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Abstract

Efforts to understand the brain bases of language face the mapping

problem: at what level do linguistic computations and representations

connect to human neurobiology? We review one approach to this prob-

lem that relies on rigorously defined computational models to specify

the links between linguistic features and neural signals. Such tools can

be used to estimate linguistic predictions, model linguistic features, or

specify a sequence of processing steps that may be quantitatively fit

to neural signals collected while participants use language. Progress

has been helped by advances in machine learning, attention to linguis-

tically interpretable models, and openly shared datasets that allow re-

searchers to compare and contrast a variety of models. We describe one

such dataset in detail in the supplementary materials.
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1. Linguistics as abstract neurobiology

“Verbing weirds language” says the boy Calvin to his friend Hobbes in a 1993 newspaper

comic strip written by Bill Watterson.1 The thing is, Hobbes (a stuffed tiger made animate

by Calvin’s imagination) has no problem understanding this sentence, and nor of course

does the reader. Language users regularly deal with the abstractions of human language,

whether turning adjectives into verbs, as in the comic strip, formulating a question from a

declarative statement, or recognizing the dual meanings of the statement “Yesterday I saw

an elephant in my pajamas.” Linguists make sense of these patterns by recognizing that

the human capacity for language rests on a complex set of abstractions: from phonological

features to syntactic categories, Linguistics is abstract. As with other cognitive faculties,

these linguistic abstractions are instantiated in the concrete neurobiology of language users.

The biological foundation of linguistic knowledge has been a pillar of generative linguis-

tics since the 1960’s (Lenneberg 1967). Yet, efforts to map between the abstract constructs

of linguistics and concrete properties of the human brain face significant challenges. Embick

& Poeppel (2015) discuss two specific barriers to grounding linguistics in neurobiology. The

first concerns ontology, or the entities that are discussed in theories of linguistics versus the-

ories of neuroscience: How does a noun relate to a neuron, or how do patterns of electrical

discharge relate to syntactic dependencies? It is not plausible to simply draw a line from a

primitive in one domain to a primitive in another. The second barrier concerns granularity:

what is the “right” kind of primitive for connecting linguistic abstractions with neurobio-

logical properties? Are there specific neuronal columns devoted to computing noun phrases,

or do phrasal categories emerge from interactions between disparate cell assemblies? Is the

noun phrase an appropriate unit to connect with neuronal function, or ought linkings be

made to specific constructions, or perhaps to more general notions such as Merge? The

field has not reached a consensus about how to tackle these questions, collectively called

the Mapping Problem between linguistics and neurobiology (Poeppel 2012).

The Mapping
Problem: The

challenge of linking

linguistic and neural
primitives in an
explanatory way.

This paper reviews one approach to answering the Mapping Problem, one that relies on

computational models of language processing. These models explicitly specify how proper-

ties of human language relate to real time processing, and also how such processes might

affect observable neural signals. As such, this approach relates both to concrete properties

of the brain and to live issues in the study of human language.

1Calvin and Hobbes - January 25, 1993.
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Box 1: Bluffer’s Guide to Neurolinguistic Methods

fMRI Functional Magnetic Resonance Imaging measures the flow of oxygenated blood

inside the brain; more oxygenated blood flows in to serve the metabolic needs of

neurons that are active, but with a delay of 4-8 seconds. Recordings from fMRI are

thus blood-oxygen level dependent, and so commonly referred to as the BOLD signal.

This tool offers high spatial but low temporal resolution. See Brennan (2020) or

chapter 2 of Kemmerer (2014).

EEG Electroencephalography measures electrical potentials on the scalp that are generated

by tens of thousands of neurons from the cortex. These “brainwaves” are sensitive

with high temporal resolution to the activity of synchronized neurons that share a

common orientation, but the electrical signal is spatially imprecise (see Luck 2014 or

page 56ff of Kemmerer 2014 chapter 2).

ERP Event-related potentials are measured by averaging together EEG signals that have

been aligned to an event such as stimulus presentation. Well-studied ERP components

include the N400, a negative-going central-posterior voltage potential that increases in

amplitude for semantically unexpected items, and the P600, a positive-going posterior

potential that is related to violated syntactic expectations. See Swaab et al. (2012)

for a review.

MEG Magnetoencephalography measures the magnetic fluctuations associated with elec-

trical activity. Like EEG, this signal tracks neural activity as it happens, millisec-

ond by millisecond, but it also offers higher spatial resolution as magnetic fields can

be used to triangulate the electrical “source” of activity in the brain. See Salmelin &

Baillet (2009) for an overview to this technique, or Hansen et al. (2010) for a textbook

introduction.

MVPA Multivariate pattern analysis refers to a diverse set of methods that analyze neural

responses as patterns of activity that reflect the varying brain states. MVPA-based

decoding analysis makes use of machine learning classifiers, whose inputs are vectors of

observed neural signal levels, to guess whether a particular brain state falls into one of

a finite number of discrete categories. These categories may label linguistic content in

the stimuli that were presented to human participants. If the classifier achieves above-

chance performance, then researchers infer that information corresponding to that

category label was present within the brain, at the place and time the neural signals

were taken (see Pereira et al. 2009).

2. The scope of this review

As suggested above, the key element is computation. It is helpful to distinguish between

the scientific use of computers in general and the computational theory of mind as a foun-

dation for cognitive science. While computers may serve to deduce the consequences of

linguistic theory or analyze neural signals, these sorts of computations are not the focus

of this review. Rather, we focus on computations and representations that play an ex-

planatory role in answering the question “how does an individual use language?” This
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garden-variety computationalism has been a meeting-point for linguists and brain scientists

over the years (for a philosophical overview see Rescorla 2020).

