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Abstract

All changes to the internal structure of phonological segments arise from combina-

tions of two set-theoretic operations: feature deletion by set subtraction and feature

insertion by unification. Once stated, the idea seems trivial—after all, it’s obvious

that you can make a d into a t by removing +VOICED and adding −VOICED. How-

ever, we’ll see that some subtleties are required in the chain of reasoning that will

lead us to a full treatment of the complex process of Hungarian voicing assim-

ilation. This example illustrates how the problem of modeling the full range of

phonological phenomena can be fruitfully decomposed.

Keywords: phonology, unification, features, rules, segments, underspecification

We learn not to worry about purpose, because such worries never lead to the

sort of delight we seek.

Steven Weinberg, To Explain the World

1 Introduction

(Ontological) proliferation is the enemy of (theoretical) elegance. In contrast, combi-

natorics is our friend: when we try to model some aspect of the world, we want to

account for lots of phenomena with just a few building blocks that can be put together

to allow for superficial variety and complexity. One reason for this perspective is that

it conforms to the intuition that at some level a theory is a form of “data compression”

(Chaitin, 2006). Another reason, for linguistics—and equally applicable to other cog-

nitive sciences—is that the “less attributed to genetic information (in our case, the topic

*I am grateful to Maxime Papillon, Alan Bale, Marjorie Leduc, David Ta-Chun Shen, Armel Jolin and

Veno Volenec for discussion and corrections of the paper itself, and also for playing a large role in developing

many of the ideas here over several years. Péter Siptár deserves special recognition as a pure scientific soul

who generously advised me on the data, analysis and exposition of an account of Hungarian at odds with his

own.
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of UG) for determining the development of an organism, the more feasible the study

of its evolution” (Chomsky, 2007) and the more plausible its neural implementation.

One strategy for achieving such elegance in linguistics is to carve up a complex do-

main into isolable pieces, so that from the “welter of descriptive complexity” we can

abstract “certain general principles governing computation that would allow the rules

of a particular language to be given in very simple forms” (Chomsky, 2000).

But what if our approach is so narrow and reductive as to propose almost noth-

ing about almost nothing? It is perhaps natural that such an anxiety arises from the

combination of such a program of abstraction with the substance-free approach I adopt

(Hale and Reiss, 2000, 2008; Reiss, 2017b). Substance free phonology denies a role

for markedness and perceptual or articulatory considerations in phonological explana-

tion, and initially does not make for a very promising vista of phonology as a domain

for seeking intellectual delight: if we get rid of all the phonetics and minimize the com-

putational system, what’s left to keep us occupied? I address this anxiety by showing

in schematic but explicit fashion how to model a wide variety of superficially diverse

phenomena with just two set-theoretic mechanisms. This pared-down inventory does

not entail that our analyses will be uninteresting since “[a]s concepts and principles be-

come simpler, argument and inference tend to become more complex—a consequence

that is naturally very much to be welcomed” (Chomsky, 1982). Free of any dependency

on phonetic substance or teleological notions of purpose, my approach seeks delight in

the pure logic of phonological computation.

I propose that the complex problem of modeling phonological phenomena can be

fruitfully decomposed, and in this paper I examine only the segment-internal changes

effected by the most basic mappings (‘rules’). I argue that all changes to the internal

structure of segments can be reduced to combinations of feature deletion by set sub-

traction and feature insertion by unification. Once stated, the idea seems trivial—

after all, it’s obvious that you can make a d into a t by removing +VOICED and adding

−VOICED. However, we’ll see that some subtleties are required in the chain of reason-

ing that will lead us to a full treatment the complex phenomenon of Hungarian voicing

assimilation at the end of the paper.

In order to appreciate our narrow focus, let’s consider various aspects of a sim-

ple alternation, and see how they can be distinguished. The process in Lamba (Doke,

1938) that turns an onset /l/ to [n] when the preceding onset contains a +NASAL seg-

ment raises issues of what can be a possible environment in a rule and how locality

can be defined in terms of adjacency, linear order, syllable structure, and so on. The

process also demands that we consider whether the change in the features LATERAL

and NASAL happen in parallel as a single rule, or as different steps in the derivation.

Even the change in a single feature, say from −NASAL to +NASAL can be analyzed

either as a single rule, or as a two-step transformation: deletion of the valued feature

−NASAL then insertion of its opposite +NASAL via separate rules. Other processes

raise further issues about structural changes in the mappings from Underlying Repre-

sentations to Surface Representations—for example, metathesis, insertion and deletion

of segments (as opposed to features) involve manipulation of sequences of segments

and their precedence relations (Raimy, 2000; Papillon, 2020).

In light of all these questions, I focus here on just the narrow topic of feature

changes within segments, like /l/ surfacing as [n]. Under certain simplifying assump-
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tions, I propose that a complete account of changes within segments uses only the two

primitive mechanisms: deletion of valued features like +NASAL via an operation of

set subtraction, and insertion of valued features via an operation of set unification.1

Recent work (Bale et al., 2014; Bale and Reiss, 2018; Bale et al., 2020) has proposed

these operations as elements of a basic inventory of computations for phonology: the

novelty of this paper is the stronger claim that just these two operations are neces-

sary and sufficient. This claim is embedded in the larger framework of assumptions

my co-authors and I adopt and justify (or at least acknowledge as temporary idealiza-

tions).

(1) Assumptions based on previous work

a. Segment symbols are abbreviations for sets of valued features.

b. Segments must be consistent (i.e. they don’t contain +F and −F for any

feature).

c. Segments need not be complete—segments may lack a specification for

some features. Assuming underspecification simplifies phonology in sev-

eral senses that we discuss.

d. Feature insertion rules involve unification (similar to set union) with a

singleton set.

e. Feature deletion involves set subtraction and can affect several features at

once.

f. Greek letter variables, also known as α-notation, are part of phonology,

and not just part of the metalanguage of phonologists—rules may contain

variables whose domain is {+,−}.

g. Targets and environments of rules refer to natural classes, defined in a

manner that slightly updates the traditional conception.

h. Rules are functions mapping between phonological representations, and

the phonology of a language is a complex function composed of particular

rules built from a toolkit of representational and computational primitives.

For the most part, the rules developed here can be treated as functions

mapping from strings of segments to strings of segments, however, where,

e.g., syllable structure is referenced in a rule, mapping between more

complex representations will be necessary.

All of these points will be illustrated and elcuidated as we proceed.

2 Background

In this section, I provide more details concerning the list of assumptions given in the

previous section.

1I explore an alternative with just one operation, priority union, in Reiss (2021).
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2.1 Segments are consistent, potentially incomplete feature sets

As a first approximation I treat segments as sets of (valued) features. For example, we

can represent the labial oral stops p and b as the sets in (3ab). Among the simplifications

adopted here are the following:

(2) Three simplifications

a. Not all features that are present are necessarily shown. This is just a

matter of typographical convenience.

b. An actual feature set in a morpheme’s lexical representation may be as-

sociated with a timing slot, and the segment might be thought of as the

timing slot combined with the feature set. Since our concern here is the

range of segment-internal changes, we can ignore timing slots, tones, syl-

lable structure, etc., here.

c. We abstract away from contour segments like affricates, which potentially

have a more complex structure (see Shen 2016 for discussion).

Point (2a) is important to distinguish from our use of underspecification. The set of

features in (3c) corresponds to neither /p/ nor /b/, but to a third possible segment, B, a

labial stop lacking any specification for the feature VOICED.

(3) Three labial oral stops

a. /p/ = {−VOICED, −SONORANT, −CORONAL, +ANTERIOR, +LABIAL, −NASAL,

−CONTINUANT}

b. /b/ = {+VOICED, −SONORANT, −CORONAL, +ANTERIOR, +LABIAL, −NASAL,

−CONTINUANT}

c. /B/ = {−SONORANT, −CORONAL, +ANTERIOR, +LABIAL, −NASAL, −CONTINUANT}

(no value for VOICED)

These segments all fulfill our assumed condition that segments be consistent, that is

that they not contain both +F and −F for any feature F. The possibility of a segment

like B shows that we accept the existence of underspecification: segments can be in-

complete, lacking any specification for one or more features. Further discussion of the

empirical justification for underspecification, building on previous work (e.g. Keating,

1988; Choi, 1992) can be found in Bale and Reiss (2018) and related work.

2.2 Natural classes

Given our treatment of segments as sets of features, natural classes of segments, which

are sets of segments, are fundamentally just sets of sets of features. For example, in

a language containing the three oral labial stops, p,b,B, this natural class might be

characterized as the set of segments whose members are all and only the segments in

the language that are supersets of this set of features:
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(4) Set of features that define the natural class containing only p,b,B

{−SONORANT, −CORONAL, +ANTERIOR, +LABIAL, −NASAL, −CONTINUANT}

So, the set Q of labial stops in language L is the following

(5) Q = {q ∶ q ⊇ {−SONORANT, −CORONAL, +ANTERIOR, +LABIAL, −NASAL,

−CONTINUANT } (and q ∈ L)}

Because this notation is unwieldy, we make use of traditional square bracket notation

to denote classes of segments in the target and environment of rules. The brackets

show that natural classes are of a different type from the set of features in the structural

change of a rule.

