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Abstract The variable-free semantics of Jacobson (1999, 2000, 2014) derives
binding relations by a locally applied type-shifting rule called ‘z’. This rule, how-
ever, under-generates binding. To solve this problem, I replace the z-rule with the
dependency-generating rule ‘i’, which applies to predicates that contain a bindable
pronoun. Furthermore, to account for the interactions between scoping and binding,
I enrich the variable-free system by combining it with a two-dimensional analysis of
quantifiers. Topics covered in this paper include: binding into adjuncts, possessor
binding, scope ambiguity, inverse linking, weak crossover, and ‘paycheck pronouns’.
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1 Introduction

1.1 Jacobson’s variable-free approach

Jacobson’s (1999; 2000; 2014) variable-free semantics assumes no index/variable in
the grammar.1 In contrast to ‘variable-full’ approaches, which translate pronouns
into variables and interpret these variables via assignment functions (as in Kratzer
& Heim 1998), ‘variable-free’ approaches analyze pronouns as instances of the
category NPNP that denote identity functions over entities, as exemplified in (1).

(1) CAT(it) = NPNP, and JitK = λxe.x

More generally, as exemplified in (2-ii), pronouns and expressions that con-
tain an unbound pronoun are referred to as ‘XNP-categories’, represented with a
‘sup(erscript)-NP abstraction’. XNP has the same semantics as the functional coun-
terpart X|NP, which has a ‘slash-NP abstraction’;2 however, in contrast to X|NP, XNP

* For helpful discussions, I thank Simon Charlow, Michael Glanzberg, Pauline Jacobson, Haoze Li,
Ken Safir, and the abstract reviewers and the audience of SALT 31. All errors are mine.

1 The variable-free hypothesis is widely assumed in works on Categorial Grammar. The system
presented in this paper is developed from a series work by Jacobson beginning in the late 1980s.

2 I use ‘A|B’ as the joint representation for A/B and A\B, which select a B argument on the right and on
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doesn’t actively merge with an NP in syntax. For example, their mom has the same
semantics as ’s mom, but it doesn’t take an NP argument.

(2)

Category Meaning
(i) their mom NPNP λxe.mom(x)

(ii) ’s mom NP\NP λxe.mom(x)
(i) invited him (S\NP)NP λyeλxe.ivt(x,y)

(ii) invited (S\NP)/NP λyeλxe.ivt(x,y)

To compose expressions with pronouns, Jacobson assumes a type-shifting rule
g-sup(script), defined as in (3). Applying g-sup to a functional expression α that
selects an X argument allows this α to merge with an XNP argument, and further, it
passes up the information about the unbound pronoun contained in this XNP.

(3) The g-sup-rule (for passing up info about unbound pronouns)
For any expression α s.t. CAT(α) = A|B, we have:
CAT(g-sup(α)) = AC|BC, and Jg-sup(α)K = λVcbλCc.JαK(V (C))

Consider (4) for example. The verb invited, which selects an NP object, cannot
directly apply to the pronominal object his mom, which is an NPNP; however, the
type-shifted verb g-sup(invited) can apply to an NPNP. The resulting VP inherits the
sup-NP abstraction, indicating that the pronoun remains unbound in this VP.

(4) Composition of invited his mom (without binding)3

invited
(S\NP)/NP λyeλxe.ivt(x,y) g-sup

(S\NP)NP/NPNP λ feeλyeλxe.ivt(x, f (y))
his mom

NPNP λye.mom(y)
>FA

(S\NP)NP λyeλxe.ivt(x,mom(y))

The g-sup rule is analogous to the so-called ‘Geach rule’ (Geach 1970), referred
to as ‘g-sl(ash)’ in Jacobson’s system. These two g-rules have the same effects in
semantics, but g-sl is used to pass up information about an unsaturated syntactic
argument. For example, in didn’t come, applying g-sl to the negative auxiliary didn’t
shifts it from an S/S to an (S\NP)/(S\NP), which can merge with the intransitive
verb come. The result of composition is an S\NP, where the backslash-NP abstraction
indicates that the subject argument remains unsaturated.

(5) The g-sl-rule (for passing up info about unsaturated syntactic arguments)
For any expression α s.t. CAT(α) = A|B, we have:
CAT(g-sl(α)) = (A/C)|(B/C), and Jg-sl(α)K = λVcbλCc.JαK(V (C))

the left, respectively, and return an A. (Jacobson writes them as ‘A/RB’ and ‘A/LB’.) I also use ‘A‡B’
as the joint representation for categories corresponding to the type 〈TYPE(B),TYPE(A)〉, including
A/B, A\B, AB, and A[B.

3 In the derivation graphs, dotted lines are for unary rules, such as g and z; full lines are for binary
rules, such as forward Functional Application (>FA) and backward Functional Application (<FA).
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Further, to tackle sentences with multiple unbound pronouns, Jacobson (1999)
proposes to define g-sup recursively. In consequence, applying g-supn to a func-
tional expression α has the effect of applying g-sup to α while skipping n-many
abstractions in α . The following definition also extends this idea to g-sl:

(6) The recursive g-rules (after Jacobson 1999)
a. For any meaning F of type 〈a,b〉, g0(F) = λVcbλCc.F(V (C)).
b. For any expression α s.t. CAT(α) = (A|B)‡~Xn, we have:

i. CAT(g-supn(α)) = (AC|BC)‡~Xn

ii. CAT(g-sln(α)) = ((A/C)|(B/C))‡~Xn

iii.Jg-supn(α)K = Jg-sln(α)K = λD.gn−1(JαK(D))

Derivation (7) exemplifies recursive g-sup. As noted, a VP (of category S\NP) needs
to be type-shifted by g-sup when it merges with a pronominal subject. The basic
g-sup rule defined in (3) doesn’t apply to the VP in (7), because this VP has an
extra sup-NP abstraction stemming from the possessive pronoun his. Defining g-sup
recursively overcomes this problem: applying g-sup1 means saturating the extra NP
abstraction temporarily, applying g-sup as normal, and then abstracting the NP back.