The present article specifically considers neuro-computational models that match time-

series brain data in order to shed light on questions of interest to linguists. It updates

Stowe et al. (2005) with computer models of language processing in particular regions of

the brain. We consider neurolinguistic methods involving naturalistic text stimuli which

have already been reviewed in Brennan (2016), and we touch on classifier-based decoding

of language in the brain, which is introduced in Murphy et al. (2018).

The current review sets aside several closely related areas. One is the research tradition

rooted aphasiology, which is often computational in exactly the sense evoked above (e.g.

Caplan 1992). Another closely-related area is computational psycholinguistics; for a general

review of that field we refer the reader to Hale (2017). We also set aside research using

signals that reflect neural oscillations (e.g. Bastiaansen & Hagoort 2006; Meyer et al. 2020),

while recognizing the promise of that direction of research when combined with explicit

computational models of the kind considered in this review (Martin & Doumas 2017).2

As Poeppel (2012, already cited above) emphasizes, scientific progress hinges upon our

ability to explicitly link theorized linguistic concepts, such as phrase structure, and observ-

able neurobiological phenomena, such as blood flow in the brain. These sorts of connections

between theory and data inevitably reflect additional assumptions about cognitive process-

ing. Using the methodologies in box 1, the next sections sketch several specific approaches

to building such links. Current work using these methods is assessed with respect to its

advantages and disadvantages for linguistics.

3. Guessing the next word or symbol

A prominent perspective on the brain construes it to be an “inference engine” that optimizes

predictive accuracy (Friston 2010). Neural signals, such as those described in box 1, cer-

tainly show exquisite sensitivity to deviations from an expected outcome. This sensitivity

has been leveraged to probe the sorts of representations in use during language processing.

In this type of work, computational models serve to define probability distributions over

upcoming linguistic input.

The surprisal linking hypothesis A probability distribution over upcoming linguistic ex-

pressions quantifies how predictable those expressions are. This degree of predictability can

be formalized as the self-information or surprisal of an event, such as a particular succes-

sor word following a given left-context string (see Hale 2016, for a review). One way to

estimate such a probability distribution is by counting. For instance, the probability of the

word “snow” in the phrase “look at the falling snow” can be estimated by counting in a

large corpus of text how often the words “the falling” are followed by “snow.” Counting

word sequences by threes in this way is a trigram Markov Model (see box 2). This approach

was taken by Willems et al. (2015) to work out numerical surprisal values that quantify

the unexpectedness of each successive word. Using fMRI they find increased activation for

higher surprisal in the superior temporal lobe of the left and right hemisphere.

Surprisal: Deviation

between an expected
and actual linguistic

input; equivalent to
the bits of
information

conveyed.

This research follows Brennan et al. (2012) and Yarkoni et al. (2008) in relying on neu-

2See also the commentaries collected in Language, Cognition & Neuroscience, 2020, Volume 35
Issue 9.
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Box 2: Language models

A language model assigns probabilities to sentences and their substrings.

ngram An ngram language model uses the previous n− 1 symbols as a conditioning con-

text for the probability of the nth symbol, a Markov assumption. The symbols may

come from any discrete set including letters, phones, words, or parts of speech. The

probabilities are estimated from corpora and are typically “smoothed” to handle un-

seen events (see Eisenstein 2019, §6.1, 6.2). The case n = 3 is called a trigram model.

CFG Context-Free Grammar, also called Phrase-Structure Grammar, is a formal model of

language based on symbolic rewriting rules. These symbols and rules induce equiv-

alence classes over linguistic expressions, for instance noun phrases with or without

an optional adjective. Such grammars served as the “base component” in transfor-

mational grammar (see Partee et al. 1993, chapter 16). Adding weights to CFG rules

yields probabilistic context-free grammars (PCFG) whose derivations can be treated

as a stochastic branching process (see Manning & Schütze 2000, chapter 11), from

which a language model can be derived (Jelinek & Lafferty 1991).

RNNs In recurrent networks, the same block of neural net architecture is “unrolled” so that

it applies over and over again to each position in a string. This allows it to adaptively

learn from examples using a variant of the backpropagation algorithm (Werbos 1990).

Recurrent nets based on gated connections such as the Long Short-Term Memory of

Hochreiter & Schmidhuber (1997) fare better than their ungated counterparts when

it comes to long-distance dependencies (see Goldberg 2017, chapter 15).

Transformers Transformers are neural net architectures for sequence processing that use

an “attention” mechanism based on multiplicative gating (Vaswani et al. 2017). This

allows distant symbols to influence the choice of fill-in-the-blank answers. They are

typically trained using a masked language modelling objective which allows for influ-

ences from either left or right context. Transformers are built to maximize parallelism

on modern computers, which entails an upper limit on the length of strings that they

can handle (i.e. 512 tokens in BERT).

ral signals derived from “everyday” language processing (for discussion, see Brennan 2016).

These sorts of studies elicit ecologically-natural language comprehension by presenting hu-

man participants with narrative language much as one might read a story or listen to an

audiobook. At issue in subsequent statistical analysis is the degree to which the observed

neural signals fit or fail to fit theoretical predictions about the processing difficulty of that

text. A key requirement on predictors is broad coverage: the more stimulus words there are

that receive a numerical difficulty prediction, the better the chance of being able to estimate

a relationship between the predictor and the measured neural signal (e.g. BOLD see box 1).

Language models such as the trigram mentioned above in connection with Willems et al.’s

2015 study are “broad coverage” in exactly this sense. But there are other language models

that retain the trigram’s breadth of coverage while at the same time sharpening the prob-
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ability distribution over successor words3; some key examples are summarized in box 2.

Modern artificial neural network language models fall into this category (see Jurafsky &

Martin 2021, chapter 7 or Goldberg 2017, chapter 9). Building on Elman (1990), Frank

et al. (2015) shows that neural network language models can account for a well-known

expectancy effect in human electrophysiology, the N400 (see box 1).