(6) Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−SONORANT

−CORONAL

+ANTERIOR

+LABIAL

−NASAL

−CONTINUANT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We also leave implicit the second condition given in (5), the one that requires that

a segment be in the inventory of the language in question—just keep in mind that

the intensional natural class description in (6) may have the extension {p,b,B} in one

language, but maybe {p,b} or {p} in another.

The treatment of natural classes sketched relies on the superset (or subset) relation.

This fails for more complex representations, including ones that do not correspond to

just single segments and those that involve α-notation (Bale and Reiss, 2021). We’ll

ignore these complications in this paper.

2.3 Basic set operations

The basic set operations I attribute to phonological rules are set subtraction and uni-

fication. Set subtraction here has the standard definition: If A and B are sets, then

A−B = C, where C = {c ∶ c ∈ A and c ∉ B}. That is, the members of A−B are all the

elements of A except for those that are in B. Here are some examples:

(7) Examples of set subtraction

• {x, y} − {x, z} = {y}
• {+VOICED, −SONORANT, +CORONAL} − {+VOICED, +SONORANT} =

{−SONORANT, +CORONAL}

The second operation I use is unification, which is related to the familiar operation

of set union. Set union combines the members of sets into a single set: If A and B

are sets, then A ∪ B = C, where C = {c ∶ c ∈ A or c ∈ B}. Union is called a total

operation since the union of any two sets always yields a set. Instead of union, we use

a version of unification, which is typically used to combine expressions that are more

complex than sets. Unification is useful here because the members of the segment sets
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are actually ordered pairs of values (‘+’ or ‘−’) combined with features. For a feature

F, we refer to the valued features +F and −F as ‘opposites’. Unification ⊔ requires the

phonology to look into the valued features that are the elements of feature sets. If A

and B do not contain opposites, then A ⊔B = A ∪B. However, if A and B do contain

any conflicting values, that is if A ∪B is not consistent, then A ⊔B is undefined.

(8) Unification examples

• {+F,+G} ⊔ {+G,−H} = {+F,+G,−H} (Recall that the elements of a

set are unique: {a, b, c} is the same set as {a, a, a, b, c, c}.)
• {+F,+G} ⊔ {−G,−H} is undefined, because {+F,+G} ∪ {−G,−H} ={+F,+G,−G,−H} which contains the opposites +G and −G.

Because the output of unification may be undefined, it is called a partial operation,

unlike normal union which always yields an output set. When the result of unification

is undefined we refer to unification failure. When unification failure occurs in the

application of a phonological rule, we assume that the rule then maps the input string

to an identical output.

2.4 Logical relations among segments in patterns

Our discussion makes use of three abstract segment symbols φ ≠ ψ ≠∆ corresponding

to three different sets of valued features defined as follows. Unless otherwise noted, ∆

is unspecified for some (unique) feature F, but is otherwise identical to φ and ψ, which

are identical to each other, aside from having opposite values for F. For concreteness,

an example of such a triplet of segments would be p,b,B, where, as above, B is a labial

stop unspecified for voicing.

(9) Three abstract segments

• ∃! F s.t. φ and ψ differ w.r.t. F

The two segments differ w.r.t. exactly one feature.

• ∆ = φ − {−F} and ∆ = ψ − {+F}
If you take −F from φ you get ∆, and if you take +F from ψ you get

∆ (or vice versa).

• φ ∩ψ =∆
The intersection of the two fully specified segments is the underspec-

ified one. This follows from the definition of ∆.

• E.g. p,b,B

The symbolsφ,ψ,∆ are just part of our metalanguage for discussing phonology. These

three segment variables represent a minimal case of representational distinctiveness,

with opposite values and presence vs. absence restricted to a single feature. The logic

presented here trivially extends to richer representational contrasts involving more than

one feature. It is not only methodologically useful to start out with the simplest cases,

but it is also impressive to see how much empirical coverage such cases afford—we

get a lot of empirical coverage without a lot of machinery.
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2.5 Greek letter variables—α-notation

The use of symbols like φ,ψ,∆ is distinct from the use of Greek letters as the familiar

α-notation variables with the domain {+,−}, to which I now turn. Most importantly,

whereas the previous discussion involved variables of our metalanguage, I assume that

Greek letter variables do occur in phonological expressions (pace McCawley 1971),

and they express dependencies among parts of a phonological representation. How-

ever, such variables cannot occur alone, unmatched in a linguistic expression to denote

existence of a feature value. In other words, I reject the use of, say, αNASAL to mean

“some specified value of nasal" (see Bale and Reiss, 2018, 454). I only use α-notation

to express agreement or mutual dependency, the identity of values on tokens of a given

feature. A valid use of α is, for example, to say that all obstruents in a cluster must be

αVOICED, meaning that they must all be +VOICED or all be −VOICED. It is formally

quite different to use variables to denote the mere existence of a valued feature in a

segment set, and I posit that this mechanism does not exist in the phonological faculty,

and I similarly reject symbols like ±VOICED. Relatedly, there are no lexical items that

contain Greek letter variables, contra, for example, Kiparsky (1985, p.92). The “ex-

istential” use of variables appears to be unnecessary, and it also would wreak havoc

with natural class logic in phonology. Using our example of p,b,B, without existential

variables we cannot refer to the fully specified stops as those containing αVOICED and

thereby make a natural class of p and b to the exclusion of B; and there is also no way

to group B into a class with either one of the other two to the exclusion of the remaining

one (Bale et al., 2014). This appears to be a desirable outcome.

2.6 Segment mapping diagrams

I treat phonological rules as functions mapping (in the simple cases considered here)

strings of segments to strings of segments. As explained in Bale and Reiss (2018), we

need to reject the informal traditional notion that rules map segments to segments (in

a context) because this approach does not allow the rules of a language to compose

into a single function that computes each derivation. Despite this view of rules, the

following discussion makes use of segment mapping diagrams (SMDs) to illustrate

relations among segments that appear in URs and SRs. These diagrams are just aids

to exposition. In the simplest case, where there are no relevant phonological rules,

the SMD showing the mapping between segments in the input and segments in the

output is straighforward, as in this case of a language with segments s and š which are

not involved in any phonological interaction. Again, the SMDs are not part of human

phonological grammar, and they are not part of our theory: they are visual aids for

recognizing logical patterns that arise from different combinations of basic rules.

(10) Simple SMD
s š Underlying segments

s š Surface segments that show effects (if any) of the PHONOLOGY
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The top row of the diagram shows segments that appear in URs, and the bottom row

shows segments that occur in SRs. The arrows show the relations between the seg-

ments, with vertical arrows (most typically) showing identity mappings (or else the

‘evolution’ of a segment that doesn’t undergo split or merger with another segment).

The diagram for (10) represents the very boring fact that underlying /s/ maps to surface

[s] and underlying /š/ maps to surface [š].

An SMD for a language with a neutralization rule that merges s and š in some

context looks like this, with diagonal arrows showing non-identity mappings due to the

effects of rules.

(11) Segment mapping diagram (SMD) for neutralization:

s š Underlying segments

s š Surface segments

The diagonal arrow shows, on the one hand, the split of underlying /s/ into [s] and

[š], and on the other hand, the partial merger of underlying /s/ and /š/ into [š]. As

we will see, more elaborate SMDs can be used to track the derivational history of

segments through multiple rules. In such diagrams, there will be intermediate levels

between URs and SRs. Section 4 will show how a wide range of attested processes

can be reduced to combinations of rules based on set subtraction and unification and

described with such SMDs.

3 The basic operations in rules

Since the focus in this paper is on segment internal changes, I adopt a simplified picture

of rule environments. All the rules identify a target segment in input sequences that are

defined by reference to at most one preceding and one following segment, or else by

such a sequence enhanced by reference to syllable structure position such as ONSET or

CODA. My rule syntax is close to a simple version of SPE rule syntax, as developed in

Bale and Reiss (2018).

Phonological processes are sometimes categorized as feature-filling vs. feature-

changing. As the names suggest, a feature-filling process might replace sequences con-

taining B by sequences containing b in the corresponding position, whereas a feature-

changing process might replace sequences containing p by sequences containing b in

the corresponding position. I assume that ‘processes’ like this have no theoretical sta-

tus, despite the fact that they are sometimes referred to as feature-changing vs. feature-

filling rules. Instead, feature-filling processes are analyzed here as rules built from

the unification operator, and feature-changing processes are analyzed as sequences of

two or more rules—first a deletion rule built from the subtraction operator, followed

by at least one feature-filling rule built from the unification operator. In brief, feature

changing involves deletion of a valued feature and insertion of its opposite, in separate

rules.
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3.1 Unification rules

Feature-filling rules consist of a natural class description of a target set of segments

followed by the unification symbol (in place of the normal arrow symbol ‘→’), fol-

lowed by the set which is the second argument of the unification operator (the set of

valued features with which each member of the target set potentially unifies). For the

environment segments, to the right of the slash ‘/’ I use κ,λ, defined as natural class

descriptions of sets of segments as in (5). Using these symbols we can express a rule

based on unification as in (12).

