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Abstract We investigate which patterns of lexically triggered doxastic, bouletic, neg(ation)-raising,
and veridicality inferences are (un)attested across clause-embedding verbs in English, as well as how
those categories map onto morphosyntactic distribution. To carry out this investigation, we use a mul-
tiview mixed effects mixture model to discover the inference patterns captured in three lexicon-scale
inference judgment datasets: two existing datasets, MegaVeridicality and MegaNegRaising, which
capture veridicality and neg-raising inferences across a wide swath of the English clause-embedding
lexicon, and a new dataset, MegaIntensionality, which similarly captures doxastic and bouletic
inferences. We focus in particular on inference patterns that are correlated with morphosyntactic
distribution, as determined by how well those patterns predict the acceptability judgments in the
MegaAcceptability dataset. We find that there are 15 such patterns attested. Similarities among these
patterns suggest the possibility of underlying lexical semantic components that give rise to them. We
use principal component analysis to discover these components and suggest generalizations regarding
the (in)compatibility of these components and the possibility of explaining lexical gaps.
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1 Introduction

Gaps in logically possible patterns of lexically triggered inferences have long played an important
role in semantic theory because they suggest potentially deep constraints on lexicalization (Horn
1972; Barwise & Cooper 1981; Levin & Rappaport Hovav 1991: a.o.). Recently, there has been
substantial progress on explaining such gaps in the domain of propositional attitude predicates.
Much of this work focuses on lexically triggered inferences that are associated with predicates’
intensional properties—in particular, lexically triggered veridicality inferences (1a), neg(ation)-
raising inferences (1b), doxastic inferences (1c), and bouletic inferences (1d).

(1) A predicate v triggers...
a. ...{veridicality, antiveridicality} inferences in sentence np (not) v s iff the use of np (not) v

s consistently triggers the inference that {s, not s} across contexts.
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b. ...neg(ation)-raising inferences in a sentence np not v s iff the use of np not v s can trigger
the inference that np v not s in some contexts.

c. ...{doxastic, antidoxastic} inferences in a sentence np (not) v s iff the use of np (not) v s
consistently triggers the inference that {np believes s, np believes not s} across contexts.

d. ...{bouletic, antibouletic} inferences in a sentence np (not) v s iff the use of np (not) v s
consistently triggers the inference that {np wants s, np wants not s} across contexts.

These inferences are of interest for at least two reasons. First, they display apparent correlations
with each other across lexical items—potentially suggesting some core set of lexical properties
that interact to give rise to them. For instance, Anand & Hacquard (2014) suggest that, while
there are predicates for which doxastic inferences are “foregrounded” (as diagnosed by sensitivity
to semantic operators like negation)—e.g. (2a) (4a), (3a) (5a)—and predicates for which
bouletic inferences are entailments and doxastic inferences are “backgrounded” (as diagnosed by
insensitivity to semantic operators like negation)—e.g. (2b) (4a), (3b) (4a), (2b) (4b),
(3b) (5b)—there are no predicates for which doxastic inferences are “foregrounded” and bouletic
inferences are “backgrounded” (see also Hooper 1975; Heim 1992; Anand & Hacquard 2013).

(2) a. Jo knew that Bo left.
b. Jo liked that Bo left.

(3) a. Jo didn’t know that Bo left.
b. Jo didn’t like that Bo left.

(4) a. Jo believed that Bo left.
b. Jo wanted Bo to have left.

(5) a. Jo didn’t believe that Bo left.
b. Jo didn’t want Bo to have left.

Second, these inferences appear to correlate with morphosyntactic distribution—potentially sug-
gesting that said lexical properties may be formally represented, rather than solely a byproduct of
how conceptual representations interact with pragmatic reasoning. For example, veridicality and
neg-raising inferences have been claimed to correlate with interrogative selection (Hintikka 1975;
Karttunen 1977; Zuber 1983; Berman 1991; Ginzburg 1995; Lahiri 2002; Egré 2008; George 2011;
Uegaki 2015; Theiler, Roelofsen & Aloni 2017, 2019; Elliott, Klinedinst, Sudo & Uegaki 2017;
Uegaki & Sudo 2019; Roberts 2019; cf. White & Rawlins 2018) and mood/finiteness selection (see
Giannakidou & Mari 2021; and references therein), and doxastic and bouletic inferences have been
claimed to correlate with mood/finiteness selection (Bolinger 1968; Hooper 1975; Farkas 1985;
Portner 1992; Giorgi & Pianesi 1997; Giannakidou 1997; Quer 1998; Villalta 2000, 2008).

A major remaining challenge in this domain is that, not only is the space of possible inference
patterns vast—computed naïvely and considering only the effect of matrix polarity, there are 1,458
possible inference patterns—even the cleanest measurements of at least veridicality and neg-raising
using inference judgment tasks display substantial gradience (White & Rawlins 2018; An & White
2020). This gradience makes it difficult to ascertain which inference patterns are attested because
it makes it difficult to determine whether a particular sentence should be considered to trigger a
particular inference. Such a difficulty may be unavoidable—e.g. because the gradience is endemic
to the inferences themselves (Tonahuser & Degen under review). But it could also be that gradience
is partly or wholly a product of task effects and that there are discrete, formally represented lexical
properties that are active in triggering these inferences—a strong possibility given what we know
about gradience in acceptability judgment tasks (see Schütze & Sprouse 2014).
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Our aim in this paper is to derive a full taxonomy of lexically triggered doxastic, bouletic,
neg-raising, and veridicality inference patterns associated with predicates that take finite clausal
complements. To carry out this derivation while addressing the challenges posed by gradience, we
apply a soft clustering model to all three lexicon-scale inference judgment datasets.

Two of these datasets already exist: one focused on veridicality inferences (the MegaVeridicality
dataset; White & Rawlins 2018) and the other focused on neg-raising inferences (the MegaNegRais-
ing dataset; An & White 2020). We review these datasets in §2. No similar, lexicon-scale dataset
capturing doxastic and bouletic inferences currently exists. To address this gap, we extend the
methodology used to collect MegaVeridicality and MegaNegRaising to collect doxastic and bouletic
inferences for 725 finite clause-taking predicates, covering a wide variety of semantic classes. These
include cognitive predicates—e.g. think, know, remember, forget—emotive predicates—e.g. hope,
fear, love, hate—and communicative predicates—e.g. say, tell, notify, convince—among others. A
unique challenge that arises in collecting judgments for these inferences is that they are anchored
to a particular role—e.g. in a convincing, we know that the convincee believes the content of the
convincing afterward, but we can draw no similar inferences about the beliefs of the convincer. In
§3, we report on an experiment validating a novel method for capturing role-anchored inferences
while avoiding typicality effects on the judgments.

