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Abstract 

We used Bayesian modeling to aggregate experiments investigating infants’ sensitivity to 

native language phonotactics. Our findings were based on data from 84 experiments on about 2000 

infants, learning 8 languages tested using 4 different methods. Our results showed that, unlike with 

artificial languages, infants do exhibit sensitivity to native language phonotactic patterns in a lab 

setting. However, the exact developmental trajectory depends on the phonotactic pattern being 

tested. Before 8 months, infants tuned into non-local dependencies between vowels: specifically, 

vowel harmony. Between 8- and 10-months, infants demonstrated a consistent sensitivity to both 

local and non-local consonant dependencies. Sensitivity to non-local vowel dependencies that are 

not based on harmony emerged only after 10-months. These findings provide a benchmark for 

future experimental and computational research on the acquisition of phonotactics.  

 



1 Introduction 

From research over the last several decades, we know that infants become sensitive to their 

native language speech sound categories during the first year of life. Within that year, infants tune 

into the set of sounds that are contrastive in any given language that they are acquiring as well as 

the properties of individual speech sound categories. In this paper, we present a meta-analysis of 

cross-linguistic research on when and what infants know about the phonotactics — the position, 

sequencing, and frequency of sounds — in their native language.  

Infants’ sensitivity to phonotactics is typically indexed by a differential response to more 

versus less frequent sounds or sequences of their native language. The differential behavioral 

response can include, depending on the age of the infants and the experimental paradigm, listening 

or looking preference, successful discrimination, segmentation, and even word learning. Because 

infants have exposure to their native language in their daily lives, they are expected to 

preferentially attend to, segment, and learn words with the more frequent patterns if they are 

sensitive to native language phonotactics. 

The now-classic finding by Jusczyk, Luce, & Charles-Luce (1994) set the stage for the 

research program on the acquisition of phonotactics. Jusczyk et al. presented lists of nonce 

monosyllables that had high or low probability sound patterns from English to English-learning 6- 

and 9-month-olds. Infants were tested using the headturn preference procedure. English-learning 

9-, but not 6-month-olds listened significantly longer to the high probability lists, leading Jusczyk 

et al. to conclude that infants are tuning into the phonotactic patterns of their native language 

between 6 and 9 months. This developmental timeline continues to be the established wisdom in 

the literature. 



Following Jusczyk et al., the bulk of the research on infants’ sensitivity to phonotactics has 

been focused on 9-month-olds. Specifically, we now have converging evidence that English-

learning 9-month-olds have knowledge of sequencing restrictions on consonant clusters (CC) in 

tasks measuring preference (e.g., Archer & Curtin, 2011; Mattys et al., 1999) and word 

segmentation (e.g., Archer & Curtin, 2016; Mattys & Jusczyk, 2001). Similar significant listening 

preferences for high probability CC sequences of their native language have also been reported for 

9-month-olds learning Dutch (Friederici & Wessels, 1993) and Catalan (Sebastian-Galles & 

Bosch, 2002). 

Older infants also demonstrate knowledge of native language phonotactics. English-

learning infants continue to favor high probability CC sequences when learning words in the 

second year of life (e.g., MacKenzie, Curtin & Graham, 2012; Graf Estes, 2014; Graf Estes, 

Edwards & Saffran, 2011); Japanese-learning 12- and 18-month-olds successfully discriminate 

high, but not low probability CC(V) sequences (Kajikawa et al., 2006; Mugitani et al., 2007); 

French-learning 10-month-olds demonstrate knowledge of non-adjacent dependencies between 

consonants in tasks measuring preference (e.g., Gonzalez-Gomez & Nazzi, 2012a; Nazzi et al., 

2009), segmentation (Gonzalez-Gomez & Nazzi, 2013), and word learning (Gonzalez-Gomez, 

Poltrock, & Nazzi, 2013). Hebrew- (Segal, Keren-Portnoy & Vihman, 2015) and Turkish-learning 

10-month-olds, too, demonstrate sensitivity to language-specific restrictions on non-adjacent 

dependencies, but between vowels (Altan, Kaya, & Hohenberger, 2016; Hohenberger, Altan, 

Kaya, Köksal-Tuncer & Avcu, 2016; Hohenberger, Kaya & Altan, 2017). These findings with a 

variety of phonotactic patterns are consistent with an account where infants are tuning into native 

language phonotactics by about 9 months, though even the older infants’ behavior might not be 

otherwise adult-like.  



The results from research on infants younger than 9-months, however, are both more 

limited and more equivocal. Although English-learning 6-month-olds fail to demonstrate 

sensitivity to sequencing restrictions on CC clusters in a word segmentation task (Mattys et al., 

1999), they do so in a preference task (Archer & Curtin, 2011). Yet, even in preference tasks, 

Dutch-learning 4.5- and 6-month-olds fail to favor high probability CC clusters (Friederici & 

Wessels, 1993). Research on French-learning infants also shows a discrepancy in the performance 

of younger infants depending on the specific phonotactic pattern being tested: French-learning 7-

month-olds prefer listening to sequences of more frequent segments, but not sequences with more 

frequent non-adjacent consonant sequences (Gonzalez-Gomez & Nazzi, 2012a). Like the French-

learning infants, Japanese-learning 7-month-olds also fail to show a preference for sequences with 

more frequent non-adjacent consonant sequences (Gonzalez-Gomez, Hayashi, Tsuji, Mazuka & 

Nazzi, 2014). However, Turkish-learning 6-month-olds do prefer more frequent non-adjacent 

sequences involving vowels (Altan, Kaya, & Hohenberger, 2016; Hohenberger, Altan, Kaya, 

Köksal-Tuncer & Avcu, 2016; Van Kampen, Parmaksiz, Van De Vijver, & Hohle, 2008; see also 

Hohenberger, Kaya, & Altan, 2017 for an asymmetry in discrimination consistent with a 

preference for harmonic sequences).  

To summarize, there is converging evidence that infants learning many different languages 

are sensitive to phonotactic restrictions at 9-months, as are older infants. The most variability, 

however, is in the performance of younger infants: in infants younger than 9-months, whether or 

not studies demonstrate sensitivity to phonotactics seems to depend on the task as well as the 

specific pattern being tested in addition to the infants’ native language.  

In the first part of the meta-analysis reported in this paper, we addressed whether infants 

are sensitive to native language phonotactics. This is a non-trivial question considering the climate 



of concern about replicability, underpowered studies in infant research (Oakes, 2017), as well as a 

recent meta-analytic report calling into question that infants can learn phonotactics just from short-

term exposure to artificial languages in the lab (Cristia, 2018). In the second part, we evaluated 

the extent to which infants’ sensitivity to phonotactics is moderated by age, testing methods, and 

phonotactic dependency type.  