Surprisal as a degree of change to internal representations Ettinger et al. (2016) and

Rabovsky et al. (2018) also model the N400 ERP component. In this line of work, the

linking hypothesis is defined in terms of a componentwise changes to a neural network’s

internal representation. If these components were to receive an interpretation in terms of

next-word distributions, then the proposal would reduce to (word) surprisal, as introduced

above. But importantly for Rabovsky and colleagues, the representations inside their model

are not just about word tokens. Rather they pair up a form of Case Grammar (Fillmore

1968) with a decompositional semantics in the style of Katz & Fodor (1963). Words and

sentences are both represented using microfeatures that are conceptual in nature, following

McClelland & Kawamoto (1986) and Rohde (2002). This kind of modeling fleshes out,

in computational detail, the established view of the N400 as having to do with dashed

meaning expectations (Kutas & Federmeier 2000).

Brouwer et al. (2021) extend this general approach in two ways. First, they model

the P600 effect as well as the N400. Secondly, they do so using an internal representation

that relates to models of propositional logic. By providing a ‘microworld’ interpretation for

vector-valued internal states of a neural network, Brouwer et al. aim to capture the effect

of real-world knowledge on human sentence processing.

The degree to which intermediate states of the human language comprehender should

be viewed as “model-like” (as opposed to proof-like) remains open (see e.g. Hemforth &

Konieczny 2006). So too is the question of whether or not neural sequence models should

be thought of as possessing knowledge of grammar (see e.g. Steedman 1999; Linzen et al.

2016).

Structures & sequences Neural network sequence models of the type mentioned above

share with ngram models a conceptualization of language as a time series of words, lacking

any hierarchical structure. Chomsky’s 1956 critique of this beads-on-a-string outlook is all

too familiar to linguists. Cognizant of this critique, other researchers have used hierarchical

syntactic analyses as an intermediate representation for modelling time series brain data.

For instance Brennan & Hale (2019) demonstrate that a phrase-structured model of

part-of-speech tag sequences yields a better model of EEG data than does an ngram model

or simple recurrent network in the style of Frank et al. (2015, already cited above). This

project used the surprisal linking hypothesis. It uncovered a different kind of electrophysi-

ological response, one that manifests earlier and on electrodes that are more anterior than

the usual N400. Others have similarly confirmed the explanatory role of hierarchical syntax

in other methodologies.

To take just one fMRI example, Shain et al. (2020) use the surprisal linking hypothesis

to work out processing difficulty predictions from a different sort of probabilistic phrase-

structure grammar (see also Henderson et al. 2016). They also derive surprisals from a

3These next-word probability distributions depend strongly on the genre-specific characteristics
of their training data (see e.g. Hale et al. 2019).
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5-gram Markov Model, one whose parameters can only be estimated with exceptionally

large corpora. This point highlights a challenge in extending heavily data-reliant methods

to broader cross-linguistic study, especially of under-resourced languages. Shain et al. find

that these two sorts of surprisal, one based on hierarchical phrase-structure, and another

based on word sequences, explain independent variability in the BOLD signal in a range

of areas through the “language network” of the frontal and temporal lobes in the left

hemisphere. That is, the data are consistent with processing mechanisms that are sensitive

to hierarchical dependencies along-side local word-to-word transitions.

These studies reason backwards from the goodness of fit between fMRI data and

hierarchically-structured language models to the scientific claim that hierarchical structure

really is part of human language comprehension. This reasoning relies upon a comparison

with a sequence-oriented, hierarchy-free language models. Hale et al. (2018) and Brennan

et al. (2020) look at a subtler comparison, one that pits bona fide phrase structure compo-

sition against a “composition-free” kind of parsing. Bona fide phrase structure composition

is formalized using the Recurrent Neural Network Grammars of Dyer et al. (2016, RNNG).

The baseline is a language model whose outputs are not syntactic trees but merely brack-

eted strings. Neural networks using this “non-compositional” alternative representation

(inspired by Vinyals et al. 2015 and Choe & Charniak 2016, see the discussion of finite

state transducers in Langendoen 2008) are not compelled to form truly hierarchical inter-

nal representations. Statistical comparison of the surprisal values from the two models as

regards human EEG highlights a time window about 200 to 300 milliseconds after a word

is encountered when explicit hierarchical composition appears to be happening.

Multi-level prediction Varying the symbols over which a language model is defined can also

lead to insight. For instance Lopopolo et al. (2017) use a quantity that is closely related to

surprisal, the perplexity of the next symbol at three different levels of abstraction. The first

level is phonological, where perplexity is defined in terms of the sequence of speech sounds.

At the second level of abstraction, there is the familiar sequence of words. And at a

third, the sequence contains part of speech tags. Using a trigram model at each of these

levels, Lopopolo and colleagues identify three distinct collections of brain areas. Many

of these are clustered in well-known perisylvian language regions but using set-theoretic

operations these authors were able to identify, for instance, the Angular Gyrus as a region

that simultaneously processes grammatical and phonological information.

In their EEG and MEG study, Heilbron et al. (2021) decompose word predictions from

a transformer neural network (GPT-2) into different levels of linguistic analysis. First, like

Lopopolo et al., they find dissociable patterns with morphosyntactic and phone-level pre-

dictions related to earlier responses (100-400 ms) in, mostly, temporal areas, while lexical-

semantic predictions drive later responses (> 400 ms) across a wider set of cortical areas.

Second, neural responses at the level of speech sounds are modulated in a top-down way by

predictions regarding word meaning. This supports theories in which linguistic predictions

not only take place at multiple levels of abstraction, but also modulate each other.

