
Proceedings of SALT 31: 000–000, 2021

Binding without variables: Solving the under-generation
problems*

Yimei Xiang
Rutgers University

Abstract The variable-free semantics of Jacobson (1999, 2000, 2014) derives
binding relations by the local application of the z-rule. This rule, however, under-
generates binding. This paper makes two contributions: (i) replacing the z-rule
with a more flexible rule called i (a la the W-combinator of Szabolcsi 1992), which
allows for more binding relations; (ii) enriching Jacobson’s variable-free system
and proposing a two-dimensional analysis to account for the interactions between
scoping and binding. Issues to be covered include binding into adjuncts, possessor
binding, scope ambiguity, inverse linking, weak crossover, and ‘paycheck pronouns’.

Keywords: Pronouns, binding, variable-free, direct compositionality, non-c-commanding
binding, scoping, inverse linking, weak crossover, paycheck pronouns, categorial grammar

1 Introduction

1.1 Jacobson’s variable-free approach

Jacobson’s (1999; 2000; 2014) variable-free semantics assumes no index/variable in
the grammar.1 In contrast to ‘variable-full’ approaches, which translate pronouns
as variables and interpret these variables via assignment functions (as in Kratzer
& Heim 1998), ‘variable-free’ approaches analyze pronouns as instances of the
category NPNP that denote identity functions over entities, as in (1).

(1) CAT(it) = NPNP, and JitK = λxe.x

More generally, pronouns and expressions that contain an unbound pronoun are
treated as categories with a superscript NP abstraction, called ‘XNP-categories’, as
exemplified in (2-ii). In meaning, they are the same as the functional category X|NP,
which selects an NP argument and returns an X.2 However, in syntax, they don’t

* For helpful discussions, I thank Simon Charlow, Michael Glanzberg, Pauline Jacobson, Haoze Li,
Ken Safir, and the abstract reviewers and the audiences of SALT 31. All errors are mine.

1 The variable-free hypothesis is widely assumed in works on Categorial Grammar. The system
presented in this paper is developed from a series work by Jacobson beginning in the late 1980s.

2 I use ‘A|B’ as the joint representation for A/B and A\B, which select a B on the right and on the left,

©2021 Xiang

https://doi.org/10.3765/salt

Xiang

actively merge with an NP. For example, their mom has the same semantics as ’s
mom, but it doesn’t take an NP argument.

(2)

Category Meaning
(i) their mom NPNP λxe.mom(x)

(ii) ’s mom NP\NP λxe.mom(x)
(i) invited him (S\NP)NP λyeλxe.ivt(x,y)

(ii) invited (S\NP)/NP λyeλxe.ivt(x,y)

To tackle composition with pronouns, Jacobson assumes a type-shifting rule
g-sup(script), defined as in (3). Applying g-sup to a functional expression α that
selects an X argument allows this α to apply to an XNP argument, and it passes up
the information about the unbound pronoun contained in this XNP.

(3) The g-sup-rule (for passing up info about unbound pronouns)
For any expression α s.t. CAT(α) = A|B, we have:
CAT(g-sup(α)) = AC|BC, and Jg-sup(α)K = λVcbλCc.JαK(V (C))

Consider (4) for example. The verb invited selects an NP object, and thus it cannot
directly apply to the pronominal expression his mom, which is an NPNP; however,
the type-shifted verb g-sup(invited) can apply to an NPNP-category. The resulting VP
inherits the superscript NP, which tells that the pronoun remains unbound in this VP.

(4) Composition of invited his mom (without binding)3

invited
(S\NP)/NP λyeλxe.ivt(x,y) g-sup

(S\NP)NP/NPNP λ feeλyeλxe.ivt(x, f (y))
his mom

NPNP λye.mom(y)
>FA

(S\NP)NP λyeλxe.ivt(x,mom(y))

The g-sup rule is analogous to the so-called ‘Geach rule’ (Geach 1970), referred
to as ‘g-sl(ash)’. These two g-rules have the same effect in semantics, but g-sl
is used to pass up the information about an unsaturated syntactic argument. For
example, in didn’t come, applying g-sl to the auxiliary didn’t shifts it from an S/S
to an (S\NP)/(S\NP), which can apply to the intransitive verb come. The result
of composition is an S\NP, where the baskslash-NP tells that the subject argument
remains unsaturated.

(5) The g-sl-rule (for passing up info about unsaturated syntactic arguments)
For any expression α s.t. CAT(α) = A|B, we have:
CAT(g-sl(α)) = (A/C)|(B/C), and Jg-sl(α)K = λVcbλCc.JαK(V (C))

respectively. (Jacobson writes them as ‘A/RB’ and ‘A/LB’.) I also use ‘A‡B’ as the joint representation
for categories corresponding to the type 〈TYPE(B),TYPE(A)〉, including A/B, A\B, AB, and A[B.

3 In the derivation graphs, dotted lines are for unary rules, such as g and z; full lines are for binary
rules, such as forward Functional Application (>FA) and backward Functional Application (<FA).

2

Binding without variables: Solving the under-generation problems

Further, to tackle sentences with multiple unbound pronouns, Jacobson (1999)
proposes to define g-sup recursively. Accordingly, applying g-supn to α has the
effect of applying g-sup to α while skipping the n-many abstractions in α . The
following definition also extends this assumption to g-sl:

(6) The recursive g-rules (after Jacobson 1999)

a. For any meaning F of type 〈a,b〉, g0(F) = λVcbλCc.F(V (C)).

b. For any expression α s.t. CAT(α) = (A|B)‡~Xn, we have:

i. CAT(g-supn(α)) = (AC|BC)‡~Xn

ii. CAT(g-sln(α)) = ((A/C)|(B/C))‡~Xn

iii.Jg-supn(α)K = Jg-sln(α)K = λD.gn−1(JαK(D))

Consider (7) for an example of recursive g-sup. Obviously, a VP (of category
S\NP) must be shifted by g-sup when it merges with a pronominal subject. In (7),
however, the g-sup rule defined in (3) doesn’t apply to the VP because this VP
has an extra superscript NP abstraction from the possessive pronoun his. Defining
g-sup recursively overcomes this problem: applying g-sup1 means saturating this NP
abstraction temporarily, applying g-sup, and finally abstracting the NP back.