To establish a developmental timeline we need to be sure at what ages infants fail and 

succeed on a given task. However, as Bergmann et al. (2018) review, the interpretation of 

nonsignificant findings is fraught: researchers cannot be sure whether any particular null finding 

is a true lack of ability, noise, or an error because of an insensitive experimental design or small 

sample size. Throughout the paper, we used Bayesian models to integrate evidence from data (here, 

effect sizes from comparisons of more and less frequent items in a paper) with prior expectations, 

to quantify the strength of evidence for likely values of parameters of interest. This approach is 

particularly well-suited to meta-analysis because it allows the opportunity to quantify the 

contribution of individual studies to our estimate about the object of inference — our certainty 

about infants’ degree of sensitivity to phonotactic patterns — rather than having to rely on a binary 

accept/reject criterion evaluating a null hypothesis of an effect size of zero (Kruschke, 2014). 

Bayesian inference also allows for principled synthesis of continuous levels of evidence provided 

by “significant” as well as “non-significant” findings in the summarized literature (Nicenboim et 

al., 2018). Using Bayesian modeling in this meta-analysis, we focused on establishing the age at 

which infants tune into specific phonotactic patterns in their native language. 

 

2 Methods    



2.1. Paper identification and selection 

The term ‘paper’ is used here as a cover term for conference proceedings, published journal 

articles, book chapters, and unpublished reports. The initial cohort was compiled by identifying 

papers known to the authors (26 papers) and by systematic searches of databases and reference 

lists (195 papers).  

The 221 paper titles and abstracts were then screened. After removing duplicates (38 

papers), we excluded papers which did not meet the following broad selection criteria. First, in 

order to be included in the meta-analysis, a paper needed to examine learning of segmental 

phonotactics in infants under the age of 2 years in their native language. Second, only papers using 

behavioral measures such as the headturn preference procedure, central fixation, and preferential 

looking paradigm were included. Third, we did not include papers which tested learning of 

artificial or modified languages. Because discrimination experiments habituate infants in the lab 

to one or other stimuli with a view to affecting behavioral outcomes, we treated such experiments 

as involving artificial languages and excluded them (5 papers). 

After the initial screening, we excluded papers which tested adult phonotactic learning 

(25), those that were not about the learning of phonotactics (31), involved prosodic/suprasegmental 

features (14), used artificial languages (8), were computational simulations (5), were studies of 

corpora (2), tested children older than two years (3), were review articles which did not present 

new experimental data (12), used methodologies which did not fit our criteria (7), and for which 

we were unable to obtain the text of the paper (1). This left us with 70 papers.  

We examined the full text of the remaining 70 papers to determine their eligibility for the 

meta-analysis. This eligibility assessment resulted in the additional exclusion of papers for not 

being about phonotactics (29), testing adults (2), testing phonotactic patterns unrelated to infants’ 



native language (1), testing only sequences which were illegal in the infants’ native language (1), 

testing children over the age of two (5), lacking critical information needed for the meta-analysis 

(2), and for providing only a subset of data included in another paper (1), or not providing any data 

(2). After screening, a total of 27 papers were eligible for the meta-analysis (see PRISMA 

flowchart in supplementary material on the OSF page for this project 

https://osf.io/ecpjz/?view_only=1c45fcf9a72848b5bb6dd98552c8bd85).  

2.2 Data entry  

Papers in the final cohort were entered into the analysis. Some papers included multiple 

experiments or conditions, in which case each comparison constituted a record of an experiment 

for data entry, if it provided an independent effect size estimate. For example, Van Kampen et al. 

(2008) tested infants on two sets of stimuli where one set had initial stress and the other had final; 

because they compared high and low frequency items within each set, this paper contributed two 

entries to our analysis. 

Each record was coded for a number of dimensions following previous meta-analyses 

(Bergman & Cristia, 2016; Cristia, 2018; for a full list and explanation of coded variables see 

Bergman et al., 2018). The relevant dimensions for the present analysis were, (1) background 

information on the paper, including year of publication, and whether the publication was peer 

reviewed; (2) the number of infants recruited and the number of infants excluded; (3) infants’ 

native language; (4) infants’ mean age and age range in days; (5) whether a trial type was more or 

less frequent in the infant’s native language; and (6) the mean and standard deviation of looking 

times for each trial type. For 3 papers (4 experiments; Graf Estes, 2014; Graf Estes & Bowen, 

2013; MacKenzie, Curtin, & Graham, 2012) we derived a difference measure between looking 

times to same and switch trials for high probability and low probability conditions separately and 

https://osf.io/ecpjz/?view_only=1c45fcf9a72848b5bb6dd98552c8bd85


used those as looking time measures for high and low frequency trial types. We additionally coded 

for moderator variables describing the type of phonotactic pattern tested: (1) whether the tested 

patterns occurred at word edges as compared to word medially, and (2) whether low frequency 

items in a study obeyed sonority sequencing principles.  

The final dataset had results from 1,924 infants learning 8 languages, using 4 methods in 

84 experiments from 27 studies. The distribution of age and native language of the infant in the 

final sample are presented in Figure 1. 

 

 

Figure 1. Distribution of the number of infants in the meta-analysis based on age (for a given 

experiment, top), and based on native language (bottom). 



 

2.3 Derived variables 

2.3.1 Effect size 

In order to compare the strength of evidence across studies, we converted infants’ response 

to the high and low frequency pattern within each study to a standardized effect size. We used the 

esc_mean_sd() function from the esc package to calculate effect sizes (Lüdecke, 2019). Effect size 

is commonly defined as the difference between two sample means, divided by the pooled standard 

deviation of the two means (Cohen’s d). However, in this meta-analysis, instead of using Cohen’s 

d, we used Hedges’ g because it additionally scales the calculation based on the sample size of 

each study; as a result, studies with more participants have a proportionally greater impact on the 

meta-analytic estimate (Shadis & Haddock, 2009). Outside of this, values of Cohen’s d and 

Hedges’ g are interpreted similarly. Hedge’s g was the dependent variable throughout this paper.  

If papers had multiple comparisons involving more and less frequent sequences, we 

calculated the effect size for each pairwise comparison independently. In cases where the raw data 

was made available to us, we carried out paired t-tests and used this measure instead of the reported 

omnibus comparison statistic reported in the paper. In these cases, we were also able to incorporate 

the within-individual correlation between trials into our calculation of effect size, increasing the 

precision of our estimates. 

2.3.2 Standard deviation 

A few studies did not report standard deviations (or standard errors) in the text or in figures, 

but did report means, n’s, and t-statistics. In such cases, we derived the standard deviation by 

leveraging the fact that the t-statistic is itself derived from the standard deviation of the difference 

between means, and that the standard deviation of a condition is equal to the standard deviation of 



the difference between conditions, if the conditions have the same variance. We confirmed this 

using a two-tailed paired t-test conducted on the standard deviations that were reported in the 

publications (t(108)=1, p=0.319); so we included the derived standard deviations in our models. 

