

i. For all LI and k such that ⟨LI,k⟩ ∈ LA1, LI ∈ L,550

ii. W1 = {} (the empty set),551

iii. for all i, such that 1 ≤ i < n, either552

(derive-by-Select) for some A∈LAi , ⟨LAi+1,Wi+1⟩ = Select(A, ⟨LAi,Wi⟩), or553

(derive-by-Transfer) …,554

(derive-by-Merge) LAi=LAi+1, and the following conditions hold for some A,B:555

a. A∈Wi556

b. Either A contains B or Wi immediately contains B,557

c. ⟨Wi, LAi⟩ is derived by Agree from ⟨Wi−1, LAi−1⟩, and558

d. Wi+1 = (Wi − {A,B}) ∪ {Merge(A,B)}559

(derive-by-Agree) or LAi=LAi+1 and the following conditions hold for some SO, X, G and560

Fv:561

a. SO∈Wi562

b. SO immediately contains X563

c. Probe(SO,X,Fv) = {G}564

d. Wi+1 = (Wi − {SO}) ∪ {Agree(SO,G,Fv)}565

Now, lets consider an abstract subderivation of the syntactic object {X, Y} where X and Y are lexical item566

tokens. We start in S1, given in (87) with an empty workspace and a lexical array containing at least X and567

29

Y.568

(87)
S1 = ⟨LA1,W1⟩

= ⟨{X, Y, Z . . . } , {}⟩
569

Next we perform Select twice, to bring X and Y into the workspace.570

(88)
S2 = Select(X, S1)

= ⟨{Y, Z . . . } , {X}⟩
571

(89)
S3 = Select(Y, S2)

= ⟨{Z . . . } , {X, Y}⟩
572

Under a free Merge grammar, we would, at this point simply Merge X and Y, but this option is not573

available to us, since derive-by-Merge in (86) requires an Agree step. A Select step is possible here, but574

that would only postpone our dilemma. We need to perform Agree next.575

Assuming that X could value Y for feature F—i.e., Match(X, Y, F) = 1—let’s consider the structural576

prerequisites. As stated in (86), X and Y must be contained in the same syntactic object SO, which, in577

turn, must be a member of the workspace. In S3, however, both X and Y are members of the workspace,578

and there is no SO to speak of. No stage S4, then, can be derived by Agree.579

We’ve arrived then at an instance of circularity—every instance of Merge requires a preceding in-580

stance of Agree, and every instance of Agree requires a preceding instance ofMerge. First Merge, then, is581

impossible if the definition of a derivation in (86) holds.17582

4.3 The Non-Closure of Agree583

Since a computational procedure is essentially the repeated application of an operation, or set of oper-584

ations, with each application providing the input for the following application, the domain of a given585

17This is not to say that tying Agree toMerge in some way will always be a dead-end. On the contrary, one of, for instance,
Hornstein’s (2009) critiques of long-distance Agree is that it ties Agree too loosely to Merge. Merge creates the structural
conditions for Agree—a point which Local Agree more or less explicitly acknowledges. This leads one to wonder why we
consider Merge and Agree to be distinct operations—why Agree is not treated as a reflex of Merge. The obvious response to
this is that there do seem to be instances of long-distance agreement that do not involve movement. This objection, however,
only holds if we rule out the covert movement hypothesis, which states that apparent long-distance agreement relations are,
in fact, cases of movement in which the lower copy of the moved element is pronounced (see Chomsky, 1993, 1995). This
hypothesis has fallen out of fashion due to empirical issues such as those discussed by Hornstein (2009, pp. 135–153), but this
section suggests that it may face fewer theoretical hurdles than long-distance.

30

computational operation must be closed under that operation, as defined in (90).586

(90) Domain D is closed under n-place operation f iff587

for all x0, x1, . . . xn ∈D f(x0, x1, . . . , xn) ∈D.588

In the case of our syntactic derivations, our domain is the set of stages, whichC&Sdemonstrate are closed589

under derive-by-Select and derive-by-Merge. I have thus far been assuming that it is also closed under590

derive-by-Agree, but that assumption is perhaps not strictly true, under our present definitions.591