The latter point is consistent with previous findings from the literature. To mention

just one, Dikker & Pylkkänen (2013) presented participants with picture-word sequence

pairs in which the two elements of the pair could either match (high predictability; e.g.,

a picture of an apple followed by the word ‘apple’) or not match (low predictability; e.g.,

a picture of a banana followed by the word ‘apple’). Participants were asked to indicate

whether the word described the picture. Interestingly, Dikker & Pylkkänen find that noun

www.annualreviews.org • Neuro-computational models 7



predictability modulated MEG brain responses not only in fronto-temporal areas more

directly associated with lexical access but also in lower level sensory areas like the visual

cortex. All of these results accord with an “interactive” model of sentence processing,

in which different linguistic levels modulate or co-constrain each other (Marslen-Wilson

1975).

4. Linguistic features within and across languages

The Decoding paradigm An alternative response to Poeppel’s 2012 Mapping Problem views

neural activity not as a indirect indication of work, but a direct characterization of a con-

cept, linguistic or otherwise. This approach, pioneered by Tom Mitchell and Marcel Just

is known as MVPA (see box 1). It treats BOLD levels as vector representations of con-

cepts that are extensionally presented in the course of an fMRI experiment. Murphy et al.

(2018) review this tradition, which begins with Mitchell et al. (2008). The central idea

is to use a kind of learning program called a classifier to discover regularities within the

brain data that align with distinctions between the experimental stimuli. These distinc-

tions (say between the lexicalized concepts celery and dog or between Double Object vs

Prepositional Dative phrase structures) simply become labels or features for classifiers of

brain data. A key innovation in this approach is the use of held-out data; typically the

observations are divided up into a training set and a testing set in order to assess the gen-

eralization performance of trained classifier. The results can be averaged across alternative

divisions to make best use of the available observations while carefully avoiding circular

reasoning (“cross-validation”, a standard practice in machine learning). The spatial and/or

temporal locality of the data can be leveraged to look for regions that are diagnostic for

particular types of labels (“searchlight” see Kriegeskorte et al. 2006).

Classifier: Statistical

tool that learns to
classify, or “decode”,

a stimulus feature

based on brain
signals.

However there are limitations, too. Decoding depends on a finite number of trials,

and there are correspondingly a finite number of distinctions that can be drawn between

all the labelled cases. It’s always possible that a high-performing classifier has latched on

to a pattern in the brain data that is accidentally, rather than lawfully, related to the

intended meaning of the experimenter’s label. This limitation is not specific to the decoding

paradigm but is rather an instance of the classic problem of Construct Validity in psychology

(Cronbach & Meehl 1955; Smith 2005). We take up this concern as it applies specifically

to neuro-computational modeling in the conclusion.

Lexical semantics In the seminal 2008 study mentioned above, those concepts were

noun meanings, operationalized as “word embeddings”, or vectors of co-occurrence counts

with a handful of special verbs. This “distributional” approach generalizes the semantic

markerese of Katz & Fodor (1963) already mentioned above (see Baroni et al. 2014, on

distributional models of meaning). A follow-up study argued that these representations

are conceptual, and not lexical, by showing that they generalize across languages such as

English and Portuguese (Buchweitz et al. 2012).

Embedding: Vector

representation of a
word or other
linguistic unit.

Huth et al. (2016) apply the same method to natural speech samples (in their case,

excerpts from a popular podcast). Forming a distributional vector space based on word-co-

occurrence, they observe that distinct lexical-semantic dimensions such as “social”, “visual”,

or “numeric” map to distributed patterns of activity across diverse areas of the cortex.

Opening the black box a little bit, they compare their word embeddings favorably against

other embeddings that are derived from a trained neural network (word2vec; see Jurafsky &

8 Hale et al.



Martin 2021, chapter 6 or Goldberg 2017, §10.4 for an information-theoretic interpretation).

One approach to scaling these efforts to larger expressions is to simply average the

single word vectors (Pereira et al. 2018; see also Li et al. 2016). However this “bag-of-

words” approach discards structural information, such as semantic roles. Tensor Product

representations (Smolensky & Legendre 2006) and DisCoCat (Coecke et al. 2010) are math-

ematical theories that offer ways of composing word embeddings into larger structures (see

also Baroni et al. 2014).4 Another less-principled option is to use numerical vector represen-

tations that arise via training on tasks such as classifying entailment relations, or guessing a

blanked-out word in a sentence. The assumption is that these vectors will encode whatever

structural information is truly useful in these auxiliary tasks (e.g. Anderson et al. 2021).

However, the details of particular training sets sometimes mean that there are superficial

tricks a network can use to succeed at these sorts of auxiliary tasks without actually learning

much in the way of sentence-structural information.5 To avoid this uncertain inference from

success on an auxiliary task to adequate linguistic representation with some set of vectors,

structural features may also be encoded directly, as discussed in the following subsection.

Syntactic structure and thematic roles Sticking with the one-word, one-vector methodology

described above, Wehbe et al. (2014a) extend the Mitchell/Just decoding paradigm to

a broader range of linguistic features and structures that characterize naturalistic texts.

Wehbe and colleagues assigned features to each word of chapter 9 of Harry Potter and the

Sorcerer’s Stone. These include referential features, i.e. about the identity of particular

story characters as well as tags for the part of speech and choice of dependency-syntactic

relation borne by a particular word. Human participants read the story one word at a time

on a screen. This word at a time character of the presentation facilitates an analysis that

considers each brain volume separately, relieving the analyst from any need to assume a

particular hemodynamic response function (as in Brennan et al. 2012, 2016; Li & Hale 2019

but cf. Shain et al. 2020). Classifiers are evaluated using a scheme which forces the system

to differentiate between a passage’s actual brain-data and a nonmatching ‘foil’ passage’s

brain data. As before this is done using held-out data in a cross-validated manner to assess

whether any generalization beyond the training set would occur.