(7) Shei invited his j mom. (Unbound interpretation)

she
NPNP λxe.x

[g-sup(invited) [his mom]]
(see steps in (4))

(S\NP)NP λyeλxe.ivt(x,mom(y))
g-sup1

(SNP\NPNP)NP
λyeλgeeλxe.ivt(g(x),mom(y))

<FA1
(NPNP)NP λyeλxe.ivt(g(x),mom(y))

For the same consideration, following a suggestion from Pauline Jacobson (p.c.), I
assume that the g-sup1-shifted VP composes with the subject she via generalized
backward FA (< FA1), which means applying the type-shifted VP to the subject
while ignoring the superscript NP abstraction in the VP stemming from his.4

4 Jacobson 1999 doesn’t generalize binary composition rules or define them recursively. For sentence
(7), type-lifting the subject she via generalized Montague lift allows it to take the VP as an argument.
However, in light of the idea that type-shifting rules are recursive, we can pursue a similar treatment
for composition rules (Pauline Jacobson p.c.). I define generalized backward FA as in (i). Here λ~xn is
a sequence of abstractions stems from the n-many unbound pronouns in α , and λ~ym is a sequence of
abstractions corresponding to the m-many unsaturated syntactic arguments of α . The application of
<FAn+m to [β -α] says: apply α to β while skipping the n-many pronominal abstractions in α as well
as the m-many abstractions of α that should be filled by strings appearing on the right of α . Other
binary composition rules can be generalized analogously.

(i) For any expressions α and β s.t. CAT(α) = ((A\B)/~Y m)
~Xn

and CAT(β) = B, we have:
CAT([β α]) = (A/~Y m)

~Xn
, and Jβ αK−−−−→

<FAn+m
λ~xnλ~ym.JαK(~xn)(~ym)(Jβ K).

3

Xiang

For binding, Jacobson assumes that pronoun binding is achieved by local appli-
cation of the z-rule, defined in (8). Applying the z-rule to a transitive verb closes off
the dependency between the two arguments of this verb. Then binding arises when
the z-shifted verb merges with the binder and a string that contains the bindee.

(8) The z-rule (to create binding relations)
For any expression α s.t. CAT(α) = (A\NP)/B, we have:
CAT(z(α)) = (A\NP)/BNP, and Jz(α)K = λ febλxe.JαK(f (x))(x).

In (9), before merging with the bindee his mom and the binder John, the type-shifted
verb z(invited) is already encoded with a co-argument dependency. It composes with
the arguments by FA, yielding an S with the meaning that John invited John’s mom.

(9) Johni invited hisi mom. (Bound interpretation)

John
NP j

invited
(S\NP)/NP λyeλxe.ivt(x,y) z

(S\NP)/NPNP λ feeλxe.ivt(x, f (x))
his mom

NPNP λye.mom(y)
>FA

S\NP λxe.ivt(x,mom(x))
<FA

S ivt(j,mom(j))

1.2 Problems of under-generation

Example (9) is an instance of co-argument binding. In co-argument binding, the
bindee needs to be contained inside a lower argument of the z-shifted expression,
and the binder needs to serve as a higher argument of this expression by itself.

(10) Schema of co-argument binding: [[BINDER] z(verb) [... BINDEE ...]]

However, there are many cases where the binder and the bindee do not stand in a
configuration like (10). First, as in (11), the bindee may occur in an adjunct, not in
an argument. (Jacobson herself has an analysis for such cases, see fn. 7.)

(11) a. Maryi went home [with heri mom].
b. We will sell no winei [before itsi time].

Second, the binder may not be an argument of a verb by itself (Barker 2005,
2012; a.o.). For example in (12a), the binder is the possessor John, not the entire
subject John’s mother. In the Government-and-Binding (GB) theory, such cases of
binding are called ‘non-c-commanding binding’, including binding out of DPs, as in
(12a,b), and binding out of adjuncts, as in (12c).5

(12) a. [Johni’s/ Hisi/ Every boyi’s mother] loves himi.

5 I use ‘(non-)c-commanding’ only for description. To be exact, Jacobson’s system doesn’t have the
concept of ‘c-commanding’, because this system doesn’t model syntax in terms of tree structures.

4

Binding without variables: Solving the under-generation problems

b. [Someone from every cityi] despises iti.
c. [In everyonei’s own mind], theyi are the most important person.

This paper primarily aims for solving these binding under-generation problems
in Jacobson’s variable-free system. Moreover, I will enrich this system to account
for the interactions between scoping and binding. Topics to be covered include scope
ambiguity, inverse linking, weak crossover, and ‘paycheck pronouns’.

2 Proposal: binding by the i-rule

As a general assumption on binding, I propose to replace Jacobson’s z-rule with
the following i-rule (a la Szabolcsi’s (1992) W-combinator).6 The application of
the i-rule has an ‘identity’ effect as follows: for any multi-ary predicate α that
contains a bindable pronoun, whatever saturates the superscript NP abstraction from
the bindable pronoun also saturates the next NP abstraction of α .

(13) The i-rule (for creating dependencies)
For any expression α s.t. CAT(α) = (A‡NP)NP, we have:
CAT(i(α)) = A‡NP, and Ji(α)K = λxe.JαK(x)(x).

The proposed i-rule stands in the following relation with Jacobson’s z-rule:

(14) For any transitive verb F and NPNP-category f , i([g-sup(F)](f)) is identical
to [z(F)](f) in both syntax and semantics.