As defined, derive-by-Agree is a function from stages to stages that modifies a stage’s workspace, by592

performing Agree on a syntactic object in that workspace. Therefore, the set of stages is closed under593

derive-by-Agree iff the set of syntactic objects is closed under Agree. For its part, Agree operates on a594

given syntactic object SO by applying Value to SO if SO is an appropriate lexical item token, or to the595

appropriate lexical item tokens contained in SO otherwise. Therefore the set of syntactic objects is closed596

underAgree iff the set of lexical item tokens is closedunderValue. Weneedonly consider a simple instance597

of Value to see that this is not obviously the case.598

Consider the lexical item token Xk, defined in (91), which has only one syntactic feature, [F:0].599

(91) Xk = ⟨⟨PHONX, {⟨F, 0⟩}, SEMX⟩, k⟩600

where PHONX∈PHON-F*, SEMX⊂SEM-F, k is an integer, and ⟨F, 0⟩ ∈SYN-F.601

What about the result of applying Value to Xk, given in (92)?602

(92) Value(Xk, ⟨F, v⟩) = ⟨⟨PHONX, {⟨F, v⟩}, SEMX⟩, k⟩603

where v is a non-zero integer.604

Since PHONX, SEMX, and k are unchanged, the new object is a lexical item token iff ⟨F, v⟩ ∈SYN-F.605

That is, the set of lexical item tokens is closed under Value only if the universal set of syntactic features in606

UGAgree contains both valued and unvalued features.607

While there is no strictly formal reason formodifying our theory features by hypothesizing that SYN-608

F contains valued and unvalued features, such a hypothesis would put us in something of a theoretical609

quandary. In the grammar assumed by this paper, language acquisition is at least partially a process of610

constructing lexical items from universal feature sets so that they match tokens in the primary linguistic611

31

data. The basic premise of Agree theory, though, is that a unvalued features cannot surface and therefore612

must be valued during the derivation. If this is the case, then there are effectively no tokens of unvalued613

features in the primary linguistic data. Why, then, would a language acquirer ever construct a lexical item614

with an unvalued feature?615

To take a concrete example, consider the case of French adjectives which show gender and number616

agreement as demonstrated in (93).617

(93) Sg Pl

Fem grande grandes

Masc grand grands

618

This situation is consistentwith two sorts of lexicons ifwe assume lexically valuedSYNfeatures—lexicons619

withmultiple adj LIs, each with valuedφ-features as in (94) and lexicons with a single adj LI with unval-620

ued φ-features as in (95).621

(94) LEX=



. . . ,

⟨/-e/, {⟨γ, 1⟩, ⟨#, 1⟩}, SEMadj⟩,

⟨/-es/, {⟨γ, 1⟩, ⟨#, 2⟩}, SEMadj⟩,

⟨∅, {⟨γ, 2⟩, ⟨#, 1⟩}, SEMadj⟩,

⟨/-s/, {⟨γ, 2⟩, ⟨#, 2⟩}, SEMadj⟩,

. . .



622

(95) LEX= {. . . , ⟨PHONadj, {⟨γ, 0⟩, ⟨#, 0⟩}, SEMadj⟩, . . .}623

Since the lexicon in (94) represents a surface analysis of adjective morphology, it would be the more624

straightforward to acquire than (95) which requires an additional step of abstraction from the data. All625

else being equal, then, allowing SYN-F to contain valued features would seem to predict the sort of lex-626

icon in (94) for French. This, of course would be consistent with a checking-based Agree, but not a627

valuation-based Agree.628

Alternatively, we could assume that all and only unvalued features are members of SYN-F—stated629

formally as an axiom in (96).630

(96) For all features ⟨F, v⟩, v= 0 ↔ ⟨F, v⟩ ∈ SYN-F631

32

Thiswould remove the acquisition issue—(94)wouldbe an impossible lexicon—andwouldbe consistent632

with the basic premise of Agree theory. It still would require theoretical explanation, but of the more633

general sort suggested in footnote 10. but it would mean that the set of lexical item tokens is not closed634

underValue, and therefore the set of stages is not closed under aValue-basedAgree. AValue-basedAgree,635

then, could not be a computational operation in a version of UGAgree with (96) as an axiom.636

In sum, in order for a valuation-basedAgree such as the one defined in (60) to be a viable as a compu-637

tational procedure, we must expand the domain of possible lexical items in a theoretically questionable638

way.639

4.4 Agree and the NTC640

One of the theorems of C&S’s formal grammar is the No Tampering Condition defined by Chomsky641