After describing our lexicon-scale data collection in §4, we describe the model we use to
discover inference patterns and the verbs that trigger them in §5. To improve the chances that
these clusters correspond to some formally represented lexical property, we select the number of
clusters to assume by selecting the clustering that best predicts the acceptability judgments in the
MegaAcceptability dataset (White & Rawlins 2016, 2020) with the minimum number of clusters.
We then use principal component analysis to extract generalizations about the nature of the inference
patterns we find before concluding in §6.

2 Existing lexicon-scale datasets

Our work builds on two previous lexicon-scale datasets capturing veridicality (the MegaVeridicality
dataset; White & Rawlins 2018) and neg-raising inferences (the MegaNegRaising dataset; An
& White 2020). The MegaVeridicality dataset contains veridicality judgments for 517 finite
clause-embedding English verbs in a variety of syntactic frames, along with manipulations for
voice and matrix polarity. These verbs were selected on the basis of their acceptability in those
frames according to the MegaAcceptability dataset (White & Rawlins 2016, 2020), which contains
acceptability judgments for 1,000 English clause-embedding verbs in 50 syntactic frames.

A major challenge to collecting inference judgments lies in disentangling the lexical effects
of the predicate on the inference from the potentially confounding effects of world knowledge or
sentential context. For instance, if a respondent were to indicate that (6b) follows from (6a), it
would be difficult as the experimenter to tell whether their judgment was due to the semantics of
know (as desired) or to the respondent’s knowledge of world history.

(6) a. Jo knew that Napoleon was defeated at Waterloo.
b. Napoleon was defeated at Waterloo.
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Thus, to isolate predicate-specific effects on veridicality inferences, White & Rawlins build on a
method they developed in White & Rawlins 2016 for constructing low-content sentences. Specifi-
cally, they solicit judgments by presenting participants with a bleached sentence, as in (7a), and
then ask (7b), where the possible responses are yes, no, and maybe or maybe not.

(7) a. Someone {knew, didn’t know} that a particular thing happened.
b. Did that thing happen?

This bleaching is carried out by instantiating all DP arguments in a frame with indefinite pronouns
and by replacing all verbs except for the target verb with do, have, or happen, as appropriate. Note
that White & Rawlins are further able to capture factivity by manipulating the negation on the
verb and seeing whether participants judge that the inferences goes through in both conditions.
The results of their experiments broadly confirm the validity of this approach, as the judgments
they collect are able to distinguish a large set of canonically veridical, non-veridical, factive, and
non-factive predicates.

An & White (2020) take a similar approach to investigating neg-raising inferences. Participants
are presented with questions like (8) and respond using a bounded slider ranging from 0 to 1, with 0
indicating not likely at all and 1 indicating very likely.

(8) If I were to say I don’t think that a particular thing happened, how likely is it that I mean I
think that that thing didn’t happen?

As in White & Rawlins 2018, the authors select predicates based on their acceptability in different
frames and with different tenses based on data from MegaAcceptability. The resulting MegaNe-
gRaising dataset comprises judgments for 925 clause-embedding verbs in six frames in both past
and present tenses, and with both first and third person subjects—e.g. the past tense analogue of (8)
with a third person subject would be (9).

(9) If I were to say a particular person didn’t think that a particular thing happened, how likely is
it that I mean that person thought that that thing didn’t happen?

In this paper, we focus only on the items containing finite embedded clauses.

3 Validating a templatic approach

We aim to capture doxastic and bouletic inferences across the entire lexicon. As for veridicality
and neg-raising inferences, a major obstacle to collecting such data at scale is that, using standard
item construction methods, it can be difficult to ensure that one is isolating inferences triggered
by the predicate of interest (in some syntactic context) rather than surrounding lexical material
(in conjunction with world knowledge). For instance, boast tends to trigger an inference that the
boaster believes the content of the boast, but this inference can fail to be triggered in cases where
the boaster is widely assumed to be a willful liar, as in (10).
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(10) Trump boasted that he won in 2020. (11) Trump doubts that he won in 2020.

Conversely, doubt tends not to trigger desire inferences; but if given a sentence like (11) and asked
how likely it is that Trump wants to have won the 2020 election, one would likely answer that it is
highly likely—mainly on the basis of prior knowledge.

There are two ways to mitigate this issue: (i) ensure that the attitude holder is not opinionated
with respect to the content of the embedded clause; or (ii) explicitly adjust for the possibility that
judgments are due to prior knowledge. Either option would require the collection of norming data
regarding the prior probability of the belief or desire relevant to an item; and while this approach
appears sound, it is clearly infeasible for lexicon-scale tasks when considering the number of items
that would need to be hand-written as well as the additional cost of norming those items.

In this section, we validate an alternative, efficiently scalable technique based on the bleaching
method described in §2 that was proposed by White & Rawlins (2016, 2020) for acceptability
judgment tasks and subsequently modified by White & Rawlins (2018), White, Rudinger, Rawlins
& Van Durme (2018b), and An & White (2020) for use in inference judgment tasks. In our variant
of this method, we provide participants with templatic items consisting of a templatic antecedent,
as in (12), and a templatic consequent, as in (13), and ask them to judge the likelihood that the
consequent is true given the antecedent.

(12) a. A boasted to B that C happened.
b. A doubted that C happened.

(13) a. A believed that C happened.
b. A wanted C to have happened.

To demonstrate that this technique provides the same information about the inferential properties
of the lexical items in the antecedents as a more standard approach with adjustment for world
knowledge, we compare participants’ judgments to these templatic items against their judgments to
contentful items, consisting of a contentful antecedent (14) and contentful consequent (15).

(14) The publisher doubted that the author had finished her manuscript on time.

(15) a. The publisher believed that the author had finished her manuscript on time.
b. The publisher wanted the author to finish her manuscript on time.

To make the comparison fair, we explicitly adjust for world knowledge about the preferences
and beliefs using norming data collected about the complements of the contentful consequents.
Specifically, the norming study asks participants about the a priori likelihood that the contentful
subject or object would believe or desire the content of the embedded clause, as in (16).

(16) a. What proportion of publishers generally believe authors finish their manuscripts on time?
b. What proportion of publishers generally want authors to finish their manuscripts on time?

3.1 Predicate Selection and Item Construction

We select 24 predicates for the validation study (see Figure 2 for a complete list). We choose
the predicates such that half (12) are prototypically cognitive—e.g. think, know, doubt— and
intransitive, and half (12) are prototypically communicative—e.g. tell, notify, lie—and either
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transitive or PP-taking. For half (six) of the communicative predicates, we target belief and desire
inferences about the referent of the predicate’s subject—e.g. based on our own judgments, lie
triggers the inference that the liar does not believe the content of the lie and complain triggers
the inference that the complainer does not want the content of the complaint to be true. For the
other half (six) of the communicative predicates, we target belief and desire inferences about the
referent of the predicate’s direct/prepositional object—e.g. based on our own judgments, convince
triggers the inference that the convincee believes the content of the convincing (after the event) and
congratulate triggers the inference that the congratulatee wants the content of the congratulations
to be true. Finally, in an attempt to avoid inducing response biases in participants, we aim to
ensure that the average judgment across pairings of a predicate, a target (subject or object), and a
consequent verb (believe or want) is roughly neutral, balanced between extreme positive inferences,
extreme negative inferences, and neutral inferences. Our own judgments, on which the selection
criteria above are based, can be found in Appendix A.4.