(12) [ −SON−CONT
] ⊔ {+VOICED} / κ λ

Developing the model sketched by Bale and Reiss (2018) the interpretation of this rule

is the following:

(13) Interpretation of rule (12)

Rule (12) is the function that maps any finite string of segments x1x2 . . . xn to

the string of segments y1y2 . . . yn such that for each index i that is greater than

or equal to 1 and less than or equal to n (1 ≤ i ≤ n). . .

• IF xi ⊇ {−SON,−CONT} and xi−1 ⊇ κ and xi+1 ⊇ λ THEN

IF xi ∪ {+VOICED} is consistent, yi = xi∪ {+VOICED}.

• OTHERWISE yi = xi

Note that the rule syntax makes use of unification, but the interpretation of the rule

breaks unification down into normal set union along with the notion of consistency, as

discussed above.

Let’s illustrate the application of such a rule by considering how it will affect input

sequences containing p,b and B in the relevant environment. Let k, l each be a segment

belonging to the class denoted by κ,λ, respectively.

(14) Applying rule (12)

a. If the input string is kBl then, since B ⊔ {+VOICED} = b, the output of

the rule is kbl.

b. If the input string is kbl then, since b ⊔ {+VOICED} = b, the output of the

rule is kbl. The rule applies vacuously since unification applies vacuously

here, and the rule maps kbl to kbl.

c. If the input string is kpl then we need to consider the result of p⊔{+VOICED}.
Here unification is undefined, because p∪{+VOICED} is not consistent—

the output of set union contains both +VOICED and −VOICED as mem-

bers. This is a case of unification failure, and the rule semantics given in

(13) yields an identity mapping in such cases. The output of the rule is

kpl. This is another case of vacuous application since the rule maps kpl

to kpl.
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d. The effect of the rule on any other sequence, say, banana, is null—the

output string will be identical to the input. There is no case of an oral

stop preceded by a member of class κ and followed by a member of class

λ. This is also a kind of vacuous application.

To reiterate, the application of a phonological rule built from unification can be vacuous

for three reasons: either the unification itself is vacuous, as in input kbl; or unification

fails, as in input kpl; or rule conditions aren’t met, as in input banana. Contrary to

most of the literature, we do not say, in the last case, “the rule did not apply”. In order

to compose the rules into a single function, we need each rule to map every input to an

output. In all three cases the rule application leads to an identity of input and output.

That is all we need here to understand rules built with the unification operator.2

3.2 Set subtraction rules

Let’s now look at a rule built with the set subtraction operator. Instead of using the uni-

fication symbol in place of the traditional arrow ‘→’, as we did above, this rule uses the

set subtraction symbol ‘−’. Part of the motivation for the Logical Phonology approach

I adopt is the recognition that phonological rules using ‘→’ actually encode very dif-

ferent basic operations. Our approach does away with such ambiguity and obviates the

need for rule diacritics such as ‘feature-filling’ vs. ‘feature-changing’ labels invoked

by authors such as McCarthy (1994).

(15) Subtraction of {−VOICED} from an oral stop

[ −SON−CONT
] − {−VOICED} / κ λ

The other aspects of the rule match the example of the unification-based rule above.

We can now consider the interpretation of this rule built with the subtraction oper-

ator.

(16) Interpretation of rule (15)

Rule (15) is the function that maps any finite string of segments x1x2 . . . xn to

the string of segments y1y2 . . . yn such that for each index i that is greater than

or equal to 1 and less than or equal to n (1 ≤ i ≤ n). . .

• IF xi ⊇ {−SON,−CONT} and xi−1 ⊇ κ and xi+1 ⊇ λ
THEN yi = xi− {−VOICED}

• OTHERWISE yi = xi

Let’s illustrate the application of this rule using the same sequences we used for the

unification rule above.

(17) Applying rule (15)

2In other work (Bale et al., 2020), we argued that the second argument in unification rules is always a

singleton set, containing just one valued feature, but that aspect of unification rules is not crucial in this

paper.
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a. If the input string is kBl then, since B − {−VOICED} = B, the output of

the rule is kBl, so the rule applies vacuously.

b. If the input string is kbl then, since b − {−VOICED} = b, the output of the

rule is kbl. The rule applies vacuously here, as well, since subtraction is

once again vacuous.

c. If the input string is kpl then, we need to consider the result of p −{−VOICED}. The result is B so the output is kBl.

d. The effect of the rule on any other sequence, say, banana, is null—the

output string will be identical to the input.

The rule applies non-vacuously only in case (17.c).3

3.3 Illustration of feature-filling and feature-changing

We can now see that a unification rule like (12) is sufficient to model a feature-filling

process, for example by filling in +VOICED on a /B/ and leaving underlying /p/ and /b/

unchanged.

(18) A feature-filling process

UR kBl kbl kpl

Unification Rule (12) kbl — —

SR kbl kbl kpl

The dashes ‘—’ in this table reflect vacuous rule application. For input kbl the map-

ping is vacuous, because unification is vacuous, since b is already specified +VOICED.

For input kpl the mapping is vacuous because unification fails, because p is specified−VOICED, and so unification with {+VOICED } by rule (12) is undefined. I discuss

this further below.

To get a feature-changing process, we need to first apply a subtraction rule like (15)

followed by a unification rule. Such a sequence of rules, (15) followed by (12), applied

to kBl, kbl and kpl will yield the following derivations:

(19) A feature-changing process

UR kBl kbl kpl

Subtraction Rule (15) — − − − kBl

Unification Rule (12) kbl — kbl

SR kbl kbl kbl

We will see that combining these simple mechanism with judiciously chosen underly-

ing forms and the use of α-notation will allow us to model a wide range of phenomena.

3The use of set substraction in phonological rules appears to allow the second argument to contain more

than one element—there is no restriction to singleton sets (Bale et al., 2020). However, given our simple

examples in this paper, this detail will play no further role.
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3.4 Exploiting unification failure to streamline grammar

Unification failure often turns out to allow quite streamlined accounts of phonological

processes. We’ll start with a toy example and see more realistic cases later. Suppose

a language has a three-way contrast of /p,b,B/, and that /B/ is the only segment un-

derspecified for the feature VOICED. Suppose further that there is a process whose

effect is that /B/ surfaces as [b] between vowels, but that /p/ and /b/ surface unchanged.

We need a feature filling rule to insert +VOICED into /B/ and yield [b]. Here’s a first

version of such a rule:

(20) First version of rule voicing /B/ to [b]⎡⎢⎢⎢⎢⎢⎣
+LAB−SON−CONT

⎤⎥⎥⎥⎥⎥⎦
⊔ {+VOICED} / [ +SYLL ] [ +SYLL ]

This works, but note that unification of every other consonant in the language aside

from /B/ with the set {+VOICED} will be vacuous, either because that consonant is

already specified +VOICED or because it is specified −VOICED and unification with

{+VOICED} will fail. So there is no need to specify the place of articulation of the

target class as +LABIAL. We can streamline the rule to this second version:

(21) Second version of rule voicing /B/ to [b]

[ −SON−CONT
]⊔ {+VOICED} / [ +SYLL ] [ +SYLL ]

This also works, but since, by assumption all segments other than /B/, vowels and

consonants, are specified for either +VOICED or −VOICED, it is possible to make the

rule even more general:

(22) Third version of rule voicing /B/ to [b]

[ ] ⊔ {+VOICED} / [ +SYLL ] [ +SYLL ]
As pointed out in Bale et al. (2020), this means “unify every segment that is a superset

of the empty set with the set {+VOICED} if the segment occurs between vowels.” Since

basic set theory tells us that the empty set is a subset of every set, the rule unifies

every segment occurring between vowels with {+VOICED}. Under our assumption

that all segments but /B/ are specified for voicing, the rule will have no effect on other

segments.

We can take this a step further. If it is truly the case that only /B/ is underspecified

for voicing at this point in the derivation, then there is no need for a context for the

rule:

(23) Fourth version of rule voicing /B/ to [b]

[ ] ⊔ {+VOICED}

This means “unify every segment that is a superset of the empty set with the set

{+VOICED}.” Under our assumption that all segments but /B/ are specified for voicing,

the rule will apply vacuously to every other segment, in all contexts.

The interpretation of this rule is the following:
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(24) Interpretation of rule (23)

Rule (23) is the function that maps any finite string of segments x1x2 . . . xn to

the string of segments y1y2 . . . yn such that such that for each index i that is

greater than or equal to 1 and less than or equal to n (1 ≤ i ≤ n). . .