(2007, p. 8) as follows: “Suppose X and Y are merged. Evidently,efficient computation will leave X and Y642

unchanged (the No-Tampering ConditionNTC).We therefore assume that NTC holds unless empirical643

evidence requires a departure from [the strong minimalist thesis] in this regard, hence increasing the644

complexity of UG.” C&S’s formulation of NTC, which they prove as a theorem of UG, is given in (97).645

(97) For any two consecutive stages in a derivation S1 = ⟨LA1, W1⟩ and S2 = ⟨LA2, W2⟩,646

for all A contained inW1 , A is contained inW2.647

Since the effect of every form of Agree defined in this paper is to replace all instances of some lexical648

item token G in a workspace with a distinct item G’, Agree violates NTC by design. The issues UGAgree649

discussed above, then, may be predicted by Chomsky’s conjecture that UG operations conform to the650

NTC. There are essentially two ways of dealing with this result—either we take the approach that C&S651

takewithTransfer andmodifyAgree so that it does not violateNTC, orwe argue that “empirical evidence652

requires a departure from” NTC. I will discuss each of these options in turn below.653

4.4.1 NTC-Respecting Agree654

A straightforward way of constructing an Agree operation that respects the NTC is to formally separate655

the content of a derived expression from its structure in somewaywithMergemanipulating the structure656

33

and Agree manipulating the content. A stage of the derivation, then would consist of a lexical array, a657

workspace, and ledger as in the definition in (98)658

(98) A stage is a triple S = ⟨LA, W, L⟩, where LA is a lexical array, W is a set of syntactic objects, and L659

is a set of pairs of lexical item tokens. We call W the workspace of S and L the ledger of S.660

Rather than modifying lexical item tokens in place, Agree would add a pair ⟨LIk, LI′k⟩, where LIk is a661

lexical item token contained in the workspace and LI′k is the result of Valuing LIk for some feature. The662

ledger, then, postpones the tampering of Agree, either until Transfer, or until the SM and/or the CI663

system and thereby rescues the NTC.664

This sort of move also fixes a number of issues already discussed regarding Agree. A version of Agree665

that respects NTC does not alter the workspace—it merely constructs an ordered pair and adds it to the666

ledger. It does not take apart and put back together an already constructed syntactic object, as standard667

Agree as defined in (60) does. Therefore it does not need to be recursively defined, and it does not need668

to refer to Merge in its definition.669

This improvement aside, however, it also lays bare the fact that Agree as a syntactic-derivational op-670

eration is fundamentally redundant. The prerequisites for Agree are a structural relation (Search) and671

content relation (Match) between two lexical item tokens. So, suppose X and G are lexical item tokens672

and, for some feature F, Match(X,G,F)=1. Further suppose that stage Sn in derivation D is derived by673

Merge(X, Y), where Y contains G and no lexical item tokenH, such thatMatch(X,H,F)=1. At this point,674

our prerequisites are met and we can perform Agree, but supposing instead we derive stages Sn+1 and675

Sn+2 by Selecting and Merging another lexical item token. By the NTC, the object {X, Y} is contained676

in the root object of Sn+2, and therefore all of the structural and content relations that held at Sn still677

hold at Sn+2 including the prerequisites for X to Agree with G for F.18 By extension, we can continue to678

postpone Agree at least until the next instance of Transfer without losing the prerequisites for Agree. It679

seems, then, that, while we can certainly define Agree so that it respects NTC, if we have NTC, we can680

define Agree as an interface operation, perhaps as part of Transfer. This formalization, then, represents681

a sharp departure from the various theories of Agree whose formalization is the task at hand, and which682

18See theorems 2 and 3 in Collins and Stabler (2016).

34

share the assumption that Agree modifies already constructed SOs mid-derivation.683

4.4.2 Agree instead of the NTC?684

Even as statedbyChomsky (2007), theNTC isnot an absolute lawakin, say, to the lawofnon-contradiction.685

Rather, he proposes that we assume the NTC “unless empirical evidence requires a departure from [the686

strong minimalist thesis] in this regard.” In one sense, this is a very low bar, since NTC is a universal687

statement, which only requires a single counterexample to invalidate. In practice though, it is far from688

obvious what sort of evidence would count as counterexample.689

The relative ubiquity ofmorphological agreement, for instance, might seem to be the sort of evidence690

we need, but it is not sufficient to invalidate NTC. Consider, as a parallel, linear order. It is a plain fact691

that external linguistic expressions have linear order, yet that linear order is still assumed to be absent692

in the grammar—at least in standard Merge-based grammars. Yet, as Chomsky (2020) citing McCawley693

