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Current NLP research uses neither linguistically annotated corpora nor the traditional pipeline of linguistic modules,
which raises questions about the future of linguistics. Linguists who have tried to crack the secrets of deep learning
NLP models, including BERT (a bidirectional transformer-based ML technique employed for Google Search), have
had as their ultimate goal to show that deep nets make linguistic generalizations. I decided for an alternative
approach. To check whether it is possible to process natural language without grammar, I developed a very simple
model, the End-to-end N-Gram Model (EteNGraM), that elaborates on the standard n-gram model. EteNGraM, at a
very basic level, imitates current NLP research by handling semantic relations without semantics. Like in NLP, I
pre-trained the model with the orders of the TAM markers in the verbal domain, fine-tuned it, and then applied it for
derivation of Greenberg’s Universal 20 and its exceptions in the nominal domain. Although EteNGraM is
ridiculously simple and operates only with bigrams and trigrams, it successfully derives and differentiates between
the attested and unattested patterns in Cinque (2005) “Deriving Greenberg's Universal 20 and Its Exceptions”,
Linguistic Inquiry 36, and Cinque (2014) “Again on Tense, Aspect, Mood Morpheme Order and the “Mirror
Principle”.” In Functional Structure from Top to Toe: The Cartography of Syntactic Structures 9. EteNGraM also
makes fine-grained predictions about preferred and dispreferred patterns across languages and reveals novel aspects
of the organization of the verbal and nominal domain. To explain EteNGraM's highly efficient performance, I
address issues such as: complexity of data versus complexity of analysis; structure building by linear sequences of
elements and by hierarchical syntactic trees; and how linguists can contribute to NLP research.*

1. Deep learning, n-grams and the future of linguistics

Theoretical linguistics and current NLP models differ in the way they approach the
form-meaning relation in language. I will explain the issue based on Manova et al. (2020) who
define three types of approaches to the form-meaning relationship:

(i) the relationship is non-directional, i.e. form and meaning emerge simultaneously
(pairings of form and meaning such as -s <PL> are typical of this type of approaches);

(ii) the relationship is directional and from-meaning-to-form (e.g. when the feature <PL>
is associated with a terminal node on a syntactic tree (Distributed Morphology, Cartography,
Nanosyntax) or with a cell or a set of cells in a paradigm-based approach (Paradigm Function
Morphology); and

(iii) the relationship is directional and from-form-to-meaning (e.g. a machine or a human
identifies -s and the association with meaning is postponed, or does not happen at all).

Theoretical linguistics approaches are, as a rule, of (i), (ii) or a mixed (i) & (ii) type,
while current NLP approaches are of type (iii). This leads to significant differences in the
analyses and leaves the impression that current NLP does not have anything in common with
theoretical linguistics. This impression is further enhanced by the fact that NLP has always been
entirely focused on application and efficiency while theoretical linguistics has never been.
Additionally, in the past decade a paradigm shift has happened in NLP and linguistically
annotated corpora and the traditional pipeline of linguistic modules have been substituted by raw
data from the web and deep neural networks (DNNs), respectively. There are different types of
DNNs and things are fairly complicated to be explained in detail here; for a linguistic perspective
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on the issue, the reader is referred to Linzen & Baroni (2021). The core facts: DNNs are typically
“end-to-end”, i.e. a deep network is directly trained to associate input (e.g., text in one language)
to a corresponding output (e.g., text in another language). An alternative way of looking at what
it means to be “end-to-end” would be: Trying to find a route for problem solving by knowing the
problem’s solution in advance. For example, we take a text in, let us say, Russian (input) and the
same text translated into, let us say, German (output) and the task is translation from Russian into
German. In this case, the solution of the problem is the German translation. With the help of the
German translation, the DNN will learn which sequences of words in Russian correspond to
which sequences of words in German. Deep learning takes place in the hidden layers of the
network and from input to output, each hidden layer handles increasingly complex information.
It is a non-trivial task to crack the way of “thinking” of a DNN because all relations between the
the layers, including recurrent activation (if the network is recurrent), are allowed, i.e. the
network alone “decides” which route to activate (and similar to human DNNs (brains) with
different IQs, different DNNs come to a solution of the same problem through different routes).
Returning to the Russian-German translation, what the network has learned, roughly the statistics
of the corresponding Russian-German form sequences, can be used for translations of unknown
texts from Russian into German and vice versa. The more we train the network (the more parallel
translations we give to it), the more precise (human-like) the translation of unknown texts
(compare with the human brain: the more a human practices German-Russian translation, the
better s/he gets), which is the explanation for why e.g. Google Translate that relies on a DNN
performs better when translating from and into languages for which there are many texts on the
web and produces less convincing translations from and into less popular languages.

Although the general logic of DNNs is easy to grasp, the programming of a DNN and the
linguistic monitoring of its work are difficult tasks.1 For example, BERT (Bidirectional Encoder
Representations from Transformers), a machine learning technique currently employed in
Google Search “is designed to pre-train deep bidirectional representations from unlabeled text by
jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT
model can be fine-tuned with just one additional output layer to create state-of-the-art models for
a wide range of tasks, such as question answering and language inference, without substantial
task-specific architecture modifications.” (Devlin et al. 2018: 4171). In other words, BERT
involves two steps: pre-training and fine-tuning. Additionally, BERT is known in two model
sizes: BERTBASE (L=12, H=768, A=12, Total Parameters=110M) and BERTLARGE (L=24,
H=1024, A=16, Total Parameters=340M); “L” stands for the number of layers (transformer
blocks); “H” stands for hidden size, i.e the number of hidden neurons; and “A” stands for the
number of self-attention heads, i.e. heads that attend to the previous hidden states. BERT works
with sentences but “sentence” is defined as an arbitrary span of contiguous text, i.e. BERT’s
sentences are not always actual linguistic sentences. The input token sequence to BERT may be a
single sentence or two sentences packed together.

Regarding the linguistic interpretation of a DNN performance, McCoy et al. (2020) check
whether if a neural network architecture is tested multiple times on the same dataset, it will make
the same or, at least similar, linguistic generalizations each time. They establish that the answer
to this question depends on the testing set: if the testing set contains distributions like those in the

1 For a hands-on experience with DNNs, the curious reader can visit the website A Neural Network Playground, part
of Google’s TensorFlow educational resources: www.tensorflow.org. Popular-science explanations of how to
understand the Playground at:
https://blogs.scientificamerican.com/sa-visual/unveiling-the-hidden-layers-of-deep-learning/.
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training set, the DNN makes (almost) the same generalizations; if the testing set includes
previously unseen distributions, the DNN tends to take different routes each time. The authors
are surprised by these results but the DNN behavior seems completely understandable: Imagine
that a human being (a human brain is a neural net) should go through an unknown maze many
times, most probably, each time they would try different routes.

DNNs and similar developments in recent NLP research have raised questions about the
future of linguistics; and, consequently, on the linguistic side, proposals for possible interactions
between linguists and the NLP community have been articulated, see e.g. Baroni (2021). I am,
however, afraid that what Baroni (2021) and Linzen & Baroni (2021) suggest as a solution to the
problem would work only for a handful of linguists, mostly those with (advanced) degrees in
computer science (CS), electrical engineering, mathematics, and the like:

On the one hand, linguists’ know-how in probing grammatical knowledge can help develop the next
generation of language-processing DNNs… On the other, studying what the best DNNs learn about
grammar, and how they do so, can offer new insights about the nature of language and, ultimately, what is
genuinely unique about the human species. For this line of work to be effective, linguists will need to be
closely involved in developing relevant network architectures, training them on appropriate data, and
conducting experiments that address linguists’ theoretical concerns.

Linzen & Baroni (2021: 15)

I think that in order to participate in a fruitful dialogue with the NLP community, linguists need
to see the advantages of a simple and easily-applicable NLP model over traditional linguistic
analyses, including what it means to model semantics without semantics, which is the case in
current NLP research. To be convincing, the illustrating model should also address issues that
have been acknowledged as important by people of different theoretical persuasions. Note,
however, that what is considered important in linguistics, e.g. linguistic universals, is not
necessarily of interest to the NLP community. Roughly, because we do not speak with universals,
NLP does not need them. Nevertheless, as we will see later, linguistic universals can reveal
important facts about possible and impossible linear patterns of elements in language, which is
highly relevant to NLP research. Therefore, in the present study, I propose, pre-train, fine-tune
and employ the End-to-end N-Gram Model (EteNGraM), a toy model that elaborates on the
standard n-gram model (Jurafsky & Martin 2020, Chapter 3).