• IF xi ∪ {+VOICED} is consistent, THEN yi = xi∪ {+VOICED}.

• OTHERWISE yi = xi

Of course, this rule might be ordered at the end of the derivation, after other tokens of

underlying /B/ have been assigned a value for VOICED by other rules. Rule (23) will

fill in a default value for remaining underspecified tokens. In the following discussion

this kind of economy will be exploited to varying degrees. I will not provide the inter-

pretations for the rules in the remainder of the paper since they involve trivial extension

of the examples provided so far.

I have insisted that rules are functions that map any input representation to an output

representation. Sometimes an input representation will be mapped to an identical out-

put. This is necessary in order to treat the whole phonology as a composed function.

The examples of rule semantics for a unification-based rule and a subtraction-based

rule have been formulated in terms of such functions. However in discussion, it is of-

ten convenient to focus on the mapping of target segments from input to output. This

expository expedience should not be taken as a rejection of the nature of the rules in-

dicated by the given interpretations. I will not continue to provide the interpretation

for each rule, but it should be trivial to do so based on the examples we have seen.

As shown in Bale and Reiss (2018), rule semantics become more complex once seg-

ment insertion and deletion (not the feature insertion and deletion considered here) are

considered. This is because it becomes necessary to map between strings of different

lengths, and it is not trivial to determine the correspondence between input and output

segments in the two strings.

4 Combining the primitives

In this section I provide a schematic SMD using the segment variable symbols φ,ψ and

∆ along with a description of the corresponding composed rules. In each case a simple

toy example or actually attested case is given for concreteness.

4.1 Simple neutralization

The SMD in (11) showing the partial neutralization of /s/ with /š/ did not take into

account the discussion in section 3.3 about the two-step analysis of feature-changing

processes. In order to reflect this view, a more complete SMD for simple neutralization

would have an extra level as in (25).

(25) Explicit SMD for feature-changing neutralization of φ and ψ
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UR φ ψ

φ ∆ ψ

SR φ ψ

As the SMD shows, in some environment, a first subtraction rule deletes the valued

feature on φ with respect to which φ disagrees with ψ. This turns φ into ∆ (which

we are assuming is not present in any URs). In the next step, a unification rule inserts

the valued feature which is the opposite of the previously deleted one into the newly

created ∆, yielding ψ. This is simple conditioned neutralization of two fully specified

underlying segments.

However, I will not generally reiterate in the SMDs all the vacuous mappings or

show the inventory at each stage, so a less explicit version of (25), like (26) will some-

times be used.

(26) Less explicit SMD for feature-changing neutralization of φ and ψ
UR φ ψ

∆

SR φ ψ

I will also represent distinct rules at the same level in an SMD if there is no way to

explicitly order them (as in the discussion of Turkish stops below).

4.2 Feature-changing allophony of φ and ψ

If a language has a sequence of rules just like in the previous case, but without having

any underlying tokens of ψ, then we have a classic case of allophony, with φ and ψ in

complementary distribution on the surface.

(27) Feature-changing allophony
UR φ

∆

SR φ ψ

The only difference from the previous case is that there are no underlying tokens of ψ

and thus there is no identity mapping to surface ψ. The rules would be the same as

in the previous case—delete a valued feature from φ in certain environments to derive

∆, then insert the opposite value to derive ψ from ∆. This analysis is justified when
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ψ occurs in a natural class of environments, but where φ does not and must be posited

as the underlying form. The SMDs in (26) vs. (27) serve as a visual aid to see that the

latter differs from the former just by virtue of having an additional identity mapping—

which in turn is a result of having a different set of underlying segments present in the

lexicon.

4.3 Feature-filling allophony of φ and ψ

In some cases, it is not possible to choose an underlying form based on elsewhere-

case reasoning. In other words, it may be clear that φ and ψ are in complementary

distribution, but it is an arbitrary decision as to which should be posited as underlying.

Rather than make an arbitrary choice as a linguist, and rather than attribute an arbitrary

choice between extensionally equivalent and equally elegant grammars to the learner,

we can posit that a learner encodes an underlying form that is neither φ nor ψ, namely

∆. This situation can be called feature-filling allophony, since both surface forms are

derived by feature-filling from the UR.

(28) Feature-filling allophony of φ and ψ
UR ∆

SR φ ψ

UR L

SR l ë

An example of this situation might be found in the English distribution of laterals. In

some English dialects, dark [ë] occurs in codas and light [l] occurs in onsets, so both

can be derived from a lateral unspecified for one (or more) features. Strictly speaking,

the SMD in such a case should have a separate level corresponding to each of the two

rules (one for feature-filling in onsets and another in codas), but since it is not possible

to determine the mutual ordering of the two rules, we’ll maintain the simple SMD of

(28).

4.4 Absolute neutralization

If we flip the SMD for feature-changing allophony (27) upside down we get a situation

that initially looks implausible. There are two underlying segments, but only a sin-

gle surface correspondent. This SMD models the logical structure of feature-changing

absolute neutralization which potentially corresponds to situations like the harmoni-

cally irregular vowels of Hungarian, like the [i:] in híd ‘bridge’ that takes back vowel

suffixes as in dative hídnak, as opposed to the regular víz ‘water’ with dative víznek.

(29) Feature-changing absolute neutralization of φ and ψ with Hungarian parallel
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UR φ ψ

∆

SR φ

i 1

I

i

• Rules: A subtraction rule for ψ-to-∆ and a unification rule for ∆-to-φ

The SMD is just like that of feature-changing neutralization in (26), aside from the lack

of an identity mapping for ψ. In other words, the SMD represents the old idea that the

harmonically irregular vowels are the +BACK version of /i/, namely /1/. The vowel /1/
triggers harmony as expected, then a subtraction rule deletes the feature +BACK from

it, and a unification rule inserts −BACK into the derived, underspecified vowel. What

we gain by this discussion—what makes it go beyond just restating an old idea—is

the demonstration that, despite our pre-theoretical prejudice against abstractness, such

a solution is not formally complex, and it uses machinery that is needed for other

phenomena. The theory predicts the existence of such cases, and formalization of this

sort helps us overcome intuitive biases.

4.5 Three-to-two feature-filling mapping

The next pattern is just like feature-filling allophony (28) but with the addition of φ and

ψ in the lexicon (and thus in URs). As we see in (30) all three segments φ,ψ and ∆ are

present in URs. Feature filling rules for each context fill in either +F or −F to derive φ

and ψ, but ∆ never surfaces.

(30) Three-to-two feature-filling mapping
UR φ ∆ ψ

SR φ ψ

• Rules: Two unification rules—one for ∆-to-φ and one for ∆-to-ψ

This structure corresponds to Inkelas and Orgun’s (1995) analysis of Turkish, where it

is necessary to posit a three-way contrast in root final stops, even though there are only

two stops on the surface. Some roots like sanat ‘art’ have non-alternating [t] as the

final segment, so the lexical form can be posited with a /t/. Others have non-alternating

[d], as in etüd ‘étude’, so the lexical form has /d/. For roots with surface forms like

kanat-/kanad- we can posit a final /D/, a coronal stop with no specification for VOICED.

In such roots, the /D/ surfaces as [d] in onsets, as in kanadım, and as [t] in codas, as in

kanatlar.

(31) Turkish stops
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a. Non-alternating voiceless: −VOICED /t/

[sanat] ‘art’, [sanatlar] ‘art-plural’, [sanatWm] ‘art-1sg.poss’

b. Non-alternating voiced: +VOICED /d/

[etyd] ‘etude’, [etydler] ‘etude-plural’, [etydym] ‘etude-1sg.poss’

c. Alternating: (no specification for VOICED) /D/

[kanat] ‘wing’, [kanatlar] ‘wing-plural’, [kanadWm] ‘wing-1sg.poss’

For Turkish, we need one feature-filling unification rule to insert +VOICED in on-

sets, affecting only /D/; and we need another feature-filling unification rule to insert−VOICED in codas, again affecting only /D/. To reiterate an important point, formal-

ization allows us to see how this pattern is just a combination of what we needed for

the English /L/ analysis with the addition of the identity mappings we have also made

use of.

In (32) we repeat the logical structure shown in (30) but with the Turkish segments

filled in, along with the environments of the two feature-filling rules responsible for the

non-identity mappings.

(32) Segment mapping (non-crucial rule ordering ignored here)

UR t D d

SR t d

in onsetin coda

As mentioned above, we assume that all rules are ordered in a grammar, but the two

rules here cannot be ordered by the analyst.

4.6 Three-to-two with α-notation

We now turn to an SMD that has the exact same three-to-two structure of the previ-

ous example involving Turkish stops, but where we can make use of a single rule to

account for both mappings by introducing α-notation. This SMD is relevant when the

environments that determine the mappings ∆-to-φ and ∆-to-ψ can be characterized in

terms of opposite values of the feature that distinguishes φ and ψ.