2.4 Analyses 

All statistical analyses reported here were carried out in the R programming environment 

(R Core Team, 2021), using the brms package (Bürkner, 2017, 2018; v. 2.14.4) to fit Bayesian 

(hierarchical) models to the data. All models included a random intercept of experimental 

comparison nested within paper to account for the residual variance arising from possibly non-

uniform influence of the specific language, testing method, research team, and population being 

studied on experimental outcomes. Further, all models reported here took into account the 

uncertainty in the effect size in the original paper: instead of modelling effect size directly, we 

modeled the effect size drawn from a Normal distribution parameterized by the mean and standard 

error of Hedge’s g, as derived described in Section 2.1.1. We report the median value of the 

posterior distribution for each parameter of interest, along with values denoting the upper and 

lower limits of an interval that contains the central 95% of values for the parameter (the 95% 

Credible Interval). From this statistic we can make inferences about the most likely values of the 

parameter (those that are closer to the median value), and those which are less likely (those closer 

to the tails of the distribution). For intercepts and coefficients we also report the posterior 

probability of a positive effect, which ranges between 0 and 1; this statistic is obtained by simply 

examining the proportion of credible values which lie above zero, and represents the probability 

of some nonzero positive effect, regardless of magnitude.  

All models were fit using a No U-Turn Sampler to draw 10,000 samples in each of four 

Markov chains from the posterior distribution over parameter values, conditioned on the observed 



data and our priors. In order to ensure adequate independence from the starting values of the 

Markov chains, we discarded the first 1,000 samples from each chain, retaining the latter 90% of 

samples for inference.  

Since continuous variables were centered and scaled, we used a Normal(μ=1,σ=0.5) prior 

on the intercept for the primary analysis reported in Part I; moderator analyses were fit so as to 

exclude an intercept term. For the Bayesian implementation of Egger’s test reported in Section 

3.2.1, we used a Normal(0, 2) prior, since we didn’t have strong assumptions about the skewness 

of the funnel plot in question. We used a Normal(0,0.5) prior on coefficient parameters throughout, 

and a Normal(0,1) prior on standard deviations. These priors were chosen because we had no cause 

to believe we would find large effect sizes (i.e., |g| > 1), but were rather certain that an effect would 

be found, given that all typically-developing children must learn phonotactics eventually. All R̂ 

values were within 0.01 points of 1, indicating that the Markov chains explored the posterior in an 

unbiased manner (i.e., the model converged). Posterior samples from the models described here 

can be obtained from the OSF page for this project. A sensitivity analysis showed little variation 

in posterior values in the primary analysis for a range of prior expectations including Normal(0,10) 

and Normal(1,1); further data is available on the OSF page. 

 

3 Results and Discussion 

 

Part I: Are infants sensitive to native language phonotactics? 

 

In this section, we focused on whether infants are sensitive to language specific 

phonotactics of their native language. Sensitivity to phonotactics during development has been 



evaluated in one of two ways. In one approach, infants are tested on patterns from their native 

language to which they have had long-term exposure commensurate with their age. Alternatively, 

there are also experiments on what infants may learn from short-term exposure to an artificial 

language created in the lab. While the greater control and flexibility in designing artificial 

languages promises the potential to inform about plausible mechanisms available to infants during 

acquisition, a meta-analysis by Cristia (2018) summarizing this literature found that the overall 

effect size for such studies was not significantly different from zero. That is, Cristia found no 

evidence that infants can learn phonotactic patterns only from short term exposure to an artificial 

language in the lab. 

The analyses presented in Part I were targeted towards comparing infants’ sensitivity to 

phonotactic patterns learned from long-term native language exposure vs. short-term lab 

experiments. First, we report results from a Bayesian model evaluating the effect size of 

experiments where infants were tested on native language patterns to which they had long-term 

exposure. Then, we re-analyzed Cristia’s data (2018) from artificial language experiments using 

Bayesian models for an integrative analysis in which we fitted a combined model to both datasets, 

with Language (artificial vs. natural) as a fixed effect. If infants can learn phonotactics from native 

language input within the first two years, we expect a positive effect size with natural language 

stimuli. This finding would be additionally strengthened in case of a significant effect of Language 

in the joint analysis of data reported here and in Cristia (2018). 

3.1 Infants do learn native language phonotactics 

To address whether infants are sensitive to native language phonotactics we calculated the 

aggregate meta-analytic effect size across all experiments. To this end, we fit a random-effects-

only meta-analytic measurement-error model. In this model, the effect sizes for individual 



comparisons in each experiment can be thought of as standing in for the “population” of 

individuals in a more traditional random-effects experimental design. The model also incorporates 

the uncertainty in each study’s estimate of the true effect size by modeling the point-estimate as 

sampled from a normal distribution parameterized by the standard error of the effect size for the 

study in question. This allowed us to retain the uncertainty in the estimates from each of the 

experiments included rather than assuming perfect accuracy of measurement, thereby reducing 

potentially overconfident estimates of our model.  The intercept in this model is the statistical and 

scientific quantity of interest: it represents the population-level estimate of the effect size 

associated with infant sensitivity to native language phonotactics as assessed by all the literature 

we gathered.  

The meta-analytic effect size across all experiments was 0.38, with 95% Credible Interval 

(CrI)=[0.20, 0.57], p(β > 0) = 1.00. That is, based on the results from all experiments included 

here, we can be 100% certain that the effect size is positive, and 95% confident that the effect size 

is between 0.20 and 0.57. Thus, aggregating across age, pattern, language, and experimental 

method, infants showed a medium-small, consistent preference for more frequent sequences from 

their native language. Figure 2 displays the meta-analytic effect size (bottom), along with the 

shrunken estimates for the median and 95% CrI of the effect size of interest from each of the 

studies included in the meta-analysis.  



 



Figure 2. Median and 95% Credible Interval for the shrunk effect size for each experiment. The 

vertical dashed red line marks an effect size of zero, while the grey vertical lines mark the meta-

analytic median effect size plus upper and lower 95% CrIs. 

3.2 Evidence of (slight) bias in the literature 

If there is preferential submission or publication of positive results, the meta-analytic effect 

size reported here could be potentially overinflated. We evaluated bias in two ways.  

3.2.1 Some evidence for selective submission or publication practices 

First, to evaluate the possibility of preferential submission of positive results, we used a 

funnel plot (Figure 3) to plot Hedges’ g as a function of 1/Standard Error. Funnel plots are useful 

for detecting publication bias resulting from selective recruitment practices or small-study effects 

on reporting (Sterne & Egger, 2001; Sterne & Harbord, 2004). Researchers may be 

disproportionately motivated to gather larger samples when an effect in an intermediate analysis 

is near-significant and in line with their prior expectations, compared to when it is not significant, 

or even nearing significance in the opposite direction. This practice can be deduced by gaps in the 

funnel plot, particularly towards the base of the vertical axis when the power is low. Further, lateral 

asymmetries in the funnel plot can indicate that researchers were unsuccessful at publishing studies 

that failed to confirm their prior expectations. Because estimates from statistically-significant but 

low-power studies are guaranteed to be overestimates of the true effect size (Vasishth et al., 2018), 

these gaps are more likely near the base of the funnel near zero on the horizontal axis, since 

researchers are biased against publishing non-significant findings. In the funnel plot in Figure 3, 

the apparent vertical displacement of the points upwards is driven entirely by one study with a 

very small sample size but a very large effect size. 



 

Figure 3. Funnel plot which graphs 1/Standard Error (vertical axis) as a function of Hedge’s g (on 

the horizontal axis). Dotted red lines indicate median meta-analytic effect size from model reported 

in Section 3.1, with pale red lines delimiting the 95% Credible Interval. 

