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Abstract 
I present a model of neutral word order options in natural language. The core proposal is that 
languages share a universal base structure with inherent head-complement-specifier linear order, 
and a universal "supergrammar" maps this underlying order to the set of typologically possible 
information-neutral surface orders, consisting of its stack-sortable (231-avoiding) permutations. 
The mapping procedure can be formulated either as a parsing algorithm based on stack-sorting, 
or as a generative model involving postorder and preorder traversals of freely-generated n-ary 
branching trees. This single-principle universal grammar explains and unifies some well-known 
word order universals, while also generating phenomena that challenge traditional approaches. 
Applications include Cinque's version of Greenberg's Universal 20, the Final-Over-Final 
Condition, a modified Head Movement Constraint allowing attested long head movement, 
English Affix Hopping, Germanic cross-serial subject-verb dependencies, and Icelandic Stylistic 
Fronting. 

1.0 Introduction 

In this paper, I explore the consequences of the following proposal about neutral word order 
possibilities in natural language. 

(1) a. Languages share a common base syntactic structure, with a universal underlying 
linear order. Supposing that this base structure can be analyzed in terms of the X-bar 
theoretic (Chomsky 1970, Jackendoff 1977, Stowell 1981) notions of head, complement, 
and specifier, the universal order of the base is head-complement-specifier.  
     b. Across languages, possible information-neutral surface word orders are the stack-
sortable (i.e., 231-avoiding) permutations of the universal base order. 

 It is important to point out that we are only aiming for an account of information-neutral 
word order possibilities, explicitly setting aside A-bar movement, wh-fronting, topic, focus, etc. 
In the present proposal, a mapping procedure relates the base not to a single surface output, but 
to a set of outputs.  As strings, these surface outputs are exactly the stack-sortable permutations 
of the underlying base order, counted by the Catalan numbers (1, 2, 5, 14, 42, etc), growing 
much more slowly than the set of all possible permutations, counted by the factorial function n! 
(1, 2, 6, 24, 120, etc). These orders can also be characterized as the 231-avoiding permutations of 
the underlying base order, considered as the identity permutation i = 123... (A 231-avoiding 
permutation is an order of elements in i not containing subsequence *...b...c...a..., for any 
subsequence ...a...b...c... in i). 
 This mapping can be formulated in two equivalent ways: as a universal parsing 
algorithm, based on stack-sorting (Medeiros 2018), or as a competence-level generative 
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procedure involving traversals of freely-generated, n-ary branching, CS-style trees (Medeiros 
2021). The mapping determines a unique bracketed structure for each permissible surface order, 
which corresponds in detail to standard accounts of the relevant surface structure/derivation.  
 The set of surface outputs is generally larger than what is realized in any given language. 
But crucially, not all orders can be generated; the orders which cannot be generated this way 
account for a range of word order universals that were previously viewed as unrelated. This 
includes Cinque's (2005) version of Universal 20 (Greenberg 1963), the Final-Over-Final 
Condition (Holmberg 2000, Biberauer et al 2014, Sheehan et al 2017, i.a.), and a version of the 
Head Movement Constraint (HMC; Travis 1984) that allows attested Long Head Movement 
(LHM; Rivero 1991, Lema & Rivero 1991, i.a.). Beyond ruling out universally-forbidden word 
order patterns, the account also successfully generates syntactic phenomena that are problematic 
for many current syntactic theories, including Affix Hopping (Chomsky 1957), and cross-serial 
subject-verb dependencies in Dutch (Huybregts 1976, Bresnan et al 1982) and Swiss German 
(Shieber 1985). Finally, we discover an intriguing account of the possibilities and restrictions of 
Stylistic Fronting (SF; Maling 1980/1990; Jónsson 1991; Holmberg 2000, 2006; Ott 2018, i.a.) 
in Icelandic, including its Subject-Gap Restriction and Accessibility Hierarchy. 
 What is remarkable is that all of the above fall out as immediate consequences of (1), 
without invoking any further constraints or mechanisms, within or across languages. This is a 
considerable simplification of the mix of existing constraints and mechanisms covering the same 
empirical terrain within existing theories. Beyond unifying the technical apparatus, we also find 
improved empirical coverage. For example, we derive a novel generalization about where the 
HMC can be violated (i.e., where LHM is possible) that has not been noticed before, and appears 
to be exceptionless. 

1.1 What this paper is not about 

 Before moving on, it worth saying something about some important matters that must be 
set aside. As mentioned above, the goal is a theory of information-neutral word order 
possibilities across languages. This means, first, that I will have nothing to say about many 
important syntactic phenomena like wh-movement, topicalization, focus movement, and the like. 
This can be taken as an implicit endorsement of Chomsky's ideas about tying the Duality of 
Semantics to some fundamental distinction in the workings of syntax.  That said, obviously a 1

more complete theory would spell out the nature of this other side of syntax, a task I leave for 
future work.  
 The second aspect of this proposal worth pointing out is that the theory is mute on the 
relationship between the possibilities afforded by the universal "supergrammar" and the more 
restricted word order possibilities within individual languages. One strong reading of the 

 Chomsky has proposed that the distinction between information-neutral structure and discourse-1

information effects is tied to his distinction between External Merge (EM) and Internal Merge (IM): "The 
two types of Merge correlate well with the duality of semantics that has been studied from various points 
of view over the years. EM yields generalized argument structure, and IM all other semantic properties: 
discourse-related and scopal properties. The correlation is close, and might turn out to be perfect if 
enough were understood." (Chomsky 2007: 10) 
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proposal is that the system described here is an adequate description of the basic cognitive 
system underlying the processing of neutral order for any language, and that differences between 
languages must be attributed to something else. One plausible source of such differences is 
predictive learning by language-acquiring children of the subset of universally-available patterns 
their language happens to exploit. On such a view, learning the grammar of individual languages 
would amount to "learning by forgetting": humans are equipped at birth with an invariant 
cognitive system that encompasses the grammatical possibilities of all languages at once, and 
learning one language or another reduces to reinforcing only a subset of the richer universal 
possibilities. While that may be a reasonable direction to pursue, this too is a topic for another 
work, and I keep here to a focus on proposal (1) and its narrow consequences for word order. 
 Finally, one may wonder about the status of Merge in this proposal. Obviously, the 
relationship between underlying structure and surface structure is rather different here than in 
familiar theories. Nevertheless, as in any generative proposal, one needs a basic combinatory 
mechanism to build the underlying constituent structure, and this corresponds more or less to the 
standard concept of External Merge. However, a crucial claim here is that the base structure is 
universally linearly ordered, in head-complement-specifier order, contra Kayne (1994). One 
could, I suppose, continue to insist that Merge is inherently unordered set formation, in which 
case we would have to introduce an internal, base-level linearization operation, separate from the 
mapping procedure which relates the base to various possible surface word orders.  
 It seems more reasonable to me to suppose that the relevant implementation of Merge is 
inherently asymmetric. This is especially so for the parsing-based view I describe in which, as 
we will see, a pre-processing step of stack-sorting rearranges surface word orders into an 
invariant output, which is then fed to a universal Shift-Reduce semantic parser. In this way of 
thinking about things, the initial stack-sorting step does the work of Internal Merge; that is, it is 
the transformational component. The invariant Shift-Reduce parser handles External Merge, 
corresponding to the base component. This, of course, revives the old observation that a phrase 
structure grammar matches the actions of a Shift-Reduce stack machine. The Reduce step 
corresponds closely to the notion of External Merge, building a higher-order non-terminal node 
from a contiguous sequence of categories on top of the stack that match a phrase structure rule. 
The operands of Merge then have a definite linear order, corresponding to their order in the 
stack, which provides a  computational basis for an asymmetry in Merge. Yet again, though, a 
fuller discussion would take us too far afield. And identifying syntactic operations with a parsing 
algorithm likewise raises some difficult questions; for this reason, I provide an alternative 
implementation of the theory as a competence-level generative account.  

1.2 Structure of the paper 

 The remainder of this paper is structured as follows. In section 2, I sketch some 
conceptual preliminaries, defining stack-sorting, permutations, subsequences, and permutations 
avoiding a forbidden subsequence, and showing how the dynamics of stack-sorting induce 
implicit bracketed surface structure. In section 3, I discuss Cinque's (2005) version of 
Greenberg's Universal 20, showing that we derive exactly the same predictions in the present 
account. This includes not just the same possible and impossible orders, but nearly-identical 
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bracketed structures. I also discuss the apparent counter-examples to Cinque's typology in 
Shupamem raised by Nchare (2012), showing that all orders in that language that fall outside 
Cinque's typology involve focus, and are thus irrelevant to the generalization about neutral 
orders pursued here. Section 4 takes up the Final-Over-Final Condition (FOFC), showing that the 
present account derives every major case of FOFC as a consequence of our *231 theorem.  
 In section 5, I discuss Travis' (1984) Head Movement Constraint, showing that the core 
data taken to support the HMC is predicted by this account. At the same time, known exceptions 
to the HMC, in the form of attested long head movement patterns, are also shown to be generated 
by this system, obeying a novel generalization concerning the linear position of the subject. 
Section 6 presents our treatment of cross-serial relations in surface order, including cross-serial 
subject-verb dependencies in Dutch and Swiss German, showing that these patterns too are 
readily explained in the present framework, without recourse to additional operations or 
constraints. I also provide an analysis of English Affix Hopping, an apparently problematic case 
of head lowering, where we reconstruct something remarkably like Chomsky's (1957) classic 
transformational analysis. Section 7 provides an account of Icelandic Stylistic Fronting, an 
apparently "exotic" movement process affecting both heads and phrases, and governed by an 
intricate Accessibility Hierarchy. I show that the present account extends without modification to 
this phenomenon as well, readily explaining many of its details. Section 8 discusses some further 
refinements and extensions of the basic framework, confronting the issue of cycles. Section 9 
presents an alternative conceptualization of the framework as a generative system involving tree 
traversals; the final section summarizes and sketches some broad conclusions. 

2.0 Some formal preliminaries 

This section presents some formal background and definitions that underpin what follows. 
Important notions include permutations, forbidden permutations, and stack-sorting.  

2.1 Some definitions 

(2) Permutation  Given a set of symbols, a permutation is a sequential arrangement of those 
symbols. Given a reference sequence taken as the identity permutation, we can describe other 
permutations of the same set of elements perspicuously in terms of a numerical sequence, where 
the identity permutation is the sequence 1 2 3 4 5... . In what follows, the identity permutation is 
a language-invariant representation of the underlying hierarchy of an expression, and we will be 
considering surface orders as permutations of this basic sequence.  

(3) Index. The number associated with a position in the identity permutation, which we will use 
to refer to the relative positions of lexical elements within the invariant base order. 

(4) Subsequence  Given a sequence of symbols (a permutation), a subsequence is any linear 
arrangement of a subset of symbols from that sequence that preserves their relative linear order. 
For example, the permutation 1 2 5 4 3 contains 2 4 as a subsequence. 
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(5) Forbidden permutation  This work characterizes unavailable word orders in terms of a 
subsequence contour within their surface order (namely, *231). This condition does not refer to 
any three specific lexical items or hierarchical positions. Rather, given a linearly-ordered 
representation of the hierarchy as the identity permutation, we rule out any surface order 
permutation that contains a subsequence bca, where a < b < c in the identity order.  To be clear, 
this condition does not require adjacency of the elements in either the surface order or in the 
identity permutation/underlying hierarchical order. So, for example, given the identity 
permutation 1 2 3 4 5 6 ..., the order 4 1 6 2 3 5 contains the forbidden *231 contour (its 
subsequences 4 6 2 and 4 6 3 have mid-high-low index pattern). 