(7) Shei invited his j mom. (Unbound interpretation)

she
NPNP λxe.x

[g-sup(invited) [his mom]]
(see steps in (4))

(S\NP)NP λyeλxe.ivt(x,mom(y))
g-sup1

(SNP\NPNP)NP
λyeλgeeλxe.ivt(g(x),mom(y))

<FA1
(NPNP)NP λyeλxe.ivt(g(x),mom(y))

Analogously, following a suggestion from Pauline Jacobson (p.c.), I assume that the
g-sup1-shifted VP composes with the subject argument via ‘generalized’ backward
FA (< FA1), which has the effect of applying g-sup1(VP) to the subject while skipping
the sup-NP abstraction in the VP stemming from the pronoun it contains.4

4 Instead of generalizing binary composition rules or defining them recursively, Jacobson 1999 assumes
that the composition between an NP and a pronoun-containing VP involves generalized Montague
lift. For (7), type-lifting the subject she allows it to take the VP as an argument.

As Pauline Jacobson (p.c.) points out, however, such composition can be easier if composition
rules are recursive or generalized, just like g. I assume a generalized definition of backward FA as in
(i). Here λ~xn denotes a sequence of abstractions stemming from the n-many unbound pronouns in
α , and λ~ym denotes a sequence of abstractions corresponding to the m-many unsaturated syntactic
arguments of α . The application of <FAn+m to [β -α] says: apply α to β while skipping the n-many
pronominal abstractions in α as well as the m-many abstractions of α that should be filled by strings
appearing on the right of α . Other binary composition rules can be generalized analogously.

(i) For any expressions α and β s.t. CAT(α) = ((A\B)/~Y m)
~Xn

and CAT(β ) = B, we have:
CAT([β -α]) = (A/~Y m)

~Xn
, and Jβ -αK−−−−→

<FAn+m
λ~xnλ~ym.JαK(~xn)(~ym)(Jβ K).
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For binding, Jacobson assumes that pronoun binding is achieved by the locally
applied rule ‘z’, defined as in (8). Applying the z-rule to a transitive verb closes off
the dependency between the two arguments of this verb. Then binding arises when
this z-shifted verb merges with a string that contains the bindee and the binder.

(8) The z-rule (to create binding relations)
For any expression α s.t. CAT(α) = (A\NP)/B, we have:
CAT(z(α)) = (A\NP)/BNP, and Jz(α)K = λ febλxe.JαK( f (x))(x).

As seen in (9), the type-shifted verb z(invited), interpreted as λ feeλxe.ivt(x, f (x)),
is already encoded with a co-argument dependency. Composing this verb with its
two arguments by FA yields an S read as ‘John invited John’s mom’.

(9) Johni invited hisi mom. (Bound interpretation)

John
NP j

invited
(S\NP)/NP λyeλxe.ivt(x,y) z

(S\NP)/NPNP λ feeλxe.ivt(x, f (x))
his mom

NPNP λye.mom(y)
>FA

S\NP λxe.ivt(x,mom(x))
<FA

S ivt( j,mom( j))

1.2 Problems of under-generation

Example (9) is an instance of co-argument binding. In co-argument binding, the
bindee appears within a lower argument of the z-shifted functional expression, and
the binder serves as a higher argument of this expression by itself.

(10) Schema of co-argument binding: [[BINDER] z(verb) [... BINDEE ...]]

However, there are many cases where the bindee and the binder do not stand in a
configuration like (10). First, as seen in (11), the bindee may occur in an adjunct, not
an argument. (For Jacobson’s solution, see fn. 7; for more data, see Barker 2012.)

(11) a. Maryi went home [with heri mom].
b. We will sell no winei [before itsi time].

Second, the binder itself may not be an argument of a functional expression. For
example in (12a), the binder is the possessor John, not the entire subject John’s
mother. In the Government-and-Binding (GB) theory, such binding cases are called
‘non-c-commanding binding’, which include binding out of DPs, as in (12a,b), and
binding out of adjuncts, as in (12c).5 (For more data, see Barker 2012.)

(12) a. [Johni’s/ Hisi/ Every boyi’s mother] loves himi.

5 I use ‘(non-)c-commanding’ only for description. To be exact, Jacobson’s system doesn’t have the
concept of c-commanding, because this system doesn’t model syntax in terms of tree structures.
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b. [Someone from every cityi] despises iti.
c. [In everyonei’s own mind], theyi are the most important person.

The primary goal of this paper is to solve the binding under-generation problems
while keeping the basic apparatus of Jacobson’s variable-free system. Moreover, I
will enrich this system to account for the interactions between scoping and binding.

2 Proposal: binding by the i-rule

For binding in general, I propose to replace Jacobson’s z-rule with the i-rule defined
in (13) (a la the duplicator W in Szabolcsi 1992).6 The i-rule has an ‘identity’ effect:
for any multi-ary predicate α that contains a bindable pronoun, applying i to α has
the consequence that whatever saturates the sup-NP abstraction stemming from the
bindable pronoun contained in α also saturates the next NP abstraction of α .