Wehbe et al.’s innovative study used simple textual features that are not controversial

within linguistics. Its findings are consistent with the view that Broca’s area subserves

the recognition of grammatical dependencies such as Subject, Object, or Modifier (see e.g.

Friederici 2017). Zhang et al. (2021) push this MVPA approach in a referential direction,

decoding the identity of story characters from naturalistic stimuli, even in “pro-drop” cases

where there is no overt mention but instead they would be inferred from context by native

speakers.

The promise of the approach lies in its synergy with artificial neural networks. By using

4Tensor Product representations have been criticized for matching human similarity judgments
less-well than other competing systems (Mitchell & Lapata 2010; Martin & Doumas 2019) and
for being too expensive in terms of the required number of artificial neurons. See Smolensky &
Legendre (2006, chapter 7) annd Smolensky (2015) for replies.

5Caucheteux et al. (2021) introduce an intriguing alternative approach: average neural net
activation vectors that arise when applied to ten different sentences that all share the same syntactic
structure. In other words, cluster the states of deep neural nets by syntactic equivalence classes.
These authors confirm via subsequent probing tasks that syntactic properties are indeed inferrable
from these averaged representations.

www.annualreviews.org • Neuro-computational models 9



regularization techniques such as ridge regression, it is possible to learn a linear relationship

between (a) internal representations within neural networks and (b) observed brain data

such as BOLD signals. This has been done with recurrent neural network sequence models in

MEG (Wehbe et al. 2014b) and fMRI (Qian et al. 2016, with a somewhat simpler regression

model). Later work extends this to the well-known Jabberwocky manipulation, which

neuroscientists use to disentangle syntax from lexical semantics (see e.g. Stowe et al. 1998;

Pallier et al. 2011; Matchin et al. 2016; Hashemzadeh et al. 2020) and to Transformers, a

high-performing neural net building block for natural language processing (Toneva & Wehbe

2019).

Results to date seem to confirm Stowe et al.’s 2005 suggestion that language pro-

cessing involves both hemispheres and that it is organized in a processing cascade that

proceeds from individual words to larger expressions (cf. Lerner et al. 2011). In virtue

of their broad coverage Wehbe et al. demonstrate how that earlier work generalizes to

more naturalistic language. They also open the door to explicit comparisons, analogous to

Huth et al.’s 2016 comparison between their own word embeddings and embeddings from

word2vec (see page 8). Anderson et al. (2021) demonstrate how this work might procede

for more abstract structures, by comparing fits between multiple lexical and sentence-based

vector representations.

The neural network models mentioned above form their own internal representations,

in effect performing a corpus analysis on their training data via the backpropagation algo-

rithm (Rumelhart et al. 1986a). As an alternative to this kind of discovery procedure one can

instead start from linguistic features that are given in advance by an experimenter. Allen

et al. (2012) did this by decoding neuroimages from human participants who had either read

a verb in a prepositional dative structure (“gave a book to John”) or a double-object struc-

ture (“gave John a book”). Another study by Frankland & Greene (2015) identified regions

in the posterior temporal lobe that support above-chance decoding for the semantic roles

Agent and Patient. This involved decoding which noun, out of four possible nouns, in fact

filled a particular semantic role. Reddy & Wehbe (2021) encode phrase structure trees as

numerical vectors in an approximate way, by sampling random walks that traverse those

trees node by node. These encodings account for human fMRI observations in well-known

language regions. Particularly when the trees include unexpanded top-down predictions

about upcoming words, the resulting vectors capture aspects of the fMRI signal above and

beyond univariate parser step counts (see section 5 below). These studies all share with

Wehbe et al. (2014b) the use of linguistic features that are not controversial. Yet, the un-

derlying methods can be further extended to test features that are more controversial, such

as the thematic structure of experiencer predicates (Pesetsky 1995).

Typological comparison As persuasively argued by Ina Bornkessel-Schlesewsky and

Matthias Schlesewsky (2013; 2016), typological differences between languages may corre-

spond to different brain networks or different modes of operation of the same brain network,

when it comes to language comprehension. Consistent with a universalist view, Honey et al.

(2012) find that roughly the same brain regions show BOLD activity when native speakers

of English or Russian perform a naturalistic task of comprehending stories in their native

language. This converges with other work based on non-naturalistic methods such as Crin-

ion et al. (2006) and Correia et al. (2013). Whereas Honey and colleagues do not identify

the specific typological feature driving their result, Dunagan et al. (2021) compares French

and Chinese along a single feature: the way a language expresses singular versus plural
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number. In French, this marking is overt and obligatory whereas in Chinese it is optional.

The results again support the postulation of one common set of language-relevant brain

regions that subserve comprehension of number marking, regardless of how it is signaled

within a language.

The universalist view supported by these data remains underspecified as to how shared

processing resources are recruited by different language varieties. Neuro-computational

models, especially those with interpretable components as discussed in the next section,

can help unravel how brain mechanisms may be allocated differently across typologically

diverse languages. How to specify these cross-linguistic models remains an urgent, open

problem.

5. Opening the black box to understand the mechanism

The linguistic features at issue in the previous section are outputs of syntactic and semantic

computations that have been performed by candidate models of human language processing.

This approach, as well as the prediction-based measures in section 3, are all extensional in

nature. That is to say, we look at a model’s outputs or a probability distribution over

such outputs, and compare that theoretical prediction to human brain data in a way that is

divorced from the internal process by which the model derived that prediction. This practice

has become standard in what Marco Baroni calls “linguistically-oriented deep net analysis”

(see Baroni 2021; Linzen & Baroni 2021). Such extensional approaches make it possible

to evaluate very large artificial neural nets, ones whose mode of operation defies succinct

description. Of course, this cannot be the last word – we cannot simply stop having replaced

one inscrutable black box (the brain) with another (deep neural nets). A better response

to the mapping problem addresses not only outputs but also internal processing steps that

make sense with respect to existing cognitive and linguistic theories.