(6) Base order  A base order is the identity permutation of the lexical elements in an expression.  
The idea is that expressions in different languages with commensurable lexical content share the 
same underlying hierarchical representation. In the present framework, this representation is a 
particular permutation of the elements involved. For example, the base order for a transitive 
clause (motivated in section 4) is C < Pol < T < V < O < Adv < S. Thus, C Pol T V O Adv S is 
the identity permutation 1 2 3 4 5 6 7; C has index 1, Pol has index 2, etc. Clause orders in 
different languages are different permutations of this underlying base order. The English 
clause ...that they didn't often eat cake arranges elements in the order C S T Pol Adv V O (taking 
the Neg head -n't to instantiate the Pol position; see below). In terms of numerical indices, the 
English clause is the permutation 1 7 3 2 6 4 5. This permutation is 231-free; none of its 
subsequences form the forbidden *231 contour. 

(7) Legal bracketing A legal bracketing is a string consisting of left and right brackets meeting 
the following two conditions: (i) at each position in the string, the number of preceding right 
brackets may not exceed the number of preceding left brackets, and (ii) at the end of the string, 
the number of left brackets and right brackets are equal. So, for example, '( ) ( )' and '( ( ( ) ) )' are 
legal bracketings, while ') (' and '( ( )' are not (failing condition (i) and (ii), respectively). The 
number of these strings of fixed length is a number from the Catalan sequence (1, 1, 2, 5, 14, 42, 
132, ...). With no bracket pairs, we have one legal bracketing (the empty string); there is one 
choice for one pair of brackets, two choices for two pairs, 5 for three pairs, 14 for four pairs, etc. 

2.2 Stack-sorting 

I present a slightly edited version of the stack-sorting algorithm discussed in Medeiros (2018), 
itself a minor variant of Knuth's classic algorithm.  The algorithm (8) processes an input 2

 The important change here reflects a choice to represent the desired output -- the identity permutation, in 2

present terms -- as an increasing sequence 123... . In Medeiros (2018), the relevant nominal hierarchy 
[[[[N] AdjP] NumP] DemP] was instead numbered 4321. One consequence of the convention in that 
paper is that the forbidden permutation is then characterized as *213, rather than *231. The increasing 
index sequence adopted here is more in line with conventions in other works on permutations and related 
computer science notions.
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sequence into an output sequence, by means of two operations: Push and Pop, which take 
elements one at a time from input to stack, and thence from stack to output, respectively. 

(8) Stack-Sorting Algorithm  
 While input is non-empty,  
  If S < I, Pop.  
  Else Push. 
 While Stack is non-empty,  
  Pop.  

(9) Definitions for (8) 
 I: next item in input. 
 S: item on top of stack.  
 x < y: x precedes y in the base order.  
 Push: move I from input onto stack. 
 Pop: move S from stack to output.  

 To illustrate how stack-sorting works, let's walk through how the algorithm applies to 
some of the permutations of the identity 123. Our goal is to sort any surface order into 123 
output; as we will see; this succeeds for five of the six order permutations, but fails for one, 231. 
 Stack-sorting is often represented as in the following diagram. The input sequence (here, 
132) begins on the right; its elements are "pushed" onto the stack one at a time, interleaved with 
operations "popping" elements one at a time to form the output. 
 
 (10) a.    1 3 2  Start: input 132 at right 
             Output    Input   Input is non-empty... 
             There is no S, so (S < I) is False... 
        So: Push (1) 
        b.    3 2   Push 1 onto the stack 
        1    Input non-empty 
              S < I: True (1 < 3) 
        So: Pop (1) 
        c.          1   3 2   Pop 1 from the stack 
            Input non-empty 
              No S element; S < I False 
        So: Push (3) 
        d.          1   2   Push 3 onto the stack 
        3    Input non-empty 
              S < I: False (3 > 2) 
        So: Push (2) 
        e.          1     Push 2 onto the stack 
        2    Input empty; stack non-empty 
        3           So: Pop(2) 
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        f.       1 2     Pop 2 from the stack 
        3    Input empty; stack non-empty 
                   So: Pop(3) 
  
        g.    1 2 3     Pop 3 from the stack 
  Output          Input and Stack empty 
         
  
 In this way, we stack-sort the input permutation 132 into the desired output, the identity 
permutation 123. Stack-sorting can successfully rearrange many different permutations into the 
underlying identity. For example, if the input is 123, identical to the desired output, each element 
is pushed and immediately popped. If the input is the mirror image of the output, 321, the entire 
sequence is first pushed onto the stack, and then popped, reversing its order. 
 Importantly, however, not all sequences can be stack-sorted. Among the six possible 
permutations of 123, five can be stack-sorted (123, 132, 213, 321, 312) , but one cannot: 231. 
The following example illustrates why stack-sorting fails for this input sequence. 
 
 (11) a.    2 3 1  Start: input 231 at right 
 

  
        b.    3 1   Push 2 onto the stack 
        2 

 
        c.             1  Push 3 onto the stack 
        3      
        2 
 
        d.               Push 1 onto the stack 
        1 
        3 
        2 
 
        e.          1     Pop 1 from the stack 
        3 
        2 
  
 At this point, the problem with this order becomes clear. We wish to assemble the output 
in the order 123. However, after we have popped the 1, the element on top of the stack is 3. We 
would have to somehow reach deeper into the stack to retrieve the 2 before popping the 3; this is 
not allowed. Instead, with the input emptied, the algorithm dictates that the top-of-stack element 
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3 must be Popped to the output, followed by Pop of the remaining element 2 in the stack. This 
produces the illicit output order 132. 

2.3 Putting things together 

With these initial definitions in place, we can now elaborate somewhat on the content of what 
follows. As stated at the outset, the proposal here is that typologically possible neutral word 
orders are the stack-sortable permutations of the base order, taken as the identity permutation. 
Put another way, possible neutral word orders are the 231-avoiding permutations of the base 
head-complement-specifier order. 
 As pointed out in Medeiros (2018), it is rather natural to read the Push and Pop 
operations of stack-sorting as left and right brackets, respectively, labeled by the lexical element 
they affect (e.g., Push(N) ~ [N ; Pop(N) ~ N]). Reading Pushes and Pops as left and right brackets 
in this way, something remarkable emerges: 

(12) The set of stack-sortable (231-avoiding) permutations of a given base order corresponds to 
the set of all legal bracketings, for a fixed number of bracket pairs. 

 That is, the stack-sortable permutations exhaust the set of legal Push and Pop sequences, 
which correspond to all legal ways of pairing a given number of left and right brackets. This 
invites a way of thinking in which the legal bracketings are generated directly as a first step, with 
labels from a base order then written onto right brackets, and word order then read from 
corresponding left brackets. In effect, this is the tree traversal view we will develop near the end 
of the paper. 
 For now, though, the important takeaway is that we can represent Push and Pop 
sequences, as dictated by the stack-sorting algorithm, as a sequence of labeled brackets. As we 
will see when we turn to Universal 20 in the following section, these bracketings are not 
arbitrary, but correspond in detail to the bracketings formed by standard move-and-merge 
derivations of the relevant orders. Nevertheless, they are also somewhat simpler, losing some 
superfluous structural layers, and allowing n-ary branching. This is an intriguing result, since the 
stack-sorting procedure is not merely a notational variant of the standard conception of 
derivations. Of particular note, from the parsing perspective, is that rather than performing 
movements to disrupt an initial uniform base structure, we are in a sense performing "anti-
movement" to reconstruct the base from a given surface order. Significantly, we do not need 
order-particular instructions to accomplish this; the language-invariant stack-sorting algorithm 
(8) does the job for any attested orders, but only for those, explaining at the same time why 
certain orders are typologically impossible. 
 With this in hand, we can now spell out the kind of architecture we have in mind. In 
broad strokes, this will be cast as a two-stage parsing device. In the initial pre-processing stage, 
the language-invariant stack-sorting algorithm (8) converts all and only the stack-sortable (231-
avoiding) word order permutations into a unique output order, representing the base structure. 
This base order is then input to a Shift-Reduce semantic parser, which implements a universal 
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phrase structure grammar, building the familiar kind of constituent structure from the base order. 
Figure 1 below summarizes the intended action of the architecture. 
 
  
 surface orderi 
 surface orderj                base order                        base tree  
 surface orderk              SR device =     
 ...    stack-sorting       universal PSG         
         

Figure 1. The architecture of the proposal as a parsing device. The invariant stack-sorting 
algorithm sorts any typologically possible word orders into a unique, universal base order. 
The base order is then fed to a Shift-Reduce semantic parser, implementing a language-
invariant phrase structure grammar, which builds the familiar constituent structure. 

 Intriguingly, we can maintain that the structure at the base level is entirely context-free; it 
is the addition of the stack-sorting pre-processing step that allows this system to handle attested 
orders exhibiting cross-serial dependencies and discontinuous constituency. As a simple 
example, consider an input containing the common clause order VSO. This order famously 
presents a problem to constituent-based analyses of surface order; we want the V and the O to 
form a VP constituent, just as in other languages, yet the S intervenes between them in the 
surface order. In the usual way of thinking about things, verb movement is taken to raise the verb 
out of the VP past the S to create the surface order. Of course, that familiar way of thinking then 
faces the problem of how to motivate the relevant movement(s), often linked to morphological 
requirements. 
 In the present architecture, we do not face the same problem of finding an order-specific 
motivation to move the V out of the VP. Instead, the order is input to the universal stack-sorting 
algorithm, which performs the steps Push (V), Pop(V), Push(S), Push(O), Pop(O), Pop(S). This 
produces the base order, in invariant head-complement-specifier order (in this case, VOS; see 
section 4.4 for some remarks on this perhaps-surprising rendering of the base order). This base 
order is what is read by the SR device, building the familiar hierarchical constituent structure, 
[[VP V O] S], containing a VP excluding the S. The very same base order is produced by stack-
sorting any of the other stack-sortable permutations of the base; these other permissible surface 
orders are SVO, SOV, VOS, OVS. On the other hand, *OSV cannot be processed in this way; it 
is the non-stack-sortable *231 permutation of the relevant base order.  3

2.4 Rationalizing the architecture 

 This would seem to predict that OSV is impossible as a surface word order. A caveat is in order: the 3

