
MaxEnt and sound symbolism in Pokémon names III:
Intersecting the effects of mora counts and vowel quality

Abstract

In recent years, we witness a rise of interest in accounting for probabilistic generalizations

in linguistic patterns using formal grammatical theories. In this context, Maximum Entropy

Harmonic Grammar (MaxEnt HG) has been shown to be a useful analytical tool in modeling

probabilistic patterns in various linguistic domains. Some recent studies (Kawahara 2020c,

2021) have proposed to extend the scope of MaxEnt HG by applying it to the analysis of sound

symbolism, systematic associations between sounds and meanings. These studies examine

what Hayes (2020) refers to as the quantitative signature of MaxEnt HG, the set of typical

probabilistic patterns that MaxEnt HG is predicted to generate. The particular quantitative

signature that these studies found is wug-shaped curves, which consist of multiple sigmoid

curves. Inspired by these studies, the current experiment examined whether we can identify

yet another instance of wug-shaped curves in sound symbolism, with the empirical target being

the judgment of Pokémon characters’ evolution status by native speakers of Japanese. The

current experiment shows that as name length increases, the post-evolution responses increase

in a sigmoidal manner, and that this sigmoidal curve is shifted depending on the vowel quality

of the stimuli, resulting in a wug-shaped curve. To model the results, an MaxEnt HG analysis,

equipped with OT-style constraints, is developed as an example of a generative phonological

analysis of sound symbolism.

1 Introduction1

1.1 General theoretical background2

In recent years, we witness a rise of interest in accounting for probabilistic generalizations in lin-3

guistic patterns using formal grammatical theories. In this context, Maximum Entropy Harmonic4

Grammar (MaxEnt HG) has been shown to be a useful analytical tool in modeling probabilistic5

generalizations in various linguistic domains (Goldwater & Johnson 2003; Hayes 2020). Some6
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recent studies (Kawahara 2020c, 2021) have proposed to extend the scope of MaxEnt HG by ap-7

plying it to a hitherto understudied domain; namely, the analysis of sound symbolic connections,8

systematic associations between sounds and meanings (Hinton et al. 1994). These studies exam-9

ine what Hayes (2020) refers to as the quantitative signature of MaxEnt HG, the set of typical10

probabilistic patterns that MaxEnt HG is predicted to generate. The particular quantitative signa-11

tures that these studies found are wug-shaped curves, which consist of multiple sigmoid curves.12

Building upon these studies, the current experiment examined whether we can identify yet another13

instance of a wug-shaped curve in sound symbolism.14

MaxEnt HG is an application of a multinomial logistic regression model—which is a general15

statistical tool—to linguistic analyses (Jurafsky & Martin 2019). It is also possible to understand16

MaxEnt HG as a stochastic extension of Optimality Theory (OT: Prince & Smolensky 1993/2004),17

the latter of which has been used, since its initial proposal in the early 1990’s, as one of the domi-18

nant analytical frameworks among the linguistic community, especially for phonological analyses19

(McCarthy 2002, 2008).20

Just like OT and many other grammatical models in generative grammar, MaxEnt HG takes one21

level of representation (e.g. underlying representation) and maps it to another level of representa-22

tion (e.g. surface representation). This mapping between these two representations is regulated by23

the set of violable constraints, again just like in OT. One major difference between MaxEnt HG24

and OT is that the constraints are weighted in the former, whereas they are ranked in the latter.25

Thus, all pieces of information from the entire constraint set are taken into account in MaxEnt26

HG, whereas OT resorts to only the highest ranked relevant constraint to distinguish between two27

candidates.1 Another major difference is that MaxEnt HG assigns a probability distribution over a28

candidate set, rather than deterministically choosing one output form, as OT does.29

Stepping back and viewing it from a more general perspective, MaxEnt HG can be considered30

as a general tool which takes various sorts of information (=constraints in the parlance of OT) and31

assigns a probability distribution over several possible outcomes. Because of its generality, this32

tool, or something akin to it, has been shown to be useful in modeling various patterns in differ-33

ent areas of linguistic inquiry, including speech production (Lefkowitz 2005), categorical speech34

perception (Hayes 2020; Kluender et al. 1988), probabilistic phonological alternations (Zuraw &35

Hayes 2017), diachronic phonological changes (Harrison et al. 2002), metric patterns (Hayes et al.36

2012), syntactic generalizations (Bresnan et al. 2007), semantics/pragmatics-related judgments37

(AnderBois et al. 2012), historical changes in syntax (Kroch 1989; Zimmermann 2017), as well as38

sociolinguistic variation patterns (Rousseau & Sankoff 1978).39

1From the perspective of more general decision-making strategies, the former corresponds to a familiar regression-
based model in which all the pieces of information are taken into consideration, whereas the latter corresponds to a
fast-and-frugal heuristic decision making approach, in which decision criteria are ordered in a lexicographic manner
(Gigerenzer & Gaissmaier 2011). See Kawahara & Breiss (2021) and Tesar (2007) for further discussion on this point.

2



Building upon this growing body of studies, two recent studies (Kawahara 2020c, 2021) pro-40

pose that we can even further extend the scope of MaxEnt HG by applying it to the modeling of41

sound symbolic patterns, systematic associations between sounds and meanings (see also Kawa-42

hara et al. 2019; Kumagai & Kawahara 2019). The present paper reports a follow-up study of this43

continuing effort. See §1.4 for the full justification why we find it important to continue this line44

of study.45

The approach that we take in this paper is heavily inspired by Hayes (2020), who proposes46

to take a top-down approach. He points out that as we study probabilistic linguistic patterns, we47

find specific quantitative patterns that are recurrently observed across different linguistic domains.48

This general observation can be explained if the same mechanism, e.g. MaxEnt HG, governs these49

various aspects of linguistic knowledge. In turn then, we can study the mathematical predictions50

of MaxEnt HG, and examine how these predictions pan out in actual linguistic patterns, especially51

in domains that have been understudied, such as sound symbolic mappings. The specific mathe-52

matical predictions that Hayes (2020) proposes to study are what he refers to as the quantitative53

signatures, which are the set of quantitative patterns that a particular theoretical framework is54

predicted to generate.55

The specifics of the MaxEnt HG mathematics, as well as an actual MaxEnt-based analysis of56

sound symbolic patterns, are discussed in section 5, once the experimental results are described.57