Derivation steps dissociate from predictions One family of approaches ties directly to pro-

cessing steps by tapping into parsing models discussed in section 3; these draw on properties

of the parser itself, rather than the output representation. For example, the structure-based

RNNG parser used by Hale et al. (2018) and Brennan et al. (2020), which was already dis-

cussed in terms of surprisal on page 7, may also be queried more directly in terms of the

algorithm it implements. Working incrementally from one word to the next, that parsing

algorithm includes a loop that iterates over possible syntactic analyses that are consistent

with some partial linguistic input. Counting the number of iterations explored between

words thus reflects processing effort in a direct way by summing the number of parser ac-

tions taken between words. This particular approach builds on a venerable tradition that

ties cognitive load to properties of syntactic structure (Kaplan 1972; Frazier 1985). Indeed

Brennan et al. (2020) find that such a measure fits with BOLD-signal recorded from the

left temporal lobe and inferior frontal gyrus. That improvement in fit is seen only when

the parser explicitly composes words into phrases (see page 7) and, moreover, the effect

of parser actions is statistically independent of effects that reflect predictability. In other

words, while an approach such as this demands a joint commitment to representational and

algorithmic elements of a processing model, the relationship of these components to neural

signals can be distinguished in a way that guides further, more focused, efforts.
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Comparing process models Nelson et al. (2017) takes on the challenge directly of comparing

different process models while holding constant representational content (see also Brennan

& Pylkkänen 2017). That work made use of exceptionally high-resolution data collected

using inter-operative recordings from neurosurgery patients. These recordings come from

electrodes placed directly onto the cortex to aid in the surgical treatment of epilepsy; this

placement leads to data that can distinguish neural signals with a high degree of both spatial

and temporal precision. Nelson et al. presented such patients with sentences that spanned

a range of syntactic constructions. The sentences were generated by a context-free phrase-

structure grammar (see box 2). A set of process models were constructed that differed in

how eagerly, or predictively, they traversed these phrase-structures. These include the least

eager “bottom-up” strategy which draws tree nodes only when all associated leaf nodes have

been incrementally encountered, in contrast to the “left-corner” and “top-down”; strategies

which each posit syntactic nodes more predictively (cf. Abney & Johnson 1991).

Correlations between the number of parser actions under each of these strategies with the

electrophysiological signals reveal a cline such that the left-corner and bottom-up strategies

show superior fits to left temporal data than the most eager top-down strategy. These

differences are not equally distributed across language-related temporal and frontal regions,

indicating that the brain bases of parsing must be understood in a more nuanced way as

implementing a variable parsing strategy that is more eager in one region than another.

Or there may be construction-specific variation such that certain linguistic expressions are

understood in a more eager manner than others.

Process models for realistic grammars In mathematical linguistics, the degree of “expres-

sivity” required for an adequate syntactic theory has been largely resolved: human grammar

must be more than context-free, but not a lot more. Stabler (2013) lays out this hidden

consensus in an accessible way, building on seminal work by Joshi (1985) and Joshi et al.

(1991).6 Kallmeyer (2010) offers a textbook introduction to parsing algorithms for these

formalisms. Does a grammar whose level of expressivity is well-calibrated to human gram-

mar in general yield processing-difficulty predictions that fit a particular person’s brain?

Brennan et al. (2016) and Li & Hale (2019) offer an affirmative answer. They find that

node-counts on X-bar structures derived by Minimalist Grammars predict unique variance

in BOLD signal in the posterior temporal lobe, variance that is not captured by ngrams or

näıve phrase structure in the style of the Penn Treebank (see Marcus et al. 1993).7 Stano-

jević et al. (2021) go farther, operating directly on the derivations assigned by a near-context

free formalism, Combinatory Categorial Grammar (CCG). They find that CCG improves

BOLD modeling in six language-relevant brain regions. Adding a special parser action

that facilitates late-attachment of modifier phrases improves the fit in both anterior tem-

poral lobe and inferior frontal gyrus (“Broca’s Area”). It would be premature to conclude

on the basis of just these results that CCG or Minimalism is uniquely the right theory

of human grammar. However, they do suggest that these competence theories capture

distinctions that play some role in human language processing.

6This consensus spans Minimalism (Stabler 2001), Combinatory Categorial Grammar (§8.3
Steedman 2000) and Lexical-Functional Grammar (Wedekind & Kaplan 2020) to name just three
frameworks.

7This region where Minimalist Grammars make a distinguishable contribution is consistent with
Wernicke’s area.
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Storage versus parsing A perennial question in linguistics concerns the distinction between

atomic expressions that are simply remembered whole and structured expressions that are

composed from smaller pieces (for a study with non-naturalistic stimuli see Lyu et al. 2019

or Pylkkänen 2019 for a review of the composition operation). Bever’s (1970) classic idea

is that some expressions are understood as a matter of memory association; the link be-

tween a morpheme sequence and a functional label such as Actor-Action-Object is nothing

less and nothing more than a habit. This idea has enduring appeal but there remains

the issue of exactly where to draw the line between habits and rules (Townsend & Bever

2001; O’Donnell 2015; Blache 2018). Bhattasali et al. (2019) approach this question from

standpoint of quantitative linguistics using naturalistic stimuli and employing statistical

association metrics (see e.g. Evert 2009) to quantify the “stickiness” of word sequences that

may correspond to memorized expressions. Entering these association metrics as predictors

into a linear regression as in section 3 highlights the precuneus, a brain region that has

been implicated in episodic memory. This result can be taken as supporting a variation

on Bever’s proposal, namely that human comprehension is interleaved such that sometimes

memorized chunks are directly recalled in a way that depends on brain networks involv-

ing the precuneus and other times composed in a way that involves the temporal lobe (cf.

