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Current  NLP  research  uses  neither  linguistically  annotated  corpora  nor  the  traditional  pipeline  of  linguistic  modules,                 
which  raises  questions  about  the  future  of  linguistics.  Linguists  who  have  tried  to  crack  the  secrets  of  deep  learning                     
NLP  models,  including   BERT  (a  bidirectional  transformer-based  ML  technique  employed  for  Google  Search),  have                
had  as  their  ultimate  goal  to  show  that  deep  nets  make  linguistic  generalizations.  I  decided  for  an  alternative                    
approach.  To  check  whether  it  is  possible  to  process  natural  language  without  grammar,  I  developed  a  very  simple                    
model,  the   End-to-end  N-Gram  Model  (EteNGraM) ,  that  elaborates  on  the  standard   n-gram  model.   EteNGraM ,  at  a                  
very  basic  level,  imitates  current  NLP  research  by  handling  semantic  relations  without  semantics.  Like  in  NLP,  I                   
pre-trained  the  model  with  the  orders  of  the  TAM  markers  in  the  verbal  domain,  fine-tuned  it,  and  then  applied  it  for                       
derivation  of  Greenberg’s  Universal  20  and  its  exceptions  in  the  nominal  domain.  Although   EteNGraM   is                
ridiculously  simple  and  uses  only  bigrams  and  trigrams,  it  successfully  derives  the  attested  and  unattested  patterns  in                   
Cinque  (2005)  “Deriving  Greenberg's  Universal  20  and  Its  Exceptions”,   Linguistic  Inquiry  36 ,  and  Cinque  (2014)                 
“Again  on  Tense,  Aspect,  Mood  Morpheme  Order  and  the  “Mirror  Principle”.”  In   Functional  Structure  from  Top  to                   
Toe:  The  Cartography  of  Syntactic  Structures   9 .   EteNGraM  also  makes  fine-grained  predictions  about  preferred  and                 
dispreferred  patterns  across  languages  and  reveals  novel  aspects  of  the  organization  of  the  verbal  and  nominal                  
domain.  To  explain  the   EteNGraM' s   highly  efficient  performance,  I  address  issues  such  as:  complexity  of  data                  
versus  complexity  of  analysis;  structure  building  by  linear  sequences  of  elements  and  by  hierarchical  syntactic  trees;                  
and   how   linguists   can   contribute   to   NLP   research.*   
  
  

1. Deep   learning,   n-grams   and   the   future   of   linguistics     
  

Theoretical  linguistics  and  current  NLP  models  differ  in  the  way  they  approach  the               
form-meaning  relation  in  language.  I  will  explain  the  issue  based  on  Manova  et  al.  (2020)  who                  
define   three   types   of   approaches   to   the   form-meaning   relationship:     

(i)  the  relationship  is  non-directional,  i.e.  form  and  meaning  emerge  simultaneously             
(pairings   of   form   and   meaning   such   as    -s    <PL>   are   typical   of   this   type   of   approaches);     

(ii)  the  relationship  is  directional  and  from-meaning-to-form  (e.g.  when  the  feature  <PL>              
is  associated  with  a  terminal  node  on  a  syntactic  tree  (Distributed  Morphology,  Cartography,               
Nanosyntax)  or  with  a  cell  or  a  set  of  cells  in  a  paradigm-based  approach  (Paradigm  Function                  
Morphology);   and     

(iii)  the  relationship  is  directional  and  from-form-to-meaning  (e.g.  a  machine  or  a  human               
identifies    -s    and   the   association   with   meaning   is   postponed,   or   does   not   happen   at   all).     

Theoretical  linguistics  approaches  are,  as  a  rule,  of  (i),  (ii)  or  a  mixed  (i)  &  (ii)  type,                   
while  current  NLP  approaches  are  of  type  (iii).  This  leads  to  significant  differences  in  the                 
analyses  and  leaves  the  impression  that  current  NLP  does  not  have  anything  in  common  with                 
theoretical  linguistics.  This  impression  is  further  enhanced  by  the  fact  that  NLP  has  always  been                 
entirely  focused  on  application  and  efficiency  while  theoretical  linguistics  has  never  been.              
Additionally,  in  the  past  decade  a  paradigm  shift  has  happened  in  NLP  and  linguistically                
annotated  corpora  and  the  traditional  pipeline  of  linguistic  modules  have  been  substituted  by  raw                
data  from  the  web  and  deep  neural  networks  (DNNs),  respectively.  There  are  different  types  of                 
DNNs  and  things  are  fairly  complicated  to  be  explained  in  detail  here;  for  a  linguistic  perspective                  
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on  the  issue,  the  reader  is  referred  to  Linzen  &  Baroni  (2021).  The  core  facts:  DNNs  are  typically                    
“end-to-end”,  i.e.  a  deep  network  is  directly  trained  to  associate  input  (e.g.,  text  in  one  language)                  
to  a  corresponding  output  (e.g.,  text  in  another  language).  An  alternative  way  of  looking  at  what                  
it  means  to  be  “end-to-end”  would  be:  Trying  to  find  a  route  for  problem  solving  by  knowing  the                    
problem’s  solution  in  advance.  For  example,  we  take  a  text  in,  let  us  say,  Russian  (input)  and  the                    
same  text  translated  into,  let  us  say,  German  (output)  and  the  task  is  translation  from  Russian  into                   
German.  In  this  case,  the  solution  of  the  problem  is  the  German  translation.  With  the  help  of  the                    
German  translation,  the  DNN  will  learn  which  sequences  of  words  in  Russian  correspond  to                
which  sequences  of  words  in  German.  Deep  learning  takes  place  in  the  hidden  layers  of  the                  
network  and  from  input  to  output,  each  hidden  layer  handles  increasingly  complex  information.               
It  is  a  non-trivial  task  to  crack  the  way  of  “thinking”  of  a  DNN  because  all  relations  between  the                     
the  layers,  including  recurrent  activation  (if  the  network  is  recurrent),  are  allowed,  i.e.  the                
network  alone  “decides”  which  route  to  activate  (and  similar  to  human  DNNs  (brains)  with                
different  IQs,  different  DNNs  come  to  a  solution  of  the  same  problem  through  different  routes).                 
Returning  to  the  Russian-German  translation,  what  the  network  has  learned,  roughly  the  statistics               
of  the  corresponding  Russian-German  form  sequences,  can  be  used  for  translations  of  unknown               
texts  from  Russian  into  German  and  vice  versa.  The  more  we  train  the  network  (the  more  parallel                   
translations  we  give  to  it),  the  more  precise  (human-like)  the  translation  of  unknown  texts                
(compare  with  the  human  brain:  the  more  a  human  practices  German-Russian  translation,  the               
better  s/he  gets),  which  is  the  explanation  for  why  e.g.  Google  Translate  that  relies  on  a  DNN                   
performs  better  when  translating  from  and  into  languages  for  which  there  are  many  texts  on  the                  
web   and   produces   less   convincing   translations   from   and   into   less   popular   languages.     

Although  the  general  logic  of  DNNs  is  easy  to  grasp,  the  programming  of  a  DNN  and  the                   
linguistic  monitoring  of  its  work  are  difficult  tasks. 1  For  example,  BERT  (Bidirectional  Encoder               
Representations  from  Transformers),  a  machine  learning  technique  currently  employed  in            
Google  Search  “is  designed  to  pre-train  deep  bidirectional  representations  from  unlabeled  text  by               
jointly  conditioning  on  both  left  and  right  context  in  all  layers.  As  a  result,  the  pre-trained  BERT                   
model  can  be  fine-tuned  with  just  one  additional  output  layer  to  create  state-of-the-art  models  for                 
a  wide  range  of  tasks,  such  as  question  answering  and  language  inference,  without  substantial                
task-specific  architecture  modifications.”  (Devlin  et  al.  2018:  4171).  In  other  words,  BERT              
involves  two  steps:  pre-training  and  fine-tuning.  Additionally,  BERT  is  known  in  two  model               
sizes:  BERT BASE  (L=12,  H=768,  A=12,  Total  Parameters=110M)  BERT LARGE  (L=24,  H=1024,            
A=16,  Total  Parameters=340M);  “L”  stands  for  the  number  of  layers  (transformer  blocks);  “H”               
stands  for  hidden  size,  i.e  the  number  of  hidden  neurons;  and  “A”  stands  for  the  number  of                   
self-attention  heads,  i.e.  heads  that  attend  to  the  previous  hidden  states.  BERT  works  with                
sentences  but  “sentence”  is  defined  as  an  arbitrary  span  of  contiguous  text,  i.e.  BERT  sentences                 
are  not  always  actual  linguistic  sentences.  The  input  token  sequence  to  BERT  may  be  a  single                  
sentence   or   two   sentences   packed   together.   

Regarding  the  linguistic  interpretation  of  a  DNN  performance,  McCoy  et  al.  (2020)  check               
whether  if  a  neural  network  architecture  is  tested  multiple  times  on  the  same  dataset,  it  will  make                   
the  same  or,  at  least  similar,  linguistic  generalizations  each  time.  They  establish  that  the  answer                 
to  this  question  depends  on  the  testing  set:  if  the  testing  set  contains  distributions  like  those  in  the                    

1  For   a   hands-on   experience   with   DNNs,   the   curious   reader   can   visit   the   website    A   Neural   Network   Playground ,   part   
of   Google’s   TensorFlow   educational   resources:    www.tensorflow.org .   Popular-science   explanations   of   how   to   
understand   the   Playground   at:   
https://blogs.scientificamerican.com/sa-visual/unveiling-the-hidden-layers-of-deep-learning/ .   

2   

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=spiral&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=8,6,2&seed=0.45514&showTestData=true&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=true&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
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training  set,  the  DNN  makes  (almost)  the  same  generalizations;  if  the  testing  set  includes                
previously  unseen  distributions,  the  DNN  tends  to  take  different  routes  each  time.  The  authors                
are  surprised  by  these  results  but  the  DNN  behavior  seems  completely  understandable:  Imagine               
that  a  human  being  (a  human  brain  is  a  neural  net)  should  go  through  an  unknown  labyrinth                   
many   times,   most   probably,   each   time   s/he   would   try   different   routes.   

DNNs  and  similar  developments  in  recent  NLP  research  have  raised  questions  about  the               
future  of  linguistics;  and,  consequently,  on  the  linguistic  side,  proposals  for  possible  interactions               
between  linguists  and  the  NLP  community  have  been  articulated,  see  e.g.  Baroni  (2021).  I  am,                 
however,  afraid  that  what  Baroni  (2021)  and  Linzen  &  Baroni  (2021)  suggest  as  a  solution  to  the                   
problem  would  work  only  for  a  handful  of  linguists,  mostly  those  with  (advanced)  degrees  in                 
computer   science   (CS),   electrical   engineering,   mathematics,   and   the   like:   

  
On  the  one  hand,  linguists’  know-how  in  probing  grammatical  knowledge  can  help  develop  the  next                 
generation  of  language-processing  DNNs…  On  the  other,  studying  what  the  best  DNNs  learn  about                
grammar,  and  how  they  do  so,  can  offer  new  insights  about  the  nature  of  language  and,  ultimately,  what  is                     
genuinely  unique  about  the  human  species.  For  this  line  of  work  to  be  effective,  linguists  will  need  to  be                     
closely  involved  in  developing  relevant  network  architectures,  training  them  on  appropriate  data,  and               
conducting   experiments   that   address   linguists’   theoretical   concerns.   