 

While the bulk of the studies were clustered rather symmetrically around the meta-analytic 

effect size, the outliers were asymmetrically distributed; notably, low-powered studies (low on the 

vertical axis) tended to skew more to the right on the horizontal axis than to the left, suggesting a 

possible scenario where studies with comparably small sample sizes were conducted but not 

published because of non-significant (or indeed, perhaps opposite) effects. We confirmed the 

rightward skew of the overall distribution with a Bayesian implementation of Egger’s test (Egger 

et al. 1997), which regresses the ratio of each study’s effect size and its standard error against its 

inverse standard error. If the estimate for the intercept in this model excludes zero, we can conclude 

that there is asymmetry in the funnel plot in the direction of the coefficient of the intercept. The 

results of the test did indicate that there was a slight rightward-skewing asymmetry (β = 3.14, 95% 

CrI [0.03, 6.17], p(|β>0) = 0.98). This suggests that the published literature may be biased in favor 

of effects which confirmed a priori hypotheses. 



3.2.2 No evidence of p-hacking 

We also carried out a p-curve analysis on the collected studies. This is used to evaluate 

whether researchers have exploited their degrees of freedom (including or excluding specific 

participants as outliers, trying different statistical tests, different transformations of the dependent 

variable, etc.) to “p-hack” their results.  

A p-curve analysis examines the distribution of p-values below 0.05 to determine whether 

they are (a) more likely to have arisen from a series of studies testing a robust underlying effect (a 

right-skewed p-curve), (b) indistinguishable from those which would arise under a null underlying 

effect (flat p-curve), or (c) the likely result of extensive p-hacking, and therefore of questionable 

evidential value (left-skewed p-curve). Using the pcurve() function from the dmetar package 

(Harrer et al. 2019), we found significant evidence of right-skewness in the distribution of p-values 

(p < 0.001). The p-curve analysis itself had a power of 0.84 (confidence interval 0.71-0.92), 

indicating that there were enough studies included in the meta-analysis to provide a well-powered 

robust estimate of the skewness of the p-value distribution. This confirms the absence of p-hacking 

in the literature reported. Note that because the test carried out by the pcurve() function was not a 

Bayesian one, we cannot interpret these intervals as credible intervals, as has been the general 

practice in this paper. Because there was no evidence for p-hacking and only a slight bias towards 

selective submission or publication practices, we can be confident regarding the estimates of effect 

size reported here. 

3.3 Comparison to Cristia’s (2018) meta-analysis on artificial language learning experiments 

Next, we directly compared the meta-analytic review of the 84 experiments evaluated in 

Section 3.1 with the 34 experiments summarized in Cristia (2018) on teaching infants phonotactics 

in the laboratory through artificial languages. The results from a Bayesian re-analysis of the 



artificial language learning experiments are provided in Appendix 1. The effect sizes for natural 

vs. artificial languages are summarized in Figure 4.  

The difference between the experiments using artificial vs. natural language stimuli was 

credible. Consistent with the previous analyses, we found that the effect size for artificial 

languages was very likely near-zero (β = 0.02, 95% CrI=[-0.22, 0.27], p(β>0) = 0.55), and the 

effect size for natural languages was positive, and much larger (β = 0.35, 95% CrI=[0.19, 0.51], 

p(β>0) = 1.00). Note that the estimate obtained here differs slightly from the one provided in 

Section 3.1 because of the partial pooling among results in the hierarchical model. In the general 

discussion we present hypotheses to account for infants’ success when tested on native language 

phonotactic patterns and their failure to learn from artificial languages. 

 

 

Figure 4. Effect size plotted as a function of language type (natural vs. artificial). Point estimates 

are the median of the posterior distribution for each group, with error bars encompassing the 95% 

Credible Intervals. Each translucent black dot represents an individual effect size from a study in 

the model. 



Part II: Variables influencing infants’ sensitivity to native language phonotactics 

Given the positive effect size in the developmental literature evaluating sensitivity to native 

language phonotactics, we investigated which linguistic and methodological variables might 

moderate the overall effect. 

3.4 Method matters 

 

 

Figure 5. Infant age in months, split by native language and experimental method. Each colored 

point represents a study, the black triangle shows the mean for a given language, and error bars 

show one SD.  

 



The distribution of infant age across methods and languages in our dataset is summarized 

in Figure 5. Examining the distribution of infants across methods it is clear that HPP was the 

experimental method of choice in almost all the experiments. With the caveat that the number of 

experiments varied greatly across methods, and that method was further confounded with age — 

for example, central fixation was used with younger infants, whereas pointing was only used with 

the oldest — we evaluated the moderating influence of the method on the effect size. We did this 

because variation in effect size as a function of method can inform experimental design for future 

research. 

The estimates of the effect size along with the number of studies that used this method 

from a model with a fixed effect of Method (4 levels: word learning, pointing, HPP, central 

fixation) are listed in Table 1. Our results indicate that sensitivity to phonotactic patterns was least 

likely to be detected using pointing tasks (64%), with HPP, central fixation or even word learning 

being equally, and highly effective (>95%). Finally, the largest effect size was observed with 

central fixation. Note, however, that these estimates do not take into consideration the different 

ages of infants tested with each method. Therefore, they should be considered as guides only when 

running future experiments with infants of comparable ages to those included in the analysis here. 

 

Test Method  Median ES  95% CrI  p  Experiments (N) 

Word learning  0.62  [-0.06, 1.27]  0.96  3 (68) 

Pointing  0.12  [-0.55, 0.77]  0.64  3 (58) 

HPP  0.27  [0.09, 0.46]  0.99  74 (1,598) 

Central fixation  0.75  [0.13, 1.37]  0.99  4 (74) 

 



Table 1: Median effect size, 95% Credible Intervals and p(β>0), with number of 

experiments included in the current meta-analysis for each of the methods used in the studies 

sampled here.  

3.5 Infants are already tuned into phonotactics at 6-months 

Next, we turned to the overall effect of age on sensitivity to phonotactics, the substantive 

question laid out in the introduction which motivated our study. Recall that sensitivity to native 

phonotactic patterns is thought to emerge only after 9-months (Jusczyk et al., 1994; and many 

others). In keeping with this developmental timeline first found by Jusczyk et al. in English-

learning infants, the majority of infants tested cross-linguistically in subsequent years were also 

between 8- and 10-months (Figure 5). In fact, in summarizing our data, we found two natural 

breaks in the distribution of Age as shown in Figure 1; the first was around 8-months (235 days; 

see also Figure 1), and the second was around 10-months (325 days; Figure 1). We used these 

natural breaks to categorize age into three bins (<8-months; between 8-10-months; >10-months) 

in all analyses involving age in this paper. In keeping with conventional wisdom, we expected a 

significant positive effect size at the two older ages; further, if sensitivity to phonotactics develops 

between 6 and 9-months, we expected to find an aggregate effect size of 0 in infants below 8-

months. 