(13) The i-rule (for generating dependencies)
For any expression α s.t. CAT(α) = (A‡NP)NP, we have:
CAT(i(α)) = A‡NP, and Ji(α)K = λxe.JαK(x)(x).

The proposed i-rule and Jacobson’s z-rule stand in the following relation:

(14) For any transitive verb F and NPNP-category f , i([g-sup(F)]( f )) is identical
to [z(F)]( f ) in both syntax and semantics.

Consider (15b) for illustration. First, composing g-sup(invited) with his mom
returns a VP with two NP abstractions, one sup-NP (λy) from the pronoun his, and
one slash-NP (λx) from the unsaturated subject. Second, applying i to the resulting
VP makes the two NP abstractions be bound by the same abstractor, reducing it into
a one-place predicate with a dependency on the subject: ‘λxe: x invited x’s mom.’

(15) Ways to derive the bound interpretation of invited his mom:

a. By the z-rule (as in (9)):
(S\NP)/NP invited

z
(S\NP)/NPNP λ feeλxe.ivt(x, f (x))

his mom
NPNP λye.mom(y)

>FA
S\NP λxe.ivt(x,mom(x))

b. By the i-rule:
[g-sup(invited) [his mom]]

(see steps in (4))
(S\NP)NP λyeλxe.ivt(x,mom(y))

i
S\NP λxe.ivt(x,mom(x))

6 The i-rule is assumed in light of the duplicator W (:= λFλx.F(x)(x)) in Combinatory Categorial
Grammar. Szabolcsi (1992) takes this duplicator to be the lexicon of a reflexive pronoun like herself;
Shan & Barker (2006) and Charlow (To appear) build the duplicator into a binding rule that applies
to quantificational binders.
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As seen above, the z-rule is locally applied to the transitive verb invited; in contrast,
the i-rule is applied after the verb has merged with a bindee-containing expression.

Example (15) has shown how the i-rule accounts for co-argument binding —
due to the equivalence relation in (14), the proposed i-rule, together with the existing
rule g-sup, can account for any binding relations that can be derived by the z-rule.
Moreover, as I will argue below, the i-rule captures several other binding relations.

The i-rule allows for binding into adjuncts. It is applied after the verb has
composed with the bindee-containing expression, no matter whether this expression
is an argument of the verb or an adjunct of a VP. In (16), option (16a) is deviant:
the type-shifted verb z(invited) selects an NPNP-argument, and thus it cannot merge
with a VP-modifier, which has the category (S\NP)\(S\NP).7 In contrast, in (16b),
applying the i-rule to the PP-modified VP left with his mom derives a dependency
between the subject argument and the pronoun contained within the PP-adjunct.

(16) Johni left [with hisi mom].

a. * John z(left) [with his mom]

b. John i [left [with his mom]]

c. i [LIFT(John) left [with his mom]]

Option (16c) will be discussed in section 3.3: by type-lifting the binder John into a
quantifier, which will be analyzed as a two-dimensional expression with a ‘trace’-like
component, we can derive the dependency by applying i to the entire sentence.

The i-rule also sufficiently accounts for pronominal binding, regardless of ‘c-
commanding’ — all we need is to apply the i-rule to an expression that contains
both the bindee and the pronominal binder. (17) is a case of ‘non-c-commanding’
pronominal binding, where the pronominal possessor within the subject binds the
object pronoun. The z-rule cannot capture this binding relation: in (17a), z-shifting
the verb loves would make the object be bound by the entire subject.

7 Jacobson derives binding into adjuncts by applying generalized Montague lift (et-LIFT) to the VP,
which allows this VP to take a VP-adjunct as an argument. The analysis precedes as follows:

(i) [John z(et-LIFT(left)) [with his mom]]

First, applying et-LIFT to the VP left shifts it into an (S\NP)/((S\NP)\(S\NP)), which can take
the PP-adjunct (of category (S\NP)\(S\NP)) as an argument. Second, applying z to the type-lifted
VP closes off the dependency between the two argument slots that will be saturated by the subject
and the adjunct. Last, the resulting VP merges with the bindee-containing adjunct and the subject
binder. (See Jacobson 1999 for a related discussion tackling unbound readings.) Despite the distinct
analytical moves, the analyses in (16b) and in (i) converge on the idea that binding is independent of
grammatical distinctions between arguments and adjuncts.

However, as pointed out by Simon Charlow (p.c.), the generalized-lifting analysis in (i) has
limitations; it doesn’t extend to cases where the binder is inside the VP, such as in We will sell no
winei before itsi time. For my own explanation, see section 3.3.
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(17) [Hisi mom] loves himi.
a. # [[His mom] z(loves) him] (Meaning: ‘His mom loves his mom.’ ×)
b. [i (His mom loves him) ] (Meaning: ‘His mom loves him.’

√
)

More details of (17b) are given below. Due to the two pronominal expressions it
contains, the sentence is first analyzed as an (SNP)NP. The composition involves g-
sup1 and FA1, just as in (7). Next, applying i to the full sentence yields a dependency
between his and him, reducing the sentence into an SNP.

(18)
His mom

NPNP λxe.mom(x)

loves him
(S\NP)NP λyeλxe.lv(x,y) g-sup1

(SNP\NPNP)NP
λyeλ feeλxe.lv( f (x),y)

<FA1
(SNP)NP

λyeλxe.lv(mom(x),y)
i

SNP λxe.lv(mom(x),x)

3 Extension: quantificational binding

In many cases, scoping feeds ‘non-c-commanding’ binding (Safir 2004; Barker 2005,
2012; a.o.). These cases argue that quantificational binding is available only if the
quantificational binder scopes above the bindee. Since Jacobson’s system doesn’t
deal with scoping, the relation between scoping and binding remains a mystery.