Linzen   &   Baroni   (2021:   15)   
  

I  think  that  in  order  to  participate  in  a  fruitful  dialogue  with  the  NLP  community,  linguists  need                   
to  see  the  advantages  of  a  simple  and  easily-applicable  NLP  model  over  traditional  linguistic                
analyses,  including  what  it  means  to  model  semantics  without  semantics,  which  is  the  case  in                 
current  NLP  research.  To  be  convincing,  the  illustrating  model  should  also  address  issues  that                
have  been  acknowledged  as  important  by  people  of  different  theoretical  persuasions.  Note,              
however,  that  what  is  considered  important  in  linguistics,  e.g.  linguistic  universals,  is  not               
necessarily  of  interest  to  the  NLP  community.  Roughly,  because  we  do  not  speak  with  universals,                 
NLP  does  not  need  them.  Nevertheless,  as  we  will  see  later,  linguistic  universals  can  reveal                 
important  facts  about  possible  and  impossible  linear  patterns  of  elements  in  language,  which  is                
highly  relevant  to  NLP  research.  Therefore,  in  the  present  study,  I  propose,  pre-train  and                
fine-tune  the  End-to-end  N-Gram  Model  ( EteNGraM ),  a  very  simple  NLP  model  that  elaborates               
on   the   standard   n-gram   model   (Jurafsky   &   Martin   2020,   Chapter   3).   

A  n-gram  is  a  contiguous  sequence  of  n-elements.  A  single  element  (e.g.  phoneme,               
morpheme,  word)  is  a  unigram,  two  elements  form  a  bigram,  a  sequence  of  three  elements  is  a                   
trigram,  and  so  on.  N-grams  are  simple  structures  and  consequently  easy  to  program  and  their                 
computation  does  not  require  much  memory.  Such  features  make  n-grams  an  attractive  and               
robust  solution  to  some  NLP  problems  and  also  explain  why  the  n-gram  model  has  not  been                  
completely  outranked  by  DNNs.  So  far,  n-grams  have  been  used  in  applications  such  as  sms                 
writing,  spelling  correction  and  grammar  checking,  online  shopping,  generation  of  automatic             
email  responses,  etc.  (cf.  Jurafsky  &  Martin  2020).  By  contrast,  DNNs  are  complex  models,  a                 
profound  knowledge  of  CS  is  necessary  to  design  and  program  a  DNN,  DNNs  also  require                 
powerful  hardware  with  a  solid  amount  of  operative  memory,  which  will  certainly  turn  into  a                 
problem  for  ML  algorithms  in  the  future  because  the  amount  of  web  data  also  grows  rapidly.                  
Devlin  et  al.  (2018)  confess  some  similar  problems  with  BERT’s  architecture,  namely  at  some                
point   the   model   becomes   so   big   that   it   is   impossible   to   handle.     

Regarding  whether  n-grams  relate  to  DNNs,  one  can  think  of  a  DNN  analysis  of  language                 
data  as  operating  with  n-grams  of  different  types  and  different  orders  simultaneously,  cf.  e.g.  the                 
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explanation  of  Google's  Neural  Machine  Translation  system  in  Wu  et  al.  (2016)  who  speak  of                 
characters,   words   and   sub-word   units   (“wordpieces”).   

In  NLP,  it  is  well-known  that  a  given  text  (a  closed  set  of  elements)  can  be  reproduced                   
based  on  the  n-grams  it  contains;  and  that  higher-order  n-grams  ensure  a  more  coherent                
reproduction.  This  has  been  demonstrated  with  the  corpus  of  Shakespeare’s  works,  i.e.  with  the                
four-grams  of  the  Shakespeare  corpus,  a  text  written  by  a  machine  sounds  a  lot  like  Shakespeare                  
(Jurafsky   and   Martin   2020,   Chapter   3).   

It  should  also  be  mentioned  that  bigrams  are  not  something  new  to  theoretical  linguistics:                
Ryan  (2010)  models  variable  affix  order  in  Tagalog  with  the  help  of  bigrams;  naive                
discriminative  learning  (Baayen  et  al.  2011)  operates  with  bigrams  of  letters;  Mansfield  et  al.                
(2020)  analyze  “free”  prefix  order  in  Chintang  in  terms  of  bigrams;  semantic  scope  in                
Athabaskan  has  been  explained  in  terms  of  relations  between  two  affixes  (Rice  2001);  sequences                
of  two  suffixes  play  an  important  role  in  the  organization  of  the  mental  lexicon  (Manova  &  Knell                   
2021  with  data  from  English);  see  also  the  discussion  in  Manova  (to  appear)  on  how  restrictions                  
on  the  order  of  affixes  in  general  have  been  tackled  in  the  literature  so  far,  namely  as  sequences                    
of  primarily  two  affixes  but  without  referring  to  such  sequences  as  bigrams.  Syntactic  phrases,                
VP,  NP,  and  so  on  are  not  bigrams,  strictly  speaking,  because  the  two  elements  of  a  bigram  must                    
be   neighbours   in   a   linear   sequence   of   elements,   which   is   not   always   the   case   in   syntactic   phrases.   

   
The  remainder  of  the  paper  is  organized  as  follows.  In  section  2,  the  complexity  issue                 

both  in  mathematics  /  CS  and  in  linguistics  is  addressed  and  it  is  shown  that  the  only  objective                    
way  of  measuring  complexity  is  by  assessing  the  complexity  of  the  solution  (analysis).  In  section                 
3,  the   EteNGraM  model  is  introduced.  In  section  4,   EteNGraM  is  first  pre-trained  with  the                 
existing  and  non-existing  TAM  orders  from  Cinque  (2014);  the  model  is  then  fine-tuned  and                
employed  for  derivation  of  Universal  20  and  its  exceptions.  Section  5  tackles  the  fine-tuning                
procedure  and  there  is  also  a  discussion  on  what  linguists  should  learn  from   EteNGraM  in  order                  
to  participate  in  a  fruitful  dialogue  with  the  NLP  community.   EteNGram ’s  uniform  derivation  of                
the  TAM  and  Universal  20  orders  is  compared  with  Cinque’s  derivations  of  these  two  prominent                 
sequences  in  section  6,  as  well  as  with  alternative  derivations  of  Universal  20  from  the  literature.                  
Afterwards,  in  section  7,   EteNGraM  is  challenged  with  additional  data  for  Universal  20.  In                
section  8,   EteNGraM  demonstrates  its  full  power  by  making  fine-grained  predictions  about              
preferred  and  dispreferred  patterns  of  Universal  20  cross-linguistically.  Section  9  concludes  the              
paper.   

  
  

2. Complexity   as   a   property   of   analysis     
  

Both  language  and  mathematics  are  beautifully-organized  systems.  In  mathematics,  beauty            
always  means  simplicity:  a  problem  may  have  more  than  one  solution  but  the  simplest  solution  is                  
the  most  valuable.  For  example,  the  task  of  summing  up  the  numbers  from  1  to  100  has  at  least                     
two  solutions:  1+2+3,  and  so  on  to  100;  and  a  more  elegant  one  based  on  the  observation  made                    
by  the  young  Gauss  that  100+1  =  99+2  =  98+3,  and  so  on  to  51+50,  which  means                   
(1+100)*50=5050.  Both  solutions  give  the  same  result,  5050,  but  the  first  one  is  uninteresting,                
while  Gauss’  solution  has  been  used  as  a  formula  for  the  sum  of  an  arithmetic  progression  ever                   
since.  In  other  words,  mathematicians  understand  the  simplicity-complexity  issue  as  a  property              
of  the  solution  (analysis),  while  in  linguistics  the  common  belief  is  that  complexity  is  a  property                  

4   



of  the  data  (language).  This  does  not  mean  that  in  mathematics  there  are  no  easy  problems  (data)                   
and  difficult  problems  (data),  just  the  solution  can  turn  a  difficult  problem  into  an  easy  one  and                   
therefore  the  only  objective  way  of  measuring  complexity  is  through  the  assessment  of  the                
complexity  of  the  solution.  Clearly,  the  same  holds  for  CS  where  there  is  a  special  system,  the                  
so-called   Big  O ,  for  measuring  the  complexity  of  a  solution.  In  this  paper,  among  other  things,                  
our  goal  is  to  show  that  language  is  indeed  as  beautifully  organized  as  mathematics  and,                 
consequently,   language's   complexity   is   like   that   in   mathematics--depends   on   the   solution.     

Our  data  and  the  information  about  attested  and  unattested  patterns  come  primarily  from               
Cinque  (2005,  2013,  2014).  And  it  must  be  made  explicit  here  that  without  Cinque’s  research,                 
this   study   would   not   have   been   possible.     

Finally,  the  research  reported  here  is  mathematical  in  nature  and  neither  revises  nor               
formulates  a  linguistic  theory  but  approaches  a  problem  with  the  goal  to  solve  it,  whatever  the                  
consequence   for   any   theory.     
  
  

3. Introducing    EteNGraM   
  

My  goal  at  this  stage  is  to  keep   EteNGraM  as  simple  as  possible  (recall  what  was  said  about                    
simplicity  in  the  previous  section).  The  different  steps  of  the  algorithm  are  in  capital  letters.  The                  
four  numbers  “1”,  “2”,  “3”,  “4”  (unordered  sets  of  them)  are  the  input,  i.e.  these  numbers  will                   
represent  both  all  TAM  orders  in  the  verbal  domain  and  all  Universal  20  orders  in  the  nominal                   
domain.  (I  use  four  numbers  because  the  sequences  I  am  going  to  derive  have  four  elements                  
each:  V-Asp-Tns-Mood  and  N-A-Num-Dem.)  The  ordered  set,  1-2-3-4  (ascending  order),  will             
serve   as   output   and   I   will   refer   to   it   as   the   default   pattern.   
  

A. Derivation   by   n-grams   
The  default  pattern  is  the  most  frequent  pattern  when  all  pattern’s  elements  are  overt.  The  default                  
pattern  serves  for  derivation  of  existing  patterns  in  terms  of  bigrams  and  trigrams,  as  illustrated                 
below.   

  
B. Deriving   the   default   pattern   with   bigrams   and   trigrams   

B1.   Bigrams   and   trigrams   based   on   immediate   neighborhood   
  

(1)    Bigrams   of   neighbour   elements   
1-2-3-4   (default   pattern)   
1-2   
    2-3   

                   3-4   
  

(2) Trigrams   of   neighbor   elements   
1-2-3-4     (default   pattern)   
1-2-3   
    2-3-4     
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B2.   Bigrams   and   trigrams   of    non-neighbor   elements   
The  classical  n-gram  model  does  not  have  this  type  of  bigrams  and  trigrams.  I,  however,                 
postulate  them  since  it  is  not  always  the  case  that  all  elements  of  a  linguistic  sequence  are  on  the                     
same   side   of   the   base   or   overt.     
  

(3)   Bigrams   of   non-neighbor   elements     
1-2-3-4   (default   pattern)   
1       3      →   1-3   
1         4    →   1-4   
    2      4    →   2-4   
  

(4)   Trigrams   of   non-neighbor   elements     
1-2-3-4   (default   pattern)   
1      3-4   →   1-3-4   
1-2      4   →   1-2-4   

  
Since  all  bigrams  and  trigrams  in  this  subsection  are  derived  left-to-right,  at  this  stage                

EteNGraM    is   a   unidirectional   left-to-right   model.   (For   comparison,   BERT   is   bidirectional.)   
  