The estimates for the three levels of the Age predictor from the model described above are 

displayed in Table 2. Because the credible interval for infants below 8-months includes an effect 

size of 0, it is possible that they are not yet sensitive to phonotactic patterns. However, this outcome 

is quite unlikely. At all three ages the likelihood of a positive effect size was greater than 90%, 

with little difference between the age groups. The effect size at the two youngest age groups was 

also comparable. Thus, we found no evidence that sensitivity to native language phonotactic 



patterns emerges between 6- and 9-months. Instead, the aggregate evidence from the meta analysis 

shows that infants are already sensitive to native language phonotactic patterns before 8-months. 

 

Age Group  Median ES  95% CrI  p  Experiments (N) 

< 8 months  0.25  [-0.10, 0.61]  0.92  17 (387) 

8-10 months  0.29  [0.07, 0.52]  0.99  47 (1,044) 

> 10 months  0.47  [0.13, 0.81]  0.99  20 (367) 

 

Table 2: Median, 95% CrIs, and p(β > 0) for effect size by age group, with the number of 

experiments included, and the total infants in that group. 

3.6 Sensitivity varies by dependency type 

Although in the previous section we presented an analysis that focused only on the infants’ 

age, investigating age effects on the effect size is complicated by several factors. Most obviously, 

it is quite likely that when and to what extent infants tune into native patterns, varies from language 

to language.  

This could be because languages differ in how much evidence supporting a specific pattern 

is available to infants. Consider the phonotactic pattern of vowel harmony. Vowel harmony is 

widely attested in many of the world’s language families (for a review see Mintz, Walker, Welday 

& Kidd, 2018), where non-adjacent vowels in a word are constrained to be perceptually 

similar.  Not all languages have vowel harmony — for instance, Hugarian and Turkish have 

harmony but not English — and even when two languages have vowel harmony, they may vary in 

the extent to which it is observed in the lexicon: for instance, vowel harmony is less pervasive in 

the Hungarian lexicon than in Turkish (see text accompanying results from Harrison, Thomforde, 



& O’Keefe, 2004; see also Alderete & Finley, 2016). Thus, it is quite plausible that infants learning 

Turkish, because they have greater experience with vowel harmony, tune into it earlier than infants 

learning Hungarian. 

Similarly, we know based on computational modeling that segment co-occurrence 

probabilities are more useful for finding words in English than in languages like French, Korean, 

or Japanese (Daland & Pierrehumbert, 2011; Daland & Zuraw, 2013; Boruta, Peperkamp, Crabbé 

& Dupoux, 2011). Because of differences in the usefulness of segment co-occurrence restrictions 

in their native language experience, English-learning infants tested on segment co-occurrence 

restrictions may demonstrate a larger effect size compared to infants learning French or Japanese. 

There are also differences in the extent to which adult listeners rely on specific phonotactic 

patterns, even within typologically similar languages. English adult listeners’ perception is 

affected to a greater extent by diphone probabilities than that of Dutch adult listeners (Smits, 

Warner, McQueen, & Cutler, 2003; Warner, Smits, McQueen, & Cutler, 2005; Park, Hoffman, 

Shin & Warner, 2018). It is possible that these differences in the cue weighting of co-occurrence 

restrictions across languages affect when infants learning these respective languages tune into 

them. Under such an account, English-learning infants would tune into diphone-based phonotactic 

patterns earlier or to a greater extent than Dutch-learning infants. 

Another source of variation in effect size across languages could stem from qualitative 

differences among the patterns themselves. There is a large literature showing that it is harder for 

infants to learn non-adjacent compared to adjacent dependencies, whether they be over syllables 

or words (for a review see Wilson et al., 2020). Because vowel harmony involves tracking non-

adjacent dependencies, infants may well be delayed in tuning into them compared to local segment 

co-occurrence restrictions. 



Unfortunately, even with a dataset of almost 2000 infants learning 8 languages, the data 

were too unevenly distributed to evaluate the interaction of Age, Dependency Type and Language. 

Instead, given the unequal representation of data across languages (Figure 5), we evaluated the 

effect of the interaction between Age and Dependency Type, aggregated over Language. 

Differences between infants learning different Languages were probed only when sufficient data 

were available.  

We considered three categories of phonotactic dependencies: non-local vowel 

dependencies (vowel harmony in Turkish and Hungarian; templatic melody in Hebrew), non-local 

consonant dependencies (in French and Japanese), and local dependencies (all others). Local 

dependencies, the largest subtype, included phonotactic patterns based on the frequency or 

positional frequency of a segment (unigram measures) and/or those based on the relative frequency 

of adjacent segments (bigram measures) as described in Jusczyk et al., (1994). 

We separated the non-adjacent dependencies into those involving consonants and vowels 

for two reasons. Although infants’ perception of vowel categories starts to become language 

specific by 6-months (see Tsuji & Cristia, 2014 for a meta-analytic review), their consonant 

categories do so only later in the first year (e.g., Tsao, Liu & Kuhl, 2006; Werker & Tees, 1984). 

Therefore, one might expect a similar asymmetry in the time course of infants’ sensitivity to vowel 

dependencies relative to those defined over consonants. However, in experiments with artificial 

languages, infants have been reported to learn non-adjacent consonantal dependencies more easily 

than ones involving vowels (e.g., Bonatti, Peña, Nespor & Mehler, 2005, Newport & Aslin, 2004), 

so it is also possible that infants tune into non-local consonant dependencies earlier. 

We first confirmed that the interaction between Age (<8-months; between 8-10-months; 

>10-months) and Dependency Type (V-Nonlocal, C-Nonlocal, and Local) was significant (β = -



0.81, 95% CrI [-1.48, -0.13], p(β<0) = 0.99). Given the significant interaction, we next analyzed 

the Age effects within each Dependency Type separately. The results are presented in Table 3, and 

summarized graphically in Figure 6. The results show distinct developmental trajectories based on 

phonotactic dependency type.  

 

Figure 6: Effect size by binned Age crossed with Dependency Type, with the point 

representing the median, and the thicker and thinner intervals encompassing the central 50% and 

95% Credible Intervals for values of effect size, respectively. The red dashed vertical line marks 

an effect size of zero. 

 

Dependency 

Type 

 Age Group  Median 

ES 

 95% CrI  p  Experiments (N) 



 

V-Nonlocal 

 < 8 months  0.64  [-0.20, 1.45]  0.93  4 (131) 

 8-10 months  -0.26  [-1.00, 0.46]  0.23  7 (190) 

 > 10 months  0.16  [-0.63, 0.93]  0.66  4 (60) 

 

C-Nonlocal 

 < 8 months  -0.20  [-0.66, 0.27]  0.19  6 (104) 

 8-10 months  0.34  [-0.02, 0.69]  0.97  13 (216) 

 > 10 months  0.21  [-0.41, 0.79]  0.75  3 (44) 

 

Local 

 < 8 months  0.08  [-0.39, 0.53]  0.63  7 (152) 

 8-10 months  0.53  [0.10, 0.95]  0.99  27 (638) 

 > 10 months  0.31  [-0.18, 0.76]  0.90  13 (263) 

 

Table 3: Median and 95% CrIs and p(β>0) for effect size by Age group nested within 

Dependency Type, with the number of experiments included, and the total infants in that group.  