A n-gram is a contiguous sequence of n-elements. A single element (e.g. phoneme,
morpheme, word) is a unigram, two elements form a bigram, a sequence of three elements is a
trigram, and so on. N-grams are simple structures and consequently easy to program and their
computation does not require much memory. Such features make n-grams an attractive and
robust solution to some NLP problems and also explain why the n-gram model has not been
completely outranked by DNNs. So far, n-grams have been used in applications such as sms
writing, spelling correction and grammar checking, online shopping, generation of automatic
email responses, etc. (cf. Jurafsky & Martin 2020). By contrast, DNNs are complex models, a
profound knowledge of CS is necessary to design and program a DNN, DNNs also require
powerful hardware with a solid amount of operative memory, which will certainly turn into a
problem for ML algorithms in the future because the amount of web data also grows rapidly.
Devlin et al. (2018) confess some similar problems with BERT’s architecture, namely at some
point the model becomes so big that it is impossible to handle.

Regarding whether n-grams relate to DNNs, one can think of a DNN analysis of language
data as operating with n-grams of different types and different orders simultaneously, cf. e.g. the
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explanation of Google's Neural Machine Translation system in Wu et al. (2016) who speak of
characters, words and sub-word units (“wordpieces”).

In NLP, it is well-known that a given text (a closed set of elements) can be reproduced
based on the n-grams it contains; and that higher-order n-grams ensure a more coherent
reproduction. This has been demonstrated with the corpus of Shakespeare’s works, i.e. with the
four-grams of the Shakespeare corpus a text written by a machine sounds a lot like Shakespeare
(Jurafsky and Martin 2020, Chapter 3).

It should also be mentioned that bigrams are not something new to theoretical linguistics:
Ryan (2010) models variable affix order in Tagalog with the help of bigrams; naive
discriminative learning (Baayen et al. 2011) operates with bigrams of letters; Mansfield et al.
(2020) analyze “free” prefix order in Chintang in terms of bigrams; semantic scope in
Athabaskan has been explained in terms of relations between two affixes (Rice 2001); sequences
of two suffixes play an important role in the organization of the mental lexicon (Manova & Knell
2021 with data from English); see also the discussion in Manova (to appear) on how restrictions
on the order of affixes in general have been tackled in the literature so far, namely as sequences
of primarily two affixes but without referring to such sequences as bigrams. Syntactic phrases,
VP, NP, and so on are not bigrams, strictly speaking, because the two elements of a bigram must
be neighbors in a linear sequence of elements, which is not always the case in syntactic phrases.

The remainder of the paper is organized as follows. In section 2, the complexity issue
both in mathematics / CS and in linguistics is addressed and it is shown that the only objective
way of measuring complexity is by assessing the complexity of the solution (analysis). In section
3, the EteNGraM model is introduced. In section 4, EteNGraM is first pre-trained with the
existing and non-existing TAM orders from Cinque (2014); the model is then fine-tuned and
employed for derivation of Universal 20 and its exceptions. Section 5 tackles the fine-tuning
procedure and there is also a discussion on what linguists should learn from EteNGraM in order
to participate in a fruitful dialogue with the NLP community. EteNGram’s uniform derivation of
the TAM and Universal 20 orders is compared with Cinque’s derivations of these two prominent
sequences in section 6, as well as with alternative derivations of Universal 20 from the literature.
Afterwards, in section 7, EteNGraM is challenged with additional data for Universal 20. In
section 8, EteNGraM demonstrates its full power by making fine-grained predictions about
preferred and dispreferred patterns of Universal 20 cross-linguistically. Section 9 concludes the
paper.

2. Complexity is a property of analysis

Both language and mathematics are beautifully-organized systems. In mathematics, beauty
always means simplicity: a problem may have more than one solution but the simplest solution is
the most valuable. For example, the task of summing up the numbers from 1 to 100 has at least
two solutions: 1+2+3, and so on to 100; and a more elegant one based on the observation made
by the young Gauss that 100+1 = 99+2 = 98+3, and so on to 51+50, which means
(1+100)*50=5050. Both solutions give the same result, 5050, but the first one is uninteresting,
while Gauss’s solution has been used as a formula for the sum of an arithmetic progression ever
since. In other words, mathematicians understand the simplicity-complexity issue as a property
of the solution (analysis), while in linguistics the common belief is that complexity is a property
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of the data. This does not mean that in mathematics there are no easy problems (data) and
difficult problems (data), just the solution can turn a difficult problem into an easy one and
therefore the only objective way of measuring complexity is through the assessment of the
complexity of the solution. Clearly, the same holds for CS where there is a special system, the
so-called Big O notation, for measuring the complexity of an algorithm and a complexity
measure indicates how an algorithm slows when data that enter it grow. To illustrate, if the task
the solutions of which we have discussed is not to sum up the numbers from 1 to 100 but from 1
to 1000, i.e. if the data grow from 100 to 1000, the first solution will require 900 additional steps
(summations) and the algorithms will thus significantly slow down, while the second solution
will still require only two steps: addition (1+1000) and multiplication by the half of the numbers,
i.e. by 500, which gives 500500. The second algorithm requires the same time for the summation
of 100 and 1000 numbers.

In this paper, among other things, our goal is to show that language is indeed as
beautifully organized as mathematics and, consequently, language’s complexity is like that in
mathematics--depends on the solution.

Our data and the information about attested and unattested patterns come primarily from
Cinque (2005, 2013, 2014).

Finally, it should be mentioned that the research reported here is mathematical in nature
and neither revises a linguistic theory nor formulates a new one but approaches a problem with
the goal to solve it, whatever the consequences for any linguistic theory.

3. Introducing EteNGraM

My goal at this stage is to keep EteNGraM as simple as possible (recall what was said about
simplicity in the previous section). The different steps of the algorithm are in capital letters. The
four numbers “1”, “2”, “3”, “4” (unordered sets of them) are the input, i.e. these numbers will
represent both all TAM orders in the verbal domain and all Universal 20 orders in the nominal
domain. (I use four numbers because the sequences I am going to derive have four elements
each: V-Asp-Tns-Mood and N-A-Num-Dem.) The ordered set, 1-2-3-4 (ascending order), will be
seen as a default order and thus also as the desired output.

A. Derivation by n-grams
The default pattern is the most frequent pattern when all pattern’s elements are overt. The default
pattern will therefore serve for derivation of existing patterns in terms of bigrams and trigrams,
as illustrated below.

B. Deriving the default pattern with bigrams and trigrams
B1. Bigrams and trigrams based on immediate neighborhood

(1) Bigrams of neighbor elements
1-2-3-4 (default pattern)
1-2

2-3
3-4
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(2) Trigrams of neighbor elements
1-2-3-4 (default pattern)
1-2-3

2-3-4

B2. Bigrams and trigrams of  non-neighbor elements
The classical n-gram model does not have this type of bigrams and trigrams. I, however,
postulate them since it is not always the case that all elements of a linguistic sequence are on the
same side of the base or overt.

(3) Bigrams of non-neighbor elements
1-2-3-4 (default pattern)
1     3    → 1-3
1       4  → 1-4

2    4  → 2-4

(4) Trigrams of non-neighbor elements
1-2-3-4 (default pattern)
1    3-4 → 1-3-4
1-2    4 → 1-2-4

Since all bigrams and trigrams in this subsection are derived left-to-right, at this stage
EteNGraM is a unidirectional left-to-right model. (For comparison, BERT is bidirectional.)