C.     Pre-positioning,   post-positions,   and   stranding   
It  is  well-known  that  languages  of  the  world  tend  to  be  either  prefixing  (prepositional)  or                 
suffixing  (post-positional)  but  that  not  all  elements  always  either  precede  or  follow  the  base.                
Obviously,  the  default  sequence  1-2-3-4  consists  of  a  base  (V  in  the  verbal  domain  and  N  in  the                    
nominal  domain)  and  three  non-base  elements.  If  at  least  two  of  the  non-base  elements  follow  the                  
base,  the  pattern  will  be  classified  as  post-positional.  From  now  on,  all   bases  will  be   bolded .                  
Post-positioning  is  illustrated  in  (5).  Likewise,  if  at  least  two  elements  precede  the  base,  the                 
pattern  is  a  case  of  pre-positioning  (6).  The  single  elements  that  either  follow  or  precede  the  base                   
are   ‘ stranded ’   and   from   now   on   they   will   be   colored   in   green.   

  
(5)   Post-positioning   with    stranding   

1 -2-3-4   (default,   base   under    1 )   
4 - 1 -2-3     
3 - 1 -2-4   
2 - 1 -3-4     

  
(6)   Pre-positioning   with    stranding     

1-2-3- 4    (default,   base   under    4 )   
1-2- 4 - 3     
1-3- 4 - 2     
2-3- 4 - 1     

  
In  (5)  and  (6),  the  bigrams  formed  by  the  base  and  the  stranded  element  violate  the  rules                   
postulated  in  B  but  there  is  no  way  to  repair  these  bigrams:  a  stranded  element  is  trapped  and                    
cannot  move.  Stranded  elements  are  therefore  excluded  from  the  n-gram  analysis.  Note  also  that                
although  the  bigrams  consisting  of  ‘base  +  stranded  element’  in  either  order  are  not  in  accord                  
with  the  rules  in  B,  the  rest  of  the  bigrams  and  trigrams  all  are  well-formed.  For  example,  in  (5),                     
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we  have  1-2-3  (with  stranding  of  4),  1-2-4  (with  stranding  of  3),  and  1-3-4  (with  stranding  of  2).                    
Likewise  for  (6):  1-2-4  (with  stranding  of  3),  1-3-4  (with  stranding  of  2),  and  2-3-4  (with                  
stranding   of   1).   

Now,  since  stranded  elements  move  in  a  direction  opposite  to  the  derivational  one,  this                
algorithm’s   step   (C)   makes    EteNGraM    bidirectional,   i.e.   like   BERT.   

  
D.    Possible   and   impossible   orders   

All  combinations  of  4  elements  are  4!  =  1*2*3*4  =  24.  If   EteNGraM  makes  correct  predictions                  
(properly  reflects  on  the  logic  of  how  elements  combine  to  form  linear  sequences  in  language),                 
of  the  24  possible  combinations  only  orders  containing  the  bigrams  and  trigrams  listed  in  B  and                  
C  above  should  exist  in  the  languages  of  the  world,  while  combinations  of  elements  involving                 
bad   bigrams   and   trigrams   (such   that   violate   the   assumptions   in   B   and   C)   should   not   exist.     
  

E.     Data   clustering   
Different  distributions  of  the  data  reveal  different  facts  (recall  the  way  Gauss  clustered  the                
numbers  from  1  to  100  to  find  their  sum).  Thus,  although  Cinque  structures  the  data  as  shown  in                    
(7),  I  will  cluster  the  sequences  around  the  opposition  pre-positioning  :  post-positioning,  (8)               
through   (12)   in   section   4.   
  

(7)   Cinque’s   clustering   of   the   data   in   the   verbal   domain   (the   same   for   the   nominal   domain)   
a.   √ Mood   Tns   Asp    V      
b.   √   Mood   Tns    V    Asp     
c.   √   Mood    V    Tns   Asp     
d.   √ V    Mood   Tns   Asp     
  

e.   (*)   Tns   Mood   Asp    V     
f.   (*)   Tns   Mood    V    Asp   
g.   *  Tns    V    Mood   Asp     
h.   *  V    Tns   Mood   Asp     
  

i.   (*)   Asp   Mood   Tns    V     
l.   (*)   Asp   Mood    V    Tns     
m.   √   Asp    V    Mood   Tns     
n.   √ V    Asp   Mood   Tns     
  

o.   *  Mood   Asp   Tns    V   
p.   √   Mood   Asp    V    Tns   
q.   √ Mood    V    Asp   Tns     
r.   *   V    Mood   Asp   Tns     
  

s.   *   Tns   Asp   Mood    V     
t.   √   Tns   Asp    V    Mood     
u.   √   Tns    V    Asp   Mood     
v   √ V    Tns   Asp   Mood   
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w.   (*)   Asp   Tns   Mood    V     
x.   *  Asp   Tns    V    Mood     
y.   √   Asp    V    Tns   Mood     
z.   √ V    Asp   Tns   Mood     

  
There  is  no  “j”  because  this  letter  is  missing  in  the  original  text.  The  symbols  after  the  letters                    
mark   existing   “√”,   non-existing   “*”   and   spurious   “(*)”   patterns.     
  
  

4.   Pre-training,   fine-tuning   and   application   of    EteNGraM   
  

In  this  section,  I  pretrain   EteNGraM  with  the  existing  and  non-existing  TAM  orders  from  Cinque                 
(2014),  then  fine-tune  the  model  and  employ  it  for  derivation  of  the  Universal  20  and  its                  
exceptions.     

As  already  mentioned,  I  will  cluster  the  data  around  the  opposition  pre-positioning              
(prefixation)  :  post-positioning  (suffixation).  Thus,  there  are  two  series  of  four-element             
sequences,  each  starting  with  a  default  pattern  of  its  own:  the  default  pre-positioning  pattern  is                 
#1,   while   the   default   post-positioning   pattern   is   #13.     
For   ease   of   perception,   the   different   types   of   bigrams   and   trigrams   are   colored   as   follows:   

● Bigrams  violating  the  principles  in  3B  and  3C  are  bad  bigrams  and  are  colored  in   red .  A                   
single   bad   bigram   invalidates   the   whole   sequence   of   four   elements.   

● Attested  bad  bigrams  are  in   yellow ,  i.e.  according  to   EteNGraM  these  bigrams  should  not                
exist.   Attested   bad   bigrams   are   instrumental   for   the   fine-tuning   of   the   model.     

● Hard  to  explain   attested  patterns  are  in   cyan .  Such  patterns  contain  a  trigram  consisting  of                 
two   bad   bigrams.   Again,   such   patterns   will   help   us   fine-tune   the   model.     

● Stranded  elements  are  in   green ;  a  stranded  element  does  not  have  any  impact  on  the                 
well-formedness   of   a   four-element   sequence.    

● Well-formed  bigrams  and  trigrams  (bigrams  and  trigrams  derived  according  to  the             
principles   in   3B   and   3C)    are   uncoloured.   

  
4.1.   Pre-training   and   fine-tuning   of    EteNGraM :   Tns-Asp-Mood   orders   

  
(8)   Pre-positioning,   i.e.   at   least   two   elements   precede   the   bolded   base   

Pre-positioning  can  be  discussed  as  1-2-3- 4 ,  with  the  base  under  “4”,  or  as  4-3-2- 1 ,  with                 
the  base  under  “1”.  As  demonstrated  in  this  example,  both  orders  lead  to  the  same  result,                  
therefore  I  work  only  with  the  ascending  order.  The  small  letters  following  the  numbering                
here   and   in   (9)   are   those   from   Cinque’s   list   in   (7).   

   
base   under   “4”     base   under   “1”   

               (bad   bigrams   in   descending   order)       (bad   bigrams   in   ascending   order)   
1. a.   √ Mood   Tns   Asp   V   1-2-3- 4   4-3-2- 1   
2. b.   √   Mood   Tns   V   Asp   1-2- 4 - 3   4-3- 1 - 2   
3. p.   √   Mood   Asp   V   Tns   1-3- 4 - 2   4-2- 1 - 3   
4. t.   √   Tns   Asp   V   Mood   2-3- 4 - 1   3-2- 1 - 4   
5. e.   (*)   Tns   Mood    Asp   V   2-1 -3- 4 3-4 -2- 1     
6. f.   (*)   Tns   Mood    V   Asp   2-1 - 4 - 3 3-4 - 1 - 2     
7. i.   (*)   Asp   Mood    Tns   V   3-1 -2- 4 2-4 -3- 1   
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8. l.   (*)   Asp   Mood    V   Tns   3-1 - 4 - 2 2-4 - 1 - 3   
9. w.   (*)   Asp   Tns    Mood   V   3-2 -1- 4 2-3 -4- 1     
10. x.   *  Asp   Tns    V   Mood   3-2 - 4 - 1 2-3 - 1 - 4     
11. o.   *  Mood    Asp   Tns    V 1- 3-2 - 4 4- 2-3 - 1   
12. s.   *   Tns    Asp   Mood    V   2- 3-1 - 4 3- 2-4 - 1   

  
As  can  be  seen  from  (8),  in  pre-positioning   EteNGraM  successfully  derives  existing  orders  and                
bans   non-existing   and   spurious   patterns.   
  

(9)   Post-positioning,   i.e.   at   least   two   elements   follow   the   bolded   base   
13. z.   √ V   Asp   Tns   Mood   1 -2-3-4   
14. y.   √   Asp   V   Tns   Mood            2 - 1 -3-4     
15. u.   √   Tns   V   Asp   Mood            3 - 1 -2-4     
16. q.   √ Mood   V   Asp   Tns      4 - 1 -2-3     
17. n.   √ V   Asp    Mood   Tns      1 -2- 4-3     

18. m.   √   Asp   V    Mood   Tns             2 - 1 - 4-3   
19. c.   √   Mood   V    Tns   Asp      4 - 1 - 3-2   
20. v   √ V    Tns   Asp    Mood      1 - 3-2 -4   
21. d.   √ V    Mood   Tns   Asp     1 - 4-3-2     
22. h.   *  V   Tns    Mood   Asp      1 -3- 4-2   
23. g.   *  Tns   V    Mood   Asp    3 - 1 - 4-2   
24. r.   *   V    Mood   Asp    Tns            1 - 4-2 -3     

                                     --------------------------------------------------   
13   attested   patterns   altogether   (out   of   24)   

   
In  post-positioning  (9),   EteNGraM  runs  into  trouble:  sequences  #17  through  #21  (re-listed  in               
(10)   for   convenience)   should   not   exist   but   they   do.     
  

(10)   Five   false   predictions,   all   with   permutations   of   neighbor   elements   
13.   z.   √ V   Asp   Tns   Mood      1 -2-3-4   (default)   
17.   n.   √ V   Asp    Mood   Tns      1 -2- 4-3     

18.   m.   √   Asp   V    Mood   Tns             2 - 1 - 4-3   
19.   c.   √   Mood   V    Tns   Asp      4 - 1 - 3-2   
20.   v   √ V    Tns   Asp    Mood      1 - 3-2 -4   
21.   d.   √ V    Mood   Tns   Asp     1 - 4-3-2     (2x   permut.   of   -3-   simultan.,    4-3    and    3-2 )   

  
Intriguingly,  all  false  predictions  have  one  thing  in  common:  contain   permutations  of  legal               
bigrams   of   neighbor   elements .   #21   exhibits    two   simultaneous   permutations   of   -3- .     