(19) a. [Every boyi’s mother] loves himi. (Possessor binding)
b. [Someone from every cityi] despises iti. (Inverse linking)

In GB-style compositional semantics, semantic binding is achieved by making
the pronoun co-indexed with the trace of the quantifier at LF (Kratzer & Heim 1998).
As in (20), the trace of the quantifier and the bound pronoun both carry the index i:

(20) [ every-boy λ i [ ti loves hisi mother ]]

In this section, I will propose a variable-free approach to quantificational binding.
My approach takes insight from (20) but does not make use of quantifier raising or
indexation.8 Briefly, by applying the i-rule, my approach has the effect of generating
a dependency between a ‘trace’-like component of the quantifier and the pronoun.

8 In GB-style compositional semantics, semantic composition takes place at LF, an abstract level of
representations in which the linear order of strings can be different from that in the surface structure.
In contrast, Jacobson assumes ‘Direct Compositionality’ (Barker & Jacobson 2007), a hypothesis
independent of the variable-free hypothesis. She argues that syntax and semantics work in tandem:
“Each linguistic expression that is proven well-formed in the syntax is assigned a meaning by the
semantics, and the syntactic rules or principles which prove an expression as well-formed are paired
with the semantics which assign the expression a meaning.” (Jacobson 2014: p. 9). As a result, this
system has no intermediate level like LF and no transformation (e.g., LF movement) for mapping
surface representations into LF representations. For this consideration, my analysis of scoping doesn’t
resort to quantifier raising.
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3.1 Quantificational DPs as two-dimensional expressions

I assume that quantificational DPs are two-dimensional expressions (cf. ‘Quantifier
Storage’ in Cooper 1983), represented in the form of

[
TOP

BOTTOM

]
. For example, the cate-

gory and meaning of everyone are as follows (eo abbreviates λPet .eo(λxe.P(x))):

(21) a. CAT(everyone) =
[

S[(S/NP)
NP/NP

]
(abbr.:

[
Π

T

]
) b. JeveryoneK =

[
eo

λxe.x

]
The bottom component is ‘trace’-like.9 It is interpreted as an identity function over
entities, just like pronouns; however, in syntax, it has a distinct category NP/NP
(abbreviated as T ), which applies to an NP argument on the right and returns an NP.
The top component has the category S[(S/NP) (abbreviated as Π) and is interpreted
as a generalized quantifier. I assume that the two components have distinct roles
in composition. The bottom component participates in composition and binding,
similar to the assumption in the GB-theory that it is the trace of the quantificational
binder that composes with the surrounding expressions and is co-indexed with the
bindable pronouns. The top component deals with quantification and scoping; it
remains unchanged till it can combine with the bottom component via ‘inward FA’.

To tackle composition involving two-dimensional expressions, I define binary FA
rules as in (22). (22a) says: when a two-dimensional expression α composes with a
one-dimensional expression by FA, it is the bottom component of α that participates
in the reduction by FA. (22b) tackle cases with multiple quantifiers: if both of the
expressions that participate in FA are two-dimensional, the one that serves as the
function takes narrow scope. Other binary rules are defined analogously.

(22) Forward FA (backward FA is analogous)

a.
(

A/B

[
X
B

])
or
([

X
A/B

]
B

)
−−→
>FA

[
X
A

]

b.
([

X1
A/B

] [
X2
B

])
−−→
>FA

 X2([
X1

A/B

]
B
)

>FA

 =

 X2[
X1
A

]
Inward FA applies to a single two-dimensional expression. As schematized in

(23a), when the bottom component of a two-dimensional expression can serve as the
argument of the top, apply the top to the bottom and reduce this two-dimensional

9 To be exact, Jacobson’s framework doesn’t assume empty categories like traces in grammar. However,
assuming traces doesn’t affect composition; for example, assume that a trace t is an NP/NP-category
denoting an identity function, then the VP [g-sl(invite) t], which contains an object trace, is equivalent
to the transitive verb invite, in both syntax and semantics. In this paper, saying that an expression
has a ‘trace’-like component means that this expression contains an unfilled non-subject argument, a
two-dimensional quantifier, or some other T -category.

8



Binding without variables: solving the under-generation problems

expression into a one-dimensional expression. Further, (23b) says: for a recursion of
top–bottom pairs, the effect of inward FA applies to the innermost top–bottom pair.

(23) Inward FA (a la lower in Shan & Barker 2006 and Barker & Shan 2014)

a.
[

A [ B
B

]
−−→
∨FA

A b.

 C [ A[
A [ B

B

]−−→
∨FA

 C [ A([
A [ B

B

])
∨FA

=

[
C [ A

A

]
−−→
∨FA

C

When a unary rule that is defined for one-dimensional expressions (e.g., g, i, and
LIFT) is applied to a two-dimensional expression, effects of this rule apply to the
bottom component of this expression, as schematized in (24).

(24) If R is a unary rule defined for one-dimensional expressions, we have:[
A [ B

C

]
−→
R

[
A [ B
R(C)

]
In a stack of top–bottom pairs, (24) applies recursively; as a result, effects of a unary
rule apply to the bottom component of the innermost top–bottom pair in the stack.

3.2 (Non-)quantificational possessor binding

With the assumptions made for quantificational DPs, the analysis of pronominal
possessor binding easily extends to quantificational possessor binding. In (25b), the
binder role of the pronominal possessor in (25a) (of category NPNP) is now taken by
the ‘trace’-like component of the quantificational possessor (of category NP/NP).