To illustrate the main purpose of the experiment, however, we start with the illustration of the58

quantitative signature of MaxEnt HG in the next subsection.59

1.2 The quantitative signature of MaxEnt HG60

In this subsection we will review the quantitative signature of MaxEnt HG laid out by Hayes61

(2020).2 The general observation that led Hayes (2020) to explore the quantitative signature of62

MaxEnt HG is that similar probabilistic patterns hold across different linguistic domains and that63

such probabilistic linguistic generalizations often exhibit multiple sigmoidal curves. From the64

mathematical point of view, this is a natural consequence of MaxEnt HG, as we illustrate below.65

For the sake of illustration, let us posit a scalar constraint S, whose violation is assessed on66

a linear scale: i.e. 1, 2, 3....N . Let us posit another constraint, B, whose violation profile is67

accessed in a binary fashion.3 When B and S conflict with each other, MaxEnt HG predicts that68

the relationship between the number of violations of S and the probability of the candidate that69

2This subsection largely owes to Kawahara (2020c) and Kawahara (2021), as well as Hayes (2020). We also note
here that Noisy Harmonic Grammar (Boersma & Pater 2016) can also yield the quantitative signatures that are very
similar to those of MaxEnt HG, depending on how noise is added during the evaluation of the output candidates (Hayes
2017). Since the difference in prediction between MaxEnt HG and Noisy HG can be extremely subtle (Hayes 2017),
we will not address this difference in this paper.

3In Hayes’s (2020) terminology, S=VARIABLE and B=ON/OFF.

3



violates S being selected as a winner should manifest itself as a sigmoid curve (=S-shaped curve),70

as illustrated in Figure 1(a). The linear scale (i.e. the constraint violations of S) on the x-axis71

is converted to a sigmoidal curve in MaxEnt HG, because MaxEnt uses a logistic transformation72

( 1
1+e−N ) as it calculates the probability distribution of output candidates. In this formula, −N73

(the linear predictor of exponentiation) is linearly correlated with the number of violation marks74

assigned by S, and the weight of the constraint B serves as an intercept term for −N .75

To the sigmoidal curve generated via the interaction between S andB, we can add the effects of76

another constraint P (for “Perturber”). The result is that this sigmoid curve is shifted horizontally,77

yielding another sigmoid curve. Hayes (2020) refers to the set of two sigmoid curves as a wug-78

shaped curve, as it looks like a wug, one of the best-known mascot characters in linguistics (Berko79

1958). When P can be violated once or twice, it yields three sigmoid curves, which is shown in80

Figure 1(b). Together, the interaction between the three constraints—S, B, P—results in a stripy81

wug-shaped curve.82
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Figure 1: (a) A sigmoid curve generated by the MaxEnt mathematics. The logistic function which
generates this curve is f(x) = 1

1+e−N . While the changes in the x-axis, and hence those in the
y-axis, should be discrete, these values are plotted continuously for the sake of illustration. (b)
Multiple sigmoid curves, shifted by multiple violations of P , instantiating a stripy wug-shaped
curve. The weights of the three constraints are: S = 1.5, B = 7, P = 1. These figures are adapted
from Kawahara (2021).

In summary, a stripy wug-shaped curve is a quantitative signature of MaxEnt HG, which has83

three mathematical features: (1) it consists of more than two sigmoid curves, (2) the curves are84

separated from one another, and (3) the slopes of the sigmoid curves are identical. Two recent ex-85

periments (Kawahara 2020c, 2021) argued that we observe a (stripy) wug-shaped curve in sound86

symbolism. The current experiment was set out to examine whether we can identify another in-87
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stance of a wug-shaped curve in sound symbolism.88

1.3 A (stripy) wug-shaped curve in sound symbolism89

Hayes (2020) argues that a stripy wug-shaped curve is commonly observed in probabilistic phono-90

logical alternation patterns (Ernestus & Baayen 2003; McPherson & Hayes 2016; Zuraw & Hayes91

2017) and other linguistic domains (see also the website accompanying Hayes’s paper, “A gallery92

of wug-shaped curves”).4 Kawahara (2020c, 2021) followed this general method and demonstrated93

that (stripy) wug-shaped curves are observed in the domain of sound symbolism, systematic con-94

nections between sounds and meanings (Hinton et al. 2006). The current experiment is a direct95

follow-up of these two experiments.96

The experiments reported by Kawahara (2020c, 2021), as well as the current experiment, are97

situated within the research paradigm dubbed “Pokémonastics” (Shih et al. 2019), in which re-98

searchers use Pokémon character names to study the nature of sound symbolic patterns in natural99

languages (Kawahara et al. 2018b).5 Kawahara & Breiss (2021) summarize the several research ad-100

vantages of this research program for cross-linguistic studies of sound symbolism; for the purpose101

of the current paper, which focuses on the examination of MaxEnt as an analytical framework,102

it suffices to note that many Pokémon characters undergo evolution, and when they do so, they103

generally get larger and heavier and are also called by a different name. The first Pokémonastics104

study, which analyzed the existing Pokémon names in Japanese (Kawahara et al. 2018b), found that105

the names of evolved characters tend to be longer, and are more likely to contain voiced obstru-106

ents. For instance, Ki-mo-ri (3 moras) evolves into Ju-pu-to-ru (4 moras), and the latter contains107

a voiced obstruent [dý] (a voiced palato-alveolar affricate) name initially. Likewise, ri-ri-i-ra (4108

mora) evolves into yu-re-i-do-ru (5 moras) and acquires a voiced obstruent [d] in its new name.109

The effects of voiced obstruents arguably arise from the frequency code (Ohala 1994). Since110

voiced obstruents are characterized by low frequency energy during their constrictions and/or in111

adjacent vowels in terms of their low f0 and F1 (Kingston & Diehl 1994; Stevens & Blumstein112