Further  scrutinizing  (10),  Tns  (-3-),  the  middle  element  in  the  default  post-positional              
sequence  of  non-base  elements,  Asp-Tns-Mood,  #13  in  (10),  seems  unfixed,  in  the  sense  that  Tns                 
precedes  and  follows  both  Asp  (-2-)  and  Mood  (-4-),  therefore  2-3  /  3-2  and  3-4  /  4-3  bigrams  in                     
attested  patterns,  including  the  pattern  with  two  permutations,  #21.  Recall  that  Tns  behaves               
differently  in  pre-positioning  and  there  are  no  permutations  in  (8).  Cinque  (2014:  18)  makes  a                 
similar,  but  less  powerful,  observation:  “As  far  as  I  have  seen  no  reversals  of  Mood,  Tense,  and                   
Aspect  is  attested  with  bona  fide  prefixes.  Such  orders  thus  seem  not  to  represent  genuine                 
counterexamples   to   the   order   of   Merge:   (speech   act)   Mood   >   Tense   >   Aspect.”     
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Now,  it  is  obvious  that   EteNGraM  needs  fine-tuning  and  I  will  therefore  add  to  the  model                 
the  bigrams  3-2  and  4-3  as  well-formed  in  post-positioning.  (Clearly,  BERT’s  fine-tuning  is  not                
the  same  as  that  of  EteNGraM   here  but  the  architectures  of  the  two  models  also  significantly                  
differ.)   
  

4.2.   Employing    EteNGraM    for   derivation   of   Universal   20   and   its   exceptions   
The  letters  following  the  numbers  in  (11)  and  (12)  are  those  from  Cinque  (2005,  ex.  (6))  from                   
where   also   the   dataset   was   borrowed.   

  
(11)   Pre-positioning,   i.e.   at   least   two   elements   precede   the   base    4   

1. a.   √ Dem   Num   A    N   1-2-3- 4   
2. b.   √ Dem   Num   N   A 1-2- 4 - 3     
3. n.   √ Dem   A   N   Num   1-3- 4 - 2     
4. r.   √ Num   A   N   Dem   2-3- 4 - 1     
5. e.   * Num   Dem    A   N 2-1 -3- 4   
6. f.   * Num   Dem    N   A   2-1 - 4 - 3   
7. i.   * A   Dem    Num   N 3-1 -2- 4   
8. j.   * A   Dem    N   Num 3-1 - 4 - 2   
9. u.   * A   Num    Dem   N   3-2 -1- 4   
10. v.   * A   Num    N   Dem 3-2 -4- 1   
11. m.   *   Dem    A   Num    N 1- 3-2 - 4   
12. q.   * Num    A   Dem    N   2- 3-1 - 4   

  
(12)   Post-positioning,   i.e.   at   least   two   elements   follow   the   base    1   

13. x.   √ N   A   Num   Dem 1 -2-3-4     
14. w.   √ A   N   Num   Dem   2 - 1 -3-4     
15. s.   √ Num   N   A   Dem   3 - 1 -2-4     
16. o.   √ Dem   N   A   Num   4 - 1 -2-3     
17. l.   √ N   A    Dem   Num   1 -2- 4-3   
18. k.   √ A   N    Dem   Num   2 - 1 - 4-3   
19. c.   √ Dem   N    Num   A   4 - 1 - 3-2   
20. t.   √ N    Num   A    Dem   1 - 3-2 -4    
21. d.   √        N    Dem   Num   A 1 - 4-3-2     (2x   permut.   of   3   simultan.,    4-3    and    3-2 2 )   
22. g.   * Num   N    Dem   A 3 - 1 - 4-2     
23. h.   * N   Num    Dem   A   1 -3- 4-2   
24. p.   (*) N    Dem   A    Num   1 - 4-2 -3 3   

2  Cinque’s  (2014)  writes  the  following  in  his  “Fn  10:  Greenberg  (1963:87)  states  that  N  Dem  Num  A  is  ‘‘[a]  less                       
popular  alternative’’  to  N  A  Num  Dem,  citing  Kikuyu  as  one  example.  Other  languages  that  apparently  display  this                   
order  are  Turkana,  Rendille  (Heine  1981),  Noni  (Hyman  1981:31),  Nkore-Kiga  (Lu  1998:162n59,  165),  Abu‘                
(Lynch  1998:171),  Arbore  (Hayward  1984:212),  Bai  and  Moro  (Dryer  2003:20,  43).  It  also  appears  as  a  possible                   
alternative   order   in   Romanian   (Cornilescu   1992:212);   but   see   Cinque   2004   for   discussion.”   
3  Cinque  (2014)  on  this  pattern:  “ Fn  27:  The  literature  known  to  me  reports  only  three  languages  with  this  order:                      
Pitjantjatjara  (Bowe  1990:111);  Noni,  which  has  (6d;  21  in  our  (12))  (N  Dem  Num  A)  as  its  primary  order                     
(Rijkhoff  2002:273);  and  Nkore-Kiga  (Dryer  2003:43),  which  also  has  (6d,  21  in  our  (9))  as  an  alternative                   
order  (Lu  1998:162n59,  165).  It  is  possible,  thinking  of  its  prevailing  status  as  an  alternative  order,  that  this                    
order  is  actually  spurious  (with  A  a  reduced  relative  clause;  see  footnote  2)  and  that  such  subextractions  should                    
be  ruled  out  entirely.”  The  referred  fn  2  is  almost  a  page  long  and  in  its  turn  refers  to  fn  23  that  is  half  a  page.                            
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 --------------------------------------------------   
13   attested   patterns   altogether   (out   of   24)   

  
Like  in  the  verbal  domain,  there  are  13  attested  patterns  altogether.  The  fine-tuned               

EteNGraM  now  successfully  predicts  all  patterns  in  pre-positioning  (11)  and  in  post-positioning              
(12).  Actually,  the  patterns  are  exactly  the  same  as  those  in  the  verbal  domain,  to  the  detail:  In                    
post-positioning  in  the  verbal  domain,  the  middle  element  in  the  default  sequence  of  non-base                
elements,  Asp-Tns-Mood,  was  unfixed;  in  the  nominal  domain,  this  element  is  Num,  the  default                
sequence  is  A-Num-Dem.  Num  may  precede  and  follow  A  and  Dem  and  there  are  2-3  /  3-2  and                    
3-4  /  4-3  bigrams  in  attested  orders  in  (12),  including  the  trigram  in  #21  with  two  simultaneous                   
permutations.     

In  sum,  after  fine-tuning  (allowance  of  permutations  of  bigrams  of  neighbor  elements  in               
post-positioning),  the  bigrams  and  trigrams  postulated  by   EteNGraM  successfully  derive  all             
attested  TAM  and  Universal  20  patterns  and  ban  the  unattested  and  spurious  patterns.  There  are                 
permutations  of  -3-  with  its  neighbors  postpositionally,  thus  2-3  /  3-2  and  3-4  /  4-3;  these                  
permutations  can  happen  simultaneously  as  well,  giving  the  trigram  4-3-2.  The  bigram  4-2  (of                
non-neighbor   elements)   is   the   only   bad   bigram   in   post-position.   

From  a  linguistic  point  of  view,  pre-positioning  (prefixation)  is  regular,  while             
post-positioning  (suffixation)  allows  permutation  of  the  middle  non-base  element  in  the  default              
post-positional  sequences,  Tns  in  the  verbal  domain  and  Num  in  the  nominal  domain.  The                
bigrams  Mood-Asp  and  Dem-A  are  the  only  bad  bigrams  in  post-positioning  (one  bad  bigram  in                 
each  domain).  These  two  bigrams  rule  out  all  unattested  combinations  post-positionally  in  the               
verbal  and  nominal  domain.  In  pre-positioning  the  bad  bigrams  tend  to  be  at  the  beginning  of  a                   
sequence  (6  out  of  8  cases).  In  post-positioning  the  bad  bigram  of  a  domain  blocks  3  orders  and                    
is   word-final   in   two   of   the   cases.   The   verbal   and   the   nominal   domain   are   perfectly   symmetrical.     

  
  

5.   Fine-tuning   or   what   a   linguist   should   learn   from    EteNGraM     
  

Permutation  of  neighbor  elements  is  so  frequent  in  the  languages  of  the  world  ((13)  and  (14))                  
that  it  was  obvious  that  the  model  would  need  fine-tuning.  I,  however,  decided  to  not                 
“pre-program”   permutation   in   order   to   demonstrate   a   process   similar   to   fine-tuning   in   NLP.     
  

(13) Yup’ik   (Mithun   1999:   43)   
yug- pag-cuar   yug- cuar-pag   
person-big-little person-little-big   
‘little   giant’ ‘big   midget’   

  
  
  
  
  

There  are  many  footnotes  in  Cinque  (2005)  and  almost  all  are  very  long,  I  therefore  refer  the  reader  to  the                      
original   text.     
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(14) English     
(a) circular   red    patch 4   

red   circular    patch   
  

       (b) I   wrote    a   letter   to   him .   
I   wrote    him   a   letter .     
  

It  should  be  mentioned  here  that  the  fact  that  the  sequences  we  have  modeled  do  not                  
exhibit  permutation  in  prefixation  does  not  mean  that  there  does  not  exist  a  language  with                
permutations  in  prefixation,  see  e.g.  Rice  (1989,  2000)  for  Athabaskan  languages  which  are               
prefixing.  But  perhaps  the  most  striking  case  of  prefix  permutation  reported  in  the  literature  is                 
Chinatang  (Bickel  et.  al  2007)  where  we  find   two  permutations  simultaneously  in  prefixation  (cf.                
#21   in   both   (9)   and   (12)).     
  

(15) Chintang   (Mulgãu)   dialect   (Bickel   et.   al   2007,   p.   44;   example   clustering   mine)   
The   abbreviations   used   in   the   glosses   are   as   follows:    NS    nonsingular,    A    actor,    P    primary   
object,    NEG    negative,    PST    past.   
  

(15.1) Two   permutations   of     -kha-   
u-kha-ma- cop-yokt-e   
3 NS .A CTOR - 1 NS .P- NEG -see- NEG - PAST   
ma-kha-u- cop-yokt-e   
NEG - 1 NS .P -3 NS .A -see- NEG - PST   
  

(15.2)   Two   permutations   of    -ma-   
u-ma-kha- cop-yokt-e   
3 NS .A-    NEG -1 NS .P -see-    NEG - PST   
kha-ma-u- cop-yokt-e   
1 NS .P - NEG - 3 NS .A -see- NEG - PST   
  

(15.3)   Two   permutations   of     -u-  
kha-u-ma- cop-yokt-e   
1 NS .P- 3 NS .A - NEG -see-    NEG - PST   
ma-u-kha- cop-yokt-e   
NEG - 3 NS .A- 1 NS .P - see- NEG - PST   

  
All   meaning:   ‘They   didn’t   see   us.’   