Ullman 2004; Hagoort 2016).

Reference and coreference Of course quite apart from their internal structure, expressions

in a language have reference – they refer to people, places and things. Li et al. (2020) studied

this referential aspect of language using complexity metrics to rate the processing difficulty

of particular coreference links, within a single literary narrative. As in section 3 this nar-

rative served as an auditory stimulus for listeners who were undergoing fMRI. Across both

English and Chinese translations of the same book, the results identified two brain regions

in the temporal lobe. BOLD signal in these regions was explained best by a model that

acknowledges distinct subject and nonsubject grammatical roles, and embraces the ACT-R

memory theory (van Rij et al. 2013). This cognitive model outperformed neural network

models at the task of accounting for the observed BOLD variation. Subsequent work on

pro-drop sentences, where the pronoun is not even mentioned, implicates the same brain re-

gions (see Zhang et al. 2021, discussed above in section 4).

6. Lessons and next steps

The importance of interpretability The research highlighted in this review reaches for

the goal of scientific explanation using computational models that are by-and-large in-

terpretable. That is, the models connect with or implement theoretical constructs from

linguistics.8

An alternative approach is suggested by the advent of high-performing deep neural

networks that are trained end-to-end on specific natural language processing tasks such as

language modeling (see RNN and Transformer entries in box 2). The success of such models

relies upon their ability to extract fine-grained statistical regularities from exceptionally

8The conditions under which a language processing mechanism is interpretable with respect
to linguistic theory have been debated. Stabler (1983) rules out a näıve box-ology. However the
hypothesis under which a generative grammar is “computed but not represented” (Stabler’s “Hh”)
is still viable. For a brief summary of this debate see Hale (2017, §3.4).
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large training corpora. Schrimpf et al. (2020) use the internal states that result from

such training to decode fMRI and electrophysiological data (see section 4). They report

highly reliable fits between the neural network representations and brain data, especially

in the left temporal lobe. The best-fitting models in their comparison are also the largest

neural networks that show the highest performance on non-brain related measures.

While remarkable, the conclusions that can be drawn from such a comparison are theo-

retically limited. Like the brain itself, the neural networks investigated are “black boxes” in

the sense mentioned above in section 5; their internal states are not directly interpretable

The approach faces the pitfall of yielding trivial findings: systems that are highly sensitive

to language statistics are in turn statistically similar to each other. Without interpretability,

strong statistical relationships cannot form the foundation of explanatory theories. Exam-

ples of the latter can be found in related approaches, of course, as already seen with the

attention payed to outputs of black-box models by Heilbron et al. (2021) and Caucheteux

et al. (2021), and the interpretable feature-spaces of Wehbe et al. (2014a). Another path

forward is to unpack the internal representations of neural networks (e.g. Yu & Ettinger

2020; Kuncoro et al. 2017).

Model spaces In seeking explanatory models, this review has drawn on studies whose basic

mode of operation is to identify correlations between properties of a computational model

and brain activity signals. When such models are interpretable, reliable correlations are

taken as evidence that particular features of the model underlie the neural system being

measured. But, this inferential step requires careful scrutiny. As already mentioned in

section 4 above, statistical classifiers and artificial neural networks may latch on to idiosyn-

cratic data patterns rather than linguistic features of interest (Heaven 2019 reviews this

challenge as it faces modern AI more broadly.)

One strategy to strengthen inferencing relies on comparing alternative models of a par-

ticular linguistic phenomenon in terms of their statistical fit to neural data. This was done,

for example, by Shain et al. 2020 for word-prediction, Anderson et al. 2021 for decoding

structure, and Hale et al. 2018 for process models. In all of these examples, claims for

or against a particular theoretical model are based on explicit comparison to a set of al-

ternatives which together define a space of possible models or hypotheses. The logic of

such comparisons is familiar from experimental design, where baselines are established with

control conditions, or from linguistic analyses guided by evaluating minimal pairs, and all

such efforts face familiar challenges (e.g. Cronbach & Meehl’s Construct Validity).

In principle, such a model space ought to span all possible hypotheses that are plausible

given current understanding of some research question. In practice it is more likely that the

models span only a small part of the relevant space and inferences based on such a com-

parison are accordingly limited. To give just one concrete example, while Brennan et al.

(2020) argue that neural indices of prediction reflect hierarchy, not just word sequences, that

inference is based on comparing just three models. An alternative word-sequence model,

could, in principle, yield different results for such a comparison. As in other domains, more

general conclusions follow when results from multiple approaches converge; in this case,

Shain et al. (2020) reach a theoretically similar conclusion from comparing a different set of

sequence-based and hierarchical models. An opportunity granted by broad coverage com-

putational models of naturalistic data is that researchers may compare alternative models

against commonly shared datasets.
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Table 1 Openly available neurolinguistic datasets for use with neuro-computational

models.
Name Description Citation

The Little Prince

Datasets

fMRI data from English (N=51), Chi-

nese (N=35), and French-speaking

(N=30) adults listening to a 1.5 h au-

diobook recording.

this paper; Franzlueb-

bers et al. (2021)

The Alice Datasets fMRI (N=26) and EEG (N=49) data

from English-speaking adults listening

to a 12 m audiobook recording.

Bhattasali et al. (2020)

Mother of all Unification

Studies

fMRI and MEG data from Dutch-

speaking participants who listened to

(N=102) or read (N=102) a variety of

sentences.

Schoffelen et al. (2019)

Naturalistic Neuroimag-

ing Database

fMRI datasets from English-speaking

adults (N=86) watching a full-length

movie.