(25) a. Hisi mom loves himi. (Pronominal possessor binding)

b. Every boyi’s mom loves himi. (Quantificational possessor binding)

c. Johni’s mother loves himi. (Non-quantificational possessor binding)

The composition of (25b) precedes as in (26). First, applying g-sl and g-sl1 to ’s
mom and loves him respectively allows them to select a T . Second, the ‘trace’-part of
every boy composes with the remnant DP ’s mom and then with the VP loves him
via backward FA, returning an (S/NP)NP-category denoting a two-place predicate.
In this output, the sup-NP comes from the bindee him, and the right-slash NP comes
from the ‘trace’-part of the quantificational binder every boy. Third, applying i to
the resulting two-dimensional sentence yields a dependency between these two NPs
and shifts the bottom component of the sentence into an S/NP denoting a one-place
predicate. This S/NP may serve as an argument of the quantificational part at the
top. (Recall that Π abbreviates S[(S/NP).) Finally, applying inward FA reduces the
two-dimensional sentence into a simple S expressing quantificational binding: ‘For
every boy x, x’s mom loves x.’

(26) Every boyi’s mom loves himi.

9



Xiang

every boy[
Π

T

] [
eb

λxe.x

] ’s mom
NP\NP λxe.mom(x)

g-sl
T\T λ feeλxe.mom( f (x))

<FA[
Π

T

] [
eb

λxe.mom(x)

] loves him
(S\NP)NP

λyeλxe.lv(x,y) g-sl1
((S/NP)\T )NP

λyeλgeeλxe.lv(g(x),y)
<FA1[

Π

(S/NP)NP

] [
eb

λyeλxe.lv(mom(x),y)

]
i[

Π

S/NP

] [
eb

λxe.lv(mom(x),x)

]
∨FA

S eb(λxe.lv(mom(x),x))

This analysis also extends to the non-quantificational possessor binding case
(25c). All we need is to lift the binder John into a quantifier by the rule in (27).

(27) Lift (a la Montague lift)
For any expression α s.t. CAT(α) = NP, we have:

CAT(LIFT(α)) =

[
S[(S/NP)
NP/NP

]
(abbr.:

[
Π

T

]
), and JLIFT(α)K =

[
λPet .P(JαK)

λxe.x

]
.

3.3 More cases of binding into adjuncts

The analysis of binding into adjuncts given in (16b) works only if the bindee depends
on the subject and is contained within the (modified) VP. It doesn’t apply to the cases
below: in (28a), the binder no wine is inside the VP; in (28b), the if-clause modifies
a sentence, not a VP. These cases are also difficult to Jacobson’s solution (see fn. 7).

(28) a. We will sell no winei [before itsi time].
b. [Johni will be disappointed] [if hisi mom is late].

The two-dimensional account now allows us to derive dependencies in the above
cases by the i-rule. Basically, the analysis in (16b) allows the i-rule to be applied to a
string that contains the bindee but not the binder; here, by analyzing the binder as a
two-dimensional expression, we can apply the i-rule to a string that contains also the
binder, no matter whether this string is a VP or a sentence.

For example, in (28a), applying g-sup to each of the strings that ‘c-command’
its passes up the information about this bindable pronoun; likewise, applying g-
sl to the strings that ‘c-command’ the object no wine passes up the information
about the ‘trace’-part of this quantificational binder. Composition yields a two-
dimensional sentence with an (S/NP)NP-category at the bottom. Further, applying
i to this sentence closes off the dependency between its and the ‘trace’-part of no
wine, yielding a binding-into-adjunct effect.
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3.4 Scope ambiguity

In GB-style compositional semantics, scope ambiguity of quantifiers is derived by
quantifier raising. In the enriched variable-free system proposed in this paper, as
seen in the definition of FA in (22b), the scopal relation between two quantifiers is
determined by how they participate in FA:

(29) For a sentence S of the form “Q1 V Q2”, where Q1 and Q2 are quantificational
DPs, we have: (i) S has a surface scope reading if the bottom component of
Q1 serves as an argument of [V Q2]; (ii) S has an inverse scope reading if
Q1 as a whole serves as an argument of [V Q2].

3.4.1 Surface scoping

As illustrated in Figure 1, composing the subject everyone with the VP loves someone
by backward FA derives the surface scope reading, where eo scopes above so in (a).
The resulting stack is reduced into a simple S by applying inward FA twice.

everyone[
Π

T

][
eo

λxe.x

]
loves someone[
Π

(S\NP)/NP

] [
so

λyeλxe.lv(x,y)

]
g-sl1[

Π

((S/NP)\T )/NP

] [
so

λyeλ feeλxe.lv( f (x),y)

]
<FA1 Π[

Π

(S/NP)/NP

]  eo[
so

λyeλxe.lv(x,y)

] (a)

x-sl Π[
(S/NP)[((S/NP)/NP)

(S/NP)/NP

]  eo[
λθ〈e,et〉λxe.so(λye.θ(y)(x))

λyeλxe.lv(x,y)

]
∨FA[

Π

S/NP

] [
eo

λxe.so(λye.lv(x,y))

]
∨FA

S eo(λxe.so(λye.lv(x,y)))

Figure 1 Surface scope reading of Everyone loves someone

One caveat here is that inward FA doesn’t directly apply to (a) in Figure 1:
the quantificational part of someone should combine with an S/NP, but here the
bottom component has the category (S/NP)/NP, which contains an extra slash-
NP abstraction (corresponding to λx) stemming from the ‘trace’-part of everyone.