  
If  the  first  examples  in  (15.1),  (15.2)  and  (15.3)  are  thought  to  represent  the  base  cases  (I  do  not                     
claim  that  they  are  the  base  cases,  I  have  never  learned  Chintang),  the  second  examples  exhibit                  
two  permutations  simultaneously  of  each  of  the  three  elements  constituting  these  sequences  of               

4  Larson  (2021)  proposes  a  revision  of  cartography  and  models  the  order  of  the  English  adjectives  based  on                    
subjectivity  (“salient,  objective,  factual  properties  of  things  vs.  subjective  properties”),  the  example  in  (14a)  is  from                  
this  study.  I  cannot  agree  with  Larson,  I  think  that  linguistic  analyses  should  rely  on  steady  formal  orientation  points,                     
such  as  these  proposed  in  the  present  study,  and  that  pushing  towards  syntactic  features  based  on  “extralinguistic                   
relations”   such   as   subjectivity   is   a   move   in   the   wrong   direction   for   theoretical   linguistics.     
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prefixes.  The  relevant  question  is  now:  Why  does  Chintang  have  two  simultaneous  permutations               
in  prefixation,  while  the  patterns  we  analyzed  in  section  4  do  not.  The  answer  seems  to  be:                   
Tns-Asp-Mood  and  Universal  20  are  prominent  cross-linguistic  patterns,  while  Chintang            
represents  a  language-specific  extreme  case,  cf.  also  the  categories  involved  in  prefix              
permutation   in   Chintang.     
  

It  should  also  be  mentioned  that  permutation  seems  quite  common  under  stranding  (see               
(9)  and  (12)),  the  only  restriction  is  that  the  permuting  elements  must  be  neighbors,  i.e.  the                  
difference  in  their  numerical  values  cannot  be  >1.  As  explained  in  3C,  the   stranded  element  does                  
not   violate   the   latter   requirement   because   it   is   trapped   and   cannot   move.   
  

(16)   Stranding   +   permutation   (post-positioning,   bigramic   derivation)   
2 - 1 -3-4   →    2 - 1 - 4-3      (permutation   of   neighbor   elements)   
3 - 1 -2-4   →   * 3 - 1 - 4-2    (bad   bigram,   permutation   of   non-neighbor   elements)  
4 - 1 -2-3   →    4 - 1 - 3-2      (permutation   of   neighbor   elements)   

  
Recall  that  when  I  fine-tuned   EteNGraM ,  I  added  the  two  bigrams,  3-2  and  4-3,  to  the  list  of                    
legal   bigrams.   
  

In  conclusion,  although  the  fine-tuned   EteNGram  cannot  account  for  Chintang  (15)  (and              
other  prefixing  languages),  I  do  not  think  that  it  needs  further  fine-tuning  at  this  stage.  There  are                   
many  other  prominent  sequences  in  linguistics  (default  orders  of  elements  that  define  language               
linearly),  one  should  first  check  the  orders  of  elements  in  such  sequences  and  only  afterwards                 
turn  to  language-specific  orders  like  those  in  Chintang,  although  if  analyzed  in  terms  of  two                 
simultaneous  permutations  the  prefix  order  in  Chintang  is  no  more  exceptional.  I  suspect  that  the                 
order  of  elements  (words;  NLP  is  not  really  interested  in  morphology)  in  prominent  sequences  is                 
reducible  to  a  limited  number  of  linear  patterns,  similar  to  those  I  postulated  for  the  TAM  and                   
Universal  20  orders.  By  contributing  these  patterns,  linguists  can  significantly  facilitate  the              
development  of  the  next-generation  deep-net  NLP  architectures,  in  the  sense  that  linguistic              
observations  are  expected  to  lead  to  reduction  of  the  number  of  layers,  and  especially  the  number                  
of  self-attention  heads  in  a  DNN,  cf.  BERT’s  architecture  in  section  1.  (On  BERT’s                
self-attention,  see  Kovaleva  et  al.  2019;  Clark  et  al.  2019  discuss  the  type  of  linguistic                 
information  BERT  seems  to  pay  attention  to.)  Overall,  collection  of  the  combinatorial  patterns  of                
elements  in  prominent  linear  sequences  seems  a  much  more  realistic  research  scenario  for               
linguists  than  the  one  proposed  by  Linzen  and  Baroni  (2021).  The  only  problem  I  could  see  is                   
how  to  avoid  blurring  the  picture  by  language-particular  patterns  at  the  initial  phases  of  this                 
research.     

  
  

6.   Comparison   of   analyses   
  

Let  us  compare  now  the  complexity  of   EteNGraM  uniform  analysis  of  the  TAM  and  Universal                 
20  orders  (section  4)  with  Cinque’s  (2014)  derivation  of  TAM  patterns  in  (17),  and  with  Cinque’s                  
(2005)   derivation   of   Universal   20   in   (18):   
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(17) Derivation   of   TAM   patterns     (cited   from   Cinque   2014)   
a.   Order   of   merge:   [...[MoodP(speech   act)   Mood...[TensePTense...[AspPAspect   [VPV]]]]]   
b.   Parameters   of   movement:     
i)   No   movement,   or     
ii)   VP   movement   without   pied-piping,   or     
iii)   VP   movement   plus   pied-piping   of   the    whose   pictures- type,   or     
iv)   VP   movement   plus   pied-piping   of   the    pictures   of   who -type     
v)   total   vs.   partial   movement   of   the   VP   with   or   without   pied-piping     
vi)   obligatory   vs.   optional   application   of   movement.     
vii)   No   movement   of   a   phrase   not   containing   the   VP   is   possible   (except   for   (focus)     
movements   to   the   left   of   a   second-position   element).   
  

(18)   Derivation   of   Universal   20   patterns    (cited   from   Cinque   2005)   
a.   Merge   order:   [   .   .   .   [ WP    Dem   .   .   .   [ XP    Num   .   .   .   [ YP    A   [ NP    N]]]]]   
b.   Parameters   of   movement:     
i.   No   movement   (unmarked),   or     
ii.   Movement   of   NP   plus   pied-piping   of   the    whose   picture    type   (unmarked)   or     
iii.   Movement   of   NP   without   pied-piping   (marked),   or     
iv.   Movement   of   NP   plus   pied-piping   of   the    picture   of   who    type   (more   marked   still).   
v.  Total  (unmarked)  versus  partial  (marked)  movement  of  NP  with  or  without  pied-piping  (in  other  words,                  
NP   raises   all   the   way   up,   as   in   (d,l,p,t,x),   or   just   partially,   as   in   (b,c,k,n,o,r,s,w),   around   its   modifiers).   
vi.  Neither  head  movement  nor  movement  of  a  phrase  not  containing  the  (overt)  NP  is  possible  (except                   
perhaps   for   focus-related   movements   of   phrases   to   a   DP-initial   position) .     

  
Note  the  different  number  of  derivational  steps  in  (17)  and  (18):  seven  (vii)  steps  in  the  verbal                   
domain  and  only  six  (vi)  in  the  nominal  domain.  Compare  (17)  and  (18)  with   EteNGraM’ s                 
uniform   derivation   of   the   TAM   and   Universal   20   orders   in   section   4.   

The  long  citations  from  Cinque  (2014)  and  Cinque  (2005)  below  are  only  for  orientation.                
The  many  footnotes  referring  to  these  citations  in  the  original  texts  are  deleted  here.  Readers                 
interested  in  Cinque’s  exact  explanations  of  the  derivations  of  the  TAM  and  Universal  20  orders,                 
should   check   Cinque   (2014)   and   Cinque   (2005),   respectively.   
  

Cinque’s   explanation   of   the   attested   TAM   orders   
As  mentioned  many  times,  my  presentation  of  the  data  is  based  on  pre-  and                

post-positioning,  therefore  Cinque’s  alphabetic  list  in  (7),  is  not  sequential  in  (8)  and  (9).                
Nevertheless,  in  (8)  and  (9)  Cinque’s   a  corresponds  to  a,   b  to  b,  etc.,  which  also  holds  for  the                     
quotation   below:   

  
 a    is   derived   if   nothing   moves;     

b  is  derived  if  VP  raises  to  a  Spec  between  Tense  and  Aspect,  with  no  further  movement  involved                    
(Mood   Tns   VP k    Asp   t k );     

c  is  derived  if  the  VP  moves  further  to  a  Spec  between  Mood  and  Tense  (Mood  VP k  Tns  (t k )  Asp                      
t k );     

d    is   derived   if   the   VP   moves   further   to   a   Spec   higher   than   Mood   (VP k    Mood   (t k )   Tns   (t k )   Asp   t k );     
m  is  derived  if  VP  moves  to  a  Spec  higher  than  Mood  pied  piping  the  projection  dominating  Asp                    

([   Asp   VP] i    Mood   (t i )   Tns   t i );     
n  is  derived  if  VP  raises  to  a  Spec  between  Tense  and  Aspect,  and  then  raises  to  a  Spec  higher  than                       

Mood   pied   piping   the   projection   dominating   it   and   Aspect   ([VP k    Asp   t k ] i    Mood   (t i )   Tns   t i );     
p  is  derived  if  VP  moves  to  a  Spec  between  Mood  and  Tense  pied  piping  the  projection                   

dominating   Asp   (Mood   [Asp   VP] i    Tns   t i );     
q  is  derived  if  VP  raises  to  a  Spec  between  Tense  and  Aspect,  and  then  raises  to  a  Spec  between                      

Mood   and   Tense   pied   piping   the   projection   dominating   it   and   Asp   (Mood   [VP k    Asp   t k    ] i    Tns   t i );     
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t  is  derived  if  VP  moves  to  a  Spec  higher  than  Mood  pied  piping  the  projection  dominating  Tense,                    
Aspect   and   VP   ([Tns   Asp   VP] i    Mood   t i );     

u  is  derived  if  VP  raises  to  a  Spec  between  Tense  and  Aspect,  and  then  raises  to  a  Spec  higher  than                       
Mood   pied   piping   the   projection   dominating   Tense,   VP   and   Aspect   ([Tns   VP k    Asp   t k ] i    Mood   t i );     

v  is  derived  if  VP  raises  to  a  Spec  between  Mood  and  Tense,  and  then  raises  to  a  Spec  higher  than                       
Mood   pied   piping   the   projection   dominating   it,   Tense   and   Aspect   ([VP k    Tns   (t k )   Asp   t k ] i     Mood   t i );     

y  is  derived  if  VP  moves  to  a  Spec  between  Mood  and  Tense  pied  piping  the  projection                   
dominating  Aspect,  and  then  raises  to  a  Spec  higher  than  Mood  pied  piping  the  projection  dominating                  
Aspect,   VP   and   Tense   ([[Asp   VP] i    Tns   t i ] j    Mood   t j ]);     

z  is  derived  if  VP  moves  to  a  Spec  between  Tense  and  Aspect,  then  moves  to  to  a  Spec  between                      
Mood  and  Tense  pied  piping  the  projection  dominating  VP  and  Aspect,  and  then  raises  to  a  Spec  higher                    
than   Mood   pied   piping   the   projection   dominating   it,   Aspect   and   Tense   ([[[VP i    Asp   t i ] j    Tns   t j ]l   Mood   t l ]).     

  
Cinque   (2014)   does   not   provide   any   explanation   of   the   unattested   TAM   orders.     
 
Cinque’s   explanation   of   the   Universal   20   patterns,   attested   and   unattested     
In  our  (11)  and  (12),  Cinque’s  (2005)  (a)  corresponds  to  a,  (b)  to  b,  etc.  In  the  quotation  below,                     
(18)  is  referred  to  many  times,  this  is  (18)   Derivation  of  Universal  20  patterns  (cited  from                  
Cinque  2005)  in  this  section;  (18)  was  inserted  in  the  original  text  for  reader’s  convenience;                 
references   to   footnotes   are   deleted:   
  

( a )  (Dem  Num  A  N)  is  derived  if  nothing  moves  (18bi).  (No  marked  option:  very  many                  
languages.)   