prediction is that OSV is impossible as an information-neutral word order. This does not mean that OSV 
cannot occur; it means that such an order requires appeal to discourse-information effects, such as topic or 
focus interpretation of the O. As for the very small number of languages reported to have OSV as their 
basic clause order, we might appeal to Mahajan's (2000) point that few if any full sentences are in fact 
information-neutral. For example, surface subjects are often topics. See section 4.4. for more.
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The present proposal can be seen as an extension of the ideas about parsing proposed in 
Medeiros' (2018) ULTRA (Universal Linear Transduction Reactive Automaton) model. The key 
innovation in that model is the mechanism of stack-sorting. Stack-sorting is a linear transduction 
algorithm, utilizing a last-in, first-out stack memory structure to reorganize an input sequence 
into a desired output sequence. Unlike the various more powerful sorting algorithms that are 
commonly used, stack-sorting is a partial sorting algorithm: a given output sequence can only be 
achieved for a subset of possible inputs (these are the stack-sortable strings).  
 In the context of linguistic parsing, Medeiros (2018) suggested that stack-sorting can be 
thought of as storage and retrieval of the linguistic input in a memory system dominated by 
recency effects, which in effect gives a stack-like structure (the most recent input is the most 
accessible, as in a LIFO stack). In that work, the desired invariant output was identified as the 
"order of composition", focusing on the case of Universal 20. For that application, the 14 attested 
nominal orders identified by Cinque (2005) are exactly the strings that can be stack-sorted into 
the order N Adj Num Dem, Cinque's nominal hierarchy read "bottom-up". 
 The main difference between the current framework and the ULTRA model concerns the 
nature and ordering of the output of stack-sorting. Rather than saying that stack-sorting produces 
an "order of composition", we are building the input to a language-invariant Shift-Reduce (SR) 
semantic parser. This base order is in head-complement-specifier order. Given that the order is to 
be read by an SR device, this is one of four possible orderings for a basic X-bar structure; two 
logically possible orderings, namely head-specifier-complement and complement-specifier-head, 
are automatically ruled out by the inherent context-free nature of a pushdown automaton like an 
SR parser. In fact, it is one of two orders (head-comp-spec, spec-comp-head) that can be 
specified by a single statement about the order of heads with respect to everything else, in this 
case "heads first". But that is still a stipulation. 
 In this regard, we might appeal to another argument made in Medeiros (2018), that this 
ordering of the semantic structure resembles Reverse Polish Notation (RPN). Thus, this parsing 
architecture closely mirrors a classic architecture for arithmetic calculators, which stack-sort user 
input into RPN for computation by an internal SR device. The motivation for this design for 
calculators is particularly intriguing, from the Minimalist point of view: it is considered an 
optimal design for minimizing the burden on internal memory resources. Insofar as similar 
considerations carry over to the present case, then head-complement-specifier order can be 
motivated non-stipulatively, on Minimalist grounds. 
 Two further considerations might best be thought about from this parsing perspective. 
The first concerns discourse-information structure and A-bar movement, which we have set aside 
as outside the scope of this work. Drawing on Henson's (1998) extremely successful Start-End 
Model of short-term memory, in which recency and primacy are encoded separately, Medeiros 
(2018: 11-12) speculates that Henson's recency code underlies information-neutral syntax, while 
the primacy code is crucially involved in discourse-information effects and A-bar relations. This 
makes immediate sense of two striking properties of this distinct syntactic system: its association 
with the left periphery, and its potentially long-distance character. Ultimately, the Duality of 
Semantics might be grounded in this dual coding of short-term memory. 
 A second consideration which might be resolved in the parsing perspective concerns the 
effects described by Abels (2016). Seeking to extend Cinque's theory of nominal ordering to a 

10



more general theory of neutral word order, Abels considers the more general case of "satellites" 
of a lexical head. He argues that a successful extension must be relativized to classes of satellites,  
and that it is impossible to find a single hierarchical ordering encompassing all classes of 
satellites of a single head (notably, a verb) at once. On the one hand, this argument may or may 
not go through in the present framework, given our different assumptions and architecture. But 
granting the point, this effect too can probably be rationalized within the memory-based parsing 
framework. Specifically, there is a body of work emphasizing the role of content-addressable 
memory in parsing (McElree 2000), and highly successful theories of parsing incorporating cue-
based retrieval (Lewis & Vasishth 2005; Lewis, Vasishth, & Van Dyke 2006). One way of 
reconciling Abels' observations with the present mechanism is to say that the present framework 
is an abstraction of recency effects in a storage-and-retrieval parser, while Abels' satellite classes 
implicate a role for content-addressability in this process. The different classes of satellites, then, 
would reflect the "grain size" of content-addressability (apparently implicating a rather small set 
of categorial distinctions in this domain), the idea being that items from one category can be 
retrieved with relatively little interference from elements belonging to a distinct category, while 
recency effects win out within a given category.  
 These are intriguing speculations, perhaps, but I have nothing to add beyond pointing out 
that this unusual architecture might be rationalized in terms of properties of the memory systems 
involved in language processing. Nevertheless, another goal of this paper is to provide an 
alternative formulation of the same system as a competence-level generative system, which need 
not be interpreted as a theory about processing per se, avoiding the potential pitfalls of 
identifying the grammar with the parser. As such, the relationship between abstract grammar and 
real-time processing is ultimately orthogonal to our concerns, and the architecture can be 
evaluated simply as a theory of the syntax of neutral word order variation. I postpone a 
specification of the alternate generative formulation until later in this work. Instead, we have 
enough of the technical apparatus in hand to appreciate its consequences for word order 
universals; we begin in the following section with Universal 20. 

3. Generating Universal 20 

As our first empirical application, consider possible and impossible neutral orders in the noun 
phrase, as described in Greenberg's Universal 20. 

“When any or all of the items (demonstrative, numeral, and descriptive adjective) precede 
the noun, they are always found in that order. If they follow, the order is either the same 
or its exact opposite.’’ (Greenberg 1963: 87) 

Considerable work since Greenberg's seminal study has sought to refine the empirical picture in 
this domain. I focus on the proposal of Cinque (2005) below. 

3.1 Cinque's typology of attested orders 
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According to Cinque (2005), 14 of 24 possible orders of these four elements are attested.   

 (13) Orders of demonstrative, numeral, adjective, noun, after Cinque (2005) 
  a. Dem Num Adj N    
  b. Dem Num N Adj   
  c. Dem N Num Adj   
  d. N Dem Num Adj   
  e. *Num Dem Adj N 
  f. *Num Dem N Adj 
  g. *Num N Dem Adj 
  h. *N Num Dem Adj 
  i. *Adj Dem Num N 
  j. *Adj Dem N Num 
  k. Adj N Dem Num   
  l. N Adj Dem Num  
  m. *Dem Adj Num N 
  n. Dem Adj N Num   
  o. Dem N Adj Num   
  p. N Dem Adj Num  
  q. *Num Adj Dem N 
  r. Num Adj N Dem  
  s. Num N Adj Dem  
  t. N Num Adj Dem  
  u. *Adj Num Dem N 
  v. *Adj Num N Dem 
  w. Adj N Num Dem  
  x. N Adj Num Dem  

 Cinque shows that this pattern can be succinctly described by assuming a universal 
underlying base, built by a uniform sequence of External Merge operations, affected by phrasal 
movement, but not head movement or remnant movement (i.e. Internal Merge in the noun phrase 
must affect the noun, possibly pied-piping dominating structure).   His hierarchy is given in (14). 4

 (14)  [DemP ... [NumP ... [AdjP ... [N]]]] 

 The hierarchy in (14) is shorthand for a more articulated structure. Specifically, Cinque 
assumes the nominal modifiers are specifiers of associated functional phrases; he also posits 
interspersed agreement phrases, to host potential movements. Cinque (2005) does not provide 

 Cinque adopts Kayne's (1994) Linear Correspondence Axiom (LCA), which requires extra 4

structure to provide landing sites for movement. Abels & Neeleman (2012) argue that the LCA is 
unneeded; the relevant constraint is simply that movement is leftward.
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bracketed representations for each order, instead describing each derivation in text. Steddy & 
Samek-Lodovici (2011), deriving the same result in OT, do: 

 (15)  Bracketed representations from Steddy & Samek-Lodovici (2011) 
   a. [AgrWP [WP DemP W [AgrXP [XP NumP X [AgrYP [YP AP Y NP]]]]]]  
   b. [AgrWP [WP DemP W [AgrXP [XP NumP X [AgrYP NP [YP AP Y tNP]]]]]]  
   c. [AgrWP [WP DemP W [AgrXP NP [XP NumP X [AgrYP [YP AP Y tNP]]]]]] 
   d. [AgrWP NP [WP DemP W [AgrXP [XP NumP X [AgrYP [YP AP Y tNP]]]]]] 
   k. [AgrWP [YP AP Y NP] [WP DemP W [AgrXP [XP NumP X [AgrYP tYP]]]]] 
   l.  [AgrWP [AgrYP NP [YP AP Y tNP] [WP DemP W [AgrXP [XP NumP X tAgrYP]]]]] 
   n. [AgrWP [WP DemP W [AgrXP [YP AP Y NP] [XP NumP X [AgrYP tYP]]]]] 
   o. [AgrWP [WP DemP W [AgrXP [AgrYP NP [YP AP Y tNP]] [XP NumP X tAgrYP]]]] 
   p. [AgrWP NP [WP DemP W [AgrXP [YP AP Y tNP] [XP NumP X [AgrYP tYP]]]]] 
   r.  [AgrWP [XP NumP X [AgrYP [YP AP Y NP]]] [WP DemP W [AgrXP tXP ]]] 
   s. [AgrWP [XP NumP X [AgrYP NP [YP AP Y tNP]]] [WP DemP W [AgrXP tXP]] 
   t.  [AgrWP [AgrXP NP [XP NumP X [AgrYP [YP AP Y tNP]]] [WP DemP W tAgrXP]]] 
   w. [AgrWP [AgrXP [YP AP Y NP] [XP NumP X [AgrYP tYP] [WP DemP W tXP]]]] 
   x. [AgrWP [AgrXP [AgrYP NP [YP AP Y tNP]] [XP NumP X tAgrYP] [WP DemP W tAgrXP]]] 

3.2 On the empirical status of Cinque's revision of Universal 20: the case of Shupamem 

There is considerable debate in the literature about the empirical status of Cinque's typology (see, 
e.g., Dryer 2009, 2018; Nchare 2012; Cinque 2014; Abels 2016; Steedman 2020, i.a.). A full 
discussion goes beyond the scope of this paper. But a crucial caveat is worth discussing and 
defending: that the relevant typology concerns information-neutral, unmarked orders.  
 A particularly sharp challenge is presented by the extensive discussion of nominal 
ordering in Shupamem (Grassfields Bantu) by Nchare (2012). Nchare documents 19 permitted 
orders of demonstrative, numeral, adjective, and noun in Shupamem. This set of orders excludes 
some of the orders permitted by Cinque, while including a number of others that fall outside 
Cinque's typology. I reproduce the list in (16) (after Nchare 2012: 134, ex. 10), alongside 
Cinque's for comparison. The examples illustrated in Shupamem permute the orders of 
demonstrative ʃì 'this' [sic], numeral kpà 'four', adjective mìŋkɛ't 'dirty', and noun pɔ`n 
'children' (note that postnominal modifiers are prefixed with noun class agreement pí-, which in 
the case of the demonstrative produces the form pì'). 

 (16) Orders in Cinque (2005) (left), vs. orders in Shupamem (Nchare 2012, right) 
  a. Dem Num Adj N   ʃì kpà mìŋkɛ't pɔ`n 
  b. Dem Num N Adj  ʃì kpà pɔ`n pí-mìŋkɛ't 
  c. Dem N Num Adj  *ʃì pɔ`n pí-kpà pí-mìŋkɛ't 
  d. N Dem Num Adj  *pɔ`n pì' kpà pí-mìŋkɛ't 
  e. *Num Dem Adj N  kpà ʃì mìŋkɛ't pɔ`n 
  f. *Num Dem N Adj  kpà ʃì pɔ`n pí-mìŋkɛ't 
  g. *Num N Dem Adj  *kpà pɔ`n pì' pí-mìŋkɛ't 
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  h. *N Num Dem Adj  *pɔ`n pí-kpà pì' pí-mìŋkɛ't 
  i. *Adj Dem Num N  mìŋkɛ't ʃì kpà pɔ`n 
  j. *Adj Dem N Num  *mìŋkɛ't ʃì pɔ`n pí-kpà 
  k. Adj N Dem Num  mìŋkɛ't pɔ`n pì' pí-kpà 
  l. N Adj Dem Num  pɔ`n pí-mìŋkɛ't pì' pí-kpà 
  m. *Dem Adj Num N  ʃì mìŋkɛ't kpà pɔ`n 
  n. Dem Adj N Num  ʃì mìŋkɛ't pɔ`n pí-kpà 
  o. Dem N Adj Num  ʃì pɔ`n pí-mìŋkɛ't pí-kpà 
  p. N Dem Adj Num  pɔ`n pì' pí-mìŋkɛ't pí-kpà 
  q. *Num Adj Dem N  kpà mìŋkɛ't ʃì pɔ`n 
  r. Num Adj N Dem  kpà mìŋkɛ't pɔ`n pì' 
  s. Num N Adj Dem  kpà pɔ`n pí-mìŋkɛ't pì' 
  t. N Num Adj Dem  pɔ`n pí-kpà pí-mìŋkɛ't pì' 
  u. *Adj Num Dem N  mìŋkɛ't kpà ʃì pɔ`n 
  v. *Adj Num N Dem  mìŋkɛ't kpà pɔ`n pì' 
  w. Adj N Num Dem  mìŋkɛ't pɔ`n pí-kpà ʃì 
  x. N Adj Num Dem  pɔ`n pí-mìŋkɛ't pí-kpà ʃì