11
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I resolve this type-mismatch by the following x-rules, which apply to particular
two-dimensional expressions (here the subscript c in xc refers to the category C):

(30) The x-rules

For any two-dimensional expression
[

α

β

]
s.t.

CAT(α) = A[(B‡X) and CAT(β ) = (B/C)‡X , we have:

x-sl(
[

α

β

]
) =

[
xc-sl(α)

β

]
and x-sup(

[
α

β

]
) =

[
xc-sup(α)

β

]
, where

a. CAT(xc-sl(α)) = (A/C)[((B/C)‡X)

b. CAT(xc-sup(α)) = AC[(BC‡X)

c. Jxc-sl(α)K = Jxc-sup(α)K = λV〈x,cb〉λCc.JαK(λXx.V (X)(C))

In Figure 1, applying x-sl to (a) converts the quantificational part of someone
into a complex category that selects an (S/NP)/NP argument (corresponding to λθ ).
It also transmits the information about the ‘trace’ of everyone from the bottom
component to the existential quantification (viz., passing up the abstraction of x over
so), which further forms the bottom component of the universal quantification. After
the application of x-sl, inward FA can proceed as normal.

3.4.2 Inverse scoping

As mentioned in (29), in “Q1 V Q2”, an inverse scope reading arises if it is the
entire Q1 (as opposed to the ‘trace’-part of Q1 only) that participates in composition
as an argument of [V Q2]. A la Hendriks 1993, this condition can be achieved by
argument-lift. In my system, argument-lift means lifting a T -category argument slot
into one that needs to be filled by a two-dimensional quantifier, defined as in (31).

(31) Argument lift (ALIFT; a la Hendriks 1993)
For any expression α s.t. CAT(α) = (X/NP)|T , we have:

CAT(ALIFT(α)) =

[
Π

X/NP

]
|
[

Π

T

]
and JALIFT(α)K= λ [ π

fee
].

[
π

λxe.JαK( f (x))

]
Details of composition are given in Figure 2. First, by applying ALift1 to the

VP, the subject argument slot which formerly called for a T now wants to be filled
by a two-dimensional quantifier. Second, composing this argument-lifted VP with
the subject everyone by backward FA yields an inverse scope reading — so scopes
above eo in (a). Finally, applying inward FA twice reduces the stack into a simple
S. All the type-shifting and composition rules, except the last inward FA, carry the
subscript 1, since they need to skip the extra slash-NP abstraction (corresponding to
λy) stemming from the ‘trace’-part of the quantificational object someone.

12
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everyone[
Π

T

][
eo

λxe.x

]

loves someone[
Π

(S\NP)/NP

] [
so

λyeλxe.lv(x,y)

]
g-sl1[

Π

((S/NP)\T )/NP

] [
so

λyeλ feeλxe.lv( f (x),y)

]
ALIFT1 Π([

Π

S/NP

]
\
[

Π

T

])
/NP

  so

λyeλ [ π

fee
].

[
π

λxe.lv( f (x),y)

]
<FA1 Π[

Π

S/NP

]
/NP

  so

λye.

[
eo

λxe.lv(x,y)

] (a)

∨FA1[
Π

S/NP

] [
so

λye.eo(λxe.lv(x,y))

]
∨FA

S so(λye.eo(λxe.lv(x,y)))

Figure 2 Inverse scope reading of Everyone loves someone

3.5 Inverse linking

Compared to the basic cases of inverse scoping, further complications arise in
sentences with inverse linking. For example, the composition of (32) requires
the following: (i) restrictor modification, to let the PP from every city restrict the
quantification domain of someone; (ii) inverse scoping: to make every city take
wide scope, and (iii) non-c-commanding binding: to allow every city to bind the
pronoun it from a non-c-commanding position. Discussion in previous sections has
explained (ii) and (iii), resorting to the applications of ALIFT and i, respectively.
This subsection will add one more ingredient to derive restrictor modification.

(32) [Someone from every cityi] [despises iti]. (May 1977)
(For every city y, there is an individual x from y s.t. x despises y.)

Given the assumption that it is the ‘trace’-part of someone (viz., a T -category
denoting an identity function) that participates in composition, I define a restrictor
modification rule as in (33). This rule converts a predicative modifier into a T\T -
category, which can modify ‘traces’. (Here f ′ ≤ f means that every pair in function
f ′ is a pair in function f .)

(33) The RES-rule (to derive restrictor modification)
For any P s.t. CAT(P) = S\NP, we have: CAT(RES(P)) = T\T , and

13
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JRES(P)K = λ fee.MAX f ′≤ f [∀x′∈ Dom( f ′)[JPK( f ′(x′))]]
(For any f〈e,e〉, return the maximal function f ′ that is a subpart of f ′ s.t. f ′

maps each object in its domain to an object satisfying JPK.)

The complex subject in (32) is now composed as in Figure 3. Applying the
restriction rule to from every city converts it into a restrictor of skolem functions. This
restrictor undergoes argument-lift, so that it can apply to the entire two-dimensional
expression someone and derive an inverse scope reading (every city� someone).

Step (A): Composing the complex quantificational subject

someone[
Π

T

][
so

λxe.x

]

from every city[
Π

(S\NP)/NP

][
ec

λyeλxe.fr(x,y)

]
RES1[

Π

(T\T )/NP

][
ec

λyeλ fee.MAX f ′≤ f [∀x′∈ Dom( f ′)[fr( f ′(x′),y)]]

]
ALIFT1 Π([

Π

T

]
\
[

Π

T

])
/NP

 ec

λyeλ [π

f ].

[
π

MAX f ′≤ f [∀x′∈ Dom( f ′)[fr( f ′(x′),y)]]

]
<FA1 Π[

Π

T

]
/NP

 ec

λye.