( b )  (Dem  Num  N  A)  is  derived  from  Dem  Num  A  N  if  NP  raises  one  notch,  around  A,  either  with                       
(vacuous)  pied-piping  of  the   whose  picture  type  (18bii)  (unmarked)  or  without  pied-piping  (18biii)               
(marked).  (Despite  the  markedness  of  partial  movement,  it  includes  the  unmarked  case  of  pied-piping:                
many   languages.)   

( c )  (Dem  N  Num  A)  is  derived  if  NP  moves  two  notches,  around  A  and  Num  (i.e.,                   
par-tially—marked  option)  without  pied-piping  ((18biii)—marked  option).  (Two  marked  options:  very  few             
languages.)   

( d )  (N  Dem  Num  A)  is  derived  if  NP  moves  three  notches,  around  A,  Num,  and  Dem  (i.e.,  all  the                      
way   up)   without   pied-piping   ((18biii):   marked).   (One   marked   option:   few   languages.)   

( e )  (Num  Dem  A  N)  cannot  be  derived  through  (18).  NP  has  not  moved,  and  the  modifiers  to  its                     
left   are   in   the   wrong   Merge   order   (cf.   (18a)).   

( f )  (Num  Dem  N  A)  cannot  be  derived  through  (18).  Raising  of  NP  without  pied-piping  implies  a                   
wrong  Merge  order  of  the  modifiers  (Num  Dem  A  N)  (see  (18a)).  Raising  of  NP  with  pied-piping  of  the                     
picture  of  who  type  either  of  [Dem  N]  or  of  [Num  Dem  N]  also  implies  a  wrong  Merge  order  (either  Num                       
A   [Dem   N]   or   A   [Num   Dem   N]).   

( g )  (Num  N  Dem  A)  cannot  be  derived  through  (18).  Raising  of  NP  without  pied-piping  implies                  
that  the  Merge  order  is  Num  Dem  A  N,  which  is  a  wrong  order.  Raising  of  NP  with  pied-piping  of  the                       
whose  picture  type  again  implies  a  wrong  Merge  order  of  the  modifiers  (Num  A  Dem  N),  with  N  first                     
raising  around  Dem  and  [N  Dem]  then  raising  around  A.  Raising  of  NP  with  pied-piping  of  the   picture  of                     
who  type  (raising  of  [Num  N]  two  notches)  also  implies  a  wrong  Merge  order  of  the  modifiers  (Dem  A                     
Num   N).   

( h )  (N  Num  Dem  A)  cannot  be  derived  through  (18).  Raising  of  NP  without  pied-piping  implies  a                   
wrong  Merge  order  (Num  Dem  A  N).  Raising  of  NP  with  successive  pied-pipings  of  the   whose  picture  type                    
also  implies  a  wrong  Merge  order  (A  Dem  Num  N).  Raising  of  NP  without  pied-piping  around  Dem  and                    
Num,  followed  by  raising  with  pied-piping  around  A,  would  derive(6h),  but,  again,  from  a  wrong  Merge                  
order  (A  Num  Dem  N).  (Similarly  if  NP  were  to  move  around  Num  and  pied-pipe  it  to  the  left  of  A  and                        
then  move  on  without  further  pied-pipings.  TheMerge  order  in  this  case  would  be  Dem  A  Num  N—again,                   
the   wrong   order.)   

( i )  (A  Dem  Num  N)  cannot  be  derived  through  (18).  NP  has  not  moved,  and  the  modifiers  to  its                     
left   are   in   the   wrong   Merge   order   (see   (18a)).   
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( j )  (A  Dem  N  Num)  cannot  be  derived  through  (18).  NP  has  moved  one  notch,  but  the  two                    
modifiers  to  its  left  are  in  the  wrong  Merge  order  (see  (18a)).  (j)  could  also  arise  via  raising  of  NP  with                       
pied-piping  of  the   picture  of  who   type  of  either  Dem  N  or  A  Dem  N  around  Num,  but  both  derivations                      
presuppose   a   wrong   Merge   order   (A   Num   Dem   N   and   Num   A   Dem   N,   respectively).   

( k )  (A  N  Dem  Num)  has  a  well-formed,  though  marked,  derivation  with  raising  of  NP  plus                  
pied-piping  of  the   picture  of  who  type  of  the  lowest  modifier  (A),  followed  by  raising  of  [A  N]without                    
pied-piping   around   both   Num   and   Dem.   (Two   marked   options:   very   few   languages.)   

( l )  (N  A  Dem  Num)  has  a  derivation  in  which  NP  raises  past  A,  followed  by  pied-piping  of  the                     
whose  picture   type   past  Num,  followed  by  raising  of  [N  A]  without  pied-piping  (marked)  past  Dem.  (One                   
marked   option:   few   languages.)   

( m )  (Dem  A  Num  N)  cannot  be  derived  through  (18).  NP  has  not  moved,  and  the  modifiers  to  its                     
left   are   in   the   wrong   Merge   order   (see   (18a)).     

( n )  (Dem  A  N  Num)  has  a  derivation  with  partial  (marked)  raising  of  NP  plus  pied-piping  of  the                    
picture   of   who    type   of   [A   N]   (marked)   around   Num.   (Two   marked   options:   very   few   languages.)   

( o )  (Dem  N  A  Num)  has  a  derivation  from  (18a)  involving  partial  (marked)  raising  of  NP  plus                   
pied-piping  of  the   whose  picture  type,  vacuously,  and  non  vacuously  (of  [N  A])  around  Num.  (One  marked                   
option:   many   languages.)   

( p )  (N  Dem  A  Num),  if  genuine  (see  our  footnote  2),  may  be  especially  marked,  as  its  derivation                    
from  (10a)  would  seem  to  involve  raising  of  NP  with  successive  pied-pipings  of  the   whose  picture  type                   
around  A  and  Num  (alternatively,  a  single  raising  of  the   picture  of  who  type  of  [A  N]  around  Num)  and                      
then   extraction   of   the   sole   NP   around   Dem.   

( q )  (Num  A  Dem  N)  cannot  be  derived  through  (18).  NP  has  not  moved,  and  the  modifiers  to  its                     
left   are   in   the   wrong   Merge   order   (see   (18a)).   

( r )  (Num  A  N  Dem)  has  a  derivation  with  partial  (marked)  raising  of  NP  plus  pied-piping  of  the                    
picture  of  who  type  of  A  and  Num  ([Num  A  N])  (marked)  around  Dem.  (Two  marked  options:  very  few                     
languages.)   

( s )  (Num  N  A  Dem)  has  a  derivation  with  partial  (marked)  raising  of  NP  around  A,  followed  by                    
raising  plus  pied-piping  of  the   picture  of  who  type  of  [Num  N  A]  (marked)  around  Dem.  (Two  marked                    
options:   few   languages.)   

( t )  (N  Num  A  Dem)  has  a  derivation  with  raising  of  NP  without  pied-piping  around  A  and  Num                    
(marked),  followed  by  raising  plus  pied-piping  of  the   whose  picture  type  of  [N  Num  A]  around  Dem.  (One                    
marked   option:   few   languages.)   

( u )  (A  Num  Dem  N)  cannot  be  derived  through  (18).  NP  has  not  moved,  and  the  modifiers  to  its                     
left   are   in   the   wrong   Merge   order   (see   (18a)).   

( v )  (A  Num  N  Dem)  cannot  be  derived  through  (18).  Raising  of  NP  without  pied-piping  implies  a                   
wrong  Merge  order  of  the  modifiers  (A  Num  Dem  N)  (see  (18a)).  Raising  of  NP  with  pied-piping  of  the                     
picture  of  who  type  either  of  [Num  N]  or  of  [A  Num  N]  also  implies  a  wrong  Merge  order  (either  A  Dem                        
[Num   N]   or   Dem   [A   Num   N]).   

( w )  (A  N  Num  Dem)  has  a  derivation  from  (18a)  with  raising  of  NP  plus  pied-piping  of  the   picture                     
of  who  type  of  A  around  Num  (marked),  followed  by  raising  of  [A  N  Num]  around  Dem.  (One  marked                     
option:   few   languages.)   

( x )  (N  A  Num  Dem)  has  a  derivation  from  (18a)  involving  raising  of  NP  with                 
successivepied-pipings   of   the    whose   picture    type   all   the   way   up.   (No   marked   option:   very   many   languages.)   

The   fact   that   all   N-final   orders   that   do   not   respect   the   order   Dem   Num   A   ((e),   Num   Dem   A   N;   (i),   
A  Dem  Num  N;  (m),  Dem  A  Num  N;  (u),  A  Num  Dem  N)  are  very  clearly  unattested  can  indeed  be  taken                        
to  indicate  that  it  is  the  raising  of  NP  (or  of  an  XP  containing  it)  that  is  responsible  for  word  order  variation                        
within  the  DP  (perhaps,  more  generally,  that  it  is  the  raising  of  the  lexical  part  of  a  phrase  that  is                      
responsible   for   word   order   variation   within   its   ‘‘extended   projection’’).   
  

Since  my  goal  has  not  been  to  (re-)formulate  a  theory  but  to  check  whether  it  is  possible  to  do                     
NLP  without  grammar  and  to  solve  a  linguistic  problem  in  the  simplest  possible  way,  I  will  not                   
provide  a  critical  analysis  of  Cinque’s  derivations.  Moreover,  there  are  many  alternative              
explanations   of   Greenberg’s   Universal   20   (and   Cinque’s   analysis):     
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1) Dryer  (2006)  proposes  an  analysis  in  terms  of  general  principles  of  symmetry  and               
harmony;     

2) Abels  &  Neeleman’s  (2009)  analysis  is  based  on  Kayne's  (1994)  Linear  Correspondence              
Axiom;     

3) Cysouw  (2010)  speaks  of  observable  preferences  for  head  positions:  “noun  and  adjective              
tend  to  occur  together,  nouns  and  demonstratives  prefer  to  occur  at  the  phrase  boundary,                
and  noun-adjective  order  is  slightly  more  frequent  than  adjective-noun  order”  (This             
analysis  is  positional  and  focuses  on  the  linear  order  of  elements,  i.e.  it  is  in  accord  with                   
EteNGraM  but  its  predictions  are  less  powerful  than   EteNGraM ’s  and,  consequently,             
Cysouw  pleads  for  probabilistic  modeling  of  linguistic  diversity,  while   EteNGram            
classifies   in   terms   of   possible   and   impossible   patterns);     

4) Steddy  &  Samek-Lodovici  (2011)  propose  a  solution  in  terms  of  four  Optimality  Theory               
constraints   requiring   leftward   alignment   of   the   items   involved;     

5) Steedman   (2011)   speaks   of   primitive   operations   of   combinatory   categorial   grammars;   
6) Culbertson  &  Adger  (2014)  see  Universal  20  as  possibly  reflecting  a  deep  property  of  the                 

human  cognitive  system:  “noun  phrase  structure  is  likely  represented  not  primarily  in              
terms  of  linear  order,  but  rather  in  terms  of  hierarchical  relations  encoding  semantic               
scope.”     

7) Merlo  (2015)  and  Merlo  &  Ouwayda  (2018)  model  Universal  20  in  terms  of  different                
types   of   syntactic   movement.     

  
Evaluating  all  these  proposals  is  outside  the  scope  of  this  study.  Nevertheless,  it  is  safe  to                  

say  that  all  linguistics  solutions  to  Universal  20  are  syntactic  in  nature,  in  one  way  or  another;                   
they   are   thus   more   complex   than   the   bigram-   and   trigram-based    EteNGraM .     