C. Pre-positioning, post-positioning and stranding
It is well-known that languages of the world tend to be either prefixing (prepositional) or
suffixing (post-positional) but that not all elements always either precede or follow the base.
Obviously, the default sequence 1-2-3-4 consists of a base (V in the verbal domain and N in the
nominal domain) and three non-base elements. If at least two of the non-base elements follow the
base, the pattern will be classified as post-positional. From now on, all bases will be bolded.
Post-positioning is illustrated in (5). Likewise, if at least two elements precede the base, the
pattern is a case of pre-positioning (6). If a single element precedes or follows the base, this
element is seen as being ‘stranded’. From now, stranded elements will be colored in green
because they do not have any impact on the well-formedness of a sequence of four elements.

(5) Post-positioning with stranding
1-2-3-4 (default, base under 1)
4-1-2-3
3-1-2-4
2-1-3-4

(6) Pre-positioning with stranding
1-2-3-4 (default, base under 4)
1-2-4-3
1-3-4-2
2-3-4-1
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In (5) and (6), the bigrams formed by the base and the stranded element violate the rules
postulated in B but there is no way to repair these bigrams: a stranded element is trapped and
cannot move. Stranded elements are therefore excluded from the n-gram analysis. Note also that
although the bigrams consisting of ‘base + stranded element’ in either order are not in accord
with the rules in B, the rest of the bigrams and trigrams are all well-formed. For example, in (5),
we have 1-2-3 (with stranding of 4), 1-2-4 (with stranding of 3), and 1-3-4 (with stranding of 2).
Likewise for (6): 1-2-4 (with stranding of 3), 1-3-4 (with stranding of 2), and 2-3-4 (with
stranding of 1).

Now, since stranded elements move in a direction opposite to the derivational one, this
algorithm’s step, C, makes EteNGraM bidirectional, i.e. like BERT.

D. Possible and impossible orders
All combinations of 4 elements are 4! = 1*2*3*4 = 24. If EteNGraM makes correct predictions
(properly reflects on the logic of how elements combine to form linear sequences in language),
of the 24 possible combinations only orders containing the bigrams and trigrams listed in B and
C above should exist in the languages of the world, while combinations of elements involving
bad bigrams and trigrams (such that violate the assumptions in B and C) should not exist.

E. Data clustering
Different distributions of the same data reveal different facts (recall the way Gauss clustered the
numbers from 1 to 100 to find their sum). Thus, although Cinque structures the data as shown in
(7), I will cluster the sequences around the opposition pre-positioning : post-positioning, (8)
through (12) in section 4.

(7) Cinque’s clustering of the data in the verbal domain (the same for the nominal domain)
a. √ Mood Tns Asp V
b. √ Mood Tns V Asp
c. √ Mood V Tns Asp
d. √ V Mood Tns Asp

e. (*) Tns Mood Asp V
f. (*) Tns Mood V Asp
g. * Tns V Mood Asp
h. * V Tns Mood Asp

i. (*) Asp Mood Tns V
l. (*) Asp Mood V Tns
m. √ Asp V Mood Tns
n. √ V Asp Mood Tns

o. * Mood Asp Tns V
p. √ Mood Asp V Tns
q. √ Mood V Asp Tns
r. * V Mood Asp Tns

s. * Tns Asp Mood V
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t. √ Tns Asp V Mood
u. √ Tns V Asp Mood
v √ V Tns Asp Mood

w. (*) Asp Tns Mood V
x. * Asp Tns V Mood
y. √ Asp V Tns Mood
z. √ V Asp Tns Mood

There are no “j” and “k” because these letters are missing in the original text. The symbols after
the letters mark existing “√”, non-existing “*” and spurious “(*)” patterns.

4. Pre-training, fine-tuning and application of EteNGraM

In this section, I pretrain EteNGraM with the existing and non-existing TAM orders from Cinque
(2014), then fine-tune the model and employ it for derivation of Universal 20 and its exceptions.

As already mentioned, I will cluster the data around the opposition pre-positioning
(prefixation) : post-positioning (suffixation). Thus, there are two series of sequences of four
element, each starting with a default pattern of its own: the default pre-positioning pattern is #1,
while the default post-positioning pattern is #13.
For ease of perception, the different types of bigrams and trigrams are colored as follows:

● Bigrams violating the principles in 3B and 3C are bad bigrams and are colored in red. A
single bad bigram invalidates the whole sequence of four elements.

● Attested bad bigrams are in yellow, i.e. according to EteNGraM these bigrams should not
exist. Attested bad bigrams are instrumental for the fine-tuning of the model.

● Hard to explain attested patterns are in cyan. Such patterns contain a trigram consisting of
two bad bigrams. Again, such patterns will help us fine-tune the model.

● Stranded elements are in green; a stranded element does not have any impact on the
well-formedness of a four-element sequence.

● Well-formed bigrams and trigrams (bigrams and trigrams derived according to the
principles in 3B and 3C)  are uncoloured.

4.1. Pre-training and fine-tuning of EteNGraM: Tns-Asp-Mood orders

(8) Pre-positioning, i.e. at least two elements precede the bolded base
Pre-positioning can be discussed as 1-2-3-4, with the base under “4”, or as 4-3-2-1, with
the base under “1”. As demonstrated in this example, both orders lead to the same result,
therefore I work only with the ascending order. Moreover, EteNGraM was also designed
to work with the ascending order of the numbers 1, 2, 3, 4. The small letters following
the numbering here and in (9) are those from Cinque’s list in (7).

base under “4” base under “1”
(bad bigrams in descending order)     (bad bigrams in ascending order)

1. a. √ Mood Tns Asp V 1-2-3-4 (default) 4-3-2-1
2. b. √ Mood Tns V Asp 1-2-4-3 4-3-1-2
3. p. √ Mood Asp V Tns 1-3-4-2 4-2-1-3
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4. t. √ Tns Asp V Mood 2-3-4-1 3-2-1-4
5. e. (*) Tns Mood Asp V 2-1-3-4 3-4-2-1
6. f. (*) Tns Mood V Asp 2-1-4-3 3-4-1-2
7. i. (*) Asp Mood Tns V 3-1-2-4 2-4-3-1
8. l. (*) Asp Mood V Tns 3-1-4-2 2-4-1-3
9. w. (*) Asp Tns Mood V 3-2-1-4 2-3-4-1
10. x. * Asp Tns V Mood 3-2-4-1 2-3-1-4
11. o. * Mood Asp Tns V 1-3-2-4 4-2-3-1
12. s. * Tns Asp Mood V 2-3-1-4 3-2-4-1

As can be seen from (8), in pre-positioning EteNGraM successfully derives existing orders and
bans non-existing and spurious patterns.

(9) Post-positioning, i.e. at least two elements follow the bolded base
13. z. √ V Asp Tns Mood 1-2-3-4 (default)
14. y. √ Asp V Tns Mood 2-1-3-4
15. u. √ Tns V Asp Mood 3-1-2-4
16. q. √ Mood V Asp Tns 4-1-2-3
17. n. √ V Asp Mood Tns 1-2-4-3
18. m. √ Asp V Mood Tns 2-1-4-3
19. c. √ Mood V Tns Asp 4-1-3-2
20. v √ V Tns Asp Mood 1-3-2-4
21. d. √ V Mood Tns Asp 1-4-3-2
22. h. * V Tns Mood Asp 1-3-4-2
23. g. * Tns V Mood Asp 3-1-4-2
24. r. * V Mood Asp Tns 1-4-2-3

--------------------------------------------------
13 attested patterns altogether (out of 24)

In post-positioning (9), EteNGraM ran into trouble: sequences #17 through #21 (re-listed in (10)
for convenience) should not exist but they do.

(10) Five false predictions, all with permutations of neighbor elements
13. z. √ V Asp Tns Mood 1-2-3-4 (default)
17. n. √ V Asp Mood Tns 1-2-4-3
18. m. √ Asp V Mood Tns 2-1-4-3
19. c. √ Mood V Tns Asp 4-1-3-2
20. v √ V Tns Asp Mood 1-3-2-4
21. d. √ V Mood Tns Asp 1-4-3-2 (2x permut. of -3- simultan., 4-3 and 3-2)

Intriguingly, all false predictions have one thing in common: contain permutations of legal
bigrams of neighbor elements. #21 exhibits two simultaneous permutations of -3-.