(33) Three segments mapping to two with α-notation

UR φ ∆ ψ

SR φ ψ

αF−αF

This SMD models the harmonic alternations of Turkish vowels seen in the plural suffix:
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(34) Turkish plurals

Trigger vowel SINGULAR PLURAL GLOSS Suffix form

[i] ip ipler ‘rope’

[ler]
[e] ek ekler ‘joint’

[y] gül güller ‘rose’

[œ] öç öçler ‘revenge’

[W] kıl kıllar ‘body hair’

[lar]
[a] sap saplar ‘stalk’

[u] pul pullar ‘stamp’

[o] son sonlar ‘end’

The alternating vowel can be posited to be underlyingly /A/, a non-high, non-round

vowel, lacking specification for BACK.

(35) Segment mapping with an α rule
UR e A a

SR e a

after -Bk after +BK

So, there are two diagonal arrows in (35) but they reflect the mapping of a single rule

(36) that uses α-notation.

(36) [−HIGH,−ROUND] ⊔ {αBACK} / when preceding vowel is [αBack]
Application of this rule to a sequence with fully specified /e/ or /a/ in target position

will result in vacuous application, either via vacuous unification or unification failure.

If /A/ is the target, the rule will fill in a value for BACK according to the context.

The SMDs in (32) and (35) show the similar structure of the two cases when we

abstract from the details of the particular rules.

4.7 A predicted allophonic pattern

The examples of the Turkish stops and vowels just given lead to the consideration of

similar patterns involving allophony, rather than neutralization. Note that the analysis

of the Turkish stop /D/ is parallel to the syllable structure based analysis of the lateral

allophones of English given in section (4.3). It should be possible to have a language

like Turkish, but without the underlying t and d—and in fact, that’s the structure of

the English lateral pattern. In principle, we should expect that another possible pattern

would be an allophonic version of the Turkish vowel pattern, that is, a mapping from

an underspecified segment to two allophones via a single rule that uses α-notation.

In (4.3) we see feature-filling allophony, but we need two rules, one to generate clear

[l] in onset position and another to generate dark [ë] in codas, from an underlyingly

underspecified /L/.
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I haven’t yet found such a case based on α-notation where the value on a feature

F in the environment determines the value of F on the two surfaces allophones. This

requires the two surface forms to both occur in a natural class of environments defin-

able by α-notation, with no apparent elsewhere case.4 A hypothetical case would be

a language where, say, [s] and [z] occur only as the first member of a cluster, with

both derived from underspecified /S/ and the appearance of each two dependent on the

voicing of the following segment. The SMD would look like this:

(37) One segment mapping to two with α-notation

UR ∆

SR φ ψ

αF−αF

S

s z

−VOICED +VOICED

If we allow cross-featural use of α-notation, then it is possible to find such patterns,

for example, the distribution of [l] and [d] in Tswana. According to Odden (2013, 22)

in Tswana “there is no contrast between [l] and [d]. Phonetic [l] and [d] are contextually

determined variants of a single phoneme: surface [l] appears before nonhigh vowels,

and [d] appears before high vowels (neither consonant may come at the end of a word

or before another consonant).” Obviously these two segments differ by more than a

single feature, but the pattern of interest can be derived by a feature-filling rule that

inserts ±LATERAL according to the value for HIGH on the following vowel:

(38) [+CORONAL] ⊔ {αLATERAL} / [-αHIGH]
Odden points out that the Tswana surface distribution can be handled by choosing

either segment as the underlying form: “There is no evidence to show whether the

underlying segment is basically /l/ or /d/ in Tswana, so we would be equally justi-

fied in assuming either” a rule that turns /d/ to [l] or a rule that turns /l/ to [d], since

“[s]ometimes, a language does not provide enough evidence to allow us to decide which

of two (or more) analyses is correct”. Odden is writing here in Chapter 2 of an under-

graduate textbook, so he doesn’t mention the third option, suggested here, that neither

of the surface forms is identical with the underlying form. It is hard to imagine how

allophonic patterns derived from underspecified segments could be excluded in any

systematic manner, so the formal approach we have adopted helps us to formulate a

topic for empirical exploration—a non-cross-featural α-rule example might turn up

any day.

4This condition, the absence of an elsewhere case, might be too strict. Consider the alternating nasal

segment appearing at the end of certain prefixes in Malay, such as [mem-, men-, meN-]. These alternants are

distributed according to the place of articulation of the root initial segment. Simplifying a bit, [mem-] occurs

before labial obstruents, [men-] occurs before coronal obstruents, and [meN-] occurs before velar obstruents

and before vowels. It is an open question whether the velar nasal before vowels is a direct reflex of the

underlying segment, thus, an elsewhere form, or else the result of a set of default, feature fill-in rules.
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4.8 Reciprocal neutralization

Another pattern that can be usefully identified using symbols in the logical relationship

of φ,ψ,∆ is reciprocal neutralization. This term applies to a situation where there

is good evidence to posit an underlying φ that surfaces sometimes as ψ, and there is

also evidence to posit an underlying ψ that surfaces sometimes as φ. In light of our

account of feature-changing as a sequence of feature deletion via a rule built from set

subtraction followed by insertion via a rule built from unification, the transformation

from φ to ψ and vice versa is most directly modeled as passing through ∆, as in (39):

(39) Schematic reciprocal neutralization
UR φ ψ

∆

SR φ ψ

This generic pattern can be illustrated with separate rules or with a single set of rules

using α-notation. In the next two sections, I present a simplified example using α-

notation, based on Hungarian voicing assimilation. I then develop this account for a

more complete version of voicing assimilation in Hungarian consonant clusters. The

SMD for reciprocal neutralization shows that it just is a combination of mappings like

allophonic α rules (37) and something like the Turkish vowel harmony rule (36).

5 Simplified Hungarian Reciprocal Neutralization

Hungarian5 shows patterns of neutralization that can be illustrated with the behavior of

/t/ and /d/:

(40) Reciprocal neutralization SMD:
t d

t d

Both /t/ and /d/ surface unchanged in final position, as in kút [ku:t] ‘well’ vs. kád [ka:d]
‘tub’.

(41) Reciprocal neutralization in Hungarian

Noun In N From N To N

ku:t ku:dbOn ku:tto:l ku:tnOk ‘well’

ka:d ka:dbOn ka:tto:l ka:dnOk ‘tub’

by:n by:nben by:ntø:l by:nnek ‘crime’

5The analysis in this section and the next builds on work with Alëna Aksënova and Maxime Papillon.

Hungarian forms are given in orthographic or IPA representation, or both. In underlying forms, suffix vowel

harmony variants appear with their surface vowel, since the present discussion is concerned only with con-

sonant interactions.
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However, /t/ undergoes voicing assimilation to a following [b], or other voiced obstru-

ent, and surfaces as [d], as in [ku:dban]. Similarly, /d/ undergoes voicing assimilation

to a following [t], or other voiceless obstruent, and surfaces as [t], as in [ka:tto:l]. As

illustrated by [by:ntø:l] and [ku:tnOk], sonorants like /n/ neither assimilate nor trigger

assimilation.

First, I posit a feature deletion rule based on set subtraction, as we have seen above:

(42) Deletion for Hungarian reciprocal neutralization

[ −SON ]− {αVOI} / [ −SON−αVOI
]

This rule deletes the voicing value on an obstruent if the following obstruent has a

different value.67 The effect of such a rule is to map tb to Db, for example. The next

rule is a feature-filling unification rule:

(43) Insertion for Hungarian

[ −SON ] ⊔ {αVOI} / [ −SON

αVOI
]

This rule maps Db to db. The same two rules will also map dt to Dt then to tt.

We can combine the two rules into a single SMD:

(44) Revised reciprocal neutralization SMD:
t d

Rule (42): [ −SON ] − {αVOICED} / [ −SON−αVOICED
]

t D d

Rule (43): [ −SON ] ⊔ {αVOICED} / [ −SON

αVOICED
]

t d

b p

p b

6 Full Hungarian situation

It turns out that there is more to Hungarian voicing assimilation. The consonants writ-

ten v and h behave sometimes like obstruents like t,d and sometimes like sonorants like

n,r,l. More specifically, the consonant written v (which we’ll just call v), undergoes

voicing assimilation to sometimes surface as [f], but this consonant does not trigger

voicing assimilation, although it is typically realized as voiced [v]; and the consonant

6It is tempting to further simplify the rule by deleting the voicing value of any pre-obstruent obstruent,

irrespective of the value on the following obstruent, leading to a Duke of York gambit in cases where the

two had the same value for voicing to begin with. However, we cannot state such a deletion rule, because we

don’t use existential α, as explained in section 2.5. Such a rule would also interfere with the account of the

behavior of v offered below.
7Note that the rule does not need to ‘know’ whether the righthand obstruent indeed differs in its voicing

value from the target to its left. Consider the input tp: the rule will ‘try’ to subtract {+VOICED} from t

because p is −VOICED. However, the subtraction will be vacuous, since the set of features that constitutes t

does not contain +VOICED.
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written h or ch (which we’ll just call h), triggers voicing assimilation to devoice ob-

struents, but this consonant does not undergo voicing assimilation, remaining voiceless

[x] in codas, even before a voiced obstruent. In onsets, it will surface as [h] where it is

not possible for it to undergo voicing assimilation at all.