[
so

MAX f ′≤(λxe.x)[∀x′∈ Dom( f ′)[fr( f ′(x′),y)]]

]
Figure 3 Composition of someone from every city (inverse scope reading)

In the composition output, the T -category part at the bottom is read as ‘the maximal
〈e,e〉-type identity function f ′ that maps each entity in its domain to an entity from
y’. This f ′ has the same extension as the partial identity function λxe : fr(x,y).x.
This step restricts the domain of some from De to the set of entities from y.

The modified quantificational subject has a complex category. As illustrated in
Figure 4: Step (B), to compose with this subject, the VP has to undertake a few of
type-shifting operations till it selects an argument of category

[
Π

T

]
/NP. In particular,

the first g-sl1 and ALIFT1 are applied to allow the VP to select a two-dimensional
quantificational argument, and the second g-sl1 is applied to let the VP to be ready
to transmit the information about the ‘trace’ of every city in the subject.

The final steps of composition are given in Figure 4: Step (C). First, the complex
subject composes with the type-shifted VP via backward FA. Next, applying the
i-rule yields a dependency between the ‘trace’ of every city and the object pronoun it
(corresponding to λy and λ z, respectively). Last, applying inward FA twice reduces
the stack into a simple S expressing inverse linking.
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Step (B): Type-shifting the VP
despises it

(S\NP)NP λ zeλxe.desp(x,z)
g-sl1

((S/NP)\T )NP λ zeλ feeλxe.desp( f (x),z)
ALIFT1([

Π

S/NP

]
\
[

Π

T

])NP

λ zeλ [π

f ].

[
π

λxe.desp( f (x),z)

]
g-sl1(([ Π

S/NP

]
/NP
)
\
([Π

T

]
/NP
))NP

λ zeλρ〈e,[ 〈et,t〉
ee ]〉λye.

[
λ [π

f ].

[
π

λxe.desp( f (x),z)

]]
(ρ(y))

Step (C): Combining the complex subject with the VP

(A) someone from every city (B) despises it
<FA1 Π([

Π

S/NP

]
/NP

)NP

 ec

λ zλy.
[

so
λx.desp((MAX f ′≤(λxe.x)[∀x′∈ Dom( f ′)[fr( f ′(x′),y)]])(x),z)

]
i Π([

Π

S/NP

]
/NP

) ec

λy.
[

so
λx.desp((MAX f ′≤(λxe.x)[∀x′∈ Dom( f ′)[fr( f ′(x′),y)]])(x),y)

]
∨FA1[

Π

S/NP

][
ec

λy.so(λx.desp((MAX f ′≤(λxe.x)[∀x′∈ Dom( f ′)[fr( f ′(x′),y)]])(x),y))

]
equivalent[

Π

S/NP

][
ec

λy.so(λx.fr(x,y)∧desp(x,y))

]
∨FA

S ec(λy.so(λx.fr(x,y)∧desp(x,y)))

Figure 4 Composition of Someone from every cityi despises iti (inverse linking)

4 Weak crossover

As well-known, scoping cannot feed binding in crossover constructions (Postal 1971;
Chomsky 1976; a.o.). In (34), the pronominal possessor his in the subject cannot be
bound by the quantificational object everyone. (For a review, see Safir 2017.)

(34) His j/*i mom invited everyonei.
(Unavailable reading: ‘For everyone x, x’s mom invited x.’)

In my analysis, the deviance of weak crossover is straightforwardly predicted by
the definedness constraint on the syntax of the i-rule. As defined in (13), the i-rule
only applies to categories of the form ‘(X‡NP)NP’. According to this constraint, the
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sup-NP abstraction provided by a bindable pronoun has to be reduced first, before
any other NP abstraction saved for the binder of this pronoun is reduced.

According to this constraint, the i-rule can be applied to (S\NP)NP, (S/NP)NP,
and (SNP)NP, as exemplified in (36a–c). In these three cases, the NP abstraction for
the binder comes from an unsaturated syntactic argument of loves, the ‘trace’-part of
the two-dimensional quantifier every boy, and the pronoun his, respectively.

(35) a. i [loves him]

b. i [every boy’s mom loves him]

c. i [his mom loves him]

In contrast, the i-rule cannot be applied in (34), neither to the VP nor to the full
sentence. As seen below, both strings have an (S‡NP)/NP-category at the bottom.
The composition in (36) yields an SNP that expresses an unbound reading.

(36)

His mom
NPNP

invited everyone[
Π

(S\NP)/NP

]
(can’t be i-shifted)

g-sup1[
Π

(SNP\NPNP)/NP

]
<FA1[

S[(S/NP)
SNP/NP

]
(can’t be i-shifted)

x-sup[
SNP[(SNP/NP)

SNP/NP

]
∨FA

SNP λx.eo(λy.ivt(mom(x),y))

5 Paycheck pronouns

In the following sentences, the pronouns in bold are called ‘paycheck pronouns’
(Karttunen 1969; Cooper 1997; Engdahl 1986; Jacobson 2000; Barker 2005; a.o.).
In (37a), her refers to Billy’s mom. Descriptively, this reading arises as follows:
her refers to the function his mom, in which the possessive pronoun his is bound by
Billy. The same applies to the pronoun it in (37b) (example from Jacobson 2000).

(37) a. Andyi loves hisi mom, but Billy j hates her=his j mom.
(Intended: ‘Andy loves his mom, but Billy hates his mom.’)

b. The woman [whoi deposited heri paycheck in the bank] was wiser than
the woman [who j deposited it=her j paycheck in the Credit Union].