 Summarizing, Nchare reports that Shupamem allows nineteen orders of these elements. 
In the present framework, we may readily dismiss the orders universally permitted by Cinque 
that do not happen to be available in Shupamem, namely orders (16c) Dem N Num Adj and (16d) 
N Dem Num Adj. However, the orders that are in fact available in Shupamem, but that lie outside 
Cinque's typology, would at first appear to be more of a problem. Specifically, there are seven 
orders reported in Shupamem that are outside Cinque's typology: (16e) Num Dem Adj N, (16f) 
Num Dem N Adj, (16i) Adj Dem Num N, (16m) Dem Adj Num N, (16q) Num Adj Dem N, (16u) 
Adj Num Dem N, and (16v) Adj Num N Dem. 
 A crucial point is that Nchare specifically counts non-neutral orders in Shupamem: "The 
revisited typology repeated in (10) will include focus as well as non focus orders" (Nchare 2012: 
135). Thus, if all seven of the orders (16e, 16f, 16i, 16m, 16q, 16u, and 16v) in Shupamem that 
are not counted in Cinque's typology in fact involve focus, then they are irrelevant for present 
purposes. Let me repeat that the empirical target of the present study is information-neutral 
ordering, explicitly setting aside discourse-information effects including focus. 
 Indeed, it turns out that Nchare specifically mentions focus in the derivation of all of 
these seven problematic orders. The derivation of (16f) is assumed to be a further movement 
applied to (16e), which itself "[...] can be derived if we assume that there is a phrasal movement 
of the numeral to the specifier of DP where it checks the focus feature under D" (ibid., 215). 
Order (16i) "[...] is derived by fronting the AP mìŋkɛ't 'dirty' to the specifier position of DP to 
check its focus feature under D" (ibid., 218). Likewise in order (16m), "[...] the adjective 
undergoes a phrasal movement to a focus position" (ibid., 224). As for order (16q), Num Adj 
Dem N, Nchare's diagram (64q) shows the Num moving to spec of a D marked with a [+Foc] 
feature. (ibid., 227) The same is true for orders (16u) and (16v) (ibid., 231); for the former, 
Nchare is explicit that there is "AP movement to spec-DP to check its focus feature" (ibid., 231).  
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 Thus, the results of Nchare's (2012) investigation of ordering in Shupamem are entirely 
consistent with the present account. While discourse-information effects make other orders 
possible, this is expected from the present perspective, and does not falsify the predictions made 
here, which keep solely to information-neutral ordering.  
 Before moving on, it is worth highlighting order (16p), N Dem Adj Num. While both 
Cinque (2005) and Nchare (2012) count this order as attested, in earlier work Nchare (2011) 
argued that is was not a grammatical order in Shupamem. This order presents theoretical 
challenges to the different accounts provided by Cinque and Nchare. While the details need not 
concern us, the large-bore problem surrounds the pattern of cross-serial dependencies found in 
this order. Consider selectional relations among (functional phrases hosting) nominal modifiers 
and each hierarchically lower element (what Steedman (2020) calls the order of command). The 
local relationship between N and Adj is disrupted in the surface form by the intervening Dem; 
likewise, the hierarchically local relationship between Dem and Num is interrupted by the 
intervening Adj.  
 This pattern turns out to be incompatible with the theoretical apparatus Nchare uses to 
account for other orders in Shupamem, which crucially invokes the Freezing Principle. The basic 
idea is that in the Merge-based derivation of order (16p), a syntactic object containing both the 
noun and the adjective moves above the base position of the numeral. From there, another 
movement applies, stranding the adjective in place, while moving the noun to precede the 
demonstrative. In Nchare's words, "[...] the extraction of NP from spec-AgrP to front it into the 
higher spec-AgrP seems to violates the freezing principle. I have no handy explanation for this 
violation in (64p). I will leave this issue for further investigation." (Nchare 2012: 226) Cinque, 
meanwhile, noting only three languages with this order, considers it "possibly spurious" (Cinque 
2005: 320), suggesting that perhaps "[...] such subextractions should be ruled out entirely" (ibid., 
323, fn. 27).  
 This is our first glimpse of an important feature of our treatment of hierarchy-order 
relations: it readily generates cross-serial dependencies, of exactly the sort attested in natural 
language syntax. In later sections, we will return to this point in the context of better-known 
cross-serial dependencies, showing that the theoretical problems they have raised for earlier 
theories dissolve under this account. 

3.3 Reproducing Cinque's typology and bracketing 

Returning to our theoretical account of Cinque's typology, we reconstruct exactly Cinque's (2005 
et seq) version of Universal 20. Following his analysis in which demonstrative, numeral, and 
adjective are specifiers of functional phrases above the noun, the base order is (17). 

 (17) [[[[N] AdjP] NumP] DemP] Base order for U-20 (with underlying brackets) 

 To illustrate how we will be stack-sorting nominal orders, consider first the English order 
(a), Dem-Num-Adj-N. This is the mirror image of the desired output sequence (17): the head N, 
followed by its modifiers as specifiers of stacked functional phrases. In (18), we see the stack-
sorting process for this order, which ends up producing the desired (17) as output. 
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 (18) a.        Dem Num Adj N Start: input Dem-Num-Adj-N at right 
                  
 
        b.        Num Adj N   Push Dem onto the stack 
          Dem 
 
        c.                 Adj N   Push Num onto the stack 
          Num 
          Dem 
  
        d.                 N   Push Adj onto the stack 
           Adj 
          Num 
           Dem 
  
        e.                 Push N onto the stack 
            N  
           Adj 
          Num 
          Dem 
 
        f.            N     Pop N from the stack 
           Adj 
          Num 
          Dem 
 
        g.             N Adj      Pop Adj from the stack 
          Num 
          Dem 

 
        h.            N Adj Num     Pop Num from the stack 
            Dem 
 
        i.   N Adj Num Dem    Pop Dem from the stack: 
          output N Adj Num Dem at left 

 At the end of the process illustrated here, we have constructed the desired base sequence 
(17), in head-complement-specifier order. The sequence of operations is this: 

(19) Push(Dem), Push(Num), Push(Adj), Push(N), Pop(N), Pop(Adj), Pop(Num), Pop(Dem) 
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 As discussed above, we can consider Push operations to be left brackets, while Pop 
operations correspond to right brackets, both labeled by the element they affect. Translating (19) 
into a bracketed representation in this way, we get (20). As we will see in a moment, this 
corresponds systematically to the bracketing in Cinque's derivation, as shown above in (15).  

(20)  (Dem (Num (Adj (N N) Adj) Num) Dem) 

 The set of nominal orders which can be stack-sorted into the base order (17) are exactly 
the same 14 attested orders Cinque (2005) describes; the remaining 10 unattested orders are non-
stack-sortable. Collecting the Push and Pop sequences for each attested order and representing 
them as bracketed representations (see Medeiros (2018) for full details), as in the conversion of 
(19) to (20), we get Table 1. 

Nominal order              Bracketed representation (from Push-Pop stack-sorting sequence)  
a. Dem-Num-Adj-N     (Dem(Num(Adj(N N)Adj)Num)Dem)     
b. Dem-Num-N-Adj        (Dem(Num(N N)(Adj Adj)Num)Dem)   
c. Dem-N-Num-Adj  (Dem(N N)(Num(Adj Adj)Num)Dem)     
d. N-Dem-Num-Adj  (N N)(Dem(Num(Adj Adj)Num)Dem)   
k. Adj-N-Dem-Num  (Adj(N N)Adj)(Dem(Num Num)Dem)    
l.  N-Adj-Dem-Num  (N N)(Adj Adj)(Dem(Num Num)Dem)   
n. Dem-Adj-N-Num          (Dem(Adj(N N)Adj)(Num Num)Dem)    
o. Dem-N-Adj-Num      (Dem(N N)(Adj Adj)(Num Num)Dem)   
p. N-Dem-Adj-Num       (N N)(Dem(Adj Adj)(Num Num)Dem)   
r. Num-Adj-N-Dem       (Num(Adj(N N)Adj)Num)(Dem Dem)    
s. Num-N-Adj-Dem       (Num(N N)(Adj Adj)Num)(Dem Dem)   
t. N-Num-Adj-Dem       (N N)(Num(Adj Adj)Num)(Dem Dem)   
w. Adj-N-Num-Dem      (Adj(N N)Adj)(Num Num)(Dem Dem)   
x. N-Adj-Num-Dem       (N N)(Adj Adj)(Num Num)(Dem Dem)  
Table 1: Nominal orders and bracketings from stack-sorting operations 

 As already mentioned, there is another way of thinking about this pattern. Note that the 
bracketings here are simply all possible legal pairings of four left and right brackets 
(corresponding to the four elements Dem, Num, Adj, N). We can begin by generating all legal 
pairings of four sets of brackets. Writing the base order in (11) onto the right brackets as labels, 
and then reading word order from the labels of the corresponding left brackets, we derive the 
same word orders and labeled bracketed representations as we do from the stack-sorting 
procedure just illustrated (Table 2). 

Brackets Label right brackets Label left brackets    Nominal order 
(((())))  ((((N)Adj)Num)Dem)      (Dem(Num(Adj(N N)Adj)Num)Dem)     a. Dem-Num-Adj-N 
((()()))  (((N)(Adj)Num)Dem)         (Dem(Num(N N)(Adj Adj)Num)Dem)   b. Dem-Num-N-Adj 
(()(()))  ((N)((Adj)Num)Dem)      (Dem(N N)(Num(Adj Adj)Num)Dem)    c. Dem-N-Num-Adj  
()((()))  (N)(((Adj)Num)Dem)      (N N)(Dem(Num(Adj Adj)Num)Dem)    d. N-Dem-Num-Adj 
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(())(())  ((N)Adj)((Num)Dem)      (Adj(N N)Adj)(Dem(Num Num)Dem)    k. Adj-N-Dem-Num 
()()(())  (N)(Adj)((Num)Dem)      (N N)(Adj Adj)(Dem(Num Num)Dem)   l.  N-Adj-Dem-Num 
((())())  (((N)Adj)(Num)Dem)         (Dem(Adj(N N)Adj)(Num Num)Dem)    n. Dem-Adj-N-Num 
(()()())  ((N)(Adj)(Num)Dem)      (Dem(N N)(Adj Adj)(Num Num)Dem)   o. Dem-N-Adj-Num 
()(()())  (N)((Adj)(Num)Dem)      (N N)(Dem(Adj Adj)(Num Num)Dem)   p. N-Dem-Adj-Num 
((()))()  (((N)Adj)Num)(Dem)      (Num(Adj(N N)Adj)Num)(Dem Dem)    r. Num-Adj-N-Dem 
(()())()  ((N)(Adj)Num)(Dem)      (Num(N N)(Adj Adj)Num)(Dem Dem)   s. Num-N-Adj-Dem 
()(())()  (N)((Adj)Num)(Dem)      (N N)(Num(Adj Adj)Num)(Dem Dem)   t. N-Num-Adj-Dem 
(())()()  ((N)Adj)(Num)(Dem)      (Adj(N N)Adj)(Num Num)(Dem Dem)   w. Adj-N-Num-Dem 
()()()()  (N)(Adj)(Num)(Dem)      (N N)(Adj Adj)(Num Num)(Dem Dem)  x. N-Adj-Num-Dem 
Table 2: Nominal orders from legal bracketings 

 Even more significant than merely deriving the same set of orders, we also generate a 
simplified version of exactly the same bracketing that results from Cinque's Merge and Move 
account. From the bracketed representations in (15), keep only left brackets immediately before 
overt items, and the matching right brackets (we assume NP contains ...[N...]...). The result is 
identical to  the bracketing in Tables 1 and 2. For example, consider order (13n) Dem-Adj-N-
Num, with traditional representation in (15n), repeated in (21), now with [...N...] in NP. 