1981), this low frequency characteristics may be mapped on a large image, because a vibrator that113

omits low frequency sounds is ceteris puribus larger. The fact that longer means stronger can be114

attributed to the iconicity of quantity (Haiman 1985), in which a larger quantity is expressed by115

longer linguistic expressions (Dingemanse et al. 2015).116

Kawahara (2020c) used these two sound symbolic associations to examine whether we would117

observe a wug-shaped curve in sound symbolism, by manipulating the mora counts and the pres-118

4https://linguistics.ucla.edu/people/hayes/GalleryOfWugShapedCurves/index.
htm

5For the importance of studying sound symbolism from the perspective of cognitive science and linguistics, see
Dingemanse et al. (2015) and Kawahara (2020a), respectively. See also the references cited therein. There are now
many overview articles on this topic, which are cited in Kawahara (2020a).
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ence of a voiced obstruent. The experiment asked native speakers of Japanese whether each name119

was better suited for a pre-evolution Pokémon character or a post-evolution character. Kawahara120

(2020c) found that the increase in name length increases post-evolution responses in a sigmoidal121

manner, and that a name-initial voiced obstruent horizontally shifts the entire sigmoid curve, which122

together results in a wug-shaped curve. Kawahara (2021) built on this finding and varied the num-123

ber of voiced obstruents, showing that we observe three sigmoid curves, separated from each other124

according to the number of voiced obstruents. The latter study thus found that a wug-shaped curve125

in sound symbolism can be stripy.126

The current experiment continues this effort and explores whether we would observe another127

stripy wug-shaped curve. This experiment intersects mora counts, following the two previous128

experiments (Kawahara 2020c, 2021), with vowel quality, a new manipulation in the current study.129

1.4 Motivating the current experiment130

At this point we would like to clarify why we are running an experiment that is arguably similar to131

those reported by Kawahara (2020c, 2021). One general reason is that replication is an important132

practice that has been under-appreciated in linguistics (and psychology) (see e.g. Chambers 2017;133

Porte 2012; Roettger & Baer-Henney 2019). One aim of the current study is to examine whether134

we would obtain another instance of wug-shaped curve with a set of stimuli that is very different135

from the two previous studies. The second reason is that a wug-shaped entails that different curves136

should have the same slopes, and a Bayesian analysis is necessary to examine its aspect (for which137

see below for more). None of the patterns discussed by Hayes (2020) have been analyzed from this138

perspective. In fact, to the best of our knowledge, Kawahara (2021) is the only dataset instantiat-139

ing wug-shaped curves that has been analyzed using a Bayesian method. Therefore, having more140

Bayesian analyses is informative in accessing whether MaxEnt HG is truly a suitable framework141

to model probabilistic patterns in linguistics. Third, at a descriptive level, we were interested in142

whether different vowel quality would impact the judgment of evolvedness in Pokémon names,143

and if so, which phonological dimension would be relevant. Finally, while sound symbolism is144

receiving a remarkable degree of attention from psychologists and cognitive scientists in recent145

years (Nielsen & Dingemanse 2020), it is not so much the case among the generative linguistics146

community (Alderete & Kochetov 2017; Kawahara 2020a). By further exploring a possible par-147

allel between probabilistic phonological patterns and sound symbolic patterns, we would like to148

highlight the potential usefulness of analyzing sound symbolic patterns in the context of generative149

linguistic inquiry.150

To reiterate, the new factor that is manipulated in this experiment is the vowel quality difference151

([a] vs. [i] vs. [u]). While the main purpose of the experiment is the examination of MaxEnt HG as152

an analytical framework for linguistics, studying the effects of vowel quality is interesting from the153
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perspective of sound symbolism research. On the one hand, vowel quality does not seem to play154

a crucial role in the sound symbolic patterns of the existing Japanese Pokémon names (Kawahara155

et al. 2018b). On the other hand, many studies in the sound symbolism literature have shown that156

low vowels tend to be judged to be bigger than high vowels (e.g. Jespersen 1922; Newman 1933;157

Sapir 1929; Ultan 1978), arguably because the oral aperture is wider for the former than for the158

latter. In addition, there is a general observation that back vowels may be judged to be larger159

than front vowels (Berlin 2006). This is because the second formant frequency is lower for back160

vowels than for front vowels, and the physics tells us that low frequency sounds are omitted from a161

large resonating chamber (Ohala 1994). If the vowel quality (vowel height and/or vowel backness)162

triggers size-related sound symbolic effects, it would not be surprising if we observe the effects163

of vowel quality in Pokémon names, because evolved characters are generally larger. However,164

which phonological dimension—height vs. backness—determines the sound symbolic effects of165

different vowels is still debated (see e.g. Dingemanse et al. 2015; Knoeferle et al. 2017; Shinohara166

& Kawahara 2016). The current experiment can be understood as offering a new contribution to167

this debate.168

If both vowel height and backness matter in determining the size-related sound symbolism, the169

specific prediction is that speakers should judge [a] (low back) to be the larger than [u] (high back),170

which is in turn larger than [i] (high front). The current experiment aimed at examining whether171

we would observe this three-way distinction in the context of Pokémonastic studies. A previous172

Pokémonastic experiment by Kumagai & Kawahara (2019), which used a two-alternative-forced173

choice (2AFC) format, shows that Japanese speakers find names with [a] to be more suitable for174

post-evolution characters than names with [i] and those with [u], although that experiment did175

not directly compare [i] and [u]. Another 2AFC experiment targeting English speakers found that176

they judge names with [u] to be more suitable for post-evolution characters than those with [i]177

(Kawahara & Moore 2021). In the current experiment we were interested in re-examining these178

results, because the 2AFC format, in which two names are presented as a pair, may overestimate179

the effect size of sound symbolic connections (Kawahara et al. 2021; Nielsen & Rendall 2011,180

2013; Westbury et al. 2018). Therefore, there is a general need in the sound symbolism research181

to reexamine sound symbolic effects in a more conservative task in which stimuli are presented in182

isolation (see in particular Westbury et al. 2018). This reexamination seemed necessary, partly be-183

cause Kawahara et al. (2018a) found that Japanese pre-schoolers did not judge names with [a] to be184

more suitable for post-evolution characters than those names with [u]. In general, no Pokémonastic185

experiments have examined a tripartite vocalic distinction within the same group of speakers. The186

current experiment therefore attempts to fill these gaps in the literature.187
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2 Methods188