For each predicate, we construct four scenarios that pair an entity (under a description) with a
propositional content. We construct two of these scenarios to involve what we judged to have strong
positive valence—e.g. publishers generally want authors to finish their manuscripts on time—and
half involve what we judged to have strong negative valence—e.g. CFOs generally don’t want their
companies to lose money. Our aim here is to introduce high variability in the prior probability of
the belief and desire inferences so that any effect of that prior probability will be revealed in the
judgments, thereby allowing us to estimate and adjust for its effect.

For each such scenario we instantiate four contentful antecedents, differing only in the polarity
of the matrix clause and the tense/modality of the embedded clause: one with the past or past perfect
and another with a past future modal. For instance, (14) gives the past variant of one scenario for
doubt, (17a) gives the negated variant, and (17b) gives the future variant.

(17) a. The publisher didn’t doubt that the author had finished her manuscript on time.
b. The publisher doubted that the author would finish her manuscript on time.

This method yields 384 total contentful antecedents = 24 predicates × 4 scenarios per predicate × 2
matrix polarities × 2 embedded tenses. Each contentful antecedent is associated with two possible
contentful consequents—e.g. those in (15)—yielding 768 total contentful items = 384 contentful
antecedents × 2 contentful consequents.

3.2 Norming Study

The goal of our norming study is to obtain a measurement of the prior probability that each contentful
consequent is true, irrespective of its corresponding contentful antecedent.

3.2.1 Methodology

Participants are asked to judge what proportion of entities belonging to some group generally believe
or desire something by using a bounded slider, where the leftmost end is marked by none (0%) and
the rightmost end by all (100%). The task instructions can be found in Appendix A.1.
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3.2.2 Materials

For each predicate and scenario, we construct generic variants of the corresponding contentful
consequents, wherein the matrix subject is a bare plural and the embedded clause expresses a generic
proposition—e.g. (16) gives the generic variants corresponding to (15). We do not manipulate
polarity or tense for these generic statements, and thus we obtain 192 norming items = 24 predicates
× 4 scenarios per predicate × 2 contentful consequents. We divide these norming items into four
lists of 48, constructed such that (i) half of the questions are about belief and half about desire; (ii)
the content of half of the sentences has positive valence and half has negative valence; (iii) the same
sentence does not appear twice in a list; and (iv) for each sentence, a list contains either the belief
question or the desire question, but not both.

3.2.3 Participants

We recruited 100 participants on Amazon Mechanical Turk, with 25 distinct participants responding
to each list. Each participant was required to pass the qualification test described in White, Hacquard
& Lidz 2018a to ensure they were a native speaker of English.

3.2.4 Results

Figure 1 shows the mean judgments from the norming study for each item, with color corresponding
to the intended valence for the desire inferences. As intended from the way we constructed the
scenarios, the means for the want items are bimodally distributed, and thus the items satisfy our
aim of high variability in the judgments across those items. The means for the belief inferences are
unimodally distributed—likely because we did not explicitly manipulate the prior probability of the
belief inferences—but similarly show the desired high variability.

3.2.5 Normalization

To obtain a single score for each item that adjusts for annotator differences, we fit a mixed effects
beta regression to the responses, with fixed effects for valence (positive, negative), consequent
verb (believe, want), and their interaction, by-scenario random intercepts and random slopes for
consequent verb, and by-participant random intercepts and random slopes for valence, consequent
verb, and their interaction. We then use this model to predict a judgment for each item, setting
the participant random effects to 0 and the predicate random effects to their best linear unbiased
predictors. These predictions can be thought of as those that the “average” participant would give.

3.3 Validation Study

The aim of the validation study is to ensure that gathering data using templatic items yields the same
information about the inferential properties of the lexical items in the antecedents as an approach
that uses contentful items and adjusts for world knowledge.
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Figure 1 Mean judgments from the norming study.

3.3.1 Methodology

Participants are presented with either two sentences or two sentence templates and asked about the
likelihood that the second sentence (the consequent) is true, assuming that the first sentence (the
antecedent) is true. They respond using a bounded slider marked extremely unlikely on the left and
extremely likely on the right. The instructions can be found in Appendix A.

3.3.2 Materials

Contentful items were constructed in the way described in §3.1. These items as well as the templatic
items were organized into lists of 48, each containing only contentful or only templatic items. For
both templatic and contentful items, we ensure that each list contains (i) half positive and half
negative polarity items; (ii) half past and half future items; and (iii) half believe and half want items.
For the contentful items, we additionally ensure that the lists contain half positive valence and half
negative valence items.

3.3.3 Participants

We recruited 320 participants on Amazon Mechanical Turk, with 10 distinct participants responding
to each list. The same qualification test as in the norming study was used.
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Figure 2 Distributions of inference judgments for all 24 predicates in the validation study, with
and without negation on the predicate and for both past and future tense. Distributions
for templatic judgments are shown in gray, and distributions for contentful items with
predicted positive and negative inferences are shown in orange and blue, respectively.

3.3.4 Results

Figure 2 shows the distribution of judgments for each predicate. The positive and negative valence
items (in orange and blue, respectively) are contentful and the neutral valence items (in gray)
are templatic. To quantitatively assess how well responses to templatic items capture the same
information about the inferential properties of the lexical items as an approach that uses contentful
items and adjusts for world knowledge, we assess how well the judgments for contentful items can
be predicted given just the normalized scores from the norming experiment and the judgments for
the templatic items.
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We first construct a normalized score for each templatic item in the same way as for the
norming items. We fit a mixed effects beta regression to the templatic responses, with fixed
effects for polarity (positive, negative), tense (past, future), consequent verb (believe, want),
target (intransitive subject, transitive subject, transitive object), and all possible interactions;
by-predicate random intercepts and random slopes for polarity, tense, consequent verb, and all
possible interactions; and by-participant random intercepts and random slopes for polarity, tense,
consequent verb, target, and all possible interactions. We then use this model to predict a judgment
for each item, setting the participant random effects to 0 and the predicate random effects to their
best linear unbiased predictors. As in the norming study, these predictions can be thought of as
those that the “average” participant would give.

Next, we combine both the normalized norming scores (norm) and the normalized templatic
scores (templatic) to ask the following: if we knew only the prior probability of a particular
scenario and the normalized response to some templatic items without knowing the identity of the
predicate itself, how well could we predict the contentful responses. We answer this queston using
cross-validation: for each predicate, we remove the responses corresponding to that predicate, fit a
model predicting the contentful responses to the remaining predicates given norm and templatic,
then ask how well that model predicts the predicate it wasn’t trained on. We fit a mixed effects
beta regression, with fixed effects for norm, templatic, and their interaction; by-predicate random
intercepts and random slopes for norm, templatic, and their interaction; and by-participant random
intercepts and random slopes for norm, templatic, and their interaction. To measure the quality of
the prediction of the held-out data, we compute the correlation between the predicted values and the
true values.