3.6.1 Sub-patterns in infants’ sensitivity to non-local dependencies 

For non-local vowel dependencies, there was a shift in the direction of preference around 

8-months from familiar to novel. Infants younger than 8-months preferred high frequency 

sequences that were familiar, as indicated by the medium to large positive effect size; a positive 

effect size was also the most likely outcome of an experiment testing sensitivity at this age (93%). 

In contrast, infants between 8 and 10-months were more likely (~77%) to prefer less frequent 

sequences, i.e., those with novel non-local vowel dependencies, as indicated by the negative effect 

size. However, the evidence in support of a novelty preference was modest. 

Interestingly, all experiments that contributed to the strong early sensitivity to non-local 

vowel dependencies investigated vowel harmony. From Figure 7 (left panel), we can see that 

infants learning a language with vowel harmony showed a large preference for harmonic sequences 



before 8-months (β = 0.55, CrI = [-0.35, 1.36], p(β>0) = 0.89, based on 4 expts with 131 infants), 

with an almost equal swing towards novelty with increasing experience (β= -0.40, CrI = [-1.24, 

0.49], p(β>0) = 0.18, based on 3 expts with 118 infants; i.e., 82% likelihood of negative effect 

size). Note that the results from infants older than 10-months were consistent with an effect size 

of 0, but unreliable because they were based on data from one experiment with only 14 infants (β 

= -0.13, CrI = [-1.06, 0.81], p(β>0) = 0.39). The findings on harmony are quite compelling because 

they are based on within lab comparisons of infants learning just two languages — Turkish and 

Hungarian — at different ages and using the same procedures. 

 

 

Figure 7. Effect size by binned Age crossed with type of nonlocal vowel dependency 

(harmony in the left panel, non-harmony in the right panel), with the point representing the median, 

and the thicker and thinner intervals encompassing the central 50% and 95% Credible Intervals for 

values of effect size, respectively. The red dashed vertical line marks an effect size of zero. 

 

A different pattern emerged for non-local vowel dependencies that were not based on 

harmony (Fig 7, right panel). These data were from French- and Hebrew-learning infants’ 

sensitivity to arbitrary co-occurrence restrictions between non-adjacent vowels. Only infants older 



than 10-months preferred familiar native language sequences based on restrictions between non-

adjacent vowels (β = 0.59, CrI = [-0.14, 1.22], p(β>0) = 0.95, based on 3 expts with 46 infants). 

No data were available for the youngest age group and the effect size in the 8- to 10-month-old 

bin was centered around 0 (β = 0.03, CrI = [-0.77, 0.67], p(β>0) = 0.53, based on 4 expts with 72 

infants). This shows that infants tuned into non-local vowel dependencies other than harmony only 

after 10-months. 

The developmental time course for non-local consonantal dependencies was somewhat 

similar to that for the non-local vowel dependencies that were not based on harmony. These 

findings were all on the dependency between labial and coronal consonants and almost exclusively 

from French-learning infants (French n = 344; Japanese n = 60). From Figure 6 and Table 3 we 

can see that not only did the credible interval for infants below 8-months include 0, the likelihood 

of a positive effect size was low, only 19%. In contrast, between 8 and 10-months, the effect size 

was always positive. Thus, our results confirmed that a sensitivity to non-adjacent consonantal 

dependency emerges between 8 and 10 months (Gonzalez-Gomez & Nazzi, 2012a; Nazzi, 

Bijeljac-Babic & Bertoncini, 2009; Gonzalez-Gomez, Hayashi, Tsuji, Mazuka & Nazzi, 2014). 

In sum, infants tuned into non-adjacent consonant dependencies earlier than to non-

adjacent vowel dependencies, but only when the latter were not harmony-based. 

3.6.2 Infants are sensitive to local dependencies between 8- and 10-months  

The last subtype, local dependencies, had the most diversity in terms of methodology, 

pattern tested, as well as native language background of infants. Collapsing across these categories, 

we confirmed that infants were sensitive to local dependencies in their native language both 

between 8-10 months and after 10-months (> 89%). Infants younger than 8-months, however, were 



not sensitive to local dependencies; the effect size was centered near 0, with only a 62% likelihood 

of a positive effect size.  

As can be seen from Figure 6, English (n = 614) and Dutch (n = 335) were the two 

languages with the most number of infants spanning different ages tested. In all these experiments 

infants were tested on local dependencies. This allowed us to investigate how language-specific 

differences might present within a specific subtype. The median effect size for each age group 

within the two languages is presented in Figure 8. The performance of infants learning English 

and Dutch differed at the two younger ages, but not when infants were older than 10-months. 

Infants below 8-months and between 8- and 10-months were more likely to demonstrate a positive 

effect if they were learning English (59% and 98%) not Dutch (37% and 87%). Even when the 

likelihood of a positive effect was overwhelming, that is between 8- and 10-months, the size of the 

effect was larger in infants learning English (β = 0.60, CrI = [0.05, 1.11], p(β>0) = 0.98, based on 

15 expts with 344 infants) compared to Dutch (β = 0.23, CrI = [-0.21, 0.66], p(β>0) = 0.87, based 

on 9 expts with 222 infants). These differences in the likelihood of a positive effect as well as the 

magnitude of the effect size are consistent with a greater role of segment-segment co-occurrence 

restrictions in English phonotactics compared to Dutch. 

 

 



Figure 8. Effect size by binned Age for local dependencies in Dutch (left panel) and 

English (right panel). The point represents the median, and the thicker and thinner intervals 

encompassing the central 50% and 95% Credible Intervals for values of effect size, respectively. 

The red dashed vertical line marks an effect size of zero. 

 

In summary, the results from the meta-analysis demonstrated that infants under 8-months 

were sensitive to phonotactics involving vowel harmony, but not other local or non-local 

dependencies. Between 8- and 10-months, infants demonstrated a novelty preference for vowel 

harmony and a robust familiarity preference for phonotactic patterns based on both local and non-

local consonantal dependencies, with the former being larger. Only after 10-months was a 

consistent preference for non-local, non-harmony-based vowel dependencies evident. Finally, 

specific language experience altered the likelihood of a positive effect as well as its magnitude at 

the earliest stages of acquisition. In the next section we examined potential moderators that could 

affect the meta-analytic effect size for local dependencies, the subset of the data that was the largest 

and most heterogeneous.  

3.6.3 Sensitivity is greater at edges, but unaffected by sonority sequencing violations 

Finally, we evaluated two other moderators, one domain-general, and the other domain-

specific, that have been proposed to influence the learning of local dependencies. First, we 

evaluated the influence of whether the pattern being tested was at the edge of a word. There is 

empirical as well as computational evidence that speech material at the edges of words, phrases or 

even sentences is very salient to infants (e.g., Daland & Pierrehumbert, 2011; Endress, Nespor & 

Mehler, 2009; Ferry, Fló, Brusini, Cattarossi, Macagno, Nespor & Mehler, 2016; Newport, 1990). 



Speech material at edges is thought to be privileged based on a domain-general advantage in 

sensory encoding and recall (for a review see Hurlstone, Hitch & Baddeley, 2014; Sundara, 2018). 