2.1 Stimuli189

Table 1 shows the set of stimuli used in the current experiment in IPA. The mora counts were varied190

from 2-moras to 6-moras, which each correspond to the minimum and maximum name lengths in191

the real Pokémon names. All names consist of open CV syllables so that syllable boundaries192

and mora boundaries coincided with one another (Kawahara 2016). In the current experiment,193

the names had the same vowel, either [a], [i] or [u], in all the syllables.6 No voiced obstruents194

appeared in the stimuli, because they have clear sound symbolic values for Japanese speakers195

(Hamano 1998). We also avoided using [p] for the same reason (Kumagai 2019).196

2.2 Procedure197

In the instructions, the participants were reminded that Pokémon characters often undergo evolu-198

tion, and that when they do, they generally tend to get heavier, larger and stronger. In the main trial199

of this experiment, participants were provided with one nonce name per trial, and were asked to200

judge whether each name was better suited for a pre-evolution character or a post-evolution char-201

acter. The order of the stimuli was randomized for each participant. The stimuli were presented in202

the katakana Japanese orthography, which is used for the real Pokémon names. The participants203

were asked to provide their responses based on their intuition, rather than thinking about right or204

wrong answers. They were also asked to silently read each stimulus before making their decisions,205

so that they would use their auditory impression as they provided their responses.206

2.3 Participants207

The experiment was administered online using SurveyMonkey. There were no compensations,208

monetary or otherwise, for participating in the experiment. The current experiment was adver-209

tised on a Pokémon fan blog, and a total of 507 people completed the experiment over a single210

weekend.7 Eight speakers reported that they were non-native speakers of Japanese. As many211

as 101 participants reported that they took part in a Pokémonastics experiment before (which is212

unsurprising because a number of Pokémonastics experiments had been advertised on this blog).213

6Kawahara (2021) states that an attempt to use the same vowels in long names resulted in artificial-sounding names.
We submit that Kawahara (2021) was not creative enough in this regard.

7http://pokemon-matome.net. We thank the blog administrator for their help with the participant recruit-
ment. We would like to take this opportunity to make the point that being able to collect as many as 500 participants
over a single weekend without monetary compensation is a distinct forte of using Pokémon names as a topic of explo-
ration in sound symbolism research. See Kawahara (2020b) for potential applications of the Pokémonastic research
for teaching and public outreach.
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Table 1: The stimuli in IPA.

[a] [i] [u]
2 moras [ha.sa] [çi.Ci] [Fu.su]

[Ra.ja] [Ri.mi] [Ru.ju]
[ka.ja] [ki.ni] [ku.ju]
[ta.sa] [tCi.ni] [tsu.su]
[wa.ma] [mi.çi] [nu.Fu]

3 moras [ha.sa.Ra] [çi.Ci.ki] [Fu.su.Ru]
[Ra.wa.ja] [Ri.mi.ki] [Ru.ju.mu]
[ka.ja.wa] [ki.ni.Ri] [ku.ju.nu]
[ta.sa.ma] [tCi.ni.mi] [tsu.su.mu]
[wa.ma.Ra] [mi.çi.Ri] [Fu.mu.Ru]

4 moras [ha.sa.Ra.na] [çi.Ci.ki.mi] [Fu.su.Ru.mu]
[Ra.wa.ja.na] [Ri.mi.ki.ni] [Ru.ju.nu.ku]
[ka.ja.ta.Ra] [ki.ni.Ri.çi] [ku.ju.Ru.nu]
[ta.sa.ma.ja] [tCi.ni.mi.Ri] [tsu.su.mu.Ru]
[wa.ma.Ra.na] [mi.çi.Ri.ni] [mu.Fu.Ru.ku]

5 moras [ha.sa.Ra.na.ja] [çi.Ci.ni.ki.mi] [Fu.su.tsu.mu.Ru]
[Ra.wa.ta.ja.na] [Ri.mi.ki.tCi.ni] [Ru.ju.ku.nu.mu]
[ka.ja.na.ta.Ra] [ki.ni.Ri.çi.Ri] [ku.ju.Fu.Ru.nu]
[ta.sa.ma.na.ja] [tCi.ni.mi.Ri.çi] [tsu.su.ju.mu.ku]
[wa.ma.sa.Ra.na] [mi.çi.tCi.Ri.ni] [mu.Fu.su.Ru.nu]

6 moras [ha.sa.Ra.ta.na.ja] [çi.Ci.Ri.ni.ki.mi] [Fu.su.nu.tsu.mu.Ru]
[Ra.wa.ta.ma.ja.na] [Ri.mi.ki.tCi.ni.mi] [Ru.ju.tsu.Fu.nu.mu]
[ka.ta.Ra.na.ta.ma] [ki.ni.Ri.mi.çi.Ri] [ku.ju.Fu.Ru.nu.tsu]
[ta.sa.ma.na.Ra.ja] [tCi.ki.ni.mi.Ri.ki] [tsu.su.mu.ju.ku.Ru]
[wa.ma.sa.Ra.na.ta] [mi.çi.ki.tCi.Ri.ni] [mu.Fu.su.Ru.nu.ku]

The data from these participants were excluded, and as a result, the data from the remaining 398214

participants entered into the following statistical analysis.215

2.4 Statistics: Bayesian regression analyses216

The results were analyzed using a Bayesian mixed effects logistic regression model. While it is217

impossible to provide a full review of the advantages of Bayesian analyses, we provide a very218

brief review in this subsection (see e.g. Kruschke 2014; Kruschke & Liddell 2018 for accessible219

introductions). Bayesian analyses take prior information and the experimental data into consider-220

ation to produce a range of possible values for each estimated parameter, which are referred to as221

posterior distributions. Unlike a more traditional frequentist analysis, we can interpret these pos-222

terior distributions as directly reflecting our uncertainty about the estimates. People often interpret223
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95% confidence intervals calculated in a frequentist analysis as if they directly reflect the ranges of224

possible values that the estimates can take, but this is a misinterpretation (e.g. Kruschke & Liddell225