Aliko et al. (2020)

Narratives fMRI datasets from English-speaking

adults (N=345) who listened to a va-

riety of spoken narratives.

Nastase et al. (2020)

Zurich Cognitive Lan-

guage Processing Corpus

EEG datasets from English-speaking

adults (N=12) who read 4–6 hours of

natural text.

Hollenstein et al. (2020)

Reusable data With a view toward encouraging further progress, we invite the participation

of linguists, neurobiologists and AI researchers by sharing several datasets of our own.

These include EEG and fMRI data evoked by the first chapter of Alice’s Adventures in

Wonderland (Bhattasali et al. 2020), and fMRI data evoked by presentation of The Little

Prince to native speakers of French, English and Chinese (Franzluebbers et al. 2021). These

latter data are described in more detail in supplementary section 7. These datasets join a

growing set of neurolinguistic corpora, described in Table 1, which offer neural data along

side rich, often naturalistic, linguistic stimuli and annotations.

Progress on the Mapping Problem In 2012 David Poeppel dramatically declared that

“there is absolutely no mapping to date that we understand in even the most vague sense”

(page 50). A decade later we can be more optimistic. Now, quantitative linking hypothe-

ses based on expectancy (section 3), decoding (section 4) and step-counting (section 5)

allow us to test more granular brain/language correlations. In our judgment Poeppel’s

Radical Decomposition strategy has been productive. When we decompose a well-specified

computational model into smaller pieces, each of which would apply hundreds or thousands

of times in the course of a naturalistic listening session, it becomes possible to quantita-

tively compare model variants that are based on different leading ideas from linguistics.

A technical prerequisite is that the models being compared must all be sufficiently broad

in coverage to actually apply to the experimental stimuli to which human participants are

exposed in a study. And, as we have argued above, it is important that the models being

compared are linguistically-interpretable.

In the future, we anticipate the field moving beyond single-language studies to larger and

larger sets of languages (e.g. as envisaged by Stehwien et al. 2020; Bornkessel-Schlesewsky
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& Schlesewsky 2013). Simultaneously considering multiple languages in a single neurocom-

putational model will be crucial for drawing general conclusions. With the availability of

web-scale corpora, such as crowdsourced encyclopedias, we believe this is goal is now within

reach.
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7. Supplementary Information: Multilingual fMRI dataset

This section describes fMRI data elicited by the original French as well as English and

Chinese translations of Saint-Exupéry’s 1943 book The Little Prince. Upon acceptance

of this article, the data will be publically-available at https://openneuro.org/datasets/

ds003643.

7.1. Participants

Participants for the English study were 51 young adults (32 females, mean age=21.3,

SD=3.6) with no history of psychiatric, neurological or other medical illness that might

compromise cognitive functions. They self-identified as native English speakers, and strictly

qualified as right-handed on the Edinburgh handedness inventory (Oldfield 1971). All par-

ticipants were paid, and gave written informed consent prior to participation, in accordance

with the IRB guidelines of Cornell University.

Chinese participants were 35 healthy, right-handed young adults (15 females, mean

age=19.3, SD=1.6). They self-identified as native Chinese speakers, and had no history of

psychiatric, neurological, or other medical illness that could compromise cognitive functions.

All participants were paid, and gave written informed consent prior to participation, in

accordance with the IRB guidelines of Jiangsu Normal University.

French participants were 30 healthy, right-handed adults (16 Female, mean age=24.3;

SD=4.9). They were all native French speakers and had no history of psychiatric, neuro-

logical, or other medical illness that could compromise cognitive functions. All participants

gave written informed consent prior to participation, in accordance with the Regional Com-

mittee for the Protection 195 of Persons involved in Biomedical Research.

7.2. Experimental Procedure

After giving their informed consent, participants were familiarized with the MRI facility

and assumed a supine position on the scanner. Auditory stimuli were delivered through

MRI-safe, high-fidelity headphones inside the head coil. The headphones were secured
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against the plastic frame of the coil using foam blocks. An experimenter increased the

sound volume stepwise until the participants could hear clearly. The stimuli were divided

into 9 sections, and each lasted for about 10 minutes. Participants listened passively to the

9 sections and completed 4 quiz questions after each section (36 questions in total). These

questions were used to confirm their comprehension and were viewed by the participants

via a mirror attached to the head coil and they answered through a button box. The entire

session, including preparation time and practice, lasted for around 2.5 hours.

7.3. Data Preprocessing

English and Chinese MRI images were acquired with a 3T MRI GE Discovery MR750 scan-

ner with a 32-channel head coil. French MRI images were acquired with a 3T Siemens

Magnetom Prisma Fit 230 scanner. Anatomical scans were acquired using a T1-weighted

volumetric Magnetization Prepared RApid Gradient-Echo (MP-RAGE) pulse sequence.

Functional scans were acquired using a multi-echo planar imaging (ME-EPI) sequence with

online reconstruction (TR=2000 ms; English and Chinese: TEs=12.8, 27.5, 43 ms; French:

TEs=10, 25, 38 ms; FA=77◦; matrix size=72 x 72; FOV=240.0 mm x 240.0 mm; 2 x image

acceleration; English and Chinese: 33 axial slices; French: 34 axial slices; voxel size=3.75 x

3.75 x 3.8 mm). All fMRI data were preprocessed using AFNI version 16 (Cox 1996). The

first 4 volumes in each run were excluded from analyses to allow for T1-equilibration effects.

Multi-echo independent components analysis (ME-ICA) (Kundu et al. 2012) were used to

denoise data for motion, physiology and scanner artifacts. Images were then spatially nor-

malized to the standard space of the Montreal Neurological Institute (MNI) atlas, yielding

a volumetric time series resampled at 2 mm cubic voxels for the English and Chinese data

and 3.15 mm cubic voxels for the French data.
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