 (21) [AgrWP [WP DemP W [AgrXP [YP AP Y [NP N]] [XP NumP X [AgrYP tYP]]]]] 

Keeping only the left brackets immediately preceding overt elements, and their matching right 
brackets, yields (22) (I suppress the labels). 

 (22) [DemP [AP [N]] [NumP]] 

The bracketing derived in the present account for order (13n) is repeated in (23). 

 (23) (Dem(Adj(N N)Adj)(Num Num)Dem) 

 In this novel kind of representation, left brackets are positions of pronunciation. 
Suppressing right bracket labels, and writing overt elements following their corresponding left 
bracket positions, gives (24). 

 (24) (Dem (Adj (N) (Num)) 

 This is identical to the simplified standard bracketing for this order shown in (22); the 
interested reader may verify that this correspondence holds for every nominal order in (13/15) 
and Tables 1 and 2. 
 As a final note, we may associate these elements with indices representing their relative 
order in the base (17): N = 1, Adj = 2, Num = 3, Dem = 4. If we translate the set of logically 
possible nominal orders into their sequence of base indices, we will see that the attested, stack-
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sortable orders are all 231-avoiding. Continuing with the example of order (15n) Dem-Adj-N-
Num, the corresponding index sequence is 4213. This is 231-free.  
 Contrast this with all of the unattested orders; to pick one example, order (13e), *Num 
Dem Adj N. In terms of indices representing the base order of these elements, this is a 3412 
order. This order contains the forbidden *231 contour (indeed, in two different ways: the 
subsequences Num...Dem...Adj, 342, and Num...Dem...N, 341, are both forbidden 
subsequences).  
 As we continue, it will be convenient to determine whether orders are stack-sortable or 
not by simply writing their corresponding base order (generally uncontroversial and fairly trivial, 
given our convention that the base order is in head-complement-specifier order), indexing the 
elements in their base order, and then examining the surface sequence for instances of the 
forbidden *231 contour. If no such contour is present, the order is stack-sortable, and predicted to 
be typologically possible. Conversely, finding any 231-like subsequence leads us to predict that 
the surface order in question is not possible as a neutral word order, in any language. Needless to 
say, this is a remarkably simple, even boring way of "doing syntax": we will not be worrying 
about steps of movement and what drives them, for example. Nevertheless, this approach yields 
empirically correct predictions across an interesting range of cases, subsuming the effects of a 
number of different word order universals and principles that have been thought of as having 
some other source (e.g., minimality effects in movement). As we will see, our single *231 
principle does the work of all of these principles, and arguably does a better job. 

3.4 Interim summary 

This section has reviewed Cinque's (2005) version of Greenberg's (1963) Universal 20. We 
considered the empirical challenge posed by Nchare's (2012) description of Shupamem, 
concluding that all of the putative counter-examples to Cinque's typology presented by that 
language are in fact non-neutral focus orders, and as such irrelevant to the present study. 
 We have seen an application of the surprisingly simple architecture of our universal 
stack-sorting supergrammar. Cinque's set of 14 attested neutral orders prove to be exactly the 
stack-sortable permutations of the base order, while his 10 unattested orders are its non-stack-
sortable permutations. Equivalently, we get the same result by simply generating all legal 
pairings of brackets, labeling all right brackets in left-to-right order with the invariant base order, 
and reading word order in from left brackets, Furthermore, the Surface Trees we generate turn 
out to correspond directly to the syntactic structures derived in Cinque's account, though they are 
systematically simpler. This is remarkable, as Cinque's account represents a traditional External 
and Internal Merge derivation of the relevant orders and structures, obeying a parochial condition 
(movement in this domain can only be phrasal, excluding head movement and remnant 
movement). Here, by contrast, the same orders and structures are derived in quite a different way, 
without invoking movement; the unattested orders are not ruled out by a constraint on 
movement, but simply cannot be generated.  
 In the next section, we turn to what appears to be an unrelated set of facts, the Final-
Over-Final Condition, and show that they are predicted by the same architecture. 
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4  Generating the Final-Over-Final Condition 

In this section, I show that the present account provides a ready explanation for another 
intensively studied word order universal, the Final-Over-Final Condition (FOFC; Holmberg 
2000, Biberauer et al 2014, Sheehan et al 2017 i.a.). This is a surprising unification, as Universal 
20 and FOFC appear to conflict; see for example Roberts (2017) on modifying the hierarchy for 
the noun phrase (17) to be compatible with FOFC.  

4.1 Background: The Final Over Final Condition 

FOFC prohibits configuration (25): 

 (25)  *[αP [βP β  γP] α]    The Final Over Final Condition 

 That is, a head-final phrase cannot dominate a head-initial phrase. The example below, 
from Finnish, illustrates the phenomenon. 

 (26)  a.  yli     [rajan    maitten   välillä]     [P1 [N1 [[N2] P2]]] 
                    across border countries between 
              ‘across the border between countries’ 

                  b.*[rajan   maitten   välillä]   yli  *[[N1 [[N2] P2]] P1]  
                border countries between across       (Biberauer et al 2014: 187, ex. 29) 
  
 In the ungrammatical (26b), the outermost P1 has its NP complement on the left, while the 
embedded nominal has its PP complement on the right. This is the banned *head-final over head-
initial configuration. Biberauer et al (2014) list the following FOFC effects; these configurations 
are robustly ungrammatical across languages. 

 (27) a. *V-O-Aux   *[AuxP [VP V DP] Aux] 
          b. *V-O-C   *[CP [TP T VP] C] or *[CP [TP [VP V O] T] C] 
         c. *C-TP-V   *[VP [CP C TP] V] 
         d. *N-O-P   *[PP [DP/NP D/N PP] P] 
         e. *Num-NP-D(em)  *[D(em)P [NumP Num NP] D(em)]  5

         f. *Pol-TP-C   *[CP [PolP Pol TP] C]      
            (Biberauer et al 2014: 196, ex. 46) 

 These canonical FOFC effects obtain when the elements in question are in a head-
complement relation. This well-known characterization of the domain of this condition is the key 

 See Roberts (2017) for motivation of this claim. D(em) here reflects an analysis where Dem 5

originates low in the hierarchy, and in some languages moves to higher head D.
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to the unification of this class of word order constraints with the Universal 20 pattern, as shown 
in the next subsection.  

4.2 Head-complement order in Deep Strings 

In the current framework, we adopt a rather traditional X-bar format for the base structure.  6

Unlike now-standard approaches involving unordered semantic representations, we assume that 
the base has a uniform head-complement-specifier order (which follows from a simpler 
stipulation: heads first). 

 (19)  Head Complement  Head-complement base order 

This convention, together with the *231 theorem of TTG, predicts the basic phenomenology of 
the Final-Over-Final Condition (FOFC; Sheehan et al 2017) in structures characterized by head-
complement relations. 
 To see this, consider a configuration with nested complementation: head α takes a 
complement headed by β, which in turn has complement γP. The base order is then (29) α β γP, 
and the forbidden *231 permutation is (30) *β γP α.  

 (29)  α [β [γP]]    Nested complementation base structure 

 (30) * β γP α    Forbidden word order 

 Order (21) is traditionally described as a head-final phrase (αP) dominating a head-initial 
phrase (βP); this is exactly the configuration ruled out by FOFC (25), repeated as (31). 

 (31)  *[αP [βP β  γP] α] 

 For example, if head Aux has complement headed by V, with complement Obj, the base 
order is Aux V Obj (32).  We correctly exclude unattested *231 order *V Obj Aux (33).  

 (32) Aux [V [Obj]] 

 (33)  *V Obj Aux 

 Additional stipulations may be required to model conjunction, set aside here. But note that if we 6

treat coordination asymmetrically with the X-bar mechanisms here, akin to [N PP] 
complementation (e.g., coordination of N heads would form [N1 [& N2]] in traditional notation), 
we would predict an apparent typological gap in monosyndetic coordination (Haspelmath 2017) 
for order *& N2 N1 (this application is an observation of Ryan Walter Smith). See also Zwart 
(2009), and Roberts (2019: 602-3).
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 Since the reasoning is about heads and complements (not just verbs and auxiliaries), we 
expect this to generalize to any head-complement chain, reconstructing the core of FOFC. 

4.3 Further extensions of FOFC 

What about structures with both adjuncts and complements? Sheehan (2017) argues that FOFC 
extends to certain adjunct relations. Concretely, parallel to the FOFC effect *V Obj Aux, *V Adv 
Aux is unattested. A full discussion is put aside, but note that this effect is correctly predicted 
here. Following much recent cartographic work, we treat adverbials as specifiers of functional 
phrases, which will thus occur in the later portion of the base order. The base structure for the 
case Sheehan discusses is then [Aux [[V ...] Adv]] (34); unattested *V Adv Aux (35) is the 
forbidden *231 permutation. 

 (34) [Aux [[V...] Adv]] Auxiliary, verb, adverb base structure 

 (35)  *V Adv Aux  Forbidden word order 

 Next, let us consider a fuller structure for the clause. Arranging standard assumptions 
about clause structure into our assumed head-complement-specifier base order, major categories 
of a transitive clause are underlyingly as in (36). Here, it is important to note that S and O really 
signify thematic subject and object (rather than the superficial grammatical functions); in other 
words, external argument and internal argument. 

 (36)  [C [Pol [T [Asp [v [V O] S]]]]] base structure for transitive clause 

 It is helpful to consider elements belonging to a single hierarchy three at a time; we 
should find, for each such triple, five attested orders and one forbidden order. Drawing on order 
(36), understanding that the O position may be realized as clausal complement CP, we make the 
following predictions (among many others) about impossible neutral orders. 

 (37) a. *O S V 
                    b. *CP S V 
                    c. *O S T 
         d. *V O T 
         e. *V O C 
         f. *V CP T 
         g. *[C TP] V 
         h. *Pol TP C 
         i.  *V S T 

 An adpositional phrase object O will be hierarchically ordered after a noun head N it 
complements (38); I take adposition P to be a head with noun phrase complement NP (39). 
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 (38)  N ON  base order for noun and complement object  

 (39)  P NP  base order for P and nominal complement 

Taken together, this yields base order (40), with forbidden Surface String (41). 

 (40)  P [N ON]  Deep String for PP within PP 

 (41)  *N ON P  Forbidden order 

 This explains the typological gap illustrated in Finnish (26b) above, previously described 
with FOFC. In fact, setting aside (27e) (we adopt Cinque's hierarchy for Universal 20 effects), 
we have reconstructed the list of canonical FOFC effects in Biberauer et al (2014: 196), repeated 
below in (42). 

 (42)  FOFC effects predicted here 
         a. *V O Aux   see (24)  
          b. *V O C   (31e) 
         c. *C TP V   (31g) 
         d. *N O P   (35) 
         e. *Pol TP C   (31h)  

 Beyond reconstructing this core of FOFC effects, (37) contains other interesting 
predictions. If one basic clause order is to be ruled out, *O S V appears to be the right choice 
(31a), as it is the rarest cross-linguistic order. Among 1376 languages recorded in WALS (Dryer 
2013) as having a single dominant clause order, only four are reported to have this order (Warao, 
Venezuela; Nadëb, Brazil; Wik Ngathana, Australia; Tobati, Indonesia). That said, some 
mechanism going beyond the simple base-generation system here must be invoked for the 
handful of languages with OSV orders. Another interesting prediction is (37i), taken up again in 
section 5 below as a reformulation of Travis' (1984) Head Movement Constraint. 