2018). Being able to provide a more intuitive interval estimate for a parameter of interest is one226

virtue of Bayesian modeling. As a useful heuristic, we can examine the middle 95% of the poste-227

rior distribution, known as 95% Credible Interval (95% CI) or 95% High Density Interval. If the228

95% CI does not include 0, then we can take that effect to be meaningful.229

One important prediction that MaxEnt HG makes is that the interaction terms between the230

two crucial factors—i.e. the effects of mora counts and vowel quality in the current experiment—231

should be null, because the slopes of the different curves in wug-shaped curves should be identical.232

Meaningful interaction terms, on the other hand, would indicate that the slopes are different, as in-233

teraction terms function as slope adjustment terms (Winter 2019). In order to access the null234

effects of the estimates, which is possible only in Bayesian analyses but not in frequentist analy-235

ses (Gallistel 2009), we can resort to an analysis using ROPE (Region of Practical Equivalence:236

e.g. Kruschke & Liddell 2018; Makowski et al. 2019). The basic idea is that we define a range237

that is “practically equivalent” to a point estimate, which in this case is β = 0. In principle, each238

researcher can define the width of the range of what it means to be “practically equivalent,” but239

here we follow Makowski et al. (2019) and take a standardized effect size of 0.1 to define that240

range.8 Since a standardized effect size of logistic regression is π√
3
= 1.8, the ROPE ranges from241

[-0.18, 0.18]. The bayestestR package (Makowski et al. 2020) was used to calculate how many242

posterior samples for the coefficients of the interaction terms were included in this ROPE.243

2.5 Actual implementation244

Following the open science initiative in linguistics and psychology (Chambers 2017; Garellek et al.245

2020; Winter 2019), the raw data, the R markdown file with analysis codes, and the Bayesian poste-246

rior samples are all made available at Open Science Framework (osf) repository.9 The R markdown247

file also contains additional analyses, such as conditional effects and a posterior predictive check,248

which are not reported in the paper. Interested readers are welcome to further examine the data.249

The actual analysis was implemented using the brms package (Bürkner 2017) and R (R De-250

velopment Core Team 1993–). The dependent variable was the binary-coded responses (0 = pre-251

evolution; 1 = post-evolution). The fixed predictor variables were mora counts, vowel quality and252

their interaction terms. The mora count was centered because it is a numeric variable (Winter253

2019). The random factors included free-varying intercepts for items and participants, as well as254

free-varying slopes for participants for the two fixed factors and their interaction terms. Being able255

to fit a model with a complex random structure without convergence issues is a yet another virtue256

8This effect size corresponds to a negligible effect size in Cohen’s (1988) widely used proposal.
9https://osf.io/b6s83/?view_only=a29df2c023f246e399124958e74f9ccc
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of Bayesian analyses (see e.g. Eager & Joseph 2017).257

The weakly informative priors, the default in brms, were used. Four chains were run with258

2,000 iterations. The first 1,000 iterations were disregarded as warmups. All the R̂-values were259

1.00 and there were no divergent transitions, indicating that the chains mixed successfully. The R260

markdown file available at the osf repository shows complete details of this analysis.261

3 Results262

Figure 2 plots the post-evolution response ratios for each item, averaged over all the participants,263

with each panel representing different vowel conditions. For each vowel condition, the ggplot2264

package (Wickham 2016) was used to superimpose a logistic curve. We observe a steady increase265

in post-evolution responses as the name lengths increase, going from left to right in Figure 2.266

Moreover, it appears that each vowel condition instantiates a sigmoidal (=S-shaped) curve. Note,267

however, that we are telling ggplot2 to fit a logistic/sigmoid curve, and therefore, any pattern268

can in principle look as if it could be modeled with a sigmoid curve.269
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Figure 2: The post-evolution response for each item averaged over all participants for the three
vowel conditions. The points are horizontally jittered by 0.1. Logistic curves are superimposed
using ggplot2 for each vowel condition.
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Figure 3: The line-plot with grand averages.

To address this concern, Figure 3 presents a line-plot of grand averages for each condition.270

This analysis, unlike Figure 2, does not presuppose that sigmoid curves would fit the observed data271

points well. Nevertheless, each curve does appear to instantiate a sigmoidal curve in that the slopes272

are rather steep in the middle range (i.e. between the 3-mora condition and 5-mora condition),273

whereas the change at the left and right edge of the x-axis continuum does not substantially impact274

the judgment. Having a steep change in the middle of the x-axis continuum is a characteristic of275

sigmoid curves, as we illustrated in Figure 1(a). This result is also in line with the two previous276

studies (Kawahara 2020c, 2021) which manipulated mora counts in a way that is similar to the277

current experiment (although the actual stimuli used in the current experiment are very different).278

Table 2 shows the model summary of the Bayesian mixed effects logistic regression analysis.279

First, the intercept is negative. Since the mora count is centered and the baseline for the vowel280

quality is [a], this negative intercept indicates that 4-mora long names with [a] induced the post-281

evolution responses less than 50% of the time (the model prediction is 1
1+e0.46

= 0.39). The282

β-coefficient for the effects of mora count is positive and its 95% CI does not include 0, which283

shows that an increase in mora counts credibly increased the post-evolution responses.284

The β-coefficient for the difference between [a] and [i] is negative, and its upper bound of the285

95% CI is lower than 0. This indicates that [i] meaningfully lowered the post-evolution responses286

with respect to [a]. The 95% CI for the β-coefficient for the difference between [a] and [u], on the287

other hand, includes 0, suggesting that [a] and [u] do not meaningfully differ from one another.288

The general conclusion we can draw from these results is that at least for the current case at hand,289

it is vowel backness, not vowel height, which impacted the post-evolution responses, supporting290

the proposal that it is vowel backness—or second formant frequency—that is relevant for size-291

related vocalic sound symbolism (Berlin 2006; Ohala 1994). At least in the current experimental292
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Table 2: Summary of the Bayesian mixed effects logistic regression model.