Consider (15b) for illustration. First, the type-shifted verb g-sup(invited) applies
to his mom and returns a VP with two NP abstractions, one from the pronoun his
(λy), and one from the unsaturated subject argument (λx). Second, applying i to this
VP makes the two NPs be bound by the same abstractor, changing the meaning from
a two-place predicate to a one-place predicate that expresses a dependency.

(15) Ways to derive the bound interpretation of invited his mom:

a. By the z-rule (the same as in (9)):
(S\NP)/NP invited

z
(S\NP)/NPNP λ feeλxe.ivt(x, f (x))

his mom
NPNP λye.mom(y)

>FA
S\NP λxe.ivt(x,mom(x))

b. By the i-rule:
g-sup(invited) his mom

(see steps in (4))
(S\NP)NP λyeλxe.ivt(x,mom(y))

i
S\NP λxe.ivt(x,mom(x))

6 The i-rule takes insights from Szabolcsi’s (1992) W-combinator. Szabolcsi builds the W-combinator
into the lexicon of pronouns. Shan & Barker (2006) and Charlow (To appear) build this combinator
into the quantificational antecedent.

5

Xiang

As seen above, the z-rule is locally applied to the transitive verb invited, used before
this verb merges with its arguments; in contrast, the i-rule is used after the verb has
merged with an expression that contains the bindee.

Example (15) has shown how the i-rule accounts for co-argument binding —
due to the equivalence in (14), the i-rule, together with the existing rule g-sup, can
account for any binding relations that can be derived by the z-rule. Moreover, the
i-rule can be used to account for other binding relations.

The i-rule allows for binding into adjuncts, because it is applied after the verb
has merged with the bindee-containing expression, no matter whether this expression
is an argument or an adjunct. In (16), option (16a) is deviant because the type-shifted
verb z(invited) selects a NPNP-argument — it cannot merge with a VP-modifier (of
category (S\NP)\(S\NP)).7 In contrast, in (16b), applying the i-rule to the modified
VP left with his mom derives a dependency between the subject argument and the
pronoun contained within the PP-adjunct.

(16) Johni left [with hisi mom].

a. * John z(left) [with his mom]

b. John i [left [with his mom]]

c. i [LIFT(John) left [with his mom]]

Or alternatively, as in (16c), when the binder John is type-lifted into a quantifier,
which will be analyzed as a two-dimensional expression with a ‘trace’-like compo-
nent (section 3.1), the dependency can be derived by applying i to the full sentence.
This option is especially advantageous in cases where the adjuncts are sentential
modifiers. For more details, see section 3.3.

The i-rule also sufficiently accounts for pronominal binding, regardless of ‘c-
commanding’ — all we need is to apply the i-rule to an expression that contains both

7 Jacobson has also offered a way to derive binding into adjuncts by applying generalized Montague
lift to the VP so that it can take the adjunct as an argument.

(i) [John z(et-LIFT(left)) [with his mom]]

The analysis precedes as follows. First, applying generalized Montague lift et-LIFT to the VP to
shifts this VP from S\NP to (S\NP)/((S\NP)\(S\NP)). This operation allows the VP to take the
PP-adjunct (of category (S\NP)\(S\NP)) as an argument. Second, applying z to the type-lifted VP
closes off the dependency between the argument slots that will be saturated by the subject and the
adjunct. Last, letting the resulting VP merge with the bindee-containing adjunct and the subject
binder yields a full sentence. (See Jacobson 1999 for a related discussion tackling unbound readings.)
Despite the distinct analytical moves, the analyses in (i) and (16b) converge on the idea that binding
is independent of grammatical distinctions between arguments and adjuncts.

However, as pointed out by Simon Charlow (p.c.), the generalized-lifting-based analysis in (i)
cannot account for cases where the binder is part of the VP, such as in We will sell no winei before itsi
time. For my explanation, see section 3.3.

6

Binding without variables: Solving the under-generation problems

the bindee and the pronominal binder. (17) illustrates a case of ‘non-c-commanding’
pronominal binding, where the pronominal possessor within the subject binds the
object pronoun. The z-rule cannot derive this binding relation: in (17a), z-shifting
the verb loves yields an unwanted meaning where the entire subject binds the object.

(17) [Hisi mom] loves himi.

a. # [[His mom] z(loves) him] (Meaning: ‘His mom loves his mom.’ ×)
b. [i (His mom loves him)] (Meaning: ‘His mom loves him.’

√
)

More details of (17b) are given below. The sentence is first analyzed as an (SNP)NP, in
which the two NPs abstractions stem from the object pronoun him and the pronominal
possessor his. This part of composition involves the applications of g-sup1 and FA1,
the same as in (7). Next, applying i reduces the sentence from (SNP)NP to SNP and
yields a dependency between his and him.

(18)

His mom
NPNP λxe.mom(x)

loves him
(S\NP)NP λyeλxe.lv(x,y) g-sup1

(SNP\NPNP)NP
λyeλ feeλxe.lv(f (x),y)

<FA1
(SNP)NP

λyeλxe.lv(mom(x),y)
i

SNP λxe.lv(mom(x),x)

3 Extension: quantificational binding

Barker (2012) observes a broad range of cases where scoping feeds ‘non-c-commanding’
binding. These cases argue that quantificational binding is available only if the quan-
tificational binder scopes above the bindee. Since Jacobson’s system doesn’t deal
with scoping, the relation between scoping and binding remains a mystery.