It  should  also  be  mentioned  here  that  solutions  involving  syntactic  trees  are  hard  to                
understand  by  computer  scientists  which  could  be  one  of  the  reasons  why  syntactic  trees  are                 
disperefered  in  NLP  research.  I  will  only  outline  the  issue,  a  detailed  discussion  of  trees  and                  
templates   in   CS   and   in   linguistics   in   Manova   (ms.).   

A  computer  works  with  templatically  organized  sequences  of  zeros  and  ones,  i.e.              
everything  (including  all  types  of  data  structures,  hierarchical  and  nonhierarchical  alike)  ends  up               
as  a  linear  sequence  of  zeros  and  ones.  Templates  are  sequences  of  e.g.  16,  32  or  64  positions                    
(bits)  and  every  position  has  a  specific  predefined  value  (on  the  positional  nature  of  language,                 
see  Manova  et  al.  2020).  For  example,  a  16-bit  template  has  predefined  values  of  positions  as                  
shown   in   table   1.   

As  can  be  seen  from  table  1,  if  “1”  occupies  one  of  the  16-bit  template  positions,  the  final                    
value  of  the  position  remains  unchanged  (=  1*position  value),  if  “0”  occupies  a  position,  the                 
value  of  the  position  becomes  zero  because  multiplication  by  zero  gives  zero.  As  for  the                 
representations   of   the   decimal   numbers,   e.g.   10   =   2 3    +   2 1    =   8   +2.   
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Table   1:    A   16-bit   template,   i.e.   this   is   how   a   16-bit   machine   computes   all   types   of   tasks   
  

  
  

Diagram   1 :    Binary   tree   (CS)   

  
Source:    https://www.geeksforgeeks.org/binary-tree-data-structure/     

  
As  is  well-known  from  generative  grammar,  trees  are  a  derivational  device  in  linguistics.               

By  contrast,  in  CS,  trees  serve  for  storage  and  organization  of  information,  and  programs  are                 
created  on  how  to  read  these  trees,  i.e.  a  CS  tree  is  compatible  with  different  readings  (while  a                    
syntactic  tree  always  has  a  single  reading).  There  are  also  different  predefined  types  of  trees  in                  
CS:  rooted  and  unrooted  trees,  binary  and  non-binary  trees,  balanced  and  unbalanced  trees,  and                
so  on.  For  example,  in  a  rooted  balanced  binary  tree,  the  height  of  the  left  and  right  subtree  of                     
any  node  differ  by  not  more  than  one,  i.e.  Diagram  1  illustrates  a  rooted  balanced  binary  tree.                   
Additionally,  all  nodes  of  a  rooted  tree  are  numbered  in  a  strict  order  starting  from  the  root:  in                    
Diagram  1  the  root  node  is  under  “1”.  In  a  rooted  tree,  the  root  serves  as  an  orientation  point,  in                      
the  sense  that  the  creation  of  the  tree  and  its  search  start  from  the  root.  Since  the  drawing  of  a                      
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Bit   #   16   15   14   13   12   11   10   9   8   7   6   5   4   3   2   1   

Predefined   value     2 15   2 14   2 13   2 12   2 11   2 10   2 9   2 8   2 7   2 6   2 5   2 4   2 3   2 2   2 1   2 0   

Representation   
of   decimal   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   

Representation   
of   decimal   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   

Representation   
of   decimal   3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   

...                                   

Representation   
of   decimal   10   0   0   0   0   0   0   0   0   0   0   0   0   1   0   1   0   

...                                   

https://www.geeksforgeeks.org/binary-tree-data-structure/


syntactic  tree  does  not  start  from  the  root  but  from  the  most  distant  leaf  (called  branch  in  syntax),                    
trees  in  syntax  appear  unrooted  but  with  roots.  The  rooted-unrooted  issue  with  syntactic  trees  is                 
best  visible  in  Distributed  Morphology  (Halle  &  Marantz  1993;  Harley  &  Noyer  1999;  Bobaljik                
2017,  among  many  others)  where  the  root  of  the  word  is  not  in  the  root  of  the  tree.  Thus  from  a                       
CS  point  of  view,  with  the  version  of  trees  used  in  syntax  (i.e.  trees  that  are  unrestricted  in  terms                     
of  height  and  weight  and  that  permit  different  types  of  movement  of  elements)  everything  can  be                  
derived.     
  

Interim  conclusion,  one  can  solve  the  same  linguistic  problem  such  as  e.g.  derivation  of                
Universal  20  and  its  exceptions  in  different  ways,  the  different  solutions,  although  leading  to  the                 
same  result  (Cinque’s  list  of  attested  and  unattested  patterns),  differ  in  complexity.  That  is,                
complexity  in  linguistics  is  like  complexity  in  CS  --  a  property  of  the  solution  (analysis).  The                  
derivation  of  the  cross-linguistic  TAM  orders  and  Universal  20  and  its  exceptions  do  not  require                 
hierarchical  structures  such  as  syntactic  trees.  These  two  prominent  linguistic  sequences  are              
linear   structures   and   as   such   they   can   be   derived   only   with   bigrams   and   trigrams.     
  
  

7.   Additional   data   for   Universal   20   
  

Recently  additional  data  for  Universal  20  have  been  published  (Merlo  &  Ouwayda  2018).  In  this                 
section  I  challenge  the   EteNGraM  model  with  these  data.  The  goal  is,  among  other  things,  to                  
check   whether    EteNGraM ’s   high   efficiency   is   not   by   chance.     

Table   2  is  adopted  from  Merlo  &  Ouwayda  (2018),  with  a  single  modification:  the  first                 
column  is  added  by  me  and  contains  the  numbering  of  the  Universal  20  patterns  from  (11)  and                   
(12).  For  convenience,  (11)  and  (12)  are  repeated  at  the  end  of  this  section.  The  rest  of  the                    
columns  are  named  as  in  the  original  version  of  the  table:  “Dryer’s  Languages”  and  “Dryer’s                 
Genera”  give  the  counts  reported  in  Dryer  (2006)  by  language  and  by  genera  respectively;  the                 
next  two  columns  “Cinque’s  05  Languages”  and  “Cinque’s  13  Languages”  countain  Cinque's              
counts  from  2005,  i.e.  what  we  analyzed  and  confirmed  in  section  4,  as  well  as  Cinque’s  (2013)                   
database,  a  private  resource  shared  with  the  authors  of  table  2,  Merlo  and  Ouwayda.  The  patterns                  
reported  as  non-existing  or  spurious  in  Cinque  (2005)  and  confirmed  as  non-existing  by               
EteNGraM  but  existing  according  to  Dryer  (2006)  are   shaded  in  Table  2  where  all  bases  are  also                   
colored .  The  goal  of  this  colorful  presentation  is  to  show  that,  like  in  Cinque  (2005),  Merlo  &                   
Ouwayda’s  (2018)  major  concern  seemed  not  to  be  the  appropriate  clustering  of  the  data,  such                 
that  favors  a  solution  to  the  problem,  but  avoidance  of  omission  of  a  pattern,  although  one  could                   
also  interpret  their  approach  as  ‘monitoring  the  movement  of  N’.  Roughly,  they  change  the                
placement  of  the  N-column  one  position  forward  each  time,  see  Table  2;  and  explain  the  different                  
patterns   as   types   of   movement   with   different   costs   of   the   syntactic   operations   involved.   
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Table  2:   =  “Table  1:  Attested  word  orders  of  Universal  20  and  their  estimated  frequencies”  from                  
Merlo   &   Ouwayda   (2018);   column   1   and   colors   added   by   SM   

  
Four  of  the  24  patterns  in  Table  2  seem  problematic  for   EteNGraM :  these  patterns  should  not                  
exist  but  they  seem  to  do.  Note,  however,  that  Cinque’s  (2013)  database  confirms  only  one  of  the                   
four  problematic  patterns,  #24  in  (11):  N   Dem  A  Num  1- 4-2 -3.  Cinque  (2013)  reports  24                 
languages  of  this  type  versus  only  6  in  Dryer  (2006),  and  3  in  Cinque  (2005),  but  see  footnote  3                     
where  Cinque  explains  why  the  three  languages  should  be  considered  spurious  instances  of  the                
pattern.  The  other  three  problematic  patterns  occur  in  a  very  limited  number  of  languages:  N                 
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#  in  (11)     
and   (12)   

        Dryer’s   
Languages  

Dryer’s   
Genera  

Cinque’s   05   
Languages  

Cinque’s   13   
Languages  

1   DEM   NUM   ADJ   N   74  44  V.   many  300  

11   DEM   ADJ   NUM   N   3  2  0  0  

5   NUM   DEM   ADJ   N   0  0  0  0  

12   NUM   ADJ   DEM   N   0  0  0  0  

7   ADJ   DEM   NUM   N   0  0  0  0  

9   ADJ   NUM   DEM   N   0  0  0  0  

              

2   DEM   NUM   N   ADJ   22  17  Many  114  

3   DEM   ADJ   N   NUM   11  6  V.   few   (7)  35  

6   NUM   DEM   N   ADJ   0  0  0  0  

4   NUM   ADJ   N   DEM   4  3  V.   few   (8)  40  

8   ADJ   DEM   N   NUM   0  0  0  0  

10   ADJ   NUM   N   DEM   0  0  0  0  

              

16   DEM   N   ADJ   NUM   28  22  Many  125  

19   DEM   N   NUM   ADJ   3  3  V.   few   (4)  37  

22   NUM   N   DEM   ADJ   5  3  0  0  

15   NUM   N   ADJ   DEM   38  21  Few   (2)  180  

18   ADJ   N   DEM   NUM   4  2  V.   few   (3)  14  

14   ADJ   N   NUM   DEM   2  1  V.   few  15  

              

21   N   DEM   NUM   ADJ   4  3  Few   (8)  48  

24   N   DEM   ADJ   NUM   6  4  V.   few   (3)  24  

23   N   NUM   DEM   ADJ   1  1  0  0  

20   N   NUM   ADJ   DEM   9  7  Few   (7)  35  

17   N   ADJ   DEM   NUM   19  11  Few   (8)  69  

13   N   ADJ   NUM   DEM   108  57  V.   many   (27)  411  



Num  Dem  A  (#23  in  (12))  in  only  1  language;  Dem  A  Num  N  (#11  in  (11))  in  only  3  languages;                       
and  Num  N  Dem  A  (#22  in  (12))  in  only  5  languages.  All  counts  according  to  Dryer  (2006),  as                     
already  mentioned,  for  Cinque  (2005,  2013)  these  patterns  do  not  exist.  Since  the  languages                
violating   EteNGraM’s   derivational  rules  are  not  well-studied,  it  is  hard  to  say  what  is  behind                 
these  violations:  Do  they  really  exist  or  are  they  simply  due  to  insufficient  knowledge  of  the                  
target   language   by   the   person   providing   the   description.     

Thus,  only  pattern  #24:  N   Dem  A  Num  seems  to  pose  a  real  problem  to   EteNGraM .                  
However,  with  respect  to  this  pattern  there  is  a  significant  discrepancy  in  the  counts  in  Cinque                  
(2005),  Dryer  (2006)  and  Cinque  (2013):  3  versus  6  versus  24  languages.  This  situation  seems  to                  
indicate   definitional   and/or   methodological   inconsistencies.     
  