β error 95% CI
intercept -0.46 0.10 [-0.65, -0.27]
mora count 2.11 0.09 [1.93, 2.29]
[a] vs. [i] -0.38 0.12 [-0.62, -0.15]
[a] vs. [u] 0.12 0.12 [-0.11, 0.35]
mora count × [a] vs. [i] 0.13 0.09 [-0.05, 0.31]
mora count × [a] vs. [u] 0.09 0.10 [-0.10, 0.28]

setting, vowel height (=the distinction between [a] vs. [u]) did not seem to credibly impact the293

post-evolution responses.10
294

The 95% CI for the two interaction terms includes 0, suggesting that the current data do not295

offer convincing evidence that the slopes between the three curves meaningfully differ from one296

another, as predicted by MaxEnt HG. However, the 95% CIs are not fully contained in the ROPE297

(=[-0.18, 0.18]), and therefore, we were unable to fully accept the null effect for these two inter-298

action terms. Further examination of the posterior distributions show that 73.7% ([a] vs. [i]) and299

84.1% ([a] vs. [u]) of the 95% CIs are contained in this ROPE. When we examine the whole pos-300

terior samples (Makowski et al. 2019), 77.0% and 86.0% of them are contained in the ROPE. We301

are therefore about 74%∼85% confident that the slopes between the three curves are identical.302

4 Discussion303

4.1 Are the results (stripy) wug-shaped curves?304

Let us first discuss whether the current experimental result in Figure 3 supports the prediction of305

MaxEnt HG, instantiating a stripy wug-shaped curve. To repeat its mathematical definition, a wug-306

shaped curve, as predicted by MaxEnt HG, has three defining mathematical features (Hayes 2020):307

(1) it consists of multiple sigmoid curves, (2) the curves are separated from one another, and (3)308

the slopes of the sigmoid curves are identical.11
309

10Since the 95% CI is not fully contained in the ROPE, we cannot accept the hypothesis that this effect is indeed
null (Kruschke & Liddell 2018). The current results do not allow us to make a conclusive statement about the effects
of vowel height, and whether we can conclude the true null effect has to be explored in future studies. In addition, the
lack of credible effects of vowel height in the current experiment does not preclude the possibility that vowel height
can be relevant for other sound symbolic meanings. See Dingemanse et al. (2015) for a summary of sound symbolic
meanings arising from differences in vowel height and vowel backness.

11It is possible to generate a wug-shaped curve with different slopes, as long as we admit a locally conjoined
constraint within MaxEnt HG, as in fact proposed by Shih (2017). For the sake of restrictiveness of the theory, we
proceed with the assumption that wug-shaped curves should have the same (or comparable) slopes (Hayes 2020).
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Starting with the third defining feature, the ROPE analyses of the two interaction terms show310

that we can be 70%∼85% confident that the slopes between the three curves can be considered311

as identical for practical purposes. The results were less clear-cut than those of Kawahara (2021),312

whose interaction term was fully contained in the ROPE. Instead of a binary yes-significant vs. not-313

significant dichotomy embraced in frequentist statistical tests, Bayesian analyses can provide a314

quantifiable measure of how much certainty we can accept the (null) hypothesis. Despite the fact315

that the current results are not as clear-cut, we nevertheless submit that they are encouraging.316

More generally speaking, the current results highlight the importance of a Bayesian approach317

in accessing wug-shaped curves in linguistic patterns, as it tells us with how much certainty we can318

conclude that the slopes are practically identical. More Bayesian analyses are warranted to examine319

to what extent we can conclude that other putative examples of wug-shaped curves—particularly320

those discussed by Hayes (2020)—show practically identical slopes.321

As for the second requirement of the stripy wug-shaped curves, the current experiment revealed322

that there are two sigmoidal curves: one for [i] and another curve for two back vowels. The result323

therefore is a wug-shaped curve, but (unfortunately) not a stripy one.324

As noted in the two previous studies (Kawahara 2020c, 2021), the first defining characteristic325

of a wug-shaped curve is hardest to defend, and it is actually impossible to be certain that a sigmoid326

curve is the best function to model the current data. This is because linguistic data always involve327

some good degree of natural variability, and no linguistic data would perfectly fit the mathematical328

definition of sigmoids. Moreover, there are countless numbers of mathematical functions that can329

be potentially fit to the data, and therefore we need to resort to informed guesses based on cross-330

linguistic considerations. We can, for example, posit a neural network consisting of multiple nodes,331

each of which is activated via a logistic function. Such a neural network may be able to better fit332

the data, but it may have excessive expressive power for linguistic theorization (although we do333

not wish to imply here that neural networks are not suited for modeling of linguistic behavior: see334

e.g. Manning et al. (2020) and Linzen & Baroni (2021).12
335

For the current experiment, we maintain that it is a reasonable conjecture that sigmoid functions336

fit the current data well, since there is a steeper increase in the middle range, compared to the low337

and high ends of the x-axis continuum. This is an aspect of sigmoidal curve that Hayes (2020)338

emphasizes, under the following slogan: “certainty is evidentially expensive” (p.6). The next339

section shows that indeed, MaxEnt HG, which predicts these curves to be sigmoidal, models the340

experimental data very well.341

12The analysis in §5 shows that the current dataset at least does not require an expressive power beyond that of
MaxEnt HG (i.e. logistic regression).

14



4.2 On the effects of vowel quality342

Before we proceed to the MaxEn HG analysis, we would like to briefly discuss a few other topics,343

starting with what we found about the effects of the vowels. In the current experiment, the crucial344

distinction seems to be [a]/[u] vs. [i], that is, back vowels vs. front vowels. This result is in345

line with the proposal by Berlin (2006), who argues that vowel backness plays a crucial role in346

determining size-related sound symbolism (see also Knoeferle et al. 2017). The current result,347

however, is at first blush at odds with the finding by Kumagai & Kawahara (2019), who showed348

that when presented with a pair of names with [a] and those with [u], Japanese speakers find the349

former to be more suitable for post-evolution Pokémon characters (cf. Kawahara et al. 2018a). We350

suspect that this may be a case in which sound symbolic effects were overestimated in a 2AFC351

experimental format (Kawahara et al. 2021; Nielsen & Rendall 2011, 2013; Westbury et al. 2018).352