(19) a. [Every boyi’s mother] loves himi. (Possessor binding)
b. [Someone from every cityi] despises iti. (Inverse linking)

In GB-style compositional semantics, semantic binding is achieved by making
the pronoun co-indexed with the trace of the quantifier at LF (Kratzer & Heim 1998).
As in (20), the trace of the quantifier and the bound pronoun both carry the index i:

(20) [every-boy λ i [ti loves hisi mother]]

This section will propose a variable-free approach to quantificational binding
that shares the wisdom in (20) but does not make use of quantifier raising or indexa-
tion.8 By applying the i-rule, the proposed approach has the effect of generating a
dependency between a ‘trace’-like component of the quantifier and the pronoun.

8 In GB-style compositional semantics, the composition of semantics takes place at LF, an abstract
level of representations in which the linear order of strings can be different from that in the surface

7

Xiang

3.1 Quantificational DPs as two-dimensional expressions

I assume that quantificational DPs are two-dimensional expressions (cf. ‘Quantifier
Storage’ in Cooper 1983), represented in the form of

[
TOP

BOTTOM

]
. For example, the cate-

gory and meaning of everyone are as follows (eo abbreviates λPet .eo(λxe.P(x))):

(21) a. CAT(everyone) =
[

S[(S/NP)
NP/NP

]
(abbr.:

[
Π

T

]
) b. JeveryoneK =

[
eo

λxe.x

]
The bottom component is ‘trace’-like.9 It is interpreted as an identity function over
entities, just like pronouns; however, in syntax, it has a distinct category NP/NP
(abbreviated as T), which applies to an NP argument on the right and returns an NP.
The top component has the category S[(S/NP) (abbreviated as Π) and is interpreted
as a generalized quantifier. I assume that the two components have distinct roles
in composition. The bottom component participates in composition and binding,
similar to the assumption in the GB-theory that it is the trace of the quantifier
that composes with surrounding expressions and is co-indexed with the bindable
pronouns. The top component deals with quantification and scoping; it remains
unchanged till it can combine with the bottom component via inward FA.

The following defines the FA rules. (22a) says: when a two-dimensional ex-
pression α composes with a one-dimensional expression by FA, it is the bottom
component of α that participates in the reduction by FA. (22b) is to tackle cases with
multiple quantificational expressions: if both of the expressions that participate in
FA are two-dimensional, the one that serves as the function takes narrow scope.

(22) Forward FA (backward FA is analogous)

a.
(

A/B

[
X
B

])
or
([

X
A/B

]
B

)
−−→
>FA

[
X
A

]

b.
([

X1
A/B

] [
X2
B

])
−−→
>FA

 X2([
X1

A/B

]
B
)

>FA

 =

 X2[
X1
A

]
structure. In contrast, Jacobson assumes ‘Direct Compositionality’, a hypothesis independent of
the variable-free hypothesis. She argues that syntax and semantics work in tandem: each linguistic
expression that is proven well-formed in the syntax is assigned a meaning by the semantics, and the
syntactic rules or principles which prove an expression as well-formed are paired with the semantics
which assign the expression a meaning. As a result, this system has no intermediate level like LF and
no transformation (e.g., LF movement) for mapping surface representations into LF representations.

9 To be exact, Jacobson’s framework doesn’t assume empty categories like traces in syntax. However,
assuming traces doesn’t affect composition; for example, assume that a trace t is an NP/NP category
denoting an identity function, then the VP [g-sl(invite) t], which contains an object trace, is equivalent
to the transitive verb invite, in both syntax and semantics. In this paper, saying that an expression
has a ‘trace’-like component means that this expression contains an unfilled non-subject argument, a
two-dimensional quantifier, or some other NP/NP-category.

8

Binding without variables: Solving the under-generation problems

(23) defines inward FA, which applies to a single two-dimensional expression. (23a)
says: in a two-dimensional expression, if the bottom component can serve as the
argument of the top component, applying inward FA has the effect of applying the
top to the bottom, reducing this two-dimensional expression into a one-dimensional
expression. Further, (23b) says: for a recursion of top–bottom pairs, the effect of
inward FA applies to the innermost top–bottom pair.

(23) Inward FA (a la LOWER in Shan & Barker 2006 and Barker & Shan 2014)

a.
[

A [B
B

]
−−→
∨FA

A b.

 C [A[
A [B

B

]−−→
∨FA

 C [A([
A [B

B

])
∨FA

=

[
C [A

A

]
−−→
∨FA

C

When a unary rule that is defined for one-dimensional expressions (e.g., g, i, and
LIFT) is applied to a two-dimensional expression, the effect of this rule applies to
the bottom component of this expression, as schematized in (24). In a recursion of
top–bottom pairs, (24) applies recursively; as a result, the effect of a unary rule like
g and i applies to the bottom component of the innermost top–bottom pair.

(24) If R is a unary rule defined for one-dimensional expressions:[
A [B

C

]
−→
R

[
A [B
R(C)

]

3.2 (Non-)quantificational possessor binding

With the assumptions made for quantificational DPs, the analysis of pronominal
possessor binding easily extends to quantificational possessor binding. In (25b), the
role of the pronominal possessor in (25a) (of category NPNP) is now taken by the
‘trace’-like component of the quantificational possessor (of category NP/NP).

(25) a. Hisi mom loves himi. (Pronominal possessor binding)

b. Every boyi’s mom loves himi. (Quantificational possessor binding)

c. Johni’s mother loves himi. (Non-quantificational possessor binding)

The composition of (25b) precedes as in (26). First, applying g-sl and g-sl1 to ’s
mom and loves him respectively allows them to select a T . Second, the ‘trace’-part of
every boy composes with the remnant DP ’s mom and then with the VP loves him
via backward FA, returning an (S/NP)NP-category denoting a two-place predicate.
In this output, the superscript NP comes from the bindee him, and the right-slash NP
comes from the ‘trace’-part of the quantificational binder every boy. Third, applying
i yields a dependency between these two NPs and shifts the bottom component of
the sentence into an S/NP denoting a one-place predicate. This S/NP may serve
as an argument of the quantificational part at the top. (Recall that Π abbreviates

9

Xiang

S[(S/NP).) Finally, applying inward FA reduces the two-dimensional sentence into a
simple S expressing quantificational binding: ‘For every boy x, x’s mom loves x.’