4.4 An aside: VOS as the base order? 

Before moving on, a comment is probably in order about the assumed underlying order of basic 
clausal components V, O, and S, and its relation to more or less frequent surface word orders. 
The issue is that we claim VOS is the underlying base order for the clause; this may seem 
surprising, as VOS is a rare surface order, exhibited by something like 2% of languages. In fact, 
there is an even more basic question looming in the background: given some underlying base 
order, why should there be any pre-processing step (like the stack-sorting mechanism explored 
here) at all? In other words, why don't we expect the base order to be the surface order for all 
languages? 
 Thinking more carefully about things, however, this kind of internal-external 
isomorphism is probably not what we expect. It is a familiar idea that language presents different 
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problems for adults and children. In seeking to understand typological trends in language 
structure, it makes sense to pay particular attention to the problems various configurations 
present to children. This is because of a kind of filtering effect: only those languages that are 
acquirable by children will survive as possible adult languages. 
 A robust finding of studies of language comprehension is that, for native adult speakers, 
comprehension is incremental, proceeding word-by-word. Indeed, it is clear that comprehension 
is even faster than that, running ahead of the actual input and predicting what is to come. It has 
also become clear that word-by-word incrementality relies on this kind of forward predictive 
ability. Colin Phillips' group at the University of Maryland has shown, for example, that in OV 
languages like Japanese, immediate integration of the O requires prediction of a V, before the V 
is actually encountered (Phillips & Lewis 2013, Momma et al 2015; note that this aligns with the 
head-complement base order we have proposed). Development of this predictive skill is clearly a 
major component of acquiring a language; in the present account, differences between languages 
may be exclusively due to this effect. 
 At the same time, it is also clear that being able to predict in a language is not to be 
identified with being able to comprehend the language at all (contrary to some recent proposals 
identifying prediction and cognition). See especially Huettig & Mani (2016) on this point. It 
seems, instead, that language comprehension involves dual mechanisms of control, both 
proactive and reactive (Braver, Gray, & Burgess 2007). 
 With this in mind, consider the situation of a child encountering a language for which 
they have not yet developed adult-level predictive skills. Thus, the (apparent) word-by-word 
incrementality of adult comprehension is not yet in place, and there is some degree of lag 
between receiving auditory input and constructing an internal representation of the signal. The 
internal processing may be relatively slow or fast compared to the input stream. When processing 
is slow, the received input must be held in a memory buffer until it can be integrated into the 
internal structural representation. It is known that, relative to other kinds of input, 
comprehensible natural language in the auditory modality exhibits an outsized role for recency 
effects (Surprenant, Pitt, Crowder 1993). In computational terms, recency corresponds to a stack-
like memory structure (i.e., last-in, first-out). 
 Suppose that our proposal is correct, in that there is a fixed, common linear order for 
comprehension across languages, independent of surface order. For example, in the case of verb 
and object, this is V-O (consistent with the experimental findings mentioned above indicating 
that in OV languages, immediate integration of the O requires prediction of V). More generally, 
we have supposed that the underlying order is head-complement-specifier.  Given the storage 7

and retrieval routine just described, and assuming that to a first approximation the available 
memory store behaves like a stack, it follows that the orders that the child can process are the 
stack-sortable orders. That is, this kind of device is capable of comprehending just those orders 
that can be passed, one item at a time, into a stack memory, interleaved with operations 

 This assumes that the X-bar format is adequate to model natural language semantic structure, 7

which may well be an oversimplification. In particular, effects like coordination and unstructured 
iteration seem to require something more (or, especially in the latter case, less). See Krivochen 
(2016, 2020) for relevant discussion.
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retrieving one item at a time to form the desired underlying base order in the correct (head-
complement-specifier) order.  
 Thinking of things this way may shed light on our apparent problem in supposing that 
VOS is the basic underlying order. This is only a problem on the assumption that the underlying 
order should be reflected directly in surface order. Given the remarks just above, this requires the 
language-learning child to parse such languages "fast", item-by-item as the input is received, in 
order to achieve the desired output order. Particularly in the earliest stages of acquisition, this 
seems overly demanding. The least demanding scenario, from the point of view of the child, is if 
a clause of the language can be decoded "at leisure" after it has been heard. Given the stack-like 
memory correlating with the dominance of recency effects in language comprehension, 
underlying VOS order would be easiest to achieve for the mirror-image order, SOV. That sounds 
promising, since SOV is indeed the most common order across the languages of the world. 
 Continuing in this vein, there is plausibly an asymmetry between V, on the one hand, and 
O and S: the former is a head, and the latter are (at least potentially) full phrases. In terms of 
speed of processing, it is reasonable to suppose that a single head might be processed "fast", 
while a full NP would take rather more time to process. In that case, we expect the positioning of 
V to be rather flexible; SVO or VSO order would present relatively little processing difficulty, if 
V can be handled relatively quickly. But OVS and VOS surface orders require processing of the 
O to be complete before the S is encountered, which, by this reasoning, is significantly more 
demanding, possibly explaining the relative rarity of these orders.	

4.5 Interim summary 

In this section, we have demonstrated that our basic theorem, *231, extends without additional 
machinery to cover the core empirical terrain described by the Final-Over-Final Condition. 
Specifically, the head-final over head-initial configuration banned by FOFC instantiates a *231 
permutation of the underlying base orders, because the base is organized in head-complement-
specifier order.   
 This is interesting for a number of reasons. First, FOFC has been held up as an instance 
of a purely syntax-internal constraint that is not explained by other factors. Something of the sort 
is still true in this architecture, but FOFC, as an instance of *231, is a necessary consequence of 
our system, rather than an additional constraint on movement that could have turned out 
otherwise. This result is also significant in that the account unifies Universal 20 and FOFC as 
instances of the same phenomenon. This is starkly at odds with the traditional treatment, where 
the two effects seem to have little to do with each other. Indeed, they in fact seem to conflict; see 
the discussion in Roberts (2017) for relevant considerations. 
 In the following section, we turn to another application of our *231 theorem: it derives a 
version of the Head Movement Constraint, while allowing known exceptions. 

5 The Head Movement Constraint and its exceptions 
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The present account also explains Travis' (1984) Head Movement Constraint (HMC), while 
correctly predicting some well-known exceptions. Travis argues that a head cannot move to a 
higher head position over an intervening governing head, formalizing this claim with her Head 
Movement Constraint (HMC).  

 (43)  Head Movement Constraint (HMC) (Travis, 1984, 131) 
          An Xº may only move into the Yº which properly governs it. 

The HMC (43) rules out configurations like (38), where head Zº has "skipped" intervening head 
Yº and left-adjoined to Xº. 

 (44)  *[... Zº-Xº ... [... Yº ... [... tZº ] ] ] ] 

 Of course, merely requiring head movement to be short does not suffice to rule out (44); 
it is also required that Zº cannot move to Yº first and then excorporate, moving without Yº to Xº. 
That requirement is a stipulation that does not appear to follow from independent principles, and 
is quite different from phrasal movement, which obeys no such restriction (phrases may move 
successive-cyclically without picking up additional structure along the way). Indeed, head 
movement remains controversial, posing a number of challenges to standard accounts of 
syntactic movement, and has inspired a variety of analyses; see Dékany (2018) for a recent 
overview. 
 That the present account extends to these effects is surprising at first glance, as movement 
violating the HMC does not produce an impossible *231 order of the heads themselves. Instead, 
HMC-violating movement "skipping" an intervening head, as in (44), produces 312 order among 
the heads, readily generated by this system. 
 Consider a simplified version of our base clause structure (36). For ease of exposition, we 
focus on the core C-T-V categories; adding more elements does not affect the conclusions. First, 
we examine each possible permutation of C, T, V order (45). Next to each order permutation, we 
write the corresponding index sequence (123, etc), and, for clarity, the traditional description of 
the derivation of the order (e.g., V-to-T, indicating head movement of V to T). 

 (45) Permutations of C,T,V head order 
   a.  C T V    1 2 3 base order 
   b.  V T C  3 2 1 V-to-T-to-C 
   c. C V T  1 3 2 V-to-T 
   d. V C T   3 1 2  HMC violation, V-to-C skipping T: ok 
   e. *T V C  *2 3 1  FOFC violation  
   f.  T C V   2 1 3  T-to-C 

 As indicated, our *231 principle only rules out the FOFC-violating order *T-V-C. The 
order violating the head movement constraint, V-C-T ("long" head movement of V to C, skipping 
T) is generated without problems.  
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 However, something interesting emerges when we consider the order of these elements 
with the addition of another element from later in the clause base structure, an external argument 
S. We repeat the permutations in (45), now trying all possible surface positions of S with respect 
to the orders in (45); a * marks an impossible position (one that will produce the forbidden *231 
contour in the surface order). 

 (46) Permutations of C,T,V head order with interposed S 
   a. (S) C (S) T (S) V (S) (4) 1 (4) 2 (4) 3 base order 
   b. (S) V (*S) T (*S) C (S) (4) 3 (*4) 2 (*4) 1 (4) V-to-T-to-C 
   c. (S) C (S) V (*S) T (S) (4) 1 (4) 3 (*4) 2 (4) V-to-T 
   d. (S) V (*S) C (*S) T (S)  (4) 3 (*4) 1 (*4) 2 (4)  HMC violation: *231  
   e. *T V C (already ruled out) *2 3 1   FOFC violation  
   f. (S) T (*S) C (S) V (S)  (4) 2 (*4) 1 (4) 3 (4)  T-to-C 

 In (46), we generate: (46a) C T V (no head movement); (46b) V T C (full roll-up of heads 
obeying HMC, "V-to-T-to-C"); (46c) C V T (partial HMC-obeying movement, "V-to-T"); and 
(46f) T C V (partial HMC-obeying movement, "T-to-C"). The independently FOFC-violating 
order (46e) is ruled out already, and adding the subject anywhere has no effect (the forbidden 
subsequence persists regardless of additional material). Meanwhile, (46d) V C T ("V-to-C, 
skipping T"), the HMC-violating order, is ruled out only if a higher-index element (e.g., the 
external argument S) intervenes between V and T (or another higher head).  
 We have generated all the core cases of local head movement in the C-T-V system. Note, 
too, that we derive another important effect: obligatory surface adjacency of the head cluster. 
That is, a later element from the base order, such as the external argument, may never occur 
between an inverted sequence of heads (because the heads then form a 21 sequence; the later 3 
between them produces the forbidden *231 permutation). In other words, all of the instances of 
head movement forming a "complex word", such as V-to-T, or V-to-T-to-C, necessarily occur 
adjacent, without the possibility of other material intervening. Most interesting of all, we arrive 
at a new claim: there is nothing wrong per se with the "improper head movement" case (45d) that 
violates the HMC. Instead, what we expect to be ruled out is only a subsequence in which a later 
element from the base order, in particular the external argument S, occurs between the long head-
moved V and a higher head like C or T in the surface order. Abstracting now from the simple C-
V-T system to a larger set of clausal head positions, we rule out (47): 

 (47) *V Subj v/voice/Aux/T 

 That is, the verb cannot precede an external argument which precedes some head above V 
(in fact, we have seen this prediction already, in (37i) in section 4). As far as I know, that gives 
the right facts for V-to-T and T-to-C movement captured by the HMC. Importantly, 
understanding the HMC as actually reflecting the condition in (47) also allows us to account for 
"long" head movement in Breton, a much-discussed violation of the HMC. 

 (48) Breton 
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         Lennet    en deus Anna al   levr 
         read.pprt has       Anna  the book  
        'Anna has read the book'   (Roberts 2010: 194) 

I take the base order for this example to be (49); (50) shows the indexing of the Surface String, 
which is indeed 231-free, and thus generable in this system (the treatment of the auxiliary Aux 
and associated affix -Fx will be discussed in much more detail in the following section, where I 
discuss English Affix Hopping). 