We only evaluated the edge effect within the set of local dependencies because all non-

local dependencies involved segments at edges. Within local dependencies, the differences 

between effect size for phonotactic patterns at word edges and word medially was credible. Studies 

with phonotactic dependencies located word medially (10 studies with 176 infants) had an effect 

size of 0.29 (95% CrI = [-0.34, 0.90],  p(β>0) = 0.82), whereas studies where the patterns were at 

an edge (37 studies with 877 infants) had an effect size of 0.46 (95% CrI = [-0.01, 0.89], p(β>0) = 

0.97). The greater likelihood of the effect size as well as its larger magnitude confirmed that infants 

privilege speech material at edges for learning phonotactics. Figure 9 shows effect size as a 

function of edge. 

 

Figure 9. Effect size plotted as a function of edge status. Point estimates are the median of 

the posterior distribution for each group, with error bars encompassing the 95% Credible Intervals. 

Each translucent black dot represents an individual effect size from an experiment. Note that this 

plot excludes two outliers (X, Y, from condition “at edge”) to make the differences more visible. 

 



The final moderator we evaluated is more controversial. Based on typological tendencies, 

a language-independent linguistic bias referred to as the sonority sequencing principle is thought 

to govern the distribution of segments in specific syllable positions. Individual segments vary in 

sonority, typically depending on the extent to which the vocal track is open or the sound is loud 

(Parker 2002); thus vowels are considered to be the most sonorous while oral stop consonants (e.g. 

[p], [t]) are the least. Segment combinations that result in an increase in sonority from the onset of 

the syllable, and decrease in sonority at the offset of the syllable are the most common across 

languages. Although it is contentious whether knowledge of sonority sequencing is innate or 

learned from language experience, it has been shown to influence word segmentation as well as 

phonotactic judgments by adults (e.g., Daland, Hayes, White, Garellek, Davis, & Norrmann, 2011; 

Ettlinger, Finn, & Hudson Kam, 2012). Additionally, in one study, brain activity in newborns has 

been shown to differ in response to changes in sonority sequencing (Gómez, Berent, Benavides-

Varela, Bion, Cattarossi, Nespor, Mehler, 2014). Thus, it is possible that infants’ perception is 

influenced by sonority sequencing principles even in infancy. 

This analysis was restricted to the subset of studies targeting CC clusters. If infants are 

sensitive to the SSP, we expected studies with low frequency items that violated them to have a 

larger effect size. However, a statistical analysis revealed no difference in the effect size of studies 

where low frequency items violated the SSP (4 studies with 87 infants; β = 0.27, 95% CrI = [-0.66, 

1.19], p(β>0) = 0.72) compared to those that did not involve violations (1 study with 35 infants); 

β = 0.20, 95% CrI = [-0.76, 1.16], p(β>0) = 0.66). However, note that there was very little data for 

this comparison because in virtually all studies with CC clusters, low frequency items also violated 

sonority sequencing principles. 

4 General Discussion 



We aggregated data from 1924 infants learning 8 languages, tested using 4 methods across 

84 experiments from 27 studies, to address when and how infants acquire native language 

phonotactics. We had three main findings from the meta-analysis. First, overall, infants favored 

the higher frequency phonotactic patterns as demonstrated by a positive effect size in the small-

to-medium range. Second, infants were sensitive to some phonotactic patterns even before 9-

months . Third, the developmental trajectory, as well as the size of the effect, differed substantially 

by dependency type: infants were sensitive to some non-local dependencies in their native 

language even before they were sensitive to local dependencies; this is even more unexpected 

because the non-local dependency involved vowels. We discuss each of these findings in turn. 

We were motivated to conduct this meta-analysis by Cristia’s (2018) findings that infants 

do not learn phonotactic patterns from short term exposure to an artificial language in the lab. This 

is surprising because with one exception, all studies summarized by Cristia (2018) tested patterns 

on word edges, a position that is privileged. In contrast with her findings, we found strong evidence 

of infants’ ability to detect frequent phonotactic patterns from their native language. The natural 

and artificial language studies used similar methods and tested infants in a similar age range, so 

neither of these variables can account for the disparate findings. We suggest two alternative 

explanations.  

The trivial explanation is that the extent of exposure in the artificial language experiments 

with infants, typically less than 4 minutes, is just too little for infants. In fact, it is not just 

phonotactics that infants fail to learn from short-term exposure to an artificial language; they also 

fail to learn phonetic categories (Cristia, 2018). Given evidence that sleep can facilitate 

generalization and consolidation of memory (see Gómez & Edgin, 2015 for a review), perhaps 

repeating short-duration exposure on consecutive days, or even testing on a second day, would 



result in better outcomes. Alternatively, simply increasing the amount of exposure to around 20 

minutes, as is typical in adult artificial language experiments that have been successfully 

replicated, may also serve the same purpose.  

A second explanation may involve interference from the native language patterns that 

infants are learning at the same time. Outcomes of artificial language experiments have been 

reported to differ in adults learning different native languages attesting to interference effects 

(White et al., 2018). So it is possible that because of these interference effects infants were unable 

to learn from short term exposure in the lab. Regardless of the reasons, we can be sure that infants 

do not learn local dependencies, or even non-local consonant dependencies that are at the 

beginning and ends of words (hypothesized to be the easiest to learn; Endress & Mehler, 2010) 

from limited exposure in the lab. Whether infants can learn non-local vowel dependencies, 

particularly vowel harmony, from short term exposure to artificial languages in the lab, remains 

an open question. 

One of the surprising findings of the meta-analysis was the early sensitivity infants 

demonstrated to vowel harmony. Infants demonstrated a significant, medium- to large-sized 

preference for harmonic sequences in their native language even before 8-months of age. This is 

unexpected because vowel harmony involves learning a non-local dependency and non-local 

dependencies are well-documented to be difficult to learn (for a review see Wilson et al., 2020). 

To account for the widespread prevalence of harmony across the world’s languages, in some 

phonological frameworks like Autosegmental Phonology and Articulatory Phonology (Goldsmith, 

1990; Browman & Goldstein, 1992), vowels are represented on a distinct tier, allowing V-V 

dependencies to be treated as local. Under such accounts, all V-V dependencies should be 



privileged. However, this is not consistent with findings from infant experiments using either 

artificial or natural languages. 

Research using artificial languages shows that infants find non-local dependencies between 

vowels to be particularly challenging to learn when they are arbitrary (e.g., Bonatti, Peña, Nespor 

& Mehler, 2005, Newport & Aslin, 2004 — neither included in the Cristia, 2018 meta-analysis). 

Indeed in this meta-analysis as well, we found evidence that infants tuned into non-local, non-

harmony vowel dependencies only after 10-months. In contrast, infants tuned into non-local 

consonant dependencies between 8- and 10-months. So, infants tuned into non-adjacent, non-

harmony dependencies involving vowels later in development than to ones involving consonants. 

In sum, not all V-V dependencies are privileged as might be expected if they are represented on a 

separate tier. Thus, the substance of the dependency itself, above and beyond its distribution in the 

stimulus items (local vs. non-adjacent) must also impact the developmental trajectory. 