(26) Every boyi’s mom loves himi.

every boy[
Π

T

] [
eb

λxe.x

] ’s mom
NP\NP λxe.mom(x)

g-sl
T\T λ feeλxe.mom(f (x))

<FA[
Π

T

] [
eb

λxe.mom(x)

] loves him
(S\NP)NP

λyeλxe.lv(x,y) g-sl1
((S/NP)\T)NP

λyeλgeeλxe.lv(g(x),y)
<FA1[

Π

(S/NP)NP

] [
eb

λyeλxe.lv(mom(x),y)

]
i[

Π

S/NP

] [
eb

λxe.lv(mom(x),x)

]
∨FA

S eb(λxe.lv(mom(x),x))

This analysis also extends to (25c), where the binder is a simple NP. All we need
is to lift the NP binder into a two-dimensional quantifier. The rule is given in (27).

(27) Lift (a la Montague lift)
For any expression α s.t. CAT(α) = NP, we have:

CAT(LIFT(α)) =

[
S[(S/NP)
NP/NP

]
(abbr.:

[
Π

T

]
), and JLIFT(α)K =

[
λPet .P(JαK)

λxe.x

]
.

3.3 More cases of binding into adjuncts

The analysis of binding into adjuncts given in (16b) works only when the binder
serves as the subject and the bindee-containing adjunct serves as a VP-modifier.
Hence, this analysis doesn’t apply to (28): in (28a), the binder no wine is inside the
VP; in (28b), the if-clause modifies a sentence, not a VP.

(28) a. We will sell no winei [before itsi time].
b. [Johni will be disappointed] [if hisi mom is late].

The two-dimensional analysis allows us to derive dependencies in those cases
by the i-rule. Basically, the analysis in (16b) allows the i-rule to be applied to a
string that contains the bindee but not the binder; here, by analyzing the binder as a
two-dimensional expression, we can apply the i-rule to a string that contains also the
binder, no matter whether this string is a VP or a full sentence. For example, in (28a),
applying g-sup to the strings that ‘c-command’ its passes up the information about
this bindable pronoun; likewise, applying g-sl to the strings that ‘c-command’ the
object no wine passes up the information about the ‘trace’-part of this quantificational

10

Binding without variables: Solving the under-generation problems

binder. Composition yields a two-dimensional sentence with an (S/NP)NP-category
at the bottom. Further, applying i to this sentence closes off the dependency between
its and the ‘trace’-part of no wine, yielding the wanted binding-into-adjunct effect.

3.4 Scope ambiguity

In GB-style compositional semantics, scope ambiguity of quantifiers is derived by
quantifier raising. In the presented variable-free system, as seen in the definition of
FA in (22b), the scope of a quantifier is determined by how it participates in FA:

(29) For a sentence S of the form “Q1 V Q2”, where Q1 and Q2 are quantificational
DPs, we have: (i) S has a surface scope reading if the bottom component of
Q1 serves as an argument of [V Q2]; (ii) S has an inverse scope reading if
Q1 as a whole serves as an argument of [V Q2].

3.4.1 Surface scoping

As in Figure 1, composing everyone with loves someone by backward FA derives
the surface scope reading, where eo scopes above so in (a). This stack is reduced
into a simple S by applying inward FA twice.

everyone[
Π

T

][
eo

λxe.x

]
loves someone[
Π

(S\NP)/NP

] [
so

λyeλxe.lv(x,y)

]
g-sl1[

Π

((S/NP)\T)/NP

] [
so

λyeλ feeλxe.lv(f (x),y)

]
<FA1 Π[

Π

(S/NP)/NP

]  eo[
so

λyeλxe.lv(x,y)

] (a)

x-sl Π[
(S/NP)[((S/NP)/NP)

(S/NP)/NP

]  eo[
λθ〈e,et〉λxe.so(λye.θ(y)(x))

λyeλxe.lv(x,y)

]
∨FA[

Π

S/NP

] [
eo

λxe.so(λye.lv(x,y))

]
∨FA

S eo(λxe.so(λye.lv(x,y)))

Figure 1 Surface scope reading of Everyone loves someone

11

Xiang

One caveat here is that the innermost top–bottom pair in (a) cannot be reduced
by inward FA: the quantificational part of someone should combine with an S/NP,
but here the bottom component has the category (S/NP)/NP, which contains an extra
NP abstraction (corresponding to λx) stemming from the ‘trace’-part of everyone. To
solve this type-mismatch, I assume the following x-rules which apply to particular
two-dimensional expressions (the subscript c in xc refers to the category C):

(30) The x-rules

For any two-dimensional expression
[

α

β

]
s.t.

CAT(α) = A[(B‡X) and CAT(β) = (B/C)‡X , we have:

x-sl(
[

α

β

]
) =

[
xc-sl(α)

β

]
and x-sup(

[
α

β

]
) =

[
xc-sup(α)

β

]
, where

a. CAT(xc-sl(α)) = (A/C)[((B/C)‡X)

b. CAT(xc-sup(α)) = AC[(BC‡X)

c. Jxc-sl(α)K = Jxc-sup(α)K = λV〈x,cb〉λCc.JαK(λXx.V (X)(C))

In Figure 1, applying x-sl after (a) converts the quantificational part of someone
into a complex category that selects an (S/NP)/NP argument. It also transmits the
information about the ‘trace’ of everyone to the entire existential quantification,
which further forms the bottom component of the universal quantification. After
applying x-sl, inward FA can proceed as normal.