We obtain a mean correlation across predicates of 0.70 (95% bootstrapped CI=[0.65, 0.75]).
This is significantly better than the mean correlation between judgments given by participants who
did the same contentful list (ρ=0.58, 95% bootstrapped CI = [0.57, 0.59]), suggesting that the
templatic items correctly capture the average inferences triggered by a particular predicate.

4 Lexicon-scale data collection

We extend the methods in the validation experiment to a lexicon-scale experiment, gathering
judgments for 725 predicates from the MegaAcceptability dataset (White & Rawlins 2016, 2020).

4.1 Methodology

Participants are presented with two templatic sentences and asked about the likelihood that the
consequent is true if the antecedent is true. As in the validation study, participants respond using a
bounded slider with extremely unlikely on the left and extremely likely on the right. The instructions
that participants received can be found in Appendix B.1.
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4.2 Materials

We select 725 unique predicates for use in this experiment based on their normalized acceptability
score in the MegaAcceptability dataset.1 We focus on the 12 frames found in Table 1, thereby
manipulating (i) embedded tense/modality; (ii) the presence of a direct object (DO) or to-PP; and
(iii) whether the matrix clause is passivized or not (in order to naturally capture predicates that take
expletive subjects and direct objects, such as amaze, surprise, etc.). We manipulate tense/modality
of the embedded clause—past (18a), future (18b), and tenseless (18c)—to ensure good coverage of
future-oriented predicates, like hope, and preferential predicates, like demand; and we manipulate
DO/PP-taking to ensure good coverage of communicative predicates, like say.

(18) a. A knew that C happened.
b. A hoped that C would happen.

c. A demanded that C happen.
d. A said to B that C happened.

In all of these frames the matrix predicate is in the simple past (for the active frames) or past
participial form (for the passive frames). For each frame except the embedded tenseless ones,
we select predicates with a normalized acceptability score in that frame of ≥0.2. For embedded
tenseless frames, we set the threshold at 1.5. This threshold was determined by manual inspection
of the least acceptable items that would be included. The 0.2 threshold roughly corresponds to
an average rating of approximately 4.5 on the original ordinal scale (1-7), and the 1.5 threshold
corresponds to an average rating of approximately 6.2 The number of predicates that lie above this
threshold for each frame can be found in Table 1.

As in the validation study, we manipulate the polarity of the matrix clause in templatic an-
tecedents and construct templatic consequents for each antecedent conditioned on the tense/modality
of the embedded clause—(19) for antecedents with embedded past tense and (20) for antecedents
with tenseless or future embedded clauses.

(19) a. A believed that C happened.
b. A wanted C to have happened.

(20) a. A believed that C would happen.
b. A wanted C to happen.

We additionally construct two sets of templatic consequents for each antecedent containing a DO/PP.

(21) a. {A, B} believed that C happened. b. {A, B} wanted C to have happened.

We sort the resulting items into lists of 32. We aim to constrain the construction of these lists
similarly to how we constrain the lists in the validation study—attempting to obtain a distribution
over expected slider responses for each list with a mean of approximately 0.5 and with high variance.
The idea here is to avoid introducing “warping” into the participants’ use of the response scale due
to the underlying distribution of inferences associated with items in a particular list.

1 These normalized scores are described in White & Rawlins 2020 and are available at megaattitude.io.
2 We use a distinct threshold for the embedded tenseless frames because we found that the acceptability scores are

significantly noisier for them than in other frames, resulting in many unnatural tenseless items being included when the
threshold is set to 0.2. We believe this noise may be due to some MegaAcceptability participants missing the subtle
difference between the embedded simple past and tenseless items—namely, the presence or lack of an -ed suffix.
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Embedded Past Embedded Future Embedded Tenseless

A that C happened 534 A that C would happen 498 A that C happen 50
A to B that C happened 156 A to B that C would happen 160 A to B that C happen 7
A was that C happened 238 A was that C would happen 213 A was that C happen 24
A B that C happened 33 A B that C would happen 31 A B that C happen 1

Table 1 Counts of unique predicates for each frame in the lexical scale experiment.

An obvious difficulty in achieving this goal is that we do not have access to the underlying
distribution of inferences. Rather, this is exactly what we aim to measure, and so we must use proxy
measures that are plausibly correlated. We use four such measures: the normalized veridicality
and neg-raising scores from MegaVeridicality and MegaNegRaising, respectively; the normalized
acceptability judgments from MegaAcceptability; and the frequency counts for the predicate in a
particular item’s templatic antecedent given by SUBTLEX (Brysbaert & New 2009).3

We perform PCA on these scores and then bin items based on their score on each component.
This binning was done sequentially: we first derive two bins based on a median split of scores on the
first component; then for each of those bins, we derive two bins based on a median split of scores
on the second component; continuing similarly for the remaining two components. This procedure
results in 16 equally-sized bins. We construct lists such that every combination of PCA bin and
consequent verb appear exactly once in each list. To fill a list with items, we choose frames and
antecedent verbs proportionally to their frequency in that respective PCA bin, also enforcing a hard
constraint that each antecedent verb appears no more than once in a list. For transitive frames, the
subject of the consequent is toggled each time an item with a DO or PP in the templatic antecedent
is added to a list, ensuring that we also obtain a balance of subject and object targets among the
DO/PP frames in each list.

Finally, we add four sanity check questions to each list to verify participant reliability. These
items are constructed in pairs, with one item in the pair having a clear-cut 0 response and the other
having a clear-cut 1 response. Each item in the pair uses the same verb in both the antecedent and
the consequent, with one item having a negated antecedent (creating a contradiction) and the other
having a positive antecedent (creating a tautology). All such items use the A that C happened
frame, and we only use predicates with a very high acceptability in this frame (≥3).

4.3 Participants

We recruited 272 native American English speakers on Amazon Mechanical Turk. Participants
were allowed to respond to at most 20 lists, and each list was rated by 10 unique participants.
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Figure 3 Distribution of verbs with respect to normalized belief and desire judgments.

4.4 Results

Figure 3 plots the normalized belief and desire judgments (for both subject target and object target,
when applicable), with select predicates labelled. To obtain a single aggregate score for each item,
we use a mixed effects beta model-based normalization procedure (see Appendix B.2 for details).