My goal here is not to delve into the phonetic factors and diachronic factors that

may have led to the synchronic behavior of Hungarian v and h. These are legitimate

questions for those interested in the phonetics of sound change, but they are irrelevant

to the narrow definition of phonology as mental computation assumed here. My goal is

to demonstrate that we already have the means to account for the behavior of these two

segments using the kinds of rules developed above, along with two simple assumptions

about the two segments in question: (1) v is unspecified for VOICED underlyingly, but

is otherwise specified as expected for a segment that alternates on the surface between

[f] and [v]; and (2) h is unspecified for CONSONANTAL, but is otherwise specified as

expected for a segment that surfaces as a voiceless fricative—it is −VOICED, which

allows it to trigger devoicing, but the lack of a value for CONSONANTAL makes it

immune to assimilation. I denote these two segments /V/ and /H/, respectively. We’ll

work through the treatment of these two ‘exceptional’ segments one at a time.

6.1 Hungarian v

6.1.1 Feature filling from context

Data illustrating the interaction of v with other consonants appears in (45) using the

symbol /v/ as in Siptár and Törkenczy (2000)8

(45) v is a target of assimilation, but not a trigger

a. Target: hívsz /vs/ ¨ [fs] ‘you call’, óvtam /vt/¨ [ft] ‘I protected’;

révbe ‘to port’, bóvli ‘junk’, sav ‘acid’

b. Non-trigger: kvarc /kv/  [gv] ‘quartz’, pitvar /tv/   [dv] ‘porch’;

medve ‘bear’, olvas ‘read’, kova ‘flint’, vér ‘blood’

We see in (45a) that Hungarian v surfaces as [f] before a voiceless obstruent, as in

óvtam, where /vt/ ¨ [ft] ‘I protected’, so it apparently acts like other segments such

as /z/ that are subject to voicing assimilation. However, if we assume that v is /V/

without an underlying specification for VOICED, then the transformation from /V/ to

[f] is a feature-filling process, and thus effected by the unification based rule (43). The

deletion rule (42) does not affect /V/ since there is no VOICED feature to delete. To be

clear, all of the input forms in (45) should be rewritten with /V/ instead of /v/ under the

assumptions I adopt here. For example, for óvtam, sav, pitvar, instead of /o:vtOm, sOv,
pitvOr/ I assume /o:VtOm, sOV, pitVOr/.

The SMD in (46) shows the derivation of /V/ to both [v] and [f] by the same two

rules we used in the previous section. Again, the deletion rule (42) applies vacuously,

8The squiggly arrow ‘;’ should be read as ‘leads to’, meaning that the form on the lefthand side, which

may be either a UR or a subsequent form in the derivation, comes out via the application of one or more

rules as the form on the righthand side, which is a later stage of the derivation, and is potentially the SR.

The negated form ‘ /;’ implies that no subsequence (including the full sequence) of the rules maps the

representation on the lefthand side to the one on the righthand side.
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since /V/ has no voicing value. The voicing of the following obstruent is indicated

by the environments denoted ‘ p’ vs. ‘ b’. This value is filled onto the segment

corresponding to underlying /V/ by rule (43) at this point in the derivation.

(46) v as target (output agrees with following obstruent, e.g., óvtam [ft])

t V d
Rule (42): V has ‘nothing to lose’ by subtraction

t D,V d
Rule (43): V takes a value by unification, like (derived) D

t,f v,d

b p

p b

The behavior of /V/ is formally identical to other feature-filling processes we have seen,

such as the behavior of Turkish /A/ in (35).

Now consider what happens when /V/ is on the right side of a cluster, in the position

of a potential trigger for voicing assimilation. A voiceless segment before a v does not

get voiced, as we see in (45b). This is because v, lacking a VOICED value, does not

trigger deletion of −VOICED by rule (42) in a preceding voiceless obstruent. This

rule deletes the voicing value on a segment only if conflicts with the value on the

next segment, and the absence of voicing on v cannot conflict with either +VOICED

or −VOICED. The voiceless obstruents that follow v remain specified as voiceless.

The subsequent feature filling rule (43) applies vacuously, both because the preceding

obstruent has a value of its own, and because there is no value to copy from v.

(47) SMD for v as a non-trigger (doesn’t trigger voicing agreement with preceding

obstruent, as in kvarc)

t d
Rule (42): No subtraction before V, since there’s no mismatch

t D d
Rule (43): No feature-filling before V—/t,d/ keep input values

t d

V Vb p

p b

The two rules account for the outcome of obstruent clusters which do not contain v; for

clusters with v as an affected target in the left side of an obstruent cluster; and for the

(unaffected) outcome of other obstruents in clusters with a v on the right side.
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6.1.2 A default fill-in rule

The system of two rules developed thus far fails to account for a v that is not to the

left of another obstruent. This includes v before a vowel or other sonorant, or at the

end of a word. Such a v surfaces with a +VOICED specification, that is, as [v]. A first

attempt at a fill-in rule for segments derived from underlying /V/ that have not received

a +VOICED specification is given in (48):

(48) [ −SON ] ⊔ {+VOICED} (Only remaining V undergoes non-vacuous unifi-

cation)

However, this rule can be made even more economical if we assume that at the end of

the derivation every segment, consonant or vowel, other than the outputs of underlying

prevocalic or word-final /V/’s has a specification for VOICED. If this is so, then the

unification rule in (48) can be generalized by removing the stipulation that it apply to

obstruents:

(49) [ ] ⊔ {+VOICED} (Unify every segment with {+VOICED})

See the discussion around the rule in (22) to confirm that the effect of rule (49) is to

unify every segment that is a superset of the empty set (that is, every segment) with the

set {+VOICED}. The possibility of unification failure enables such economical rule

formulation.

6.1.3 It is what it is

Why is v actually /V/, a segment underspecified for voicing? Or rather, why do we posit

that it is the lack of the feature VOICED that makes v act ‘strange’? On one hand, that

is not a phonological question. In particular, it is not a phonological question about

/v/, which is the symbol for a +VOICED labiodental fricative. Under my analysis,

Hungarian has no /v/. It has surfacing [v] from underlying /V/. The analysis here

parallels my analysis of Russian v also as /V/ (Reiss, 2017a), but as mentioned above,

the phonetics of why labiovelar fricatives seem to engage in ‘exceptional’ behavior

cross-linguistically with respect to voicing interactions is not in the purview of a paper

on phonological computation. The model of segments as sets of features adopted here

allows for underspecification (and this is actually a simplification of phonology, as I

have explained elsewhere (Reiss, 2012; Matamoros and Reiss, 2016; Bale and Reiss,

2018)), so there is no ‘cost’ for modeling Hungarian v as /V/. Since it is exactly the

feature VOICED with respect to which v acts exceptionally, it is not surprising that it is

the absence of this feature which, I suggest, distinguishes v from other obstruents.

Other approaches to the behavior of v, in Russian and Hungarian both, have sug-

gested that the segment in question is not specified as an obstruent. For example

Siptár and Törkenczy (2000), in a thorough discussion of the data and an analysis

combining aspects of feature geometry and Government Phonology, treat v as under-

specified for the feature SONORANT. Given that two realizations of v are clearly the

fricatives [v] and [f], it seems reasonable to attempt to treat the underlying segment

24



from which these obstruents are derived as specified −SONORANT, i.e., as an obstru-

ent.9 So, from this perspective (adopting certain idealizations), “Why /V/?” is a purely

phonological question, and the answer is that positing this segment for v gives us an

elegant account of Hungarian that can be constructed without extending the model of

segmental changes we developed for the many other patterns of phonological processes

illustrated above.

It may be useful to show graphically that in developing an account of Hungarian

our model has not gotten any more complicated than what we used to account for the

various languages above. In order to present an SMD for Hungarian, we will adjust our

interpretation of the symbols φ,ψ,∆. Instead of assuming that the three are identical

aside from a single feature specification, let’s abstract away from all other features, but

one. In other words, let φ be any voiceless obstruent, [p, t, s], etc.; let ψ be any voiced

obstruent, [b, d, z] etc.; and let ∆ be any obstruent unspecified for voicing, such as /V/.

The following SMD shows how the rule system we developed handles these three types

of segment, wherever they occur, as first or second member of an obstruent cluster or

elsewhere.

(50) SMD for ‘normal’ obstruents and /V/ in Hungarian
UR φ ∆ ψ

Rule (42)

φ ∆ ψ
Rule (43)

φ ∆ ψ
Rule (49): Default +VOICED

SR φ ψ

The first α rule deletes the first in a sequence of two incompatible voicing features. The

next α rule inserts into the first consonant the value of voicing on the second consonant,

if the first lacks a value for that feature. The third rule is the default +VOICED fill-in

rule.