(1968) points out, adverbs like respectively, which depend on linear order for their interpretation, provide694

evidence that conjunction structures have inherent linear order.695

(99) Beth and Sara met Hanako andMáire respectively.696

a. = Beth met Hanako and Sara met Máire.697

b. ̸= Beth met Máire and Sara met Hanako.698

What we need, then, is evidence that standard Agree is occurring in a derivation interspersed with699

Merge. Preminger (2014) argues that we have exactly such evidence in the interrelation of morphological700

case, φ-agreement, and subject position.19 The form of the argument is given in (100)701

(100) a. Morphological case feeds φ-agreement in quirky-subject languages.702

b. Φ-agreement feeds movement to canonical subject in non-quirky-subject languages.703

c. The functioning of the grammar is uniform across languages (The Uniformity Principle).704

d. Therefore, morphological case and φ-agreement precede movement to subject.705

19An anonymous reviewer points out that the evidence that Richards (2001) adduces for “tucking-in” is perhaps stronger
evidence of a violation of NTC. I address Preminger’s argument here because it has to do directly with agreement and is there-
fore germane to the topic at hand. SeeHornstein (2009), though, for a proposal that predicts the effects of tucking-in without
tucking-in.

35

e. Therefore, morphological case and φ-agreement are part of the narrow syntax.706

The argument is logically sound, but it depends on an analysis of the evidence that is plausible, but not the707

only possible analysis. That is, it depends of the truth of the first two premises, which are empirical state-708

ments. Despite being empirical statements, though, they depend on two theoretical notions—“quirky709

subjects” and “canonical subject position”—to even be coherent. I will take for granted that the term710

“quirky subject” is coherent, and focus on “canonical subject position.”20711

Furthermore, it is worth noting, that Preminger frames his premises in terms of “feeding” rather than712

“driving” or “triggering.” An operationX feeds another operation Y if X creates the necessary conditions713

for Y and X precedes Y. “Feeding”, then, speaks to the order of operations more than causation.714

Oneproperty of canonical subject position that Preminger is clear about is that it is syntactic—he says715

ofmovement to canonical subject position that it is “clearly syntactic (since it creates new binding config-716

urations, for example)” (p177) and that it “is a syntactic process par excellence” (p184). We further know,717

based on the second premise of (100), which Preminger claims as an empirical result, that movement to718

canonical subject position in non-quirky-subject languages should always co-occur with φ-agreement.719

Since this latter requirement is an empirical claim, though, it should not be too directly tied to our def-720

inition lest our reasoning be circular. We can construct our definition by applying these two desiderata721

to some representative data.722

Our representative data is given in (101), where the underlined subexpression is could be or has been723

considered to be in subject position in English.724

(101) a. The city is bustling.725

b. There seem to be unicorns in my house.726

c. The dog running down the street was quite a sight.727

d. They seemed t to leave.728

e. I expect t/PRO to leave shortly.729

20It should be noted that themodifiers “quirky” and “canonical” both subjective in nature—they denote degrees of confor-
mity to some norm—suggesting that the phenomena that they refer to have not yet been given a theoretical explanation, just
as the terms “Exceptional Case Marking” and the “Extended Projection Principle” indicated problematic data—explananda,
rather than explanantia (Chomsky, 2013, p. 35).

36

f. We believed them to be a capable team.730

I believe that it is quite safe to label the city in (101a) as being in canonical subject position21—it is the731

specifier of TP and it triggers φ-agreement on the finite auxiliary. On the other hand, the existential as-732

sociate unicorns in (101b) is likely not in a canonical subject position.22 In fact, existential associates not733

being in canonical subject position gives force to the second premise of (100)—in order for φ-agreement734

to feedmovement to canonical subject position, agreementmust be necessary but not sufficient formove-735

ment and existential clauses show this only if we assume that their associates are not (possibly covertly)736

in canonical subject position.23737

This leaves uswith non-finite subject position in (101c) to (101f). In each of these cases, the underlined738

expression could reasonably be said to be in a subject position, and to have moved there, yet there is no739

apparent φ-agreement associated with that move. We could reasonably reject the dog in (101c) as being740

in canonical subject position, since it is not a specifier to a TP, leaving us with the null subjects in (101d)741