Further scrutinizing (10), Tns (-3-), the middle element in the default post-positional
sequence of non-base elements, Asp-Tns-Mood, #13 in (10), seems unfixed, in the sense that Tns
precedes and follows both Asp (-2-) and Mood (-4-), therefore 2-3 / 3-2 and 3-4 / 4-3 bigrams in
attested patterns, including the pattern with two permutations, #21. Recall that Tns behaves
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differently in pre-positioning and there are no permutations in (8). Cinque (2014: 18) makes a
similar, but less powerful, observation: “As far as I have seen no reversals of Mood, Tense, and
Aspect is attested with bona fide prefixes. Such orders thus seem not to represent genuine
counterexamples to the order of Merge: (speech act) Mood > Tense > Aspect.”

Now, it is obvious that EteNGraM needs fine-tuning and I will therefore add to the model
the bigrams 3-2 and 4-3 as well-formed in post-positioning. (Clearly, BERT’s fine-tuning is not
the same as that of EteNGraM here but the architectures of the two models also significantly
differ.)

4.2. Employing EteNGraM for derivation of Universal 20 and its exceptions
The letters following the numbers in (11) and (12) are those from Cinque (2005, ex. (6)) from
where also the dataset was borrowed.

(11) Pre-positioning, i.e. at least two elements precede the base 4
1. a. √ Dem Num A  N 1-2-3-4 (default)
2. b. √ Dem Num N A 1-2-4-3
3. n. √ Dem A N Num 1-3-4-2
4. r. √ Num A N Dem 2-3-4-1
5. e. * Num Dem A N 2-1-3-4
6. f. * Num Dem N A 2-1-4-3
7. i. * A Dem Num N 3-1-2-4
8. j. * A Dem N Num 3-1-4-2
9. u. * A Num Dem N 3-2-1-4
10. v. * A Num N Dem 3-2-4-1
11. m. * Dem A Num N 1-3-2-4
12. q. * Num A Dem N 2-3-1-4

(12) Post-positioning, i.e. at least two elements follow the base 1
13. x. √ N A Num Dem 1-2-3-4 (default)
14. w. √ A N Num Dem 2-1-3-4
15. s. √ Num N A Dem 3-1-2-4
16. o. √ Dem N A Num 4-1-2-3
17. l. √ N A Dem Num 1-2-4-3
18. k. √ A N Dem Num 2-1-4-3
19. c. √ Dem N Num A 4-1-3-2
20. t. √ N Num A Dem 1-3-2-4
21. d. √      N Dem Num A 1-4-3-2 (2x permut. of 3 simultan., 4-3 and 3-22)
22. g. * Num N Dem A 3-1-4-2
23. h. * N Num Dem A 1-3-4-2
24. p. (*) N Dem A Num 1-4-2-33

3 Cinque (2014) on this pattern: “Fn 27: The literature known to me reports only three languages with this order:
Pitjantjatjara (Bowe 1990:111); Noni, which has (6d; #21 in my (12)) (N Dem Num A) as its primary order

2 Cinque’s (2014) writes the following in his “Fn 10: Greenberg (1963:87) states that N Dem Num A is ‘‘[a] less
popular alternative’’ to N A Num Dem, citing Kikuyu as one example. Other languages that apparently display this
order are Turkana, Rendille (Heine 1981), Noni (Hyman 1981:31), Nkore-Kiga (Lu 1998:162n59, 165), Abu‘
(Lynch 1998:171), Arbore (Hayward 1984:212), Bai and Moro (Dryer 2003:20, 43). It also appears as a possible
alternative order in Romanian (Cornilescu 1992:212); but see Cinque 2004 for discussion.”
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--------------------------------------------------
13 attested patterns altogether (out of 24)

Like in the verbal domain, there are 13 attested patterns altogether. The fine-tuned
EteNGraM now successfully predicts all patterns in pre-positioning (11) and in post-positioning
(12). Actually, the patterns are exactly the same as those in the verbal domain, to the detail: In
post-positioning in the verbal domain, the middle element in the default sequence of non-base
elements, Asp-Tns-Mood, was unfixed; in the nominal domain, this element is Num, the default
sequence is A-Num-Dem. Num may precede and follow A and Dem and there are 2-3 / 3-2 and
3-4 / 4-3 bigrams in attested orders in (12), including the trigram in #21 with two simultaneous
permutations.

In sum, after fine-tuning (allowance of permutations of bigrams of neighbor elements in
post-positioning), the bigrams and trigrams postulated by EteNGraM successfully derive all
attested TAM and Universal 20 patterns and ban the unattested and spurious ones. There are
permutations of -3- with its neighbors postpositionally, thus 2-3 / 3-2 and 3-4 / 4-3; these
permutations can happen simultaneously as well, giving the trigram 4-3-2. The bigram 4-2 (of
non-neighbor elements) is the only bad bigram in post-position.

From a linguistic point of view, pre-positioning (prefixation) is regular, while
post-positioning (suffixation) allows permutation of the middle non-base element in the default
post-positional sequences, Tns in the verbal domain and Num in the nominal domain. The
bigrams Mood-Asp and Dem-A are the only bad bigrams in post-positioning (one bad bigram in
each domain). These two bigrams rule out all unattested combinations post-positionally in the
verbal and nominal domain. In pre-positioning the bad bigrams tend to be at the beginning of a
sequence (in 6 out of 8 cases). In post-positioning the bad bigram of a domain blocks 3 orders
and is word-final in two of the cases. The verbal and the nominal domain are perfectly
symmetrical.

5. On fine-tuning or what a linguist should learn from EteNGraM

Permutation of neighbor elements is so frequent in the languages of the world ((13) and (14))
that it was obvious that the model would need fine-tuning. I, however, decided to not
“pre-program” permutation in order to demonstrate a process similar to fine-tuning in NLP.

(13) Yup’ik (Mithun 1999: 43)
yug-pag-cuar yug-cuar-pag
person-big-little person-little-big
‘little giant’ ‘big midget’

(Rijkhoff 2002:273); and Nkore-Kiga (Dryer 2003:43), which also has (6d, #21 in my (12)) as an alternative
order (Lu 1998:162n59, 165). It is possible, thinking of its prevailing status as an alternative order, that this
order is actually spurious (with A a reduced relative clause; see footnote 2) and that such subextractions should
be ruled out entirely.” The referred fn 2 is almost a page long and in its turn refers to fn 23 that is half a page.
There are many footnotes in Cinque (2005) and almost all are very long, I therefore refer the reader to the
original text.

11



(14) English
(a) circular red patch4

red circular patch

(b) I wrote a letter to him.
I wrote him a letter.

It should be mentioned here that the fact that the sequences we have modeled do not
exhibit permutation in prefixation does not mean that there does not exist a language with
permutations in prefixation, see e.g. Rice (1989, 2000) for Athabaskan languages which are
prefixing. But perhaps the most striking case of prefix permutation reported in the literature is
Chinatang (Bickel et. al 2007) where we find two permutations simultaneously in prefixation (cf.
#21 in both (9) and (12)).

(15) Chintang (Mulgãu) dialect (Bickel et. al 2007, p. 44; data clustering mine)
The abbreviations used in the glosses are as follows: NS nonsingular, A actor, P primary
object, NEG negative, PST past.

(15.1) u-kha-ma-cop-yokt-e
3NS.ACTOR-1NS.P-NEG-see-NEG-PAST

Two simultaneous permutations of -kha- with u- and ma- give
ma-kha-u-cop-yokt-e
NEG-1NS.P-3NS.A-see-NEG-PST

(15.2) u-ma-kha-cop-yokt-e
3NS.A- NEG-1NS.P-see- NEG-PST

Two simultaneous permutations of -ma- with kha- and u- give
kha-ma-u-cop-yokt-e
1NS.P-NEG-3NS.A-see-NEG-PST

(15.3) kha-u-ma-cop-yokt-e
1NS.P-3NS.A-NEG-see- NEG-PST

Two simultaneous permutations of -u- with kha- and ma- give
ma-u-kha-cop-yokt-e
NEG-3NS.A-1NS.P-see-NEG-PST

All examples meaning: ‘They didn’t see us.’