We examine the top two subplots—those showing judgments for items with embedded past
tense—first. The top left subplot shows judgments for doxastic inferences. We observe that our
results correctly capture a variety of commonly discussed predicates. For instance, cognitive
predicates (such as think and know) and communicative predicates that trigger doxastic inferences
about the recipient (such as convince and persuade) show up in the top left quadrant, indicating

3 We use the normalized veridicality and neg-raising scores described in White & Rawlins 2018 and An & White 2020,
respectively. In cases where no veridicality or neg-raising score exists for a particular item, we randomly impute it.
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doxastic components that are “foregrounded” and targeted by negation.
In contrast, emotive predicates such as love, like, and hate appear in the top right, indicating

that the doxastic inferences are “backgrounded” and persist under negation. The center of the
subplot shows predicates that don’t trigger doxastic inferences, e.g., wish and hope. We also observe
predicates that yield “backgrounded” negative doxastic inferences (deceitful communicatives, such
as lie and pretend), and predicates that yield “foregrounded” negative doxastic inferences that are
targeted by negation, such as miss and doubt.

The top right subplot shows judgments for bouletic inferences. As expected, we observe various
positive emotive and preferential predicates such as love, like, wish, and hope in the top left quadrant,
and negative emotive predicates such as hate, regret, worry, and fear in the bottom right quadrant.
These indicate predicates that yield positive and negative bouletic inferences, respectively, that
are “foregrounded” and targeted by negation. Many predicates are clustered around the center,
indicating weak positive or negative bouletic inferences (such as pretend and doubt, respectively),
or a lack of a bouletic component, as in the case of most cognitive predicates (e.g., know and think)
and communicatives (e.g., tell and say). Notably, the overall pattern observed in this subplot shows
that no predicate has a positive bouletic inference when under both positive and negative matrix
polarity. This attests to the hypothesis that the bouletic component is always at issue and targeted
by negation, if present at all (Anand & Hacquard 2014).

The bottom two subplots show judgments for the same items with embedded future tense (when
applicable). For the bouletic inferences for these items (bottom right subplot), the judgments we
obtain are approximately the same as the corresponding items with embedded past tense. However,
the doxastic inferences from these items (bottom left subplot) weaken significantly for any predicates
where the doxastic inferences are backgrounded, relative to the embedded past tense items — e.g.,
love yields a strong doxastic inference with a past tense embedding, but only a middling doxastic
inference with a future-oriented embedding.

5 Discovering inference patterns

Our multiview mixture model attempts to find a soft clustering of templatic antecedents—identified
by the predicate-frame pair instantiated by that antecedent—based simultaneously on the veridicality
judgments in MegaVeridicality, the neg-raising judgments in MegaNegRaising, and the belief and
desire judgments in MegaIntensionality. Each cluster is characterized jointly by the predicate-frame
pairs that fall into it and the prototypical pattern of veridicality, neg-raising, doxastic, and bouletic
inferences associated with it. One way to think of what this model aims to do is to find dense areas
of inference pattern space by looking for commonly occurring patterns. The most common inference
patterns in each of these dense areas can be thought of as the prototypical pattern associated with
the cluster. Predicate-frame pairs whose inference pattern does not exactly match a prototypical
pattern are then associated with the inference pattern they are most similar to.

Because we don’t know a priori how many inference patterns there are, it is important to
determine a method for selecting the number we direct the model to find. Our main goal in
designing this procedure is to ensure that the inference patterns we find are plausibly formally
represented. Thus, to select this number, we choose the clustering that allows us to best predict
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Figure 4 Prototypical veridicality inference patterns for each cluster.

predicates’ morphosyntactic distribution as measured in the MegaAcceptability dataset.

5.1 Model description

We use a multiview mixed effects mixture model to perform soft clustering. This model is a multivew
mixture model in that it combines multiple different views of the predicate frame pairs we are
clustering within the same model. It is a mixed effects mixture model in the sense that, rather than
simply associating each cluster of the mixture model with the parameters of a simple distribution—
e.g. as in a Guassian mixture model—it associates each with the fixed effect parameters of a
distinct mixed effects model for each task. For MegaVeridicality, which contains ordinal inference
judgments, we use an ordinal mixed effects model; and for MegaNegRaising and MegaIntensionality,
we use a beta mixed model.4.

This mixture model defines a soft clustering similarly to how Latent Dirichlet Allocation
associates topic distributions with documents (Blei, Ng & Jordan 2003): a categorical distribution
over cluster assignments with parameter θθθ〈v, f 〉 is associated with each predicate-frame pair 〈v, f 〉.
We then assume a cluster assignment ci ∼Categorical

(
θθθ〈verb(i),frame(i)〉

)
is sampled for each datapoint

i such that the templatic antecedent associated with i instantiates 〈v, f 〉. The response yi is then
sampled from some mixed effects model with fixed effects βββ〈view(i),ci〉

, where view(i) is the particular
dataset (MegaVeridicality, MegNegRaising, or MegaIntensionality).

5.2 Selecting the optimal number inference patterns

To implement the selection procedure, we fit the model with different numbers of clusters |C| ∈
{2, ...,20}. For each such clustering, we extract θθθ〈v, f 〉 for each predicate-frame pair and then, for
each predicate, we construct a vector φφφv such that φvk = 1−

∏
f 1− θ〈v, f 〉k. These vectors track the

4 See Appendix C.1 for the full model specification.
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Figure 5 Prototypical neg-raising inference patterns for each cluster.

probability that a particular predicate v falls into a particular cluster k in any frame it occurs in.
Next, we regress the normalized acceptability for each predicate v in MegaAcceptability on

these φφφvs using multivariate ridge regression, with the regularization parameter selected by 5-fold
cross-validation. To evaluate the performance of this regression on data the model hasn’t seen
before, we use a separate (“outer”) 10-fold cross-validation, breaking the data into 10 equally
sized bins, then for each bin, training on all the other bins and testing on that bin. On the held-out
data, we compute per-item squared error for each model and compute Bonferroni-corrected 95%
confidence intervals for the mean difference in squared error between each pairing of models via
non-parametric bootstrap over items. We then choose |Cbest| as the minimal number of clusters such
that no model with a greater number of clusters performs reliably better.5

5.3 Results

Using the approach described in §5.2, we find |C| = 15 to be optimal. This model obtains R2 = 0.34
(95% CI = [0.32, 0.35]) on the acceptability judgments, which is (perhaps surprisingly) superior
to the corpus subcategorization frame frequency-based models described in White & Rawlins
2020. Figures 4–6 show the prototypical inference patterns for veridicality inferences, negation-
raising inferences, and doxastic and bouletic inferences, respectively. These prototypical inference
patterns are computed from the fixed effects for each cluster and view: for the views with unit
data (MegaNegRaising and MegaIntensionality), we compute the expected unit response, setting
by-participant random effects to 0; and for the ordinal data, we compute the expect distribution over
ordinal values using the average by-participant cutpoints then computing a weighted mean based on

5 For reasons of space, we do not discuss the relationship between clusters and the syntax here. For the interested reader,
the coefficients for the best model are plotted in Appendix C.2.
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Figure 6 Prototypical doxastic and bouletic inference patterns for each cluster.

those distributions, assigning yes to 1, maybe or maybe not to 0.5, and no to 0.
To facilitate analysis of the clusters, we assign labels to them based on (i) our interpretations

of the prototypical inference pattern for that cluster and (ii) the predicate-frame pairs with the
highest weight for that cluster. Importantly, these labels are intended to reflect the prototypical
characteristics of the predicates associated with a particular cluster: as noted above, not all predicates
in the cluster will share those prototypical characteristics. (22)–(35) give examples for each cluster.