3.4.2 Inverse scoping

As mentioned, in “Q1 V Q2”, an inverse scope reading arises if it is the entire Q1
that participates in the composition as an argument of [V Q2]. A la Hendriks 1993,
this condition can be achieved by argument-lift. In my system, argument-lift means
lifting a T -category argument into a two-dimensional quantifier, defined as below:

(31) Argument lift (ALIFT; a la Hendriks 1993)
For any expression α s.t. CAT(α) = (X/NP)|T , we have:

CAT(ALIFT(α)) =

[
Π

X/NP

]
|
[

Π

T

]
and JALIFT(α)K= λ [π

fee
].

[
π

λxe.JαK(f (x))

]
In Figure 2 (next page), first, by applying ALift1, the subject argument slot which

used to call for a T now wants an argument that is a two-dimensional quantifier.
Next, composing this argument-lifted VP with the subject everyone by backward FA
yields an inverse scope reading — so scopes above eo in (a). Finally, applying inward
FA twice reduces the stack into a simple S. All the rules, except the last inward FA,
carry the subscript 1, since they need to skip the extra NP abstraction (corresponding
to λy) stemming from the ‘trace’-part of the object quantifier someone.

12

Binding without variables: Solving the under-generation problems

everyone[
Π

T

][
eo

λxe.x

]

loves someone[
Π

(S\NP)/NP

] [
so

λyeλxe.lv(x,y)

]
g-sl1[

Π

((S/NP)\T)/NP

] [
so

λyeλ feeλxe.lv(f (x),y)

]
ALIFT1 Π([

Π

S/NP

]
\
[

Π

T

])
/NP

  so

λyeλ [π

fee
].

[
π

λxe.lv(f (x),y)

]
<FA1 Π[

Π

S/NP

]
/NP

  so

λye.

[
eo

λxe.lv(x,y)

] (a)

∨FA1[
Π

S/NP

] [
so

λye.eo(λxe.lv(x,y))

]
∨FA

S so(λye.eo(λxe.lv(x,y)))

Figure 2 Inverse scope reading of Everyone loves someone

3.5 Inverse linking

Compared to the basic cases of inverse scoping, further complications arise in sen-
tences with inverse linking. For example, the composition of (32) should involve
three operations: (i) restrictor modification, to let the PP from every city restrict the
quantification domain of someone; (ii) inverse scoping: to make every scope above
some, and (iii) binding: to make every city bind a non-c-commanding pronoun it.
Previous sections have explained inverse scoping and non-c-commanding quantifi-
cational binding by using ALIFT and i, respectively. This subsection adds one more
ingredient to derive restrictor modification.

(32) [Someone from every cityi] [despises iti].

Given that it is the ‘trace’ of someone, which is a T denoting an identity function,
that participates in composition, I propose a restrictor modification rule as follows.
This rule converts a predicative modifier into a T\T -category, which functions as a
restrictor of T -categories. (f ′ ≤ f means that every pair in f ′ is a pair in f ′.)

(33) The RES-rule (for restrictor modification)
For any P s.t. CAT(P) = S\NP, we have: CAT(RES(P)) = T\T , and
JRES(P)K = λ fee.MAX f ′≤ f [∀x′∈ Dom(f ′)[JPK(f ′(x′))]]

13

Xiang

(Read as: For any f〈e,e〉, return the maximal function f ′ that is a subpart of f ′

s.t. f ′ maps each element in its domain to something that P holds for.)

The complex subject is composed as in Figure 3. Applying the restriction rule to
covert the PP from every city into a restrictor of skolem functions. This restrictor
undergoes argument-lift, so that it can apply to the entire two-dimensional expression
someone and derive an inverse scope reading (every city� someone).

Step (A): Compose the complex quantificational subject

someone[
Π

T

][
so

λxe.x

]

from every city[
Π

(S\NP)/NP

][
ec

λyeλxe.fr(x,y)

]
RES1[

Π

(T\T)/NP

][
ec

λyeλ fee.MAX f ′≤ f [∀x′∈ Dom(f ′)[fr(f ′(x′),y)]]

]
ALIFT1 Π([

Π

T

]
\
[

Π

T

])
/NP

 ec

λyeλ [π

f].

[
π

MAX f ′≤ f [∀x′∈ Dom(f ′)[fr(f ′(x′),y)]]

]
<FA1 Π[

Π

T

]
/NP

 ec

λye.

[
so

MAX f ′≤(λxe.x)[∀x′∈ Dom(f ′)[fr(f ′(x′),y)]]

]
Figure 3 Composition of someone from every city (inverse scope reading)

In the output of the above composition, the T -category part at the very bottom is read
as ‘the maximal 〈e,e〉-type identity function f ′ that maps each entity in its domain
to an entity from y’. This f ′ is extensionally equivalent to λxe : fr(x,y).x, namely,
the identity function that is only defined for entities from y.

The modified quantificational subject has a complex category. As illustrated in
Figure 4: Step (B), to compose with this subject, the VP has to undertake a few of
type-shifting operations till it selects an argument of category

[
Π

T

]
/NP. In particular,

the first g-sl1 and ALIFT are applied to allow the VP to select a two-dimensional
quantificational argument, and the second g-sl1 is used to pass up the information
about the ‘trace’ of every city.

The final steps of composition are given in Figure 4: Step (C). First, the complex
subject composes with the type-shifted VP via backward FA. Next, applying the
i-rule yields a dependency between the ‘trace’ of every city and the object pronoun it
(corresponding to λy and λ z, respectively). Last, applying inward FA twice reduces
the stack into a simple S expressing inverse linking.

14

Binding without variables: Solving the under-generation problems

Step (B): Type-shift the VP
despises it

(S\NP)NP λ zeλxe.desp(x,z)
g-sl1

((S/NP)\T)NP λ zeλ feeλxe.desp(f (x),z)
ALIFT1([

Π

S/NP

]
\
[

Π

T

])NP

λ zeλ [π

f].