All second examples in (15.1), (15.2) and (15.3) are derived by two simultaneous permutations
of the middle morpheme with its neighbors. The relevant question is now: Why does Chintang
have two simultaneous permutations in prefixation, while the patterns we analyzed in section 4

4 Larson (2021) proposes a revision of cartography and models the order of the English adjectives based on
subjectivity (“salient, objective, factual properties of things vs. subjective properties”), the example in (14a) is from
this study. I cannot agree with Larson, I think that linguistic analyses should rely on steady formal orientation points,
such as these proposed in the present study, and that pushing towards syntactic features based on “extralinguistic
relations” such as subjectivity is a move in the wrong direction for theoretical linguistics.
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do not. The answer seems to be: Tns-Asp-Mood and Universal 20 are prominent cross-linguistic
patterns, while Chintang represents a language-specific case, cf. the categories involved in prefix
permutation in Chintang.

It should also be mentioned that permutation seems quite common under stranding (see
(9) and (12)), the only restriction is that the permuting elements must be neighbors, i.e. the
difference in their numerical values cannot be >1. As explained in 3C, the stranded element does
not violate the latter requirement because it is trapped and cannot move.

(16) Stranding + permutation (post-positioning, bigramic derivation)
2-1-3-4 → 2-1-4-3 (permutation of neighbor elements)
3-1-2-4 → *3-1-4-2 (bad bigram, permutation of non-neighbor elements)
4-1-2-3 → 4-1-3-2 (permutation of neighbor elements)

Recall that when I fine-tuned EteNGraM, I added the two bigrams, 3-2 and 4-3, to the list of
legal bigrams.

In conclusion, although the fine-tuned EteNGram cannot account for Chintang (15) (and
other prefixing languages), I do not think that it needs further fine-tuning at this stage. There are
many other prominent sequences in linguistics (default orders of elements that define language
linearly), one should first check the orders of elements in such sequences and only afterwards
turn to language-specific orders like that in Chintang, although if analyzed in terms of two
simultaneous permutations the prefix order in Chintang is no more exceptional. I suspect that the
order of elements in prominent sequences is reducible to a limited number of linear patterns,
similar to those I postulated for the TAM and Universal 20 orders. By contributing these patterns,
linguists can significantly facilitate the development of the next-generation deep-net NLP
architectures, in the sense that linguistic observations are expected to lead to reduction of the
number of layers, and especially the number of self-attention heads in a DNN, cf. BERT’s
architecture in section 1. (On BERT’s self-attention, see Kovaleva et al. 2019; Clark et al. 2019
discuss the type of linguistic information BERT seems to pay attention to.) Overall, collection of
the combinatorial patterns of elements in prominent linear sequences seems a much more
realistic research scenario for linguists than the one proposed by Linzen and Baroni (2021). The
only problem I could see is how to avoid blurring the picture by language-particular patterns at
the initial phases of this research.

6. Comparison of analyses

Let us compare now the complexity of EteNGraM uniform analysis of the TAM and Universal
20 orders (section 4) with Cinque’s (2014) derivation of TAM patterns in (17), and with Cinque’s
(2005) derivation of Universal 20 in (18):

(17) Derivation of TAM patterns (cited from Cinque 2014)
a. Order of merge: [...[MoodP(speech act) Mood...[TensePTense...[AspPAspect [VPV]]]]]
b. Parameters of movement:
i) No movement, or
ii) VP movement without pied-piping, or
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iii) VP movement plus pied-piping of the whose pictures-type, or
iv) VP movement plus pied-piping of the pictures of who-type
v) total vs. partial movement of the VP with or without pied-piping
vi) obligatory vs. optional application of movement.
vii) No movement of a phrase not containing the VP is possible (except for (focus)
movements to the left of a second-position element).

(18) Derivation of Universal 20 patterns (cited from Cinque 2005)
a. Merge order: [ . . . [WP Dem . . . [XP Num . . . [YP A [NP N]]]]]
b. Parameters of movement:
i. No movement (unmarked), or
ii. Movement of NP plus pied-piping of the whose picture type (unmarked) or
iii. Movement of NP without pied-piping (marked), or
iv. Movement of NP plus pied-piping of the picture of who type (more marked still).
v. Total (unmarked) versus partial (marked) movement of NP with or without pied-piping (in other words,
NP raises all the way up, as in (d,l,p,t,x), or just partially, as in (b,c,k,n,o,r,s,w), around its modifiers).
vi. Neither head movement nor movement of a phrase not containing the (overt) NP is possible (except
perhaps for focus-related movements of phrases to a DP-initial position).

Note the different number of derivational steps in (17) and (18): seven (vii) steps in the verbal
domain and only six (vi) in the nominal domain. Compare (17) and (18) with EteNGraM’s
uniform derivation of the TAM and Universal 20 orders in section 4.

The long citations from Cinque (2014) and Cinque (2005) below are only for orientation.
The many footnotes referring to these citations in the original texts are deleted here. Readers
interested in Cinque’s exact explanations of the derivation of the TAM and Universal 20 orders,
should check Cinque (2014) and Cinque (2005), respectively.

Cinque’s explanation of the attested TAM orders
As mentioned many times, my presentation of the data is based on pre- and

post-positioning, therefore Cinque’s alphabetic list in (7), is not sequential in (8) and (9).
Nevertheless, in (8) and (9) Cinque’s a corresponds to a, b to b, etc., which also holds for the
quotation below:

a is derived if nothing moves;
b is derived if VP raises to a Spec between Tense and Aspect, with no further movement involved

(Mood Tns VPk Asp tk);
c is derived if the VP moves further to a Spec between Mood and Tense (Mood VPk Tns (tk) Asp

tk);
d is derived if the VP moves further to a Spec higher than Mood (VPk Mood (tk) Tns (tk) Asp tk);
m is derived if VP moves to a Spec higher than Mood pied piping the projection dominating Asp

([ Asp VP] i Mood (ti) Tns ti);
n is derived if VP raises to a Spec between Tense and Aspect, and then raises to a Spec higher than

Mood pied piping the projection dominating it and Aspect ([VPk Asp tk]i Mood (ti) Tns ti);
p is derived if VP moves to a Spec between Mood and Tense pied piping the projection

dominating Asp (Mood [Asp VP] i Tns ti);
q is derived if VP raises to a Spec between Tense and Aspect, and then raises to a Spec between

Mood and Tense pied piping the projection dominating it and Asp (Mood [VPk Asp tk ]i Tns ti);
t is derived if VP moves to a Spec higher than Mood pied piping the projection dominating Tense,

Aspect and VP ([Tns Asp VP] i Mood ti);
u is derived if VP raises to a Spec between Tense and Aspect, and then raises to a Spec higher than

Mood pied piping the projection dominating Tense, VP and Aspect ([Tns VP k Asp tk]i Mood ti);
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v is derived if VP raises to a Spec between Mood and Tense, and then raises to a Spec higher than
Mood pied piping the projection dominating it, Tense and Aspect ([VPk Tns (tk) Asp tk]i Mood ti);

y is derived if VP moves to a Spec between Mood and Tense pied piping the projection
dominating Aspect, and then raises to a Spec higher than Mood pied piping the projection dominating
Aspect, VP and Tense ([[Asp VP] i Tns ti]j Mood tj]);

z is derived if VP moves to a Spec between Tense and Aspect, then moves to to a Spec between
Mood and Tense pied piping the projection dominating VP and Aspect, and then raises to a Spec higher
than Mood pied piping the projection dominating it, Aspect and Tense ([[[VP i Asp ti]j Tns tj]l Mood tl]).

Cinque (2014) does not provide any explanation of the unattested TAM orders.

Cinque’s explanation of Universal 20 patterns, attested and unattested
In our (11) and (12), Cinque’s (2005) (a) corresponds to a, (b) to b, etc. In the quotation below,
(18) is referred to many times, this is (18) Derivation of Universal 20 patterns in this section
(cited from Cinque 2005); I inserted (18) in the original text below for reader’s convenience;
references to footnotes are deleted:

(a) (Dem Num A N) is derived if nothing moves (18bi). (No marked option: very many
languages.)