(22) Representiationals: doxastic mental states and mental processes.
A {thought, believed, suspected} that C happened.

(23) Preferentials: expressions of preference for particular (future) states of affairs.
A {hoped, wished, demanded, recommended} that C (would) happen.

(24) Speculatives: communication of uncertain beliefs.
A {ventured, guessed, gossiped} that C happened.

(25) Future commitment: expressions of commitment to some future action or result.
A {promised, ensured, attested} that C would happen.

(26) Negative internal emotives: negative emotional states.
A was {frightened, disgusted, infuriated} that C happened.

(27) Negative emotive communicatives: communicative acts with broadly negative valence.

17



A {screamed, ranted, growled} to B that C would happen.

(28) Strong communicatives: communicative acts with strong doxastic inferences about the source.
A {confessed, admitted, acknowledged} that C happened.

(29) Weak communicatives: communicative acts with weak doxastic inferences about the source.6

A {reported, remarked, yelped} to B that C happened.

(30) Deceptives: actions involving dishonesty, deceit, or pretense.
A {lied, misled, faked, fabricated} ((to) B) that C happened.

(31) Discourse commitment: communicative acts committing the source to the content’s truth.
A {maintained, remarked, swore} that C would happen.

(32) Negative external emotives: expressions of negative emotion with behavioral correlates.
A {whined, whimpered, pouted} to B that C would happen.

(33) Positive external emotives: expressions of positive emotion with (external) behavioral corre-
lates.
A was {congratulated, praised, fascinated} that C happened.

(34) Positive internal emotives: positive emotional states.
A was {pleased, thrilled, enthused} that C happened.

(35) Negative emotive miratives: expressions of surprise with negative valence.
A was {dazed, flustered, alarmed} that C would happen.

We see that factivity—both cells being dark orange for a particular class in Figure 4—is largely
confined to emotive classes, with cognitive and non-emotive communicatives generally being
veridical—the top cell only being dark orange in Figure 4—nonveridical—both cells being light
orange or white—or antiimplicative—the top cell being blue and the bottom cell being orange. This
finding is consistent with Anand & Hacquard’s (2014) proposal that veridical communicatives are
never factive.

Neg-raising is even more constrained than factivity, only showing up among the representa-
tionals, as indicated by that class being the only one with any orange in Figure 5. One might
have expected at least preferentials to also allow neg-raising, since one of the most commonly
discussed neg-raising predicates, want, would presumably fall into this class. Note, however, that
because we focus only on predicates them embed that-clause complements, we likely have a biased
sample of preferentials—indeed, one not including predicates like want. A wider sample, including
infinitival-taking predicates might yield a preferential subclass that does allow neg-raising.

The inference patterns are substantially more varied among doxastic and bouletic inferences.
Positive doxastic inferences that target the source of a communication (top row of Figure 6) are
common to the majority of clusters, with only the deceptives and miratives/antidoxastics showing

6 The inference patterns for the strong and weak communicatives are extremely similar, with the “weakness” of the
weak communicatives not being particularly weak. These classes also show high overlap in predicates—e.g. one class
containing a predicate with an embedded clause in the past tense and the other containing the same predicate with an
embedded clause containing a future modal. Nonetheless, the syntactic profile of these classes does differ slightly as
can be seen in the plot in Appendix C.2, and so some distinction does seem to exist between these clusters.
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Figure 7 PCA loadings for each inference type.

mean likelihoods below 0.5 for that inference type. Positive doxastic inferences that target the
recipient of a communication (fifth row from the top) are similarly widely distributed, but are most
highly concentrated among the speculatives.

Unsurprisingly, positive bouletic inferences are likeliest among the preferentials and the positive
internal and external emotives, and negative bouletic inferences among the negative internal and
external emotives. Moreover, all four of these clusters capture (to varying degrees) doxastic
presuppositions, but none of them—and indeed, no other clusters besides—show evidence of
bouletic presuppositions. This is consistent with the observation that negation preferentially targets
the emotive component of a predicate when it is present (Anand & Hacquard 2014).

5.4 Extracting generalizations about the attested inference patterns

To determine a set of generalizations about these clusters, we apply principal component analysis
(PCA) to the parameters of the property-specific probability distributions for each cluster. The
idea behind this method is to decompose the inference patterns associated with each cluster into
components capturing which inferences are correlated across clusters. These components can
be thought of as capturing violable biconditional statements that are strictly ordered in terms of
importance, with the most important components capturing the most variability in the patterns.

The PCA loadings across properties for each cluster are shown in Figure 7, with orange tiles and
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blue tiles corresponding to positive and negative loadings, respectively. The fact that the loadings
can take on both positive and negative values suggests a particular basis for stating generalizations
about inference patterns—namely, as (anti-)correlations between inference types that lie along
continua defined by the range of their loadings, with strongly positive inferences at one end and
strongly negative inferences at the other. Such a framing thus enables us to define the different
inference types in terms of these loadings. For instance, if a component has high positive or
high negative loadings for both the A that S S and A not that S S inferences, we
interpret that to be indicative of factivity or anti-factivity, since it suggests that the inference is
robust under negation.7 By contrast, if a component has high positive or high negative loading for
only one of those inferences and a near-zero loading for the other, we interpret that as evidence of
veridicality or anti-veridicality, as the inference is not robust under negation. Finally, if the loading
is strongly positive for one of these inferences and strongly negative for the other, we interpret this
as (anti-)implicativity. Our interpretations of neg-raising, doxastic, and bouletic inference patterns
follow the same logic.

We give our interpretation for the first six components below.

(36) The polarity of a veridicality presupposition is anti-correlated with neg-raising.

(37) The polarity of a belief presupposition about a recipient is correlated with the polarity of a
desire presupposition.

(38) The valence of an emotive communicative is anticorrelated with veridicality.

(39) Bouletic inferences about the source and the target of a communication are anticorrelated
with veridicality.

(40) Desire inferences about the source in a communication are anticorrelated with belief inferences
about the target.

(41) Veridicality is correlated with belief inferences in the target of a communication but anticor-
related with desire inferences.

Naturally, these generalizations demand theoretically-motivated explanations. However, our aim
here is merely to identify the patterns that emerge when considering the interaction between different
inference types at the scale of the lexicon, and we reserve the project of presenting an account of
those patterns for future work.