[
π

λxe.desp(f (x),z)

]
g-sl1(([Π

S/NP

]
/NP
)
\
([Π

T

]
/NP
))NP

λ zeλρ〈e,[〈et,t〉
ee]〉λye.

[
λ [π

f].

[
π

λxe.desp(f (x),z)

]]
(ρ(y))

Step (C): Combine the complex subject with the VP

(A) someone from every city (B) despises it
<FA1 Π([

Π

S/NP

]
/NP

)NP

 ec

λ zλy.
[

so
λx.desp((MAX f ′≤(λxe.x)[∀x′∈ Dom(f ′)[fr(f ′(x′),y)]])(x),z)

]
i Π([

Π

S/NP

]
/NP

) ec

λy.
[

so
λx.desp((MAX f ′≤(λxe.x)[∀x′∈ Dom(f ′)[fr(f ′(x′),y)]])(x),y)

]
∨FA1[

Π

S/NP

][
ec

λy.so(λx.desp((MAX f ′≤(λxe.x)[∀x′∈ Dom(f ′)[fr(f ′(x′),y)]])(x),y))

]
equivalent[

Π

S/NP

][
ec

λy.so(λx.fr(x,y)∧desp(x,y))

]
∨FA

S ec(λy.so(λx.fr(x,y)∧desp(x,y)))

Figure 4 Composition of Someone from every city despises it (inverse linking)

4 Weak crossover

Scoping doesn’t feed binding in crossover constructions. (34) illustrates a case of
weak crossover: the pronominal possessor his in the subject cannot be bound by the
quantificational object everyone.

(34) His j/*i mom invited everyonei.
(Unavailable reading: ‘For everyone x, x’s mom invited x.’)

In my analysis, the deviance of weak crossover is straightforwardly predicted by
the definedness constraint on the syntax of the i-rule. As defined in (13), the i-rule
only applies to categories of the form ‘(X‡NP)NP’. According to this constraint, the

15

Xiang

superscript NP abstraction provided by a bindable pronoun has to be reduced first,
before the other NP abstraction saved for the binder of this pronoun is reduced.

For instance, the i-rule can be applied to (S\NP)NP, (S/NP)NP, and (SNP)NP, as
exemplified in (36a–c). In these three cases, the NP abstraction for the binder comes
from an unsaturated syntactic argument (viz., the subject argument of loves), the
‘trace’-part of a two-dimensional quantifier (viz., the bottom component of every
boy), and a pronominal expression (viz., his), respectively.

(35) a. i [loves him]
b. i [every boy’s mom loves him]
c. i [his mom loves him]

In contrast, the i-rule cannot be applied in (34), neither to VP nor to the full sen-
tence. Both strings have an ‘(X‡NP)/NP’-category at the bottom. The composition
in (36) yields an SNP, which expresses an unbound reading.

(36)

His mom
NPNP

invited everyone[
Π

(S\NP)/NP

]
(can’t be i-shifted)

g-sup1[
Π

(SNP\NPNP)/NP

]
<FA1[

S[(S/NP)
SNP/NP

]
(can’t be i-shifted)

x-sup[
SNP[(SNP/NP)

SNP/NP

]
∨FA

SNP λx.eo(λy.ivt(mom(x),y))

5 Paycheck pronouns

The following sentences involve a ‘paycheck pronoun’. In (37a), the pronoun her
refers to Billy’s mom. Descriptively, this interpretation arises as follows: her refers
to the function his mom, in which the possessive pronoun his is bound by Billy. The
same applies to the pronoun it in (37b).

(37) a. Andyi loves hisi mom, but Billy j hates her=his j mom.
(Intended: ‘Andy loves his mom, but Billy hates his mom.’)

b. The woman [whoi deposited heri paycheck in the bank] was wiser than
the woman [who j deposited it=her j paycheck in the Credit Union].

Jacobson’s variable-free semantics naturally accounts for the functional inter-
pretations of paycheck pronouns: first, her in lexicon is an NPNP-category denoting

16

Binding without variables: Solving the under-generation problems

an identify function over individuals; second, applying g-sup to her turns it into an
(NPNP)(NPNP)-category that denotes an identity function over 〈e,e〉-type functions,
such as Jhis momK (= λxe.mom(x)). This merit of Jacobson’s system is also mani-
fested in analyzing Bach-Peters sentences (Jacobson 2000) as well as wh-questions
and wh- relative clauses with functional interpretations (Jacobson 1999).

However, Jacobson’s system doesn’t generate non-c-commanding binding, which
includes not only aforementioned possessor binding but also cross-sentential binding.
Jacobson (2000) argues that in (37a) the dependency between his mom and the
paycheck pronoun her isn’t really an instance of binding; instead, she treats her as a
free pronoun, which picks up the contextually salient value denoted by his mom.

In contrast, the proposed system allows us to derive a non-c-commanding depen-
dency between his mom and her. By lifting NPNP-categories into two-dimensional
generalized quantifiers, the analysis of quantificational binding also extends to the
binding of a paycheck pronoun. I generalize the Montague lift rule as in (38), which
works cross-categorically for NPs as well any pronominal categories.

(38) Cross-categorical lift (generalized from (27))
For any X-category α s.t. X is NP or a pronominal category, we have:

CAT(LIFT(α)) =

[
S[(S/X)

X/X

]
, and JLIFT(α)K =

[
λP〈x,t〉.P(JαK)

λXx.X

]
(39) Pronominal categories (after Charlow To appear)

NPNP is a pronominal category; if YX is a pronominal category, (YNP)(X
NP) is

a pronominal category; nothing else is a pronominal category.