to (101e) and the ECM subject in (101f). In a summarizing table, though, Preminger (2014, p. 164) seems742

to assert that, in English, only nominatives are candidates formovement to canonical subject. This would743

rule out traces/PRO and ECM subjects as canonical subjects.744

Canonical subject position, then, seems to refer to the specifier of finite T, at least in English. Assum-745

ing such a position can be defined well enough to support generalizations such as Preminger’s premises,24746

theUniformity Principle—Preminger’s third premise—demands that we treatmovement to the specifier747

of finite T either as a special case ofMerge, distinct from external or ordinary internalMerge, or as deriva-748

tional operation of its own, distinct from Select, Merge, and Agree. So, if we keep strictly to the theory749

assumed in this paper, where UGAgree hasMerge, Select, Agree, and Transfer, Preminger’s argument does750

21Wemight call it the canonical canonical subject.
22See Hornstein (2009, pp. 130–134), though, for discussion to the contrary.
23The expletive there in (101b) seems to be in canonical subject position—if unicorns was there it would certainly be in

canonical subject position—but it does not trigger φ-agreement. This, however, does not contradict (100b), which links φ-
agreement with movement to canonical subject position, not to the position itself, if we assume that expletives are inserted in
canonical subject position, not moved there.

24Chomsky (2013), for instance, argues that “specifier” is not definable in a theory based on simplestMerge, such as the one
assumed in this paper. This is not strictly true but, whereas “specifier” was trivially definable in a system like X-Bar, which
takes labelling as a primitive, any definition of “specifier” in the present system would likely consist of the coordination of
multiple predicates.

37

not go through because the premise (100b) would not be well-defined.25 Put another way, (100) might751

be coherent in some theory of grammar, but it is not coherent in a theory that assumes UG as defined in752

(8) or UGAgree as defined in (84).753

We could try to rescue (100) by restating (100b) as (100b′) which is coherent in UGAgree—assuming754

“quirky subject” can be defined and the problems outlined in section 4.2 can be overcome.755

(100b′) Φ-agreement feeds Internal Merge in non-quirky-subject languages.756

In order for this new premise to be true, though, movement to non-canonical subject position must also757

requireφ-agreement, which implies some sort of abstract or covertφ-agreement on non-finite predicates758

such as those in (101c) to (101f). In light of this implication, it is difficult to see how this newpremise could759

be justified empirically, and therefore it should be rejected, or at best treated as a hypothesis. Since any760

argument is only as strong as its premises, this would weaken Preminger’s argument a great deal.761

To recap, Preminger’s argument as given in (100), while seemingly logically sound, rests on the as-762

sumption that movement to canonical subject position is a bona fide syntactic operation, distinct from763

other types of movement. This assumption would be a departure from the theory assumed here, which764

takes all movement operations to be instances of Merge. Preminger’s conclusion, that agreement takes765

place in the syntax taken with my argument above that Agree violates the NTC, implies the conclusion766

that the NTC should be at least weakened26—another departure from the theory. It would seem, then,767

that one departure from theory begets other departures—a result that is far from surprising and, in fact,768

indicates the internal unity of the theory of grammar assumed here. More importantly, Preminger’s ar-769

gument, the most explicitly fleshed out empirical argument in favour of Agree as a syntactic operation,770

should not be taken as a falsification of NTC or SMT.771

25Itmight be argued that the theory assumedhere cannot account for the range of data that Preminger discusses and should,
therefore, be rejected. Such an objection, I would argue, mistakes entirely the nature of scientific, and more broadly rational,
inquiry. While a full airing of this argument is beyond the scope of this paper, I will merely ask the reader to consider two
points:

1. No scientific theory is or has ever enjoyed complete empirical coverage, even within its own domain.

2. Despite common narratives to the contrary, progress in the sciences is almost always led by theoretical progress rather
than the collection of novel data.