 (49)   T Aux -Fx V O S 
           1   2     3    4 5 6 

 (50)    Lennet    en deus  Anna  al levr 
            V -Fx     Aux T      S        O   8

             4    3        2   1         6         5     

Certain Slavic languages also allow fronting of a bare participle, as in Bulgarian. 

 (51) a. Bjah pročel knigata.     
             had  read     the.book  
             ‘I had read the book.’  
         b. Pročel bjah knigata.    
             read     had  the.book  
             ‘I had read the book.’   (Harizanov & Gribanova 2019:482) 

 (52) a. Bihte   bili   arestuvani    ot  policijata. 
            would been arrest.PTCP by the.police  
            ‘You would be arrested by the police.’  
         b. Arestuvani bihte bili ot policijata.   
             arrest.PTCP would been by the.police  
             ‘You would be arrested by the police.’      (Embick & Izvorski 1997:231) 

 Interestingly, in all these cases information-neutral long head movement obeys the *V S T 
condition in (47).  That is, either the subject is placed after the entire verbal complex, as in 9

Breton (48), or the subject is null, as in the Bulgarian examples in (49); (50) shows a 
prepositionally-marked passivized thematic subject, which again does not intervene between 
participle and higher heads right of the participle. 

 The relative order of T and Aux within en deus is unknown to me, but ordering T before the 8

Aux produces a 231-free order (431265) as well.

 Ian Roberts (p.c.) and Maria-Luisa Rivero (p.c.) observe that this appears to be true quite 9

generally. 
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 An important aspect of this analysis is that it treats head movement in the same terms as 
cases of apparent lowering, most famously in the English verbal system (in Affix Hopping), but 
proposed for phenomena in other languages as well, such as C-to-Neg lowering in Irish as 
proposed by McCloskey (2017). This is a step forward, as such cases closely resemble upward 
head movement, with the single exception of the linear position of the cluster of heads (the 
morphologically complex word). Despite this phenomenological similarity, lowering and Affix 
Hopping have generally been viewed as effects distinct from head movement. 
 The analysis of head movement has long presented theoretical problems. In standard 
analyses, it violates the Extension Condition on Merge, and produces a structure in which the 
moved element does not c-command its trace. Here, this kind of pattern is united with other 
information-neutral ordering phenomena. No special counter-cyclic mechanisms, morphological 
readjustment, construction-specific constraints such as a ban on excorporation, or other such 
special machinery is invoked. As we will see, the analysis also treats lowering operations like 
Affix Hopping in the same terms, a welcome result. 
 Summarizing, our *231 principle of neutral word order derives a version of 
Travis' (1984) Head Movement Constraint (HMC) that covers core cases of (V-to-)T(-to-C) 
movement, including obligatory surface adjacency of the "head cluster", while also allowing 
attested LHM as in Breton and Bulgarian. We discover a novel and apparently exceptionless 
generalization about when neutral LHM is possible: only when it obeys *V S T/Aux. No special 
principles or mechanisms are invoked; head movement, often seen as unlike other kinds of 
syntactic movement, falls together with Universal 20 and FOFC as an immediate consequence of 
our single *231 principle. 

6  Generating some well-known crossing dependencies 

Thus far, we have mostly been concerned with ruling out typologically unattested orders. In this 
section, I turn to showing that the analysis of allowed orders extends to somewhat exotic 
constructions that have figured prominently in arguments that natural language grammars are 
mildly context-sensitive (Joshi 1985). Specifically, the architecture provides simple analyses of 
attested cross-serial dependencies, including unbounded crossing subject-verb dependencies in 
certain Germanic languages, as well as the more limited crossing pattern seen in English Affix 
Hopping.  
 We have already glimpsed this additional generative power. For example, we briefly 
discussed the discontinuous constituency seen in the common word order VSO (section 2.3), and 
we noted that some of the orders allowed by Cinque's version of Universal 20 contain cross-
serial dependencies (for example, his order (p) N-Dem-Adj-Num). While phenomena like VSO 
order have been taken as strong motivation for transformations (in this case, head movement of 
the verb to some higher position), the effects that we will examine in this section have proven 
much more challenging to describe within the usual conception of transformations. That is, even 
allowing upward, leftward movement does not suffice to generate them. In the case of English 
Affix-Hopping, the problem is that the relevant movement seems rather to be rightward lowering 
movement (of affixes associated with higher auxiliary verbs onto lower verbal stems). 
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Meanwhile, the long-distance cross-serial dependencies we will see immediately below would 
seem to require something like Richards' "Tucking in" movement, failing to obey the Extension 
Condition, or a radically different notion of movement, as in Tree-Adjoining Grammar. As we 
will see, our framework suffices to describe these patterns and how they are sorted into standard 
head-complement-specifier base structures, without any additional devices. 
  
6.1 Cross-serial subject verb dependencies 

Bresnan et al (1982) discuss unbounded crossing subject-verb dependencies in Dutch (Huybregts 
1976). Example (53), taken from Steedman (2000: 25), illustrates the phenomenon. 
 

 (53)  ...omdat  ik Cecilia Henk de nijlpaarden zag helpen voeren 
          ...because I Cecilia Henk  the hippos      saw help    feed 
          '...because I saw Cecilia help Henk feed the hippos' 

 Shieber (1985) discusses similar word orders in Swiss German, which also show long-
distance cross-serial case dependencies, as in (54). 
 

 (54)  ... das mer d'chind em Hans es huus lönd hälfe aastriiche  
         ... that we the children Hans the house let help paint 
         '...that we let the children help Hans paint the house' 

 Interestingly, the system already established can base-generate these orders.  I take the 10

Dutch example (53) above to contain the categories in (55), abstracting away from internal 
structure of the object de nijlpaarden (see section 8) and segmenting a Tense suffix from 
inflected and non-finite verbs, even if realized as zero. 

  (55)  ...omdat ik Cecilia Henk de nijlpaarden zag-Ø  help-en voer-en 
                       C     S1     S2       S3            O3           V1  T1   V2    T2  V3   T3 

 The categories in (55) will be rendered as a single base order, which we assemble 
incrementally for clarity. Following the general clause ordering (36), with the standard 
assumption that complement clauses occupy the canonical direct object position, allows us to 

 Stabler (2004) discusses four different classes of cross-serial dependency constructions, with 10

distinct formal properties. I restrict attention to the two classes in this section.
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assemble the base order for iterated clausal complementation.  For single clausal embedding, 11

[CP1 ...[CP2    ] ], we have the base order C-T1-V1-T2-V2-O2-S2-S1. Replacing O2 with another 
embedded clause, we derive (56), the base structure for sentence (53) above. 

 (56) Base structure for (53) 
                     CP  
       
           C                     T1P 
       omdat 
               T1                       v1P 
              -Ø 
               V1P                                   S1  
 
              V1                           T2P                              ik 
                        zag 
                   T2                            v2P                  
       -en       
                        V2P                       S2           
            
                V2               T3P          Cecilia 
               help    
               T3               v3P 
                      -en 
                                   V3P              S3 
 
        V3        O       Henk 
                 voer  
              de nijlpaarden 

 Given this base structure, we can write the bracketed surface structure representation for 
the Dutch word order (53),  shown in (57). Here, I only show the categories, for reasons of 12

space. 

 At least for these structures, we are implicitly developing a simple account of recursion by 11

substitution. For this example, the account requires that the entire structure be available at once; 
the clauses in this example cannot be cyclic domains, sorted one at a time (see discussion in 
section 8). Other clauses may be; I leave fuller consideration of recursion in this architecture to 
future work, beyond the brief comments below. 

 An important question is whether these trees provide a basis for a successful theory of prosody. 12

See also section 6.3 below, where it is shown that these trees are closer to standard 
representations of clausal architecture than initial appearances suggest.
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 (57) (C C) (S1 (S2 (S3 (O (V1 (T1 T1) V1) (V2 (T2 T2) V2) (V3 (T3 T3) V3) O) S1) S2) S1) 

 At this point, it is worth introducing some further representational technology, as the 
bracketed representation in (57) is difficult to read. There is a natural correspondence between 
legal bracketings and n-ary branching trees. We will go into more detail on this correspondence 
later in the paper; for now, let us simply illustrate how to convert labeled bracketings into 
corresponding n-ary branching trees. We do this in the obvious way: each bracket pair 
corresponds to a single node in the tree. Where a bracket pair encloses another bracket pair, the 
relevant nodes will stand in a dominance (containment) relation in the tree. And the matched 
labels of left and right brackets will simply be taken as the label of the corresponding tree node. 
Finally, to ensure that disconnected bracketings, like ( )( ), make a single rooted tree, we add an 
unlabeled root node dominating everything else.  
 Let us illustrate this tree notation with some simple examples first before applying it to 
the Dutch structure. Suppose we had a bracketed surface structure (A A)(B B). This corresponds 
naturally to the following tree structure. 
 
 (58) Tree corresponding to bracketed representation (A A)(B B) 

          A         B 

 It should be clear that this tree representation encodes exactly the same information as the 
bracketed representation (A A)(B B); namely, we have two disjoint objects, neither containing the 
other. It is rather subtle, but we understand the expression (A A)(B B) to itself be a whole object, 
hence the "spurious", unlabeled node dominating them both.  
 Now consider the other way of organizing a pair of labeled brackets: (B (A A) B). This will 
be drawn as a tree structure as in (59). 
 
 (59) Tree corresponding to bracketed representation (B (A A) B) 
 
     B 
  
     A 

 Again, it should be obvious that this is just another way of representing the same 
information: node/bracket pair A contains node/bracket pair B. We will have more to say about 
this in section 8, but since we want these brackets to represent stack-sorting operations, these two 
options exhaust the possibilities. That is, we will not allow *(B B)(A A) or *(A (B B) A), assuming 
the base order is AB (rather than BA). The brackets have meaning as Push and Pop operations, 
and only the forms in (58-59) order these operations correctly to output the base order.  
 The point of introducing this tree notation is that we can now represent the surface 
structure for the Dutch order (or, indeed, any stack-sortable surface order of any base structure) 
perspicuously. We will find an interesting use for this kind of representation in the generative 
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formulation presented later on. For now, though, (60) is the surface tree corresponding to the 
rather opaque bracketed form in (57), for Dutch sentence (53). 

 (50)  ...omdat ik Cecilia Henk de nijlpaarden zag-0      help-en   voer-en  
     Category  C    S1    S2       S3    O3         V1  T1      V2  T2    V3  T3     
 Index        1     11   10        9                8           3    2        5    4      7    6  
 
 omdat        ik 
 
      Cecilia 
 
       Henk 
 
           de nijlpaarden 
 
     zag     help      voer 

      -Ø         -en       -en 

 Note that with the relevant universal base structure resolved as in (56), we can readily 
represent other surface word orders of the same elements, as in English (61).  

 (61) ...because  I   saw -0  Cecilia  help -Ø Henk feed -Ø  the hippos 
                       C     S1    V1   T1     S2      V2   T2    S3      V3  T3      O3         Category 
                         1     11     3     2      10       5     4      9       7    6        8       base order index 
 
 because       I 
 
     saw                Cecilia 
 
      -Ø      help               Henk 
 
                    -Ø       feed              the hippos 

                                -Ø 

 We will see later on that two natural ways of moving from node to node in this tree 
(namely, preorder and postorder traversal) yield the word order and base order, respectively. This 
corresponds to the fact that in the less-readable equivalent bracketed surface structure 
representation, left brackets are positions in word order, and right brackets are positions in the 
base order.   