Jacobson’s variable-free semantics naturally accounts for the functional inter-
pretations of paycheck pronouns: first, her in lexicon is an NPNP-category denoting
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an identify function over individuals; second, applying g-sup to her turns it into an
(NPNP)(NPNP)-category that denotes an identity function over 〈e,e〉-type functions,
such as Jhis momK (= λxe.mom(x)). This merit of Jacobson’s system is also mani-
fested in analyzing Bach-Peters sentences (Jacobson 2000) as well as wh-questions
and wh- relative clauses with functional interpretations (Jacobson 1999).

However, Jacobson’s system doesn’t generate non-c-commanding binding, which
includes not only aforementioned possessor binding but also cross-sentential binding.
Jacobson (2000) argues that in (37a) the co-referential relation between his mom and
the paycheck pronoun her isn’t really a binding relation; instead, she treats her as a
free pronoun, which picks up the contextually salient value denoted by his mom.

In contrast, the proposed system allows us to derive a cross-sentential depen-
dency between his mom and her. By lifting NPNP-categories into two-dimensional
quantifiers, the analysis made for non-c-commanding quantificational binding also
extends to the binding of a paycheck pronoun. I generalize the Montague lift rule as
in (38), which works cross-categorically for NPs as well any pronominal categories.

(38) Cross-categorical lift (generalized from (27))
For any X-category α s.t. X is NP or a pronominal category, we have:

CAT(LIFT(α)) =

[
S[(S/X)

X/X

]
, and JLIFT(α)K =

[
λP〈x,t〉.P(JαK)

λXx.X

]
(39) Pronominal categories (after Charlow To appear)

NPNP is a pronominal category; if YX is a pronominal category, (YNP)(X
NP) is

a pronominal category; nothing else is a pronominal category.

The composition of (37a) is given in (40), which omits the g-rules applied for
resolving type-mismatch. This composition includes the following operations: (i) as
assumed by Jacobson (2000), applying g-sup to the paycheck pronoun her allows
this pronoun to refer to an 〈e,e〉-type function such as his mom (as opposed to an
individual); (ii) in both clauses, applying i to VP yields a dependency between the
subject and the pronominal object in each clause; (iii) together with the results of
operation (i), lifting his mom and applying i to the entire coordination make her be
bound by his mom. This analysis also applies to (37b).

(40) [Andy i [loves LIFT(his mom)]][
S[(S/NPNP)

S/NPNP

] [
λP〈ee,t〉.P(λxe.mom(x))

λ fee.lv(a, f (a))

] [Billy i [hates g-sup(her)]]
S(NPNP) λgee.hate(b,g(b))

g, FA[
S[(S/NPNP)

(S/NPNP)(NPNP)

] [
λP〈ee,t〉.P(λxe.mom(x))

λgeeλ fee.lv(a, f (a))∧hate(b,g(b))

]
i[

S[(S/NPNP)

S/NPNP

] [
λP〈ee,t〉.P(λxe.mom(x))

λ fee.lv(a, f (a))∧hate(b, f (b))

]
∨FA

S lv(a,mom(a))∧hate(b,mom(b))
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6 Comparison with Barker (2005)

To account for ‘non-c-commanding’ binding, Barker (2005) enriches the variable-
free system of Jacobson 1999 by assuming a separate pair of rules, called s and q. As
exemplified in (42), the s-rule, defined as a dual of z, allows a quantificational binder
to bind one level up. Composition with quantifiers is achieved by value raising (VR)
and argument lift (ALIFT). In cases where the binder is deeply embedded, the q-rule
(cf. g) transmits the information about this binder (details are omitted).

(41) The s-rule
For any expression α s.t. CAT(α) = (A|B)|NP, we have:
CAT(s(α)) = (A|BNP)|NP, and Js(α)K = λxeλ feb.JαK(x)( f (x))

(42) Every boyi’s mom loves himi. (G abbreviates S/(S\NP))

every boy
G eb

’s mom
NP\NP λx.mom(x)

VR
(S/(S\NP))\NP λxλπ.π(λP.P(mom(x)))

s
(S/(S\NP)NP)\NP ...

ALIFT
(S/(S\NP)NP)\G ...

<FA
S/(S\NP)NP λR.eb(λx.R(x)(mom(x)))

loves him
(S\NP)NP λyλx.lv(x,y)

<FA
S eb(λx.lv(mom(x),x))

The s-rule, however, is abandoned in Jacobson 1999 since it allows for crossover.
To avoid generating crossover constructions, Barker further builds a separate value
assigning and transmitting system.

In comparison, while Barker (2005) makes use of two binding rules, i.e., z and s,
my analysis needs only one binding rule, i.e., the i-rule. In my account, crossover
constructions are automatically ruled out by a syntactic constraint on the application
of i. Further, by defining quantificational binders as two-dimensional expressions
with a ‘trace’-like NP/NP-component, my account captures the transmitting of the
information about the binder by the existing rule g-sl and doesn’t require rules like q.

7 Conclusion

This paper presented a solution to the binding under-generation problems of Jacob-
son’s variable-free system. I argued to derive dependencies uniformly by the i-rule,
which is more flexible than Jacobson’s locally applied z-rule. I also argued to analyze
quantifiers as two-dimensional expressions, which consist of a quantificational part
and a ‘trace’-like part. This two-dimensional treatment is particularly useful for
tackling scoping and ‘non-c-commanding’ binding. In future research, I would like
to see how the enriched system compares to competing variable-free approaches to
binding (Szabolcsi 1992; Barker & Shan 2014; Charlow To appear; a.o.).
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