(b) (Dem Num N A) is derived from Dem Num A N if NP raises one notch, around A, either with
(vacuous) pied-piping of the whose picture type (18bii) (unmarked) or without pied-piping (18biii)
(marked). (Despite the markedness of partial movement, it includes the unmarked case of pied-piping:
many languages.)

(c) (Dem N Num A) is derived if NP moves two notches, around A and Num (i.e.,
par-tially—marked option) without pied-piping ((18biii)—marked option). (Two marked options: very few
languages.)

(d) (N Dem Num A) is derived if NP moves three notches, around A, Num, and Dem (i.e., all the
way up) without pied-piping ((18biii): marked). (One marked option: few languages.)

(e) (Num Dem A N) cannot be derived through (18). NP has not moved, and the modifiers to its
left are in the wrong Merge order (cf. (18a)).

(f) (Num Dem N A) cannot be derived through (18). Raising of NP without pied-piping implies a
wrong Merge order of the modifiers (Num Dem A N) (see (18a)). Raising of NP with pied-piping of the
picture of who type either of [Dem N] or of [Num Dem N] also implies a wrong Merge order (either Num
A [Dem N] or A [Num Dem N]).

(g) (Num N Dem A) cannot be derived through (18). Raising of NP without pied-piping implies
that the Merge order is Num Dem A N, which is a wrong order. Raising of NP with pied-piping of the
whose picture type again implies a wrong Merge order of the modifiers (Num A Dem N), with N first
raising around Dem and [N Dem] then raising around A. Raising of NP with pied-piping of the picture of
who type (raising of [Num N] two notches) also implies a wrong Merge order of the modifiers (Dem A
Num N).

(h) (N Num Dem A) cannot be derived through (18). Raising of NP without pied-piping implies a
wrong Merge order (Num Dem A N). Raising of NP with successive pied-pipings of the whose picture type
also implies a wrong Merge order (A Dem Num N). Raising of NP without pied-piping around Dem and
Num, followed by raising with pied-piping around A, would derive(6h), but, again, from a wrong Merge
order (A Num Dem N). (Similarly if NP were to move around Num and pied-pipe it to the left of A and
then move on without further pied-pipings. TheMerge order in this case would be Dem A Num N—again,
the wrong order.)

(i) (A Dem Num N) cannot be derived through (18). NP has not moved, and the modifiers to its
left are in the wrong Merge order (see (18a)).

(j) (A Dem N Num) cannot be derived through (18). NP has moved one notch, but the two
modifiers to its left are in the wrong Merge order (see (18a)). (j) could also arise via raising of NP with
pied-piping of the picture of who type of either Dem N or A Dem N around Num, but both derivations
presuppose a wrong Merge order (A Num Dem N and Num A Dem N, respectively).
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(k) (A N Dem Num) has a well-formed, though marked, derivation with raising of NP plus
pied-piping of the picture of who type of the lowest modifier (A), followed by raising of [A N]without
pied-piping around both Num and Dem. (Two marked options: very few languages.)

(l) (N A Dem Num) has a derivation in which NP raises past A, followed by pied-piping of the
whose picture type past Num, followed by raising of [N A] without pied-piping (marked) past Dem. (One
marked option: few languages.)

(m) (Dem A Num N) cannot be derived through (18). NP has not moved, and the modifiers to its
left are in the wrong Merge order (see (18a)).

(n) (Dem A N Num) has a derivation with partial (marked) raising of NP plus pied-piping of the
picture of who type of [A N] (marked) around Num. (Two marked options: very few languages.)

(o) (Dem N A Num) has a derivation from (18a) involving partial (marked) raising of NP plus
pied-piping of the whose picture type, vacuously, and non vacuously (of [N A]) around Num. (One marked
option: many languages.)

(p) (N Dem A Num), if genuine (see our footnote 2), may be especially marked, as its derivation
from (10a) would seem to involve raising of NP with successive pied-pipings of the whose picture type
around A and Num (alternatively, a single raising of the picture of who type of [A N] around Num) and
then extraction of the sole NP around Dem.

(q) (Num A Dem N) cannot be derived through (18). NP has not moved, and the modifiers to its
left are in the wrong Merge order (see (18a)).

(r) (Num A N Dem) has a derivation with partial (marked) raising of NP plus pied-piping of the
picture of who type of A and Num ([Num A N]) (marked) around Dem. (Two marked options: very few
languages.)

(s) (Num N A Dem) has a derivation with partial (marked) raising of NP around A, followed by
raising plus pied-piping of the picture of who type of [Num N A] (marked) around Dem. (Two marked
options: few languages.)

(t) (N Num A Dem) has a derivation with raising of NP without pied-piping around A and Num
(marked), followed by raising plus pied-piping of the whose picture type of [N Num A] around Dem. (One
marked option: few languages.)

(u) (A Num Dem N) cannot be derived through (18). NP has not moved, and the modifiers to its
left are in the wrong Merge order (see (18a)).

(v) (A Num N Dem) cannot be derived through (18). Raising of NP without pied-piping implies a
wrong Merge order of the modifiers (A Num Dem N) (see (18a)). Raising of NP with pied-piping of the
picture of who type either of [Num N] or of [A Num N] also implies a wrong Merge order (either A Dem
[Num N] or Dem [A Num N]).

(w) (A N Num Dem) has a derivation from (18a) with raising of NP plus pied-piping of the picture
of who type of A around Num (marked), followed by raising of [A N Num] around Dem. (One marked
option: few languages.)

(x) (N A Num Dem) has a derivation from (18a) involving raising of NP with
successivepied-pipings of the whose picture type all the way up. (No marked option: very many languages.)

The fact that all N-final orders that do not respect the order Dem Num A ((e), Num Dem A N; (i),
A Dem Num N; (m), Dem A Num N; (u), A Num Dem N) are very clearly unattested can indeed be taken
to indicate that it is the raising of NP (or of an XP containing it) that is responsible for word order variation
within the DP (perhaps, more generally, that it is the raising of the lexical part of a phrase that is
responsible for word order variation within its ‘‘extended projection’’).

Since my goal has not been to (re-)formulate a theory but to check whether it is possible to do
NLP without grammar and to solve a linguistic problem in the simplest possible way, I will not
provide a critical analysis of Cinque’s derivations. Moreover, there are many alternative
explanations of Greenberg’s Universal 20 (and Cinque’s analysis):

1) Dryer (2006) proposes an analysis in terms of general principles of symmetry and
harmony;

2) Abels & Neeleman’s (2009) analysis is based on Kayne's (1994) Linear Correspondence
Axiom;
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3) Cysouw (2010) speaks of observable preferences for head positions: “noun and adjective
tend to occur together, nouns and demonstratives prefer to occur at the phrase boundary,
and noun-adjective order is slightly more frequent than adjective-noun order” (This
analysis is positional and focuses on the linear order of elements, i.e. it is in accord with
EteNGraM but its predictions are less powerful than EteNGraM’s and, consequently,
Cysouw pleads for probabilistic modeling of linguistic diversity, while EteNGram
classifies in terms of possible and impossible patterns);

4) Steddy & Samek-Lodovici (2011) propose a solution in terms of four Optimality Theory
constraints requiring leftward alignment of the items involved;

5) Steedman (2011) speaks of primitive operations of combinatory categorial grammars;
6) Culbertson & Adger (2014) see Universal 20 as possibly reflecting a deep property of the

human cognitive system: “noun phrase structure is likely represented not primarily in
terms of linear order, but rather in terms of hierarchical relations encoding semantic
scope.”

7) Merlo (2015) and Merlo & Ouwayda (2018) model Universal 20 in terms of different
types of syntactic movement.

Evaluation of all these proposals is outside the scope of this study. Nevertheless, it is safe
to say that all linguistics solutions to Universal 20 are syntactic in nature, in one way or another;
and they are more complex than the bigram- and trigram-based EteNGraM.

It should also be mentioned here that solutions involving syntactic trees are hard to
understand by computer scientists which could be one of the reasons why syntactic trees are
disperefered in NLP research. I will only outline the issue, a detailed discussion of trees and
templates in CS and in linguistics in Manova (ms.).