The current result shows that the distinction between [a] and [u] is not robust enough to be clearly353

observed when each stimulus is presented in isolation rather than in pairs. This result highlights354

the importance of examining sound symbolic experiments in an experimental format that is more355

conservative than a 2AFC format (Westbury et al. 2018).356

While the current experiment has revealed a credible effect of the vowel backness difference,357

the effect appears to be not as strong as that of voiced obstruents found in Kawahara’s (2021)358

study. The separation between the three curves due to the different numbers of voiced obstruents359

in Kawahara (2021) seems more substantial than the wug-shaped curve obtained in the current360

experiment; i.e. the current wug is skinner, despite the fact that the vowel quality difference is re-361

alized in all the syllables in the current stimuli. The logistic regression coefficient for the effects of362

voiced obstruents in Kawahara’s (2021) experiment is 0.49, compared to the regression coefficient363

for the [a] vs. [i] difference in the current experiment, which is 0.38. This difference may arise364

from the fact that in the Japanese mimetic system, a voiced obstruent is actively deployed to sig-365

nal certain sound symbolic meanings (e.g. [ton-ton] “knocking” vs. [don-don] ‘knocking hard”)366

(Hamano 1998). How a phonological characteristic of a particular language affects the sound367

symbolic judgments of its speakers is an interesting topic that is worthy of further exploation.368

4.3 Cumulativity and different decision making strategies369

The second aspect of the data that is worth emphasizing is the fact that both vowel backness and370

mora counts cumulatively affected the post-evolution responses. This result is an expected one, as371

long as a mechanism like MaxEnt HG governs the sound symbolic mappings, because the MaxEnt372

math takes into account all the pieces of information that are available.373

On the other hand, this general result is not expected if a mechanism like Optimality Theory374

(Prince & Smolensky 1993/2004) is responsible for the sound symbolic mappings. This is because375
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OT takes only the highest ranked constraint into account when deciding between two candidates,376

as achieved by the strict domination of constraint rankings. In the current context, an OT-like377

mechanism predicts that it is either mora counts or vowel quality, whichever is more important,378

that would determine the participants’ responses, but that is not what the current data seems to379

suggest.380

We acknowledge that nobody has attempted to apply OT to model sound symbolic patterns, but381

the point can be more general. The current experiment shows that people take into account both382

mora counts and vowel quality when making a decision about evolvedness of Pokémon characters.383

A fast-and-frugal heuristic decision making strategy (Gigerenzer & Gaissmaier 2011), of which384

OT is an example, would be unable to model the sound symbolic judgment pattern (see Kawahara385

& Breiss 2021 who reached a similar conclusion).386

5 A MaxEnt HG analysis387

This section develops a generative analysis of sound symbolism to model the sound symbolic con-388

nections obtained in the experiment. There are a couple of notable features of this analysis (Kawa-389

hara et al. 2019; Kawahara 2020c, 2021). First, just like many generative phonological analyses,390

we are developing a model that maps one representation to another representation. In “standard”391

phonological analyses, the mapping that is modeled is usually between underlying representation392

to surface representations. In the analysis developed below, the mapping is from sounds to mean-393

ings. Second, since the sound symbolic mappings are inherently stochastic (Dingemanse 2018;394

Kawahara et al. 2019), we need a model that captures the stochastic nature, and as we will see be-395

low, MaxEnt HG is a useful tool for that purpose.13 Third, in order to make clear that our analysis396

is an extension of standard phonological analyses, we deploy the sort of constraints that have been397

used in the OT research tradition (Prince & Smolensky 1993/2004). More specifically, we use398

the constraint schemata of McCarthy (2003) to highlight the parallel between formal phonological399

analyses and the generative analyses of sound symbolic patterns.400

As discussed at the outset of the paper, MaxEnt HG is mathematically equivalent to multino-401

mial logistic regression (Jurafsky & Martin 2019). Therefore, there is some conceptual overlap402

between the statistical analysis presented in section 3 and the MaxEnt analysis presented in this403

section. However, we take these two methods to be achieving something different. On the one404

hand, a logistic regression model is a statistical means to explore what we can conclude based on405

13An obvious alternative analytical framework is Stochastic Optimality Theory (Boersma & Hayes 2001), which
is also able to capture stochastic linguistic generalizations. For a problem that the sort of the pattern obtained in the
current experiment presents to Stochastic OT, see Jäger (2007), Kawahara (2020c) and Zuraw & Hayes (2017). To put
it in a nutshell, Stochastic OT is unable to model counting cumulativity effects (Jäger 2007), of which the effects of
mora counts are a typical example.
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experimental results. On the other hand, the analysis developed here is a generative analysis, which406

is a model of the knowledge that lies behind the patterns observed in the experiment. See Breiss407

& Hayes (2020) for further discussion on this difference. See also Kawahara (2021) for specific408

restrictions that are often imposed upon linguistic analyses but not on statistical analyses; e.g. con-409

straints cannot reward candidates in linguistic analyses, whereas no comparable restrictions hold410

in statistical modeling.411

Here we offer a brief explanation of the MaxEnt math and refer the readers to other published412

papers for further details (Breiss & Hayes 2020; Hayes 2020; Hayes & Wilson 2008; Kawahara413

2020c; McPherson & Hayes 2016; Zuraw & Hayes 2017). In MaxEnt HG, just as in OT, output414

candidates are evaluated against a set of constraints, each of which bears a numerical weight. Given415

a set of constraint violation profiles and constraints’ weights, each candidate gets a harmony score416

(H), which is the weighted sum of constraint violations: H =
∑
wiCi(x), where wi = the weight417

of the i-th constraint and Ci(x) = how many times the candidate violates the i-th constraint. The418

predicted probability of each candidate xj, p(xj), is determined by the Softmax Function used in419

the machine learning literature. We first take e raised to the negative of the harmony score (e−H),420

the e−H values for all the candidates are summed, and each e−H is relativized with respect to that421

sum. The Softmax Function assures that all probabilities sum to 1.422

To model the current experimental results, we posit the three constraints defined in (1). The423

first and third constraints are adapted from Kawahara (2020c, 2021).424

(1) The list of the constraints425

a. *LONGPRE: Assign a violation mark for each mora in a pre-evolution character name.426

b. *BACKPRE: Assign a violation mark for each pre-evolution character name consisting427

of back vowels.428

c. *POST: Assign a violation mark for each post-evolution name.429

The first constraint prefers long names to be used for post-evolution characters, and corresponds430

to the numerically-violable constraint S that was used for the illustration of a stripy wug-shaped431

curve in Figure1(b). The second constraint prefers that names with back vowels are used for post-432

evolution character names, and this corresponds to the perturber constraint P . The last constraint433

penalizes post-evolution character names in general, which corresponds to the binary constraint B.434