Not only were infants sensitive to vowel harmony at the earliest ages as demonstrated by a 

large familiarity preference, they showed a complete switch to a novelty preference between 8- 

and 10-months. A switch was not observed for any other dependency type, further attesting to the 

uniqueness of vowel harmony. A switch in preference for non-harmonic sequences after 8-months 

is likely to be a result of the unique experience infants learning vowel harmony languages have. 

Unlike other dependency types, languages with vowel harmony provide evidence for it in nearly 

every multisyllabic word. A switch to a novelty preference within a few months may be a result 

of this overwhelming experience with vowel harmony that infants have (e.g., Houston-Price & 

Nakai, 2004; Hunter & Ames, 1988).  

It is also possible that it is easier for infants to learn vowel harmony compared to any other 

dependency type, even when provided with a comparable amount of evidence in their input, 



because it is perceptually salient. Consistent with this explanation, there is some evidence that 

even English-learning infants who have no experience with harmony are able to use it to segment 

words (Mintz et al., 2018). If all infants are initially sensitive to vowel harmony, then our results 

show that sensitivity to vowel harmony for those with experience is facilitated before 8-months of 

age. Based on the findings of Mintz et al. (2018), it seems likely that for infants without experience 

with a native language exhibiting vowel harmony, the ability to detect vowel harmony declines at 

around the same age. Such a developmental trajectory is consistent with Attunement theories of 

perceptual development (Aslin & Pisoni, 1980; Aslin, Werker & Morgan, 2002). Attunement 

theories also provide the most comprehensive account of infants’ discrimination of speech sound 

categories (Sundara, Ngon, Skoruppa, Feldman, Onario, Morgan, & Peperkamp, 2018). 

The learning of all other phonotactic dependencies, including arbitrary non-local vowel 

restrictions, is induced by language experience consistent with Learning theories of perceptual 

development (Aslin & Pisoni, 1980; Aslin, Werker & Morgan, 2002). Our findings showed that 

the earliest patterns that infants acquire are likely to be local restrictions on the edges of words and 

phrases. Effect sizes were more likely to be positive, and larger for local dependencies at edges. 

In contrast, our results did not provide evidence that infants are sensitive to the sonority sequencing 

principle, although the data available were very limited. Whether this is because the effect size 

associated with the SSP is small, or because it varies to a large extent with language-specific 

experience remains to be determined.  

At least for local dependencies, our results demonstrated that the timing of sensitivity, as 

well as the effect size of sensitivity to phonotactic patterns is affected by specific language 

experience. Infants learning English were more likely to show a positive, larger effect size for local 

phonotactic patterns compared to those learning Dutch learning. This was consistent with the 



findings from adults that native listeners of English rely more on diphone probabilities than native 

listeners of Dutch. Further research is needed to tease apart the specific properties of the input 

infants are tuning into to extract local dependencies and how that input changes from infancy to 

adulthood.  

By 8- to 10-months, infants are sensitive to both local and non-local consonantal 

dependencies. However, the effect size for infants’ sensitivity to non-local dependencies remained 

smaller than that for local dependencies, consistent with proposals that the former are harder for 

infants to learn. A consistent, positive preference for non-local arbitrary vowel dependencies 

emerged even later — only after 10-months. This is also consistent with claims based on artificial 

languages that (arbitrary) non-local vowel dependencies are more challenging for infants to learn. 

Infants older than 10-months were most likely to show a positive effect size for all 

dependencies — except for vowel harmony where the number of infants tested was very small. 

We judge that this effect is likely to be quite robust because infants in this age group were tested 

using all 4 methods and task demands in word learning or pointing experiments are quite different 

from those of listening preference experiments.  

In sum, the results from this meta-analysis allowed us to generate evidence-based 

developmental trajectories for infants’ sensitivity to different phonotactic patterns. Whether 

infants learn phonotactics from words in their lexicon (e.g., Thiessen & Saffran, 2003) or from the 

unsegmented speech stream (e.g. Adriaans & Kager, 2010; Brent & Cartwright, 1996; Daland & 

Pierrehumbert, 2011), we anticipate that the acquisition trajectory laid out in this paper will prove 

useful as a benchmark for constraining computational models of acquisition and for guiding future 

infant research. 

5 Conclusion 



In this meta-analysis, we aggregated data from around 2000 infants between 0 and 2 years 

of age, learning 8 languages, using 4 different methods from 84 experiments. Using Bayesian 

modeling, we established that unlike with artificial languages, in experiments with natural 

language stimuli, infants demonstrate sensitivity to phonotactic patterns. By 8-months, infants are 

already tuned into phonotactic patterns based on vowel harmony. Between 8- and 10-months, 

infants consolidate their learning of local restrictions as well as non-local restrictions involving 

consonants. Furthermore, infants’ sensitivity to local restrictions is greater at word edges. Finally, 

sensitivity to non-local vowel restrictions that are not based on harmony are the last to emerge, 

and seen only after 10-months of age. By using Bayesian modeling in conjunction with the meta-

analysis we were able to integrate the evidentiary value of nonsignificant and significant effects 

towards establishing the developmental timeline. 
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Appendix I 

To re-analyze the 34 studies summarized in Cristia (2018) using Bayesian modeling, we 

used a Normal (0, 0.5) prior on the intercept, because of the finding of no significant directional 

effect size reported in Cristia (2018). This is in contrast to the model for natural language 

phonotactic sensitivity. Refitting the model with a Normal (1, 0.5) prior on the intercept did not 

change the results in a meaningful way. The intercept of this model gives an estimate of the group-

level effect size.  

Figure A provides a plot for the effect size for the studies from Cristia (2018), with the 

black dot and grey distribution representing the shrunken meta-analytic estimates of the true effect 

size for that study. Infants in this dataset range in age from 5-months to 17-months. And in all 

studies but one, infants were tested on local or non-adjacent consonantal dependencies at word 

edges. The vertical red dashed line marks an effect size of zero, and the grey vertical lines mark 

the median meta-analytic effect size, plus upper and lower bounds of the 95% CrI.  

The effect size for this model based on the 34 experiments summarized by Cristia (2018) 

was 0.06, CrI=[-0.19, 0.32],  p(β > 0) = 0.68. This is consistent with the results reported in Cristia 

(2018) that the effect size is zero, because the 95% CrI included 0. Further, the Bayesian method 

used here allowed us to more precisely characterize this null effect: a slight majority (68%) of the 

credible values for the effect size lie above zero consistent with a positive effect size, giving only 

the barest hint of the effect presumed in the literature.  Even this small effect was, surprisingly, 

driven by experiments in which infants were taught non-local consonantal dependencies (Median 

effect size 0.17 [-0.35, 0.69], p(β>0)=0.76) instead of local ones (Median effect size = 0.01 [-0.36, 

0.42], p(β>0)=0.51). Note that non-local dependencies are presumed to be harder to learn than 

local ones. 



 

 

Figure A. Median and 95% Credible Interval for the shrunk effect size for each experiment 

summarized in Cristia (2018). The vertical dashed red line marks an effect size of zero, while the 

grey vertical lines mark the meta-analytic median effect size plus upper and lower 95% CrIs. 
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