The composition of (37a) is given in (40), which omits the g-rules applied for
resolving type-mismatch. This composition includes the following operations: (i) as
assumed by Jacobson (2000), applying g-sup to the paycheck pronoun her allows
it to refer to an 〈e,e〉-type function such as his mom (as opposed to an individual);
(ii) in both clauses, applying i to VP yields a dependency between the subject and
the pronominal object in each clause; (iii) together with the results of operation (i),
lifting his mom and applying i to the entire coordination make her be bound by his
mom. This analysis also applies to (37b).

(40) [Andy i [loves LIFT(his mom)]][
S[(S/NPNP)

S/NPNP

] [
λP〈ee,t〉.P(λxe.mom(x))

λ fee.lv(a, f (a))

] [Billy i [hates g-sup(her)]]
S(NPNP) λgee.hate(b,g(b))

g, FA[
S[(S/NPNP)

(S/NPNP)(NPNP)

] [
λP〈ee,t〉.P(λxe.mom(x))

λgeeλ fee.lv(a, f (a))∧hate(b,g(b))

]
i[

S[(S/NPNP)

S/NPNP

] [
λP〈ee,t〉.P(λxe.mom(x))

λ fee.lv(a, f (a))∧hate(b, f (b))

]
∨FA

S lv(a,mom(a))∧hate(b,mom(b))

17

Xiang

6 Comparison with Barker (2005)

To account for ‘non-c-commanding’ binding, Barker (2005) enriches the variable-
free system of Jacobson 1999 by assuming a separate pair of rules, called s and q. As
exemplified in (42), the s-rule, defined as a dual of z, allows a quantificational binder
to bind one level up. Composition with quantifiers is achieved by value raising (VR)
and argument lift (ALIFT). Further, in cases where the binder is deeply embedded,
the q-rule (cf. g) passes up the information about this binder (details omitted).

(41) The s-rule
For any expression α s.t. CAT(α) = (A|B)|NP, we have:
CAT(s(α)) = (A|BNP)|NP, and Js(α)K = λxeλ feb.JαK(x)(f (x))

(42) Every boyi’s mom loves himi. (G abbreviates S/(S\NP))

every boy
G eb

’s mom
NP\NP λx.mom(x)

VR
(S/(S\NP))\NP λxλπ.π(λP.P(mom(x)))

s
(S/(S\NP)NP)\NP ...

ALIFT
(S/(S\NP)NP)\G ...

<FA
S/(S\NP)NP λR.eb(λx.R(x)(mom(x)))

loves him
(S\NP)NP λyλx.lv(x,y)

<FA
S eb(λx.lv(mom(x),x))

However, the s-rule is abandoned in Jacobson 1999 because it allows for crossover.
To avoid generating crossover constructions, Barker builds a value assigning and
transmitting system, which however largely increases the complexity of the system.

In comparison, while Barker assumes two binding rules z and s, my analysis uses
only one binding rule, namely, the i-rule. Crossover constructions are automatically
ruled out by a syntactic constraint on the application of i. Further, by defining quan-
tificational binders as two-dimensional expressions with a ‘trace’-like component of
the NP/NP-category, I argue that the information about the binder is transmitted by
the Geach rule g-sl, which has already been assumed in Jacobson’s system.

7 Conclusion

This paper presented a solution to the binding under-generation problems of Jacob-
son’s variable-free system. I argued to derive dependencies uniformly by the i-rule,
which is more flexible than Jacobson’s locally applied z-rule. I also argued to analyze
quantifiers as two-dimensional expressions, which consist of a quantificational part
and a ‘trace’ part. This two-dimensional treatment is particularly useful to deal
with scoping and ‘non-c-commanding’ binding. In future research, I would like to
see how the enriched system connects to and differs from competing variable-free
systems (Szabolcsi 1992; Barker & Shan 2014; Charlow To appear; a.o.).

18

Binding without variables: Solving the under-generation problems

References

Barker, Chris. 2005. Remark on Jacobson 1999: Crossover as a local constraint.
Linguistics and Philosophy 28(4). 447–472.

Barker, Chris. 2012. Quantificational binding does not require c-command. Linguis-
tic inquiry 43(4). 614–633.

Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural language,
vol. 53. Oxford: Oxford University Press.

Charlow, Simon. To appear. Variable-free semantics and flexible grammars for
anaphora. Studies in Linguistics and Philosophy 100. https://ling.auf.net/
lingbuzz/004503.

Cooper, Robin. 1983. Quantifier storage. In Quantification and Syntactic Theory,
52–78. Springer.

Geach, Peter Thomas. 1970. A program for syntax. Synthese 3–17.
Hendriks, Herman. 1993. Studied Flexibility: Categories and Types in Syntax

and Semantics: Institute for Logic, Language and Computation, University van
Amsterdam PhD dissertation.

Jacobson, Pauline. 1999. Towards a variable-free semantics. Linguistics and Philos-
ophy 22(2). 117–185.

Jacobson, Pauline. 2000. Paycheck pronouns, Bach-Peters sentences, and variable-
free semantics. Natural Language Semantics 8(2). 77–155.

Jacobson, Pauline. 2014. Compositional semantics: An introduction to the syn-
tax/semantics interface. Oxford: Oxford University Press.

Kratzer, Angelika & Irene Heim. 1998. Semantics in generative grammar. Oxford:
Wiley-Blackwell.

Shan, Chung-chieh & Chris Barker. 2006. Explaining crossover and superiority as
left-to-right evaluation. Linguistics and Philosophy 29(1). 91–134.

Szabolcsi, Anna. 1992. Combinatory grammar and projection from the lexicon. In
Ivan Sag & Anna Szabolcsi (eds.), Lexical matters, 241–268. CSLI publications
Stanford.

Yimei Xiang
18 Seminary Pl, Room 205
Department of Linguistics
Rutgers University
New Brunswick, NJ 08901
yimei.xiang@rutgers.edu

19

https://ling.auf.net/lingbuzz/004503
https://ling.auf.net/lingbuzz/004503
mailto:yimei.xiang@rutgers.edu