This constraint determines the general preference for pre-evolution characters, functioning as the435

intercept of the linear predictor of the sigmoidal curves.436

The MaxEnt tableaux for all the conditions appear in (2). The leftmost column shows the437

phonological inputs, and the second column shows the two output semantic meanings. The con-438

straint violation profiles are shown in the next three columns. The observed percentages are shown439

in the rightmost column, which correspond to the grand averages obtained in the experiment.440
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(2) The MaxEnt Tableaux
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Observed  
2 moras, [a] Pre 2 1  3.31 0.036 96.59 93.47 
 Post   1 6.66 0.001 3.41 6.53 
3 moras, [a] Pre 3 1  4.82 0.008 86.23 87.00 
 Post   1 6.66 0.001 13.77 13.00 
4 moras, [a] Pre 4 1  6.33 0.002 58.07 62.60 
 Post   1 6.66 0.001 41.93 37.40 
5 moras, [a] Pre 5 1  7.84 0.000 23.45 17.40 
 Post   1 6.66 0.001 76.55 82.60 
6 moras, [a] Pre 6 1  9.35 0.0001 6.35 10.70 
 Post   1 6.66 0.001 93.65 89.30 
2 moras, [i] Pre 2   3.02 0.049 97.44 96.48 
 Post   1 6.66 0.001 2.56 3.52 
3 moras, [i] Pre 3   4.53 0.011 89.38 90.10 
 Post   1 6.66 0.001 10.62 9.90 
4 moras, [i] Pre 4   6.03 0.002 65.05 67.20 
 Post   1 6.66 0.001 34.95 32.80 
5 moras, [i] Pre 5   7.54 0.001 29.16 24.30 
 Post   1 6.66 0.001 70.84 75.70 
6 moras, [i] Pre 6   9.05 0.0001 8.35 11.30 
 Post   1 6.66 0.001 91.65 88.70 
2 moras, [u] Pre 2 1  3.31 0.036 96.59 99.40 
 Post   1 6.66 0.001 3.41 0.60 
3 moras, [u] Pre 3 1  4.82 0.008 86.23 88.10 
 Post   1 6.66 0.001 13.77 11.90 
4 moras, [u] Pre 4 1  6.33 0.002 58.07 57.70 
 Post   1 6.66 0.001 41.93 42.30 
5 moras, [u] Pre 5 1  7.84 0.000 23.45 16.70 
 Post   1 6.66 0.001 76.55 83.30 
6 moras, [u] Pre 6 1  9.35 0.000 6.35 8.30 
 Post   1 6.66 0.001 86.34 84.18 

441

Based on the constraint violation profiles and the observed percentages of each output form, the442

optimal weights for the three constraints were found using the Solver function of Excel (Fylstra443

et al. 1998). This was done by maximizing the log-likelihood of the data with respect to the444

constraint set. In order words, the optimal weights are those that are most likely to generate this445

dataset. The Excel sheet used for this analysis, as well as screen recording of this calculation446

process, are available at the osf repository. The obtained optimum weights appear at the top row447

of the tableaux.448

The values predicted by these optimum weights, given the MaxEnt math and the constraint449

violation profiles, are shown in the penultimate column. Comparing the last two columns of these450

tableaux, the match between the observed percentages and predicted percentages generally seems451

to be very good. To visualize the success of this MaxEnt HG analysis, Figure 4 plots the correlation452

between these two measures.453
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Figure 4: The correlation between the observed percentages in the experiment (the x-axis) and the
percentages predicted by the MaxEnt analysis (the y-axis).

6 Conclusion454

While MaxEnt HG is in essence a general statistical tool, it has proven to be an extremely useful455

tool to model various aspects of our linguistic behavior. The current aim of this experiment, build-456

ing on two previous recent studies (Kawahara 2020c, 2021), was to expand its scope by including457

sound symbolism as another potential domain for which MaxEnt HG can be a useful analytical458

tool. The approach we took was heavily inspired by Hayes (2020)—take the mathematical pre-459

dictions of MaxEnt HG seriously and examine whether they pan out in actual linguistic patterns.460

We have shown that the quantitative signature of MaxEnt HG, in particular a wug-shaped curve, is461

observed when Japanese speakers judged the evolution status of non-existing Pokémon names. An462

increase in mora length results in a sigmoidal curve, and the curves are shifted depending on the463

vowel quality of the names. An analysis using MaxEnt HG, together with the sorts of constraints464

that are used in OT research tradition, is shown to be successful in modeling the observed data.465

To summarize the key contributions of this paper, first, we replicated the fundamental results of466

Kawahara (2020c, 2021) that an increase in mora counts results in more post-evolution responses467

in a sigmoidal fashion, and that this sigmoid curve can be shifted when another factor—e.g. in the468

current experiment, vowel backness difference—is relevant. This result is a wug-shaped curve,469

which is a typical probabilistic pattern that MaxEnt HG is predicted to generate, lending further470

support to the idea that MaxEnt HG is suited to model various aspects of our linguistic behavior471

(Hayes 2020). Second, as a methodological contribution, we have shown that Bayesian analyses472
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are necessary to access wug-shaped curves, as they allow us to examine the degree of certainty that473

we can conclude that the different curves have comparable slopes, as predicted by MaxEnt HG.474

Third, as a case study of sound symbolism, the experiment has shown that it is vowel backness that475

is relevant in the sound symbolic patterns related to the notion of evolution, which is closely related476

to size. Finally, by showing that sound symbolic patterns and probabilistic phonological patterns477

show similar quantitative signatures, we would like to echo the recent claim that exploring sound478

symbolic patterns can be informative for formal phonological research (Alderete & Kochetov 2017;479

Kawahara 2020c, 2021; Kawahara & Breiss 2021).480
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