A computer works with templatically organized sequences of zeros and ones, i.e.
everything (including all types of data structures, hierarchical and nonhierarchical alike) ends up
as a linear sequence of zeros and ones. Templates are sequences of e.g. 16, 32 or 64 positions
(bits) and every position has a specific predefined value (on the positional nature of language,
see Manova et al. 2020). For example, a 16-bit template has predefined values of positions as
shown in table 1.

Table 1: A 16-bit template, i.e. this is how a 16-bit machine computes all types of tasks

Bit # 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Predefined value 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

Representation
of decimal 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Representation
of decimal 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Representation
of decimal 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

...

Representation 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
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of decimal 10

...

As can be seen from table 1, if “1” occupies one of the 16-bit template positions, the final
value of the position remains unchanged (= 1*position value), if “0” occupies a position, the
value of the position becomes zero because multiplication by zero gives zero. As for the
representations of the decimal numbers, e.g. 10 = 23 + 21 = 8 +2.

Diagram 1:  Binary tree (CS)

Source: https://www.geeksforgeeks.org/binary-tree-data-structure/

A further problem with syntactic trees: trees are a derivational device in linguistics. By
contrast, in CS, trees serve for storage and organization of information, and programs are created
on how to read these trees, i.e. a CS tree is compatible with different readings (while a syntactic
tree always has a single reading). There are also different predefined types of trees in CS: rooted
and unrooted trees, binary and non-binary trees, balanced and unbalanced trees, and so on. For
example, in a rooted balanced binary tree, the height of the left and right subtree of any node
differ by not more than one, i.e. Diagram 1 illustrates a rooted balanced binary tree. Additionally,
all nodes of a rooted tree are numbered in a strict order starting from the root: in Diagram 1 the
root node is under “1”. In a rooted tree, the root serves as an orientation point, in the sense that
the creation of the tree and its search start from the root. Since the drawing of a syntactic tree
does not start from the root but from the most distant leaf (called branch in syntax), trees in
syntax appear unrooted but with roots. The rooted-unrooted issue with syntactic trees is best
visible in Distributed Morphology (Halle & Marantz 1993; Harley & Noyer 1999; Bobaljik
2017, among many others) where the root of the word is not in the root of the tree. Thus from a
CS point of view, with the version of trees used in syntax (i.e. trees that are unrestricted in terms
of height and weight and that permit different types of movement of elements) everything can be
derived.
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Interim conclusion, one can solve the same linguistic problem such as e.g. derivation of
Universal 20 and its exceptions in different ways, the different solutions, although leading to the
same result (Cinque’s list of attested and unattested patterns), differ in complexity. That is,
complexity in linguistics is like complexity in CS -- a property of the solution (analysis). The
derivation of the cross-linguistic TAM orders and Universal 20 and its exceptions do not require
hierarchical structures such as syntactic trees. These two prominent linguistic sequences are
linear structures and as such they can be derived with bigrams and trigrams.

7. Additional data for Universal 20

Recently additional data for Universal 20 have been published (Merlo & Ouwayda 2018). In this
section I challenge the EteNGraM model with these data. The goal is, among other things, to
check whether EteNGraM’s high efficiency is not by chance.

Table 2 is adopted from Merlo & Ouwayda (2018), with a single modification: the first
column is added by me and contains the numbering of Universal 20 patterns from (11) and (12).
For convenience, (11) and (12) are repeated at the end of this section. The rest of the columns are
named as in the original version of the table: “Dryer’s Languages” and “Dryer’s Genera” give
the counts reported in Dryer (2006) by language and by genera respectively; the next two
columns “Cinque’s 05 Languages” and “Cinque’s 13 Languages” countain Cinque's counts from
2005, i.e. what we analyzed and confirmed in section 4, as well as Cinque’s (2013) database, a
private resource shared with the authors of table 2, Merlo and Ouwayda. The patterns reported as
non-existing or spurious in Cinque (2005) and confirmed as non-existing by EteNGraM but
existing according to Dryer (2006) are shaded in Table 2 where all bases are also colored. The
goal of this colorful presentation is to show that, like in Cinque (2005), Merlo & Ouwayda’s
(2018) major concern seemed not to be an optimal clustering of the data, one that favors a
solution to the problem, but avoidance of omission of a pattern, although one could also interpret
their approach as ‘monitoring the movement of N’. Roughly, they change the placement of the
N-column one position forward each time, see Table 2; and explain the different patterns as types
of movement with different costs of the syntactic operations involved.

Four of the 24 patterns in Table 2 seem problematic for EteNGraM: these patterns should
not exist but they seem to do. Note, however, that Cinque’s (2013) database confirms only one of
the four problematic patterns, #24 in (11): N Dem A Num 1-4-2-3. Cinque (2013) reports 24
languages of this type versus only 6 in Dryer (2006), and 3 in Cinque (2005), but see footnote 3
where Cinque explains why the three languages should be considered spurious instances of the
pattern. The other three problematic patterns occur in a very limited number of languages: N
Num Dem A (#23 in (12)) in only one language; Dem A Num N (#11 in (11)) in only 3
languages; and Num N Dem A (#22 in (12)) in only 5 languages. All counts according to Dryer
(2006). As already mentioned, for Cinque (2005, 2013) these patterns do not exist. Since the
languages violating EteNGraM’s derivational rules are not well-studied, it is hard to say what is
behind these violations: Do they really exist or are they simply due to insufficient knowledge of
the target language by the person providing the description.

Thus, only pattern #24: N Dem A Num seems to pose a real problem to EteNGraM.
However, with respect to this pattern there is a significant discrepancy in the counts in Cinque
(2005), Dryer (2006) and Cinque (2013): 3 versus 6 versus 24 languages. This situation seems to
indicate definitional and/or methodological inconsistencies.
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Table 2: = “Table 1: Attested word orders of Universal 20 and their estimated frequencies” from
Merlo & Ouwayda (2018); column 1 and colors added by SM

# in (11)
and (12)

Dryer’s
Languages

Dryer’s
Genera

Cinque’s 05
Languages

Cinque’s 13
Languages

1 DEM NUM ADJ N 74 44 V. many 300

11 DEM ADJ NUM N 3 2 0 0

5 NUM DEM ADJ N 0 0 0 0

12 NUM ADJ DEM N 0 0 0 0

7 ADJ DEM NUM N 0 0 0 0

9 ADJ NUM DEM N 0 0 0 0

2 DEM NUM N ADJ 22 17 Many 114

3 DEM ADJ N NUM 11 6 V. few (7) 35

6 NUM DEM N ADJ 0 0 0 0

4 NUM ADJ N DEM 4 3 V. few (8) 40

8 ADJ DEM N NUM 0 0 0 0

10 ADJ NUM N DEM 0 0 0 0

16 DEM N ADJ NUM 28 22 Many 125

19 DEM N NUM ADJ 3 3 V. few (4) 37

22 NUM N DEM ADJ 5 3 0 0

15 NUM N ADJ DEM 38 21 Few (2) 180

18 ADJ N DEM NUM 4 2 V. few (3) 14

14 ADJ N NUM DEM 2 1 V. few 15

21 N DEM NUM ADJ 4 3 Few (8) 48

24 N DEM ADJ NUM 6 4 V. few (3) 24

23 N NUM DEM ADJ 1 1 0 0

20 N NUM ADJ DEM 9 7 Few (7) 35

17 N ADJ DEM NUM 19 11 Few (8) 69

13 N ADJ NUM DEM 108 57 V. many (27) 411

(11 repeated) Pre-positioning, i.e. at least two elements precede the base 4
1. a. √ Dem Num A  N 1-2-3-4
2. b. √ Dem Num N A 1-2-4-3
3. n. √ Dem A N Num 1-3-4-2
4. r. √ Num A N Dem 2-3-4-1
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5. e. * Num Dem A N 2-1-3-4
6. f. * Num Dem N A 2-1-4-3
7. i. * A Dem Num N 3-1-2-4
8. j. * A Dem N Num 3-1-4-2
9. u. * A Num Dem N 3-2-1-4
10. v. * A Num N Dem 3-2-4-1
11. m. * Dem A Num N 1-3-2-4
12. q. * Num A Dem N 2-3-1-4