6.2 Hungarian h

Two simple stipulations are needed to extend the analysis of Hungarian to the under-

lying consonant surfacing as a voiceless glottal fricative [h] in onsets, written h, and

9For some Hungarian speakers, v can be more sonorant-like, but different dialects require different anal-

yses and there is apparent free variation. At risk of oversimplifying, I focus on an idealized speaker who has

just [v] and [f] on the surface, but detailed studies like Kiss and Bárkányi (2006) should be consulted. The

messy facts may be related to the ‘two Hungarian v’s’ mentioned in section (6.3).
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a voiceless velar fricative [x], also written h, or sometimes ch, in codas.10 Recall that

we will denote this segment /H/ and assume that it lacks a specification for CONSO-

NANTAL.11 There must be something about the featural make-up of this segment that

allows it to cause devoicing of preceding obstruents, as in adhat /Od-HOt/ ‘he may

give’ ; [OthOt], without allowing the h itself to undergo assimilation as a target, as

seen in pechből /peH-bø:l/ ‘out of bad luck’ where /Hb/ ; [xb]. We achieve this effect

by (a) slightly revising the feature deletion rule (42) to make reference to the valued

feature +CONSONANTAL; and (b) by accepting that h is underlying /H/, a segment that

has all the features of [h] aside from CONSONANTAL. Here’s the revised verison of

(42):

(51) Revised deletion for Hungarian reciprocal neutralization

[ −SON+CONS
]− {αVOI} / [ −SON−αVOI

]
Comments

a. ‘Normal’ obstruents lose VOICED before obstruent with opposite value

b. /V/ doesn’t have a feature to lose

c. /H/ is not affected because it is not +CONSONANTAL

Rule (51) will not delete voicing on /V/ because there is none. It won’t delete voicing

on /H/ because the rule specifies that the target must be +CONSONANTAL and /H/, by

hypothesis is not thus specified—it has no value for CONSONANTAL.

Since the segment /H/ will not lose its −VOICED specification by rule (51), the uni-

fication rule (43), repeated as (52), responsible for inserting a VOICED value will apply

vacuously when the reflex of /H/ is the first member of the cluster—either because the

following segment is also voiceless, so unification is vacuous, or because the following

segment is voiced, so unification fails.

(52) (Repeated) Insertion for Hungarian h as target: unification fails

[ −SON ] ⊔ {αVOI} / [ −SON

αVOI
]

The slightly revised deletion rule is not quite the only change needed to account for

clusters containing v and h. Underlying /H/ also needs some fill-in rules, assuming that

its reflexes are fully specified at the surface. If we assume that /H/ is the only source of

segments without a value for CONSONANTAL near the end of the derivation, then we

can assign +CONSONANTAL in coda position where the surface form is [x] with rule

(53):

10See Siptár and Törkenczy (2000, Section 8.2.2) for a discussion of words where onset h alternates with

‘zero’ in codas. I follow these authors in treating such cases as non-phonological suppletive allomorphy,

although there are other possibilities. In any case, the issue is orthogonal to our concerns here.
11This analysis follows Siptár and Törkenczy (2000, 277) in treating h as underlyingly underspecified for

CONSONANTAL. They posit that h is underlyingly /X/, which is an /x/ unspecified for CONSONANTAL. I

am not primarily concerned here with the x ∼ h alternation and variation, and so I use /H/ rather than /X/ for

the expository convenience of relating an orthographic form to a posited underlying underspecified form: h

: /H/ as v : /V/ (with different features unspecified, of course).
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(53) [ ] ⊔ {+CONS}/ in CODA (Only ‘H’ undergoes non-vacuous unification)

In onset position, we can follow the SPE (Chomsky and Halle, 1968) tradition of treat-

ing [h] as −CONSONANTAL:

(54) [ ] ⊔ {−CONS}/ in ONSET (Only ‘H’ undergoes non-vacuous unification)

Let’s (arbitrarily) assume that feature filling for CONSONANTAL in onsets is ordered

after filling for codas. We can then remove the rule context and formulate a more

general rule that extensionally only applies to the reflex of /H/ in onsets:

(55) [ ] ⊔ {−CONS}(Only ‘H’ undergoes non-vacuous unification)

Alternatively, we could leave h in onset unspecified for CONSONANTAL at the surface,

as in the cases of surface underspecification presented by Keating (1988).12

6.3 Hungarian cluster derivations

Recall that the focus of this paper is on changes within segments. In order to illustrate

the logic of our set theoretic approach we have made several simplifications. For ex-

ample, we have only considered clusters of two consonants, but Hungarian has clusters

of three consonants, with the rightmost member determining the outcome of the whole

cluster, so that it looks like voicing assimilation works iteratively from right to left,

e.g., liszt-ből [stb] ; [sdb] ; [zdb] ‘from flour’. There are alternative analyses, but

this brings us into questions of how rules apply and how rule environments are stated,

and I leave these questions aside for now. Here, I give derivations for schematic cases

of sequences of one or two consonants, where each member of the sequence is either

one of the ‘regular’ obstruents or one of the two ‘exceptional’ obstruents correspond-

ing to v and h. In other words, all of the segments in these sequences are specified−SONORANT.

Let’s first consider the clusters of fully specified segments, corresponding to the

discussion of simplified Hungarian in section 5. The derivations are in (57), using the

same abbreviations that I will now explain and use in the subsequent tables.

In the tables below (57-60), a dash ‘–’ indicates, as is traditional, an identity map-

ping from the next cell up in the table, when the structural description of a rule is not

met. For example, underlying /tp/ is unchanged by the first rule (51), since the seg-

ments do not disagree in voicing. The rule conditions are not met and this is denoted

with the dash ‘–’.

In the same column, the row corresponding to the rule (52) that potentially inserts

voicing value is marked with ‘vac.’, indicating the vacuous unification of /t/ with the

set {−VOICED} coming from /p/.

The next cell down is marked ‘un.fail’ for unification failure. This is the row corre-

sponding to the default rule (49) that fills in +VOICED. Unification of /t/ (and /p/) with

{+VOICED} fails because of the conflict of −VOICED with +VOICED. Since unifica-

tion fails, we again map the input to the output. Thus we have three different situations

that result in vacuous rule application, but I have marked them differently:

12Note again that I am not going to formulate rules for the velar vs. glottal distinction between [x] and [h].
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(56) Three kinds of vacuous rule application:

a. – : Input string does not match rule structural description, so target seg-

ment is unaffected

b. vac. : Unification is vacuous, so rule application does not affect target

segment

c. un.fail : Unification fails because of feature value conflict, so (by defini-

tion) input representation is mapped to identical output representation

I call all three of these situations “vacuous rule application" rather than, for exam-

ple, saying that the rule does not apply in situation (56a) for reasons discussed in

Bale and Reiss (2018). In brief, if we want the phonology to be a function composed

from the individual rules, each rule must ‘apply’ to each sequence, so that there is an

output that can be handed to the subsequent rules, or ultimately to the surface repre-

sentation.

Here are the derivations for clusters of fully specified segments:

(57) Derivations for Hungarian fully specified sequences

UR tp tb dp db

(51)Delete −αVOI – Db Dp –

(52) Insert αVOI vac. db tp vac.

(49) Fill +VOI un.fail vac. un.fail vac.

(53) Fill +CONS CODA vac. vac. vac. vac.

(55) Fill −CONS vac. vac. vac. vac.

SR tp db tp db

Since the examples in (57) involve only fully specified segments, the last three

rules, which are all fill-in rules, can have no effect on the inputs. The situation changes

as we consider inputs with underspecified segments. Let’s first consider derivations

whose inputs contain /V/ as either the first segment of an obstruent cluster (/Vp/ and

/Vb); the second segment of an obstruent cluster (/tV/ and /dV/); and elsewhere (/V/).

(58) Derivations for Hungarian sequences with /V/

UR Vp Vb tV dV V

(51)Delete −αVOI – – – – –

(52) Insert αVOI fp vb – – –

(49) Fill +VOI un.fail vac. tv dv v

(53) Fill +CONS CODA vac./- vac./- vac./- vac./- vac./-

(55) Fill −CONS un.fail un.fail un.fail un.fail un.fail

SR fp vb tv dv v

None of the clusters or the single consonant /V/ meet the conditions for the first rule

(51), which looks for a mismatch in voicing values on adjacent obstruents, so we have

‘–’ across the row. However, the feature filling rule (52) in the second row provides
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underlying /V/ with a voicing value that agrees with the following obstruent, so we get

[f] before [p] and [v] before [b].

The next row corresponds to rule (49) which fills in +VOI . In the first column of

inputs, /V/ has turned into [f] so unification fails; in the second column, /V/ has turned

into [v], so unification is vacuous. In the last three forms, /V/ is unchanged from the

UR, so the fill-in rule provides +VOICED and we get [v] in all three cases.