26Preminger (2018) builds on these results to argue against the SMT. If we do not accept his 2014 argument, we do not have
to accept his later argument that depends on it,

38

5 Modularity and the paths not taken772

Throughout the exercise in formalization,many choicesweremade that could have beenmade differently773

with various levels of consequence for the overall system. For instance, the choice, adopted fromC&S, to774

include PHON as part of the LI was essentially the choice of an “early-insertion” theory of morphology.775

This choice, however, was of little consequence for the formalization of Agree, since it dealt exclusively776

with the SYN and SEM features of LIs. The choice to formalize features as type-value pairs, though, does777

have relevant consequences.778

Suppose, for instance, I had adopted a geometric feature theory such as the one developed by Béjar779

(2003), where, 2nd person feature is represented as in (102).780

(102) π

participant

addressee

781

One formal definition of feature that would capture this is given in (103), with 2nd person feature for-782

malized as in (104)783

(103) X is a feature iff


X ∈ SEM (An atomic feature)

or X is a pair of features. (A complex feature)
784

(104) ⟨π, ⟨participant, addressee⟩⟩785

Where {π, participant, addressee} ⊂ SEM786

Quite obviously, this would require us to redefine or replace our auxiliary notions like feature-of or un-787

valued feature and to define new ones like depends-on or entails, but most importantly it would require788

new definitions of Match and Value. Béjar (2003) discusses various parameters that would determine789

these definitions—for instance, whether unvalued features should be fully specified or underspecified—790

so I will direct readers to that discussion should theywish to formalizeMatch andValue under this theory791

of features.792

On the other hand, I see no reason to expect that wemust alter ourMinimal Search algorithm in (55)793

39

nor our final definition of Agree in (60)to account for alternative theories of features. Minimal Search is794

a general purpose algorithm—it doesn’t depend on the particular search criterion—and Agree searches795

a structure and replaces Matching lexical item tokens with the result of Value—as long as Match is a796

predicate that compares lexical item tokens relative to features, and Value is a function from somehow-797

defective lexical item tokens to less-defective lexical item tokens.798

Likewise, were one able to adequately define a minimal DFS algorithm or if one adopted a ledger-799

based model of Agree, there would not necessarily be any reason to abandon either the type-value or the800

geometric theory of features. Agree, Search, andMatch/Value, then are to a certain extent modular with801

respect to each other and, while the limits of that modularity are a purely theoretical question, the final802

choice of individual theories will depend on a combination of theoretical and empirical concerns.803

6 Concluding remarks804

The task of formalizing a theoretical conjecture occupies an odd place in the sciences. While it does gen-805

erally not bring anything new to the table, it does give us the opportunity to objectively assess the validity806

and theoretical prospects of various informal proposals. By formalizing various proposals for Agree as807

a syntactic operation, we can see that what often is shown as a simple curved arrow on tree diagrams808

is actually a rather complicated computational operation. Not only is this complexity apparent simply809

from the size of the formal definition compared, say, to that ofMerge, but it is reflected in the theoretical810

complexities identified in section 4.811

In its current state, then, Agree should not be taken for granted, even with what seems to be over-812

whelming evidence of its existence. This, however, leaves the theory in an awkward position—the phe-813

nomena that Agree is supposed to explain appear to be real and rather ubiquitous, but our tool for ex-814

plaining them is not yet ready. If we are engaged in rational inquiry (i.e., science) then we should not be815

surprised to find ourselves in such a position. It does not mean that its time to throw up our hands and816

discard our current theory. It means that we have plenty of work left—an enviable position to be in.817

40

References818

Béjar, S. (2003). Phi-syntax: A theory of agreement (Doctoral dissertation). University of Toronto.819

Béjar, S., & Rezac, M. (2009). Cyclic agree. Linguistic Inquiry, 40(1), 35–73.820

Bjorkman, B., & Zeijlstra, H. (2014). Upward agree is superior.821

Boeckx, C. (2010). Reflections on the plausibility of crash-proof syntax, and its free-merge alternative. In822

M. T. Putnam (Ed.), Exploring crash-proof grammars (pp. 105–124). John Benjamins Publishing823

Company.824

Branan, K., & Erlewine, M. Y. (forthcoming). Locality and (minimal) search. https : / / ling . auf . net /825

lingbuzz/005791826

Chametzky, R. (1996).A theory of phrase markers and the extended base. SUNY Press.827

Chomsky, N. (1957). Syntactic structures. Mouton.828

Chomsky, N. (1965).Aspects of the theory of syntax. MIT Press.829

Chomsky, N. (1993). A minimalist program for linguistic theory. In K. Hale & S. J. Keyser (Eds.), The830

view from building 20: Essays in linguistics in honor of sylvain bromberger. MIT press.831

Chomsky, N. (1995). The minimalist program.832

Chomsky, N. (2000). Minimalist inquiries: The framework. Step by step: Essays on minimalist syntax in833

honor of Howard Lasnik, 89–155.834

Chomsky, N. (2004). Beyond explanatory adequacy. In A. Belletti (Ed.), Structures and beyond (pp. 104–835