6 Conclusion

We have investigated which patterns of lexically triggered inferences are attested or unattested
across clause-embedding verbs in English. Our investigation has taken a more holistic view of
the problem than has previously been attempted by simultaneously considering doxastic, bouletic,
neg(ation)-raising, and veridicality inferences. In particular, we have identified 15 inference patterns
that correlate with predicates’ morphosyntactic distribution. Many of these patterns corroborate
past observations from the literature—e.g. a tendency for emotive predicates to be factive—while

7 More generally, we treat robustness under negation for any inference type as evidence of presupposition for that type.
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others point to novel ones—e.g. a correlation between mirativity and antiveridicality—that are less
commonly discussed. These findings lay the groundwork for further work investigating fine-grained
aspects of the relationship between these inference patterns and the syntax as well as expansion of
our inference pattern inventory beyond predicates that embed finite clauses.
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A Materials for Norming and Validation Studies

A.1 Norming instructions

In this experiment, you will be asked about the stereotypical beliefs and desires of particular groups
of people. Specifically, we’re interested in getting your best guess about what proportion of a certain
group generally believes or wants particular things. Your task will be to respond using a slider that
ranges from 0 (0 percent) on the left to 1 (100 percent) on the right.

Please carefully look over the examples below before beginning.

Believe Questions

Example 1 For the believe questions, you might get one like the following: What proportion
of dentists generally believe that patients should brush their teeth every day? Dentists almost
universally recommend daily (indeed, twice daily) teeth brushing, so your answer in this case should
probably be close to the right end of the scale, around 1.

Example 2 If the question were instead What proportion of dietitians believe that their clients
should eat candy for every meal?, your answer should be close to, if not exactly equal to, 0, since
candy is generally assumed to be bad for one’s health in large quantities.

Example 3 Many questions will not be as clear-cut as the two examples above. You may, for
example, get a question like What proportion of voters generally believe that their state government
will raise taxes? Any given voter’s beliefs will depend on a variety of factors, including their
politics, their state, and who the state officials are. It may thus be hard to know what’s true of voters’
beliefs in general. In this case, you should just answer as best you can.

Want Questions

Example 1 For want questions, you might get one like the following: What proportion of pilots
generally want their flights to be free of turbulence?. Since very few, if any, pilots enjoy flying
through turbulence your response should be very close to, if not equal to, 1.

Example 2 However, if the question were instead What proportion of gardeners generally want
weeds to overrun their gardens?, your answer should be close to 0, since weeds overruning one’s
garden is generally undesirable.

Example 3 Similar to the believe questions, some of the want questions may be more difficult
than the preceding examples. You may see a question like What proportion of family members
generally want to go to family reunions? Naturally, this will depend on the family member and their
relationship with their family. Once again, you should answer as best you can.
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More Information

When the experiment is over, a screen will appear telling you that you are done, and a submission
button will be revealed.

This research is being carried out by Dr. Aaron White at the University of Rochester. You can
read more about the study here.

A.2 Contentful validation instructions

In this experiment, you will be given a statement and asked about the likelihood that a second
statement is true, assuming that the first statement is true. Your task will be to respond using a slider
with extremely unlikely to the left and extremely likely to the right.

High Likelihood

For instance, you might get the statement the teenager remembered to buy milk and the question
How likely is it that the teenager bought milk?. In this case, the second statement is very likely
to be true assuming the first statement is true: if someone remembered to do something, that person
has to have done that thing. So you would slide the slider fairly far to the right (toward extremely
likely).

Low Likelihood

If the statement were the teenager forgot to buy milk and the question were the same, you would
slide the slider fairly far to the left (toward extremely unlikely).

Middling Likelihood

And if the statement were the teenager wanted to buy milk and the question were the same as
before, you might leave the slider in the middle or slide it slightly toward the right (extremely likely)
to signal that wanting to do something makes it more likely that someone will do it (all other things
being equal).

Similarly, if the statement were the teenager didn’t want to buy milk and the question were
the same, you might leave the slider in the middle or slide it slightly toward the left (extremely
unlikely) to signal that not wanting to do something makes it less likely that someone will do it (all
other things being equal).

Changes in Likelihood

If the first sentence describes a situation where something changes, the question should be answered
assuming the change has happened. For instance, if the statement were the teenager decided to
buy milk and the question were How likely is it that the teenager intended to buy milk?, the
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second statement is very likely to be false before the decision, but true afterward, so you would
slide the slider fairly far to the right (toward extremely likely).

More Information

Try to answer the questions as quickly and accurately as possible. Some of the statements may
sound odd. In these cases, try your best to think about a plausible situation it might describe.

When the experiment is over, a screen will appear telling you that you are done, and a submission
button will be revealed.

This research is being carried out by Dr. Aaron White at the University of Rochester. You can
read more about the study here.

A.3 Templatized validation instructions

In this experiment, you will be given a statement and asked about the likelihood that a second
statement is true, assuming that the first statement is true. Your task will be to respond using a slider
with extremely unlikely to the left and extremely likely to the right.

High Likelihood

For instance, you might get the statement A remembered to do B and the question How likely
is it that A did B?, where A just stands for some person and B stands for some action. In this
case, the second statement is very likely to be true assuming the first statement is true: if someone
remembered to do something, that person has to have done that thing. So you would slide the slider
fairly far to the right (toward extremely likely).

Low Likelihood

If the statement were A forgot to do B and the question were the same, you would slide the slider
fairly far to the left (toward extremely unlikely).

Middling Likelihood

And if the statement were A wanted to do B and the question were the same as before, you might
leave the slider in the middle or slide it slightly toward the right (extremely likely) to signal that
wanting to do something makes it more likely that someone will do it (all other things being equal).

Similarly, if the statement were A didn’t want to do B and the question were the same, you
might leave the slider in the middle or slide it slightly toward the left (extremely unlikely) to signal
that not wanting to do something makes it less likely that someone will do it (all other things being
equal).
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Changes in Likelihood

If the first sentence describes a situation where something changes, the question should be answered
assuming the change has happened. For instance, if the statement were A decided to do B and the
question were How likely is it that A intended to do B?, the second statement is very likely to
be false before the decision (since the whole point of a decision is to form an intention), but true
afterward, so you would slide the slider fairly far to the right (toward extremely likely).

More Information

Try to answer the questions as quickly and accurately as possible. Some of the statements may
sound odd, even setting aside that we replace words for specific people and actions with letters
(A, B, etc.). In these cases, try your best to think about the sort of situation the statements might
describe.

A.4 Validation study verbs

A list of verbs used for the validation experiment is shown in Table 2.

B Materials for Lexicon-Scale Data Collection

B.1 Instructions

In this experiment, you will be given a statement and asked about the likelihood that a second
statement is true, assuming that the first statement is true. Your task will be to respond using a slider
with extremely unlikely to the left and extremely likely to the right.

High Likelihood

For instance, you might get the statement A remembered to do B and the question How likely
is it that A did B?, where A just stands for some person and B stands for some action. In this
case, the second statement is very likely to be true assuming the first statement is true: if someone
remembered to do something, that person has to have done that thing. So you would slide the slider
fairly far to the right (toward extremely likely).