6.2 Affix Hopping 
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The same architecture that provides a successful analysis of cross-serial subject-verb 
dependencies also readily allows another crossing configuration that has figured prominently in 
generative work. This is the pattern known as Affix Hopping. Chomsky's (1957) analysis of 
Affix Hopping provided a strong argument for the necessity of transformational rules, going 
beyond the generative capacity of phrase structure systems. Interestingly, however, this pattern 
has not been easy to analyze with the tools available in later iterations of generative theories. For 
example, early Minimalist work proposed that the relevant pattern did not involve overt syntactic 
movement at all, but rather resulted from checking features on fully inflected lexical item 
inserted from the lexicon. As we will see, the present account allows a return to something very 
close to the original transformational analysis, without introducing any new machinery. 
 Sentence (62), They hadn't been eating cake, illustrates the phenomenon. As Chomsky 
(1957) noted, affixes group with preceding auxiliaries in distribution and meaning, despite being 
separated by the intervening verb in surface order. This involves a more limited and local form of 
cross-serial relations than those illustrated for Dutch in the previous section. 
     
 (62) They have -d -n't   be     -en   eat -ing cake Surface String 
                      S    Aux1 T  Pol  Aux2  -Fx1  V   -Fx2  O categories 

In (63), I show the bracketed surface structure derived from stack-sorting (62). 

 (63) (They (have (-d (-n't -n't) -d) have) (be (-en -en) be) (eat (-ing -ing) eat) (cake cake) they) 

  This is, no doubt, difficult to read. Utilizing the correspondence between bracketed 
representations and n-ary branching trees described above, we can represent this instead as (64). 
 
 (64)          they     
 
    have     be      eat      cake               
 
     -dT       -en       -ing                              

     -n't                                                       
  
 The representations in (63-64) above rely on the base structure given in (65) below, 
which I take to be a fairly uncontroversial proposal about the underlying hierarchy of the 
relevant categories. The only unusual property here is the rightward positioning of the specifiers, 
according to our head-complement-specifier convention for the base order. Note that auxiliaries 
and their associated affixes are adjacent in the base, plausibly constituting pieces of a single 
category. In other words, the auxiliary and associated affix reflect a multiple exponence rule 
specific to English.  13

 We could also treat auxiliaries and affixes as hierarchically adjacent heads, as in Harwood (2013).13
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 (65)            PolP  base structure for They hadn't been eating cake 
       
              Pol           TP 
              -n't 
               T        PerfP 
              -d 
           Perf                 ProgP  
 
English multiple    have  -en   Prog                 vP 
exponence rules    
         be   -ing     v'                   S  
             
            v      VP           they 
           Ø 
                V       O 
               eat 
             cake 

 In effect, we have recovered Chomsky's (1957) classic analysis of Affix Hopping, 
wherein auxiliaries and associated affixes are introduced as a single lexical item, and a 
transformation "hops" the affix onto the following verbal element. Here, the relevant 
transformation is part of the standard deformation of the surface order into the base order by 
stack-sorting, the basic mechanism of this framework. No special principles or extra machinery 
is required; this is run-of-the-mill neutral syntactic displacement as implemented here. This 
seems an encouraging result. 

6.3 Motivating the surface structure trees for clauses 

At this point, the reader may well be curious about the surface trees here. At first glance, they 
bear little relation to well-established descriptions of branching structure. Consider again (64). 

 (66)          they    
 
    have     be      eat      cake         
 
     -0T       -en       -ing                  

     -n't                                              

 Obviously, this differs from standard representations of the structure of clauses in 
English. Rather than strict binary branching, we have an instance of quaternary branching. And 
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"terminal" elements are represented as directly dominating other terminals, with the subject on 
top of the tree. This seems quite alien. 
 But recall from the discussion of Universal 20 in section 3 that the bracketing in this 
theory is systematically "flatter" than standard representations. In particular, in going from 
standard representations and derivations to our representations, we lose left brackets that don't 
immediately precede a lexical item (and their associated right brackets). 
 To recover a more familiar version of the surface structure tree, we might try inserting 
some extra layers of structure that we may imagine have been lost in this mapping. Inspired by 
how Cinque's tree structures correspond to the simpler n-ary branching surface trees we find for 
nominal structures, we can reverse the process, arriving at something like (67).  The labels of 14

the "recovered" phrasal non-terminals are included for familiarity, but should not be taken too 
seriously. 
 
 (67)         TP  
 
 Subj                            T' 
 they 
                       ProgP 
  Aux                     
            have  T                                 VP   
          -d   Pol     Prog  
      -n't    be    FxPerf                       O   
               -en    V                              cake  
            eat   FxProg                    
          -ing 
  
 This way of "decompactifying" the surface structures we derive from stack-sorting leads 
us to conclude that head-adjunction structures are right-branching rather than left-branching; the 

 For those interested in how this tree is found, we begin by formulating the surface structure 14

representation as a string of labeled brackets, which can be understood to give the proper order 
of Push and Pop operations sorting the surface order into the base order: 
(i) [They [have [-d [-n't -n't] -d] have] [be [-en -en] be] [eat [-ing -ing] eat] [cake cake] they].  
To recover a "normal" representation with overt material on terminals, insert the terminals before 
the associated left brackets:  
(ii) [They They [have have [-d -d [-n't -n't -n't] -d] have] [be be [-en -en -en] be] [eat eat [-ing -ing -ing] eat] [cake 
cake cake] they].  
Finally, we insert extra brackets (or relabel existing brackets) to make the structure binary-
branching in the familiar way:  
(iii) [TP They [T' [Perf have[-d[-n't ]]] [ProgP [Prog be[-en]] [VP[V eat[-ing]] [NP cake]]]]]]. 
The tree in (67) matches (iii). One might quibble about the proper labels at various places in (iii), 
but the point concerns the branching structure, which, modulo the remarks above about the 
direction of branching within head clusters, follows standard assumptions.
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classical head-adjunction treatment of head-movement leading to that conclusion is, as we have 
seen, problematic anyway. One positive consequence of this kind of tree structure is that 
hierarchical and linear-order relations within head clusters mimic the Kaynean correspondence of 
hierarchy and order in larger structures (i.e., rightward in the string is downward in the tree, even 
within head-adjunction structures). Otherwise, this looks similar to standard representations of 
the surface structure, with the subject in a high specifier (of TP, or AgrSP perhaps). 
 To be clear, the above should not be read as an endorsement of this more complicated 
kind of analysis (i.e., I don't think we're collapsing the "real" tree). The cleaner relationship 
between word order and base order provided by the stack-sorting account is to be preferred, I 
would argue, unless some argument can be mustered in favor of the more complicated traditional 
analysis. The point is simply that the structure we find in this theory is a good deal closer to 
standard conclusions about the surface form than appearances may at first indicate. 

6.4 Summary 

In this section, we have seen that the present account readily allows cross-serial dependencies 
that have proven challenging to capture in other frameworks. In particular, both the cross-serial 
subject-verb dependencies of some Germanic languages, as well as the familiar pattern of Affix 
Hopping in English, turn out to require nothing beyond the tools we have already developed. 
Both patterns obey our fundamental *231 condition, given a relatively uncontroversial 
understanding of their base structure; as such, they are expected to be typologically possible.  
 There is, perhaps, something unsatisfying about all of this; it is so trivial as to be almost 
uninteresting. And while it is no doubt a good thing to do more work with less theoretical 
machinery, eliminating devices like morphological readjustment rules that have been invoked to 
get the proper orders, something else is lost too. For example, consider Bobaljik's (1994) Merger-
Under-Adjacency (MUA) account of Affix Hopping. While adding complexity to the theory of 
syntax and its interaction with morphology, the MUA account is also able to nicely capture facts 
about do-insertion in English. This is the kind of effect that we do not expect to be able to 
explain within the present framework. That is, given that other languages allow main verbs to 
appear in the position obligatorily occupied by do in English under certain circumstances, we 
cannot explain why English must insert do where it does. This grammatical residue must be 
attributed to something specific to the grammar of English, and has no possible source in a 
universal theory of word order. At best, all we can say from the current vantage point is which 
orders are typologically possible, and which are universally forbidden; the logic of individual 
languages' more intricate rule systems must be explained in other ways. 
 We have also introduced a tree notation equivalent to our surface structure bracketing, 
which itself can be understood as representing the Push and pop operations of stack-sorting. This 
notation will play a large role in the alternative generative formulation introduced in section 9. In 
the following section, we turn to another "exotic" movement phenomenon that challenges 
standard conceptions of syntactic movement: Icelandic Stylistic Fronting. 
  

7 Stylistic Fronting 
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This section sketches an account of the syntactic phenomenon known as Stylistic Fronting (SF; 
Maling 1980/1990, Jónsson 1991, Holmberg 2000, 2006, Ott 2018, a.o.) in terms of our *231 
stack-sorting architecture. This phenomenon, although relatively "exotic" (it is found in 
Icelandic, Faroese, and Old Scandinavian, but not in other modern Scandinavian languages), 
presents a number of features that are puzzling from the point of view of standard theories of 
phrase structure and movement. Three properties in particular stand out in this regard: (i) SF is 
optional and information-neutral; (ii) SF can apply to a broad array of syntactic objects, both 
head-like and phrasal, including verbal participles, adverbs, negation, and argument NP or PP, 
dependent on the presence or absence of other such categories; (iii) SF is contingent on not 
having an overt subject in the typical subject position. I show that all of these facts are consistent 
with the predictions of TTG. The exposition below relies heavily on the work of Ott (2018), from 
which I draw the majority of the examples I consider. 
 Since its first description by Maling (1980/1990), SF has received various analyses. 
Platzack (1987) proposes that SF is movement to Spec, TP.  Rögnvaldsson & Thráinsson (1990) 
pursue a similar analysis, analyzing SF as topicalization movement to Spec, TP. According to the 
treatment of Holmberg (2000), in SF T agrees with the subject, but moves a different category to 
fill Spec, TP at PF. Jónsson (1991) proposes to treat SF as head movement, adjoining to T. 
Bošković (2004), in turn, argues that SF moves to a null affixal F head above T. Finally, Ott 
(2018) argues that SF involves remnant movement, which gives a way to treat the phenomenon 
as strictly phrasal movement, even when only an overt head appears to move. 

7.1 The subject-gap restriction  

In descriptive terms, SF gives the appearance of movement of other categories to the typical 
subject position, which must not contain the external argument. The subject-gap restriction 
closely parallels the *V S T prediction in the TTG account of long head movement. Bošković 
(2004) ascribes this to an affixation requirement on a null F head. Other analyses try to derive the 
subject-gap restriction by moving the stylistically-fronted element into Spec, TP, with 
considerable problems (notably, that that position is presumably filled by a trace when the 
subject is A-bar moved).  
 The basic phenomenon of the subject-gap restriction can be seen in (68): the negation 
element ekki, which is otherwise capable of being stylistically fronted, cannot be fronted if the 
subject position is filled. Note that, unlike English -n't, analyzed as an instance of the relatively 
high head Pol, I treat Icelandic ekki as a negative adverb (in a rightward specifier position 
between the internal argument O and the external argument S).  15

 Subject-gap violation (Bošković 2004: 40, ex. 5b) 
 (68) *Ég  held   að   ekki Halldór hafi séð  þessa mynd.  ...*1 7 8 3 2 5 4 6 

 See Roberts (2019: chapter 7) for extensive discussion of different cartographic sites for 15

negation. Although the arguments must be reexamined in light of the different assumptions in 
this account, it is clear that Icelandic ekki cannot be analyzed as an instance of Pol here.
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           I     think that not   Halldor  has  seen this    film         *2 3 1 

 (69)  að -i  haf   -ð  sé  [þessa mynd] ekki       Halldór   base order for (68) 
          C   T Aux -Fx  V   O                 NegAdv   S 
          1    2    3     4    5   6                   7             8 

 Note, though, that the subject gap can be the result of A-