131). Oxford University Press.836

Chomsky, N. (2007). Approaching ug from below. In U. Sauerland & H.-M. Gärtner (Eds.), Interfaces837

+ recursion = language? chomsky’s minimalism and the view from syntax-semantics (pp. 1–29).838

Mouton de Gruyter Berlin.839

Chomsky, N. (2013). Problems of projection. Lingua, 130, 33–49.840

Chomsky, N. (2020). The ucla lectures. https://ling.auf.net/lingbuzz/005485841

Church, A. (1941). The calculi of lambda-conversion. Princeton University Press.842

Collins, C., & Groat, E. (2018). Copies and repetitions. https://ling.auf.net/lingbuzz/003809843

41

Collins, C., & Stabler, E. (2016). A formalization of minimalist syntax. Syntax, 19(1), 43–78. https://doi.844

org/10.1111/synt.12117845

Ermolaeva, M. (2018). Morphological agreement in minimalist grammars. In A. Foret, R.Muskens, & S.846

Pogodalla (Eds.), Formal grammar (pp. 20–36). Springer Berlin Heidelberg.847

Halle, M., & Marantz, A. (1993). Distributed morphology and the pieces of inflection. The view from848

building 20 (pp. 111–176). TheMIT Press.849

Harbour,D. (2007).Morphosemantic number: FromKiowa noun classes to UG number features. Springer.850

Harley,H.,&Ritter, E. (2002). Person andnumber in pronouns:A feature-geometric analysis.Language,851

78(3), 482–526.852

Harris, Z. S. (2002). The background of transformational and metalanguage analysis. In B. Nevin (Ed.),853

The legacy of zellig harris: Language and information into the 21st century. Vol. 1. Philosophy of854

science, syntax and semantics (pp. 1–18). J. Benjamins Pub. Co.855

Hornstein, N. (2009).A theory of syntax: Minimal operations and universal grammar. Cambridge Uni-856

versity Press.857

Ke,H. (2019).The syntax, semantics and processing of agreement and binding grammatical illusions (Doc-858

toral dissertation). University of Michigan.859

McCawley, J. D. (1968). The role of semantics in a grammar. In E. Bach&R.Harms (Eds.),Universals in860

linguistic theory (pp. 124–169). Holt, Rinehart &Winston.861

Partee, B. B., ter Meulen, A., &Wall, R. (1990).Mathematical methods in linguistics. Kluwer Academic862

Publishers.863

Preminger, O. (2013). That’s not how you agree: A reply to zeijlstra. The Linguistic Review, 30(3), 491–864

500.865

Preminger, O. (2014).Agreement and its failures (Vol. 68). MIT press.866

Preminger, O. (2018). Back to the future: Non-generation, filtration, and the heartbreak of interface-867

driven minimalism. Syntactic structures after 60 years: The impact of the chomskyan revolution in868

linguistics (pp. 355–380). De Gruyter.869

42

Preminger, O. (2019). What the pcc tells us about “abstract” agreement, head movement, and locality.870

Glossa: A Journal of General Linguistics, 4(1), 13. https://doi.org/10.5334/gjgl.315871

Pullum, G. K. (2011). On the mathematical foundations of syntactic structures. Journal of logic, language872

and information, 20(3), 277–296.873

Richards, N. (2001).Movement in language: Interactions and architectures. Oxford University Press.874

Rooryck, J., &Wyngaerd, G. V. (2011).Dissolving binding theory (Vol. 32). OUPOxford.875

Stabler, E. (1997). Derivational minimalism. Logical Aspects of Computational Linguistics: First Interna-876

tional Conference, LACL’96, Nancy, France, September 23-25, 1996. Selected Papers, 1328, 68.877

Starke, M. (2010). Nanosyntax: A short primer to a new approach to language.Nordlyd, 36 (1), 1–6.878

Wurmbrand, S. (2014). Themerge condition : A syntactic approach to selection. In P. Kosta, S. Franks, T.879

Radeva-Bork,&L. Schürcks (Eds.),Minimalism and beyond: Radicalizing the interfaces (pp. 130–880

166). John Benjamins Publishing Company.881

Zeijlstra, H. (2012). There is only one way to agree. The linguistic review, 29(3), 491–539.882

43