(12 repeated) Post-positioning, i.e. at least two elements follow the base 1
13. x. √ N A Num Dem 1-2-3-4
14. w. √ A N Num Dem 2-1-3-4
15. s. √ Num N A Dem 3-1-2-4
16. o. √ Dem N A Num 4-1-2-3
17. l. √ N A Dem Num 1-2-4-3
18. k. √ A N Dem Num 2-1-4-3
19. c. √ Dem N Num A 4-1-3-2
20. t. √ N Num A Dem 1-3-2-4
21. d. √      N Dem Num A 1-4-3-2 (2x permut. of 3 simultan., 4-3 and 3-2)
22. g. * Num N Dem A 3-1-4-2
23. h. * N Num Dem A 1-3-4-2
24. p. (*) N Dem A Num 1-4-2-3

8. The full power of EteNGraM

In this section, I will demonstrate that EteNGraM allows for fine-grained classification of the
attested patterns of Universal 20 and that, consequently, it can be used for making predictions
about preferred and dispreferred patterns across languages.
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Table 3: = Table 2 but with the data clustering of (11) and (12), both repeated at the end of the
previous section
The colours used in the table are those from (11) and (12): stranded elements do not violate anything; bad bigrams
invalidate whole patterns, and permutations of neighbor elements in post-positioning do not violate anything

# in (11) and (12)
and a  comment

Dryer’s
Languages

Dryer’s
Genera

Cinque’s 05
Languages

Cinque’s 13
Languages

Pre-positioning

1 (default) DEM NUM ADJ N 74 44 V. many 300

2 (stranding) DEM NUM N ADJ 22 17 Many 114

3 (stranding) DEM ADJ N NUM 11 6 V. few (7) 35

4 (stranding) NUM ADJ N DEM 4 3 V. few (8) 40

5 (bad bigram) NUM DEM ADJ N 0 0 0 0

6 (bad bigram) NUM DEM N ADJ 0 0 0 0

7 (bad bigram) ADJ DEM NUM N 0 0 0 0

8 (bad bigram) ADJ DEM N NUM 0 0 0 0

9 (bad bigram) ADJ NUM DEM N 0 0 0 0

10 (bad bigram) ADJ NUM N DEM 0 0 0 0

11 (bad bigram) DEM ADJ NUM N 3 2 0 0

12 (bad bigram) NUM ADJ DEM N 0 0 0 0

Post-positioning

13 (default) N ADJ NUM DEM 108 57 V. many (27) 411

14 (stranding) ADJ N NUM DEM 2 1 V. few 15

15 (stranding) NUM N ADJ DEM 38 21 Few (2) 180

16 (stranding) DEM N ADJ NUM 28 22 Many 125

17 (permutation) N ADJ DEM NUM 19 11 Few (8) 69

18 (strand+permut) ADJ N DEM NUM 4 2 V. few (3) 14

19 (strand+permut) DEM N NUM ADJ 3 3 V. few (4) 37

20 (permutation) N NUM ADJ DEM 9 7 Few (7) 35

21 (2 permutations) N DEM NUM ADJ 4 3 Few (8) 48

22 (bad bigram) NUM N DEM ADJ 5 3 0 0

23 (bad bigram) N NUM DEM ADJ 1 1 0 0

24 (bad bigram) N DEM ADJ NUM 6 4 V. few (3) 24
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Scrutinizing table 3:
1) Pre-positioning

Stranding of the closest to the default base element, ADJ (#2), is more preferred than stranding
of the most distant elemment, DEM (#4), 114 versus 40 languages in Cinque (2013).

2) Post-positioning
Stranding without permutation (#14, #15, and #16) is more preferred than stranding with
permutation (#18 and #19). Now recall what we established with respect to fixedness of the
non-base elements in post-positioning (section 4): NUM is unfixed, ADJ and DEM are fixed, i.e.
all permutations are due to NUM. Stranding of an unfixed element (#15) is more preferred than
stranding of a fixed element (#14 and #16). Stranding of the most distant from the base (fixed)
element (# 16) is more prefered than stranding of the closest to the base (fixed) element (#14).

Permutation patterns are extracted from table 3 and listed as a separate table 4 for ease of
perception.

Table 4: Permutation patterns in post-positioning (based on table 3)
13 (default) N ADJ NUM DEM 108 57 V. many (27) 411

17 (permutation) N ADJ DEM NUM 19 11 Few (8) 69

18 (strand+permut) ADJ N DEM NUM 4 2 V. few (3) 14

19 (strand+permut) DEM N NUM ADJ 3 3 V. few (4) 37

20 (permutation) N NUM ADJ DEM 9 7 Few (7) 35

21 (2 permutations) N DEM NUM ADJ 4 3 Few (8) 48

As can be seen from table 4, permutation of elements distant from the default base (#17) is more
preferred than permutation of elements closer to the default basse (#20), 69 versus 35 languages
in Cinque (2013). Permutation without stranding (#17) is more preferred than the same
permutation under stranding (#18), 69 versus 14 languages. Under stranding (#18 and #19), the
combinatorial logic appears to be the opposite to without stranding: permutation of elements
closer to the default base (#19) seems more preferred than permutation of more distant elements
(#18), 37 versus 14 languages, respectively. The relatively high frequency of pattern #21, with
two simultaneous permutations (according to Cinque 2013, 48 languages tolerate two
simultaneous permutations), indicates that the major ordering factor is distance / closeness to the
default base and not permutation. This observation finds support by what has been established
for pre- and post-positioning without permutation. In prepositioning, stranding of the closest to
the default base element (#2) is more preferred than stranding of the most distant elemment (#4),
114 versus 40 languages; and the reverse rule in post-positioning, stranding of the most distant
from the default base element (#16) is more prefered than stranding of the closest to the base
element (#14), 125 versus 15 languages.

8. Conclusions

To check whether NLP without grammar is possible, I created a very simple NLP model,
EteNGraM, that imitates current NLP research by handling semantic relations without semantics.
I pre-trained the model with the TAM orders in the verbal domain, fine-tuned it and employed it
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for derivation of Universal 20 and its exceptions in the nominal domain. Although EteNGraM is
ridiculously simple (it derives language structure only with linear sequences such as bigrams and
trigrams), it makes exactly the same predictions with respect to existing and non-existing TAM
and Universal 20 orders as those in Cinque (2005, 2014). After a comparison of EteNGram’s
uniform analysis of the TAM and Universal 20 orders with Cinque’s syntax-based analyses of
these orders and with other proposals from the literature for derivation of Universal 20, I briefly
addressed the nature of trees in CS and in syntax and demonstrated that syntactic trees are
problematic as a derivational device. EteNGraM also revealed novel facts about the organization
of the verbal and nominal domain: pre-positioning is regular in both domains, while
post-positioning tolerates permutation of neighbor elements, also in both domains; there is a
perfect symmetry of existing and non-existing patterns in both domains and in the ways these
patterns are derived; the same (numerically, i.e. 4-2) bad bigram is responsible for all
non-existing patterns in post-positioning in both domains; in post-positioning in both domains,
the middle non-base element (Tns and Num, respectively) is unfixed, which thus explains why
there are no permutations in pre-positioning. To demonstrate that the surprisingly successful
performance of EteNGram is not by chance, I challenged the model with additional data for
Universal 20. EteNGraM not only derived these data but also made fine-grained predictions
about preferred and dispreferred patterns cross-linguistically based on features such as
+/-stranding, stranding of +/-fixed element, stranding with and without permutation, closeness to
/ distance from the base, etc. EteNGraM also revealed the necessity for bidirectional analyses of
language data, which is the case in current NLP research.  Therefore,  establishing  the  
combinatorial  patterns  of  elements  in  prominent  linear  sequences  in  terms  of  n-grams  seems  a  
promising  scenario  for  a  fruitful  dialogue  with  the  NLP  community. Clearly, EteNGraM can be
applied for derivation of sequences longer than those discussed in this paper, which is planned
for future research.
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