(11   repeated)   Pre-positioning,   i.e.   at   least   two   elements   precede   the   base    4   
1. a.   √ Dem   Num   A    N   1-2-3- 4   
2. b.   √ Dem   Num   N   A 1-2- 4 - 3     
3. n.   √ Dem   A   N   Num   1-3- 4 - 2     
4. r.   √ Num   A   N   Dem   2-3- 4 - 1     
5. e.   * Num   Dem    A   N 2-1 -3- 4   
6. f.   * Num   Dem    N   A   2-1 - 4 - 3   
7. i.   * A   Dem    Num   N 3-1 -2- 4   
8. j.   * A   Dem    N   Num 3-1 - 4 - 2   
9. u.   * A   Num    Dem   N   3-2 -1- 4   
10. v.   * A   Num    N   Dem 3-2 -4- 1   
11. m.   *   Dem    A   Num    N 1- 3-2 - 4   
12. q.   * Num    A   Dem    N   2- 3-1 - 4   

  
(12   repeated)   Post-positioning,   i.e.   at   least   two   elements   follow   the   base    1   

13. x.   √ N   A   Num   Dem 1 -2-3-4     
14. w.   √ A   N   Num   Dem   2 - 1 -3-4     
15. s.   √ Num   N   A   Dem   3 - 1 -2-4     
16. o.   √ Dem   N   A   Num   4 - 1 -2-3     
17. l.   √ N   A    Dem   Num   1 -2- 4-3   
18. k.   √ A   N    Dem   Num   2 - 1 - 4-3   
19. c.   √ Dem   N    Num   A   4 - 1 - 3-2   
20. t.   √ N    Num   A    Dem   1 - 3-2 -4    
21. d.   √        N    Dem   Num   A 1 - 4-3-2     (2x   permut.   of   3   simultan.,    4-3    and    3-2 )   
22. g.   * Num   N    Dem   A 3 - 1 - 4-2     
23. h.   * N   Num    Dem   A   1 -3- 4-2   
24. p.   (*) N    Dem   A    Num   1 - 4-2 -3   

  
  

8.   The   full   power   of    EteNGraM   
  

In  this  section,  I  will  demonstrate  that   EteNGraM  allows  for  fine-grained  classification  of  the                
attested  patterns  of  Universal  20  and  that,  consequently,  it  can  be  used  for  making  predictions                 
about   preferred   and   dispreferred   patterns   across   languages.     
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Table  3:  =  Table  2  but  with  the  data  clustering  of  (11)  and  (12),  both  repeated  at  the  end  of  the                       
previous   section   
  

The  colours  used  in  the  table  are  those  from  (11)  and  (12):   stranded  elements  do  not  violate  anything;   bad  bigrams                      
invalidate   whole   patterns,   and    permutations    of   neighbor   elements   in   post-positioning   do   not   violate   anything     
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#   in   (11)   and   (12)   
and   a    comment   

        Dryer’s   
Languages  

Dryer’s   
Genera  

Cinque’s   05   
Languages  

Cinque’s   13   
Languages  

  
Pre-positioning     

1   (default)   DEM   NUM  ADJ   N   74  44  V.   many  300  

2   (stranding)   DEM   NUM   N   ADJ   22  17  Many  114  

3   (stranding)   DEM   ADJ   N   NUM   11  6  V.   few   (7)  35  

4   (stranding)   NUM   ADJ   N   DEM   4  3  V.   few   (8)  40  

5   (bad   bigram)   NUM   DEM   ADJ   N   0  0  0  0  

6   (bad   bigram)   NUM   DEM   N   ADJ   0  0  0  0  

7   (bad   bigram)   ADJ   DEM   NUM   N   0  0  0  0  

8   (bad   bigram)   ADJ   DEM   N   NUM   0  0  0  0  

9   (bad   bigram)   ADJ   NUM   DEM   N   0  0  0  0  

10   (bad   bigram)   ADJ   NUM   N   DEM   0  0  0  0  

11   (bad   bigram)   DEM   ADJ   NUM   N   3  2  0  0  

12   (bad   bigram)   NUM   ADJ   DEM   N   0  0  0  0  

  
Post-positioning   

13   (default)   N   ADJ   NUM  DEM   108  57  V.   many   (27)  411  

14   (stranding)   ADJ   N   NUM   DEM   2  1  V.   few  15  

15   (stranding)   NUM   N   ADJ   DEM   38  21  Few   (2)  180  

16   (stranding)   DEM   N   ADJ   NUM   28  22  Many  125  

17   (permutation)   N   ADJ   DEM   NUM   19  11  Few   (8)  69  

18   (strand+permut)   ADJ   N   DEM   NUM   4  2  V.   few   (3)  14  

19   (strand+permut)    DEM   N   NUM   ADJ   3  3  V.   few   (4)  37  

20   (permutation)     N   NUM   ADJ   DEM   9  7  Few   (7)  35  

21   (2   permutations)   N   DEM   NUM   ADJ   4  3  Few   (8)  48  

22   (bad   bigram)   NUM   N   DEM   ADJ   5  3  0  0  

23   (bad   bigram)   N   NUM   DEM   ADJ   1  1  0  0  

24   (bad   bigram)   N   DEM   ADJ   NUM   6  4  V.   few   (3)  24  



Scrutinizing   table   3:   
1) Pre-positioning   

Stranding  of  the  closest  to  the  default  base  element,  ADJ  (#2),  is  more  preferred  than  stranding                  
of   the   most   distant   elemment,   DEM   (#4),   114   versus   40   languages   in   Cinque   (2013).   

2) Post-positioning   
Stranding  without  permutation  (#14,  #15,  and  #16)  is  more  preferred  than  stranding  with               
permutation  (#18  and  #19).  Now  recall  what  we  established  with  respect  to  fixedness  of  the                
non-base  elements  in  post-positioning  (section  4):  NUM  is  unfixed,  ADJ  and  DEM  are  fixed,  i.e.                 
all  permutations  are  due  to  NUM.  Stranding  of  an  unfixed  element  (#15)  is  more  preferred  than                  
stranding  of  a  fixed  element  (#14  and  #16).  Stranding  of  the  most  distant  from  the  base  (fixed)                   
element   (#   16)   is   more   prefered   than   stranding   of   the   closest   to   the   base   (fixed)   element   (#14).   

Permutation  patterns  are  extracted  from  table  3  and  listed  as  a  separate  table  4  for  ease  of                   
perception.     

  
Table   4:    Permutation   patterns   in   post-positioning   (based   on   table   3)   

  
As  can  be  seen  from  table  4,   permutation  of  elements  distant  from  the  default  base  (#17)  is  more                    
preferred  than  permutation  of  elements  closer  to  the  default  basse  (#20),  69  versus  35  languages                 
in  Cinque  (2013).  Permutation  without  stranding  (#17)  is  more  preferred  than  the  same               
permutation  under  stranding  (#18),  69  versus  14  languages.  Under  stranding  (#18  and  #19),  the                
combinatorial  logic  appears  to  be  the  opposite  to  without  stranding:  permutation  of  elements               
closer  to  the  default  base  (#19)  seems  more  preferred  than  permutation  of  more  distant  elements                 
(#18),  37  versus  14  languages,  respectively.  The  relatively  high  frequency  of  pattern  #21,  with                
two  simultaneous  permutations  (according  to  Cinque  2013,  48  languages  tolerate  two             
simultaneous  permutations),  indicates  that  the  major  ordering  factor  is  distance  /  closeness  to  the                
default  base  and  not  permutation.  This  observation  finds  support  by  what  has  been  established                
for  pre-  and  post-positioning  without  permutation.  In  prepositioning,  stranding  of  the  closest  to               
the  default  base  element  (#2)  is  more  preferred  than  stranding  of  the  most  distant  elemment  (#4),                  
114  versus  40  languages;  and  the  reverse  rule  in  post-positioning,  stranding  of  the  most  distant                 
from  the  default  base  element  (#16)  is  more  prefered  than  stranding  of  the  closest  to  the  base                   
element   (#14),   125   versus   15   languages.   
  
  

8.   Conclusions   
  

To  check  whether  NLP  without  grammar  is  possible,  I  created  a  very  simple  NLP  model,                 
EteNGraM ,  that  imitates  current  NLP  research  by  handling  semantic  relations  without  semantics.              
I  pre-trained  the  model  with  the  TAM  orders  in  the  verbal  domain,  fine-tuned  it  and  employed  it                   
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13   (default)   N   ADJ   NUM  DEM   108  57  V.   many   (27)  411  

17   (permutation)   N   ADJ   DEM   NUM   19  11  Few   (8)  69  

18   (strand+permut)   ADJ   N   DEM   NUM   4  2  V.   few   (3)  14  

19   (strand+permut)    DEM   N   NUM   ADJ   3  3  V.   few   (4)  37  

20   (permutation)     N   NUM   ADJ   DEM   9  7  Few   (7)  35  

21   (2   permutations)   N   DEM   NUM   ADJ   4  3  Few   (8)  48  



for  derivation  of  Universal  20  and  its  exceptions  in  the  nominal  domain.  Although   EteNGraM  is                 
ridiculously  simple  (it  derives  language  structure  only  with  linear  sequences  such  as  bigrams  and                
trigrams),  it  makes  exactly  the  same  predictions  with  respect  to  existing  and  non-existing  TAM                
and  Universal  20  orders  as  those  in  Cinque  (2005,  2014).  After  a  comparison  of   EteNGram’ s                 
uniform  analysis  of  the  TAM  and  Universal  20  orders  with  Cinque’s  syntax-based  analyses  of                
these  orders  and  with  other  proposals  from  the  literature  for  derivation  of  Universal  20,  I  briefly                  
addressed  the  nature  of  trees  in  CS  and  in  syntax  and  demonstrated  that  syntactic  trees  are                  
problematic  as  a  derivational  device.   EteNGraM  also  revealed  novel  facts  about  the  organization               
of  the  verbal  and  nominal  domain:  pre-positioning  is  regular  in  both  domains,  while               
post-positioning  tolerates  permutation  of  neighbor  elements,  also  in  both  domains;  there  is  a               
perfect  symmetry  of  existing  and  non-existing  patterns  in  both  domains  and  in  the  ways  these                 
patterns  are  derived;  the  same  (numerically,  i.e.  4-2)  bad  bigram  is  responsible  for  all                
non-existing  patterns  in  post-positioning  in  both  domains;  in  post-positioning  in  both  domains,              
the  middle  non-base  element  (Tns  and  Num,  respectively)  is  unfixed,  which  thus  explains  why                
there  are  no  permutations  in  pre-positioning.  To  demonstrate  that  the  surprisingly  successful              
performance  of   EteNGram  is  not  by  chance,  I  challenged  the  model  with  additional  data  for                 
Universal  20.   EteNGraM  not  only  derived  these  data  but  also  made  fine-grained  predictions               
about  preferred  and  dispreferred  patterns  across  languages  based  on  features  such  as              
+/-stranding,  stranding  of  +/-fixed  element,  stranding  with  and  without  permutation,  closeness  to              
/  distance  from  the  base,  etc.   EteNGraM  also  revealed  the  necessity  for  bidirectional  analyses  of                 
language  data,  which  is  the  case  in  current  NLP  research.  Therefore,  establishing  the               
combinatorial  patterns  of  elements  (words)  in  prominent  linear  sequences  in  terms  of  n-grams               
seems  a  promising  scenario  for  a  fruitful  dialogue  with  the  NLP  community.  Clearly,   EteNGraM                
can  be  applied  for  derivation  of  sequences  longer  than  those  discussed  in  this  paper;  this  is                  
planned   for   future   research.     
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