Low Likelihood

If the statement were A forgot to do B and the question were the same, you would slide the slider
fairly far to the left (toward extremely unlikely).

Middling Likelihood

And if the statement were A wanted to do B and the question were the same as before, you might
leave the slider in the middle or slide it slightly toward the right (extremely likely) to signal that
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wanting to do something makes it slightly more likely that someone will do it (all other things being
equal).

Similarly, if the statement were A didn’t want to do B and the question were the same, you
might leave the slider in the middle or slide it slightly toward the left (extremely unlikely) to signal
that not wanting to do something makes it slightly less likely that someone will do it (all other
things being equal).

Changes in Likelihood

If the first sentence describes a situation where something changes, the question should be answered
assuming the change has happened. For instance, if the statement were A decided to do B and the
question were How likely is it that A intended to do B?, the second statement is very likely to
be false before the decision (since the whole point of a decision is to form an intention), but true
afterward, so you would slide the slider fairly far to the right (toward extremely likely).

More Information

Try to answer the questions as quickly and accurately as possible. Some of the statements may
sound odd, even setting aside that we replace words for specific people and actions with letters
(A, B, etc.). In these cases, try your best to think about the sort of situation the statements might
describe.

B.2 Normalization

Prior to normalization, the lexical-scale data had an inter-annotator agreement (Krippendorff’s
alpha) of 0.58. To aggregate annotator responses into a single score for each item, we fit a mixed
effects Beta regression. This model incorporates a fixed scaling term βν, a fixed shifting term for
each item β

µ
i , a random scaling term ρνp for each participant p, and a random shifting term ρ

µ
p for

each participant.

νi =
(
βν+ρνpi

)2

µi = logit−1
(
β
µ
i +ρ

µ
pi

)
ai; bi = νiµi; νi(1−µi)

r̂i ∼ Beta(ai,bi)

The normalizer optimizes these parameters against the loss function L =
∑

i DKL(ri || r̂i). The
normalized scores for each item i in the MegaIntensionality dataset (plotted in Figure 3) correspond
to logit−1(βµi ).
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C Model Details

C.1 Model Definition

The full model definition is shown below. We place a Dirichlet prior on the predicate-frame weight
parameters, parameterized by a scaled mean αγγγ, where the mean is drawn from a uniform Dirichlet
hyperprior. The scaling term controls the dispersion of the cluster weights, and is drawn from a
zero-mean log-normal prior.

α ∼ logN
(
0,σ2

)
γγγ ∼ Dirichlet (1K)

θθθ〈v, f 〉 ∼ Dirichlet (αγγγ)

ci ∼ Categorical
(
θθθ〈verb(i),frame(i)〉

)
yi ∼ ftask(i)

(
βββ〈task(i),ci〉

·xi,ρρρparticipant(i)

)

The Beta mixed effects model for unit responses is shown below. βµ and βν represent fixed
effects: shifting terms for each cluster ci and sentential context ki and a scaling term, respectively.
ρµ and ρν represent shifting and scaling random effects for each participant. We place a zero-mean
log-normal prior on each scaling term, and a zero-mean normal prior on each shifting term.

νi = βν+ρνpi

µi = logit−1
(
β
µ
ci,ki

+ρ
µ
pi

)
ai; bi = νiµi; νi(1−µi)

yi ∼ Beta(ai,bi)

The Ordinal mixed effects model assumes that each item with a particular cluster ci and sentential
context ki maps to some real-valued score βci,ki , and that each participant p has a different way
of binning these scores into ordinal rankings. These bins are defined by random effects ρρρp that
represent cutpoints, such that the worst rating corresponds to bin

(
−∞,ρp,1

]
, the best rating to bin(

ρp,n,∞
)
, and all other ratings to bins

(
ρp,n−1,ρp,n

)
.

The probability of a particular item i (with participant pi, sentential context ki, and assigned
cluster ci) getting ordinal score ` is defined based on these cutpoints:

P (yi ≤ `) = logit−1(cpi,` −βci,ki)
P (yi = `) = P (yi ≤ `)−P (yi ≤ (`−1))

yi ∼ Categorical(P (yi))
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C.2 Cluster Regression Coefficients

A plot of regression coefficients from the cluster selection procedure is shown in Figure 8.
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Verb Matrix Template Target Believe Want

think + A thought that C happened. A + ×

− A didn’t think that C happened. A − ×

doubt + A doubted that C happened. A − ×

− A didn’t doubt that C happened. A + ×

know + A knew that C happened. A + ×

− A didn’t know that C happened. A − ×

remember + A remembered that C happened. A + ×

− A didn’t remember that C happened. A − ×

hope + A hoped that C happened. A × +

− A didn’t hope that C happened. A × f

fear + A feared that C happened. A × −

− A didn’t fear that C happened. A × ×

wish + A wished that C happened. A − +

− A didn’t wish that C happened. A × f

worry + A worried that C happened. A × −

− A didn’t worry that C happened. A  ×

like + A liked that C happened. A + +

− A didn’t like that C happened. A + −

love + A loved that C happened. A + +

− A didn’t love that C happened. A + f

hate + A hated that C happened. A + −

− A didn’t hate that C happened. A +  
regret + A regretted that C happened. A + −

− A didn’t regret that C happened. A +  
tell + A told B that C happened. A × ×

− A didn’t tell B that C happened. A  ×

notify + A notified B that C happened. A + ×

− A didn’t notify B that C happened. A  ×

lie + A lied to B that C happened. A − ×

− A didn’t lie to B that C happened. A  ×

mislead + A misled B that C happened. A − ×

− A didn’t mislead B that C happened. A  ×

complain + A complained to B that C happened . A + −

− A didn’t complain to B that C happened . A + f

boast + A boasted to B that C happened . A + +

− A didn’t boast to B that C happened . A   
convince + A convinced B that C happened. B + ×

− A didn’t convince B that C happened. B f ×

persuade + A persuaded B that C happened. B + ×

− A didn’t persuade B that C happened. B f ×

dissuade + A dissuaded B that C happened. B − ×

− A didn’t dissuade B that C happened. B + ×

disprove + A disproved to B that C happened. B − ×

− A didn’t disprove to B that C happened. B × ×

congratulate + A congratulated B that C happened. B + +

− A didn’t congratulate B that C happened. B + +

apologize + A apologized to B that C happened. B + −

− A didn’t apologize to B that C happened. B + −

Table 2 Verbs used in the validation experiment, along with predicted belief and desire
inferences (based on authors’ judgments) for referent of target argument (A =

subject, B = non-subject), either with or without matrix negation. For conciseness,
only past-tense items are shown. − = strong negative inference,f = weak negative
inference, × = no inference,  = weak positive inference, + = strong positive
inference. Corresponding contentful items can be found in Appendix A.
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NP Ved NP VP
NP Ved NP to VP[+eventive]
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Figure 8 Regression coefficients of best model from multivariate ridge regression on accept-
ability scores.
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