Consider the next row, corresponding to rule (53), which fills in +CONSONANTAL

in codas. All of the consonants in the five columns are specified +CONSONANTAL

(since the UR). So the unification will be vacuous when one of these falls in a coda.

When a consonant is in an onset, the rule condition is not met. This is why all five

columns are marked with both ‘vac.’ and ‘—’.

Finally, in the last row, rule (55) ‘tries’ to fill in −CONS on reflexes of the input

consonants, but they have remained +CONS since the underlying representation. Uni-

fication fails in each case, as indicated, and the surface representations all come out as

desired.

Now we turn to the derivation of forms with /H/ in the input. We consider /H/ as

the first or second member of a cluster between vowels, so in coda or onset position,

with the other segment either voiceless or voiced. We also need to consider /H/ on its

own, not adjacent to another obstruent, in both onset and coda position.

(59) Derivations for Hungarian sequences with /H/

UR Hp Hb tH dH H-ons H-cod

(51)Delete −αVOI – – – DH – –

(52) Insert αVOI vac. un.fail vac. tH – –

(49) Fill +VOI un.fail un.fail un.fail un.fail un.fail un.fail

(53) Fill +CONS CODA xp xb vac./– vac./– – x

(55) Fill −CONS un.fail un.fail th th h un.fail

SR xp xb th th h x

Because rule (51), the first rule, requires that the lefthand member of an input se-

quence be specified +CONSONANTAL, this condition is not met when /H/ precedes

another obstruent, so we get ‘–’ in the first two columns. We get ‘–’ in the third col-

umn because /t/ and /H/ do not disagree in voicing, since both are −VOICED. In the

next column, the voicing mismatch of /d/ with following /H/ causes the deletion of+VOICED on the former, yielding derived underspecified [D]. The last two columns do

not contain sequences of obstruents, so the rule condition is not met.

The only non-vacuous application in the next row, for the rule (52) that copies a

voicing value from the right-hand member of a sequence to the left, is the case where

derived [D] becomes [t] before the voiceless /H/.

At this point in the derivation, all segments in this table are specified as either+VOICED or −VOICED, so the default rule that fills in +VOICED will alway be vacuous.

I have marked this as ‘un.fail’ in each column, since there is unification failure with at

least one segment in each case, but for the second column of forms, there is not only

unification failure with the reflex of /H/ but also vacuous unification with the reflex of

/b/, which is still voiced.
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In the next row, rule (53) fills in +CONSONANTAL on each /H/ in coda position,

yielding [x] (since we are ignoring the glottal vs. velar contrast). For the forms in the

third and fourth columns, derived from /tH/ and /dH/, respectively, the reflex of /H/ is

not in a coda, so we mark ‘–’, but the rule as formulated also targets the underlying and

derived [t]’s. These are already +CONSONANTAL, so the unification is also vacuous,

so marked ‘vac.’

The next row shows that any remaining /H/ becomes −CONSONANTAL at this point

in the derivation, but for all other consonants, which are +CONSONANTAL, there is

unification failure.

Finally, let’s show derivations for clusters /HV/ and /VH/:

(60) Derivations for Hungarian sequences /HV/ and /VH/

UR HV VH

(51)Delete −αVOI – –

(52) Insert αVOI – fH

(49) Fill +VOI Hv un.fail

(53) Fill +CONS CODA xv vac.

(55) Fill −CONS un.fail fh

SR xv fh

For the second column, forms like szívhez ‘to heart’ with /VH/ ; [fh] confirm that

our rules work for this cluster. There is a complication with finding the output for /HV/

since Hungarian has two kinds of suffixes that begin with v. In some Hungarian v-initial

suffixes, the v assimilates fully to a preceding consonant. In the others, the v does not

assimilate. This non-assimilating v is the one we are interested in. This distinction

could be due to a featural difference in the two v’s or, as Siptár and Törkenczy (2000)

assume, to a structural difference in the words containing the two kinds of suffixes.

Unfortunately it is accidentally the case that the suffixes that show non-assimilating

v do not attach to any stems ending in /H/. For example, the va/ve suffix attaches

to verb roots, but there are no verbs ending in /H/. Thus the predicted output [xv]

is never observed. Péter Siptár (p.c.), a native speaker phonologist, suggests that the

expected outcome of the relevant sequence in a wug-test situation would indeed be

[xv].13 Fortunately, Hungarian voicing assimilation is postlexical (see fn. 22, p. 198

of Siptár and Törkenczy 2000) so it applies not only between a root and a suffix, but

also across compound boundaries and word boundaries, so we can find relevant cases.

Just as the inflected form szívhez parallels the compound tév-hit ‘misbelief’ where

both show /vH/ ; [fh], the accidental data gap identified above is predicted to parallel

compounds like potroh-végi ‘caudal’ with /HV/ surfacing as [xv]. In fact, there actually

is no data gap, since the process is postlexical. So, the system I have constructed

appears to work for this cluster as well.

13See Siptár and Törkenczy (2000), especially sections 8.2.1-2 for useful discussion of the two kinds of v-

initial suffixes and the status of stems ending in h, of which there are also two kinds. The accidental absence

of the relevant combination of verb root shape and suffix behavior was confirmed by Péter Siptár (p.c.).
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7 Conclusions

The point of the epigraph to this paper “We learn not to worry about purpose, because

such worries never lead to the sort of delight we seek” is that this work is the antithe-

sis of that exhorted by Prince and Smolensky (1993, 216) in a founding document of

Optimality Theory: “We urge a reassessment of this essentially formalist position. If

phonology is separated from the principles of well-formedness (the ‘laws’) that drive

it, the resulting loss of constraint and theoretical depth will mark a major defeat for the

enterprise.” The framework presented here is purely formal and has no teleology or no-

tion of well-formedness. Phonology is not trying to optimize anything at all, to repair

or to block marked structures, to find "cures" for "conditions" (Yip, 1988), or manage

"trade-offs" between ease of articulation and maintenance of meaning contrasts contra,

for example, the papers in Hayes et al. (2004).

Instead, the Logical Phonology approach I assume here (developing work such as

Bale et al. (2014); Bale and Reiss (2018); Bale et al. (2020); Volenec and Reiss (2020))

posits a set of representational primitives, such as binary features and α variables, as

well as a set of computational primitives that are organized into rules that do things like

subtract or unify sets of valued features. Phonology, in this conception, involves ab-

stracting away from instances of phonological patterns the contingencies of long chains

of historical events in the course of transmission across generations (as discussed by

Blevins 2003; Hale 2007; Hale and Reiss 2008, among others). Rather than seeing

this as an original idea, it strikes me as the normal method of science, “the natural ap-

proach: to abstract from the welter of descriptive complexity certain general principles

governing computation that would allow the rules of a particular language to be given

in very simple forms, with restricted variety” (Chomsky, 2000, 122). This is exactly

what I have tried to do in this paper by deriving superficial variety from a few basic

notions.

Phoneticians, acquisitionists and historical linguists get their thrills, their delight,

in various ways that bear on the particularities of the “welter of descriptive complexity”

we see in phonological systems—Why do lots of languages have rules that do this, but

very few or maybe none have rules that do that? Why do these sounds seem to rarely

appear next to each other? These are all interesting and legitimate fields of study, but

different from the study of what those systems are that are being realized in sound and

transmitted across generations with more or less success. It thus seems reasonable to

distinguish those tasks from that of understanding how the individual systems manifest

the “general principles governing computation” and the nature of the representations

that those computations take as arguments in phonological systems. These narrow

questions offer their own “sort of delight”, and, to my mind, are the subject matter of

phonology, defined in a usefully narrow sense.

Recall that combinatorics is our friend: the model proposed is in the spirit of

Gallistel and King (2009, 79) who stress the benefit of combinatoric explosion from

a small set of primitives in modeling cognitive faculties:

A machine with a very rich store of symbols must have a means of

forming them out of a not too numerous store of atomic data. No language

in the world has a word for the message, “After the circus, I’m going to
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the store to get a quart of skim milk.” No system for representing discrete

numbers represents 1,342,791 with a single digit or number name. Mini-

mizing the number of atomic data is desirable in any symbol system as it

reduces the complexity of the machinery required to distinguish these data.

This is why computers use just two atomic data and likely why nucleotide

sequences use only four.

The Logical Phonology model derives the commonalities among languages as well as

the welter of descriptive complexity, the superficial variety we observe, via combina-

toric explosion over a small inventory of elements and operations. The model of in-

nate mechanisms is small, with not much “attributed to genetic information.” In other

words, we are aiming to minimize our ontological commitments for UG, and inten-

sionally define a set of possible human languages rich enough to contain the superficial

variety we observe. I offer this simple model of segment-internal changes as a form

of effective data compression in the spirit of Chaitin (2006), who says that a “useful

theory is a compression of the data; from a small number of laws and equations, whole

universes of data can be computed”. In more down-to-earth terms we can cite Morris

Halle: “Too ‘simple’? You want it to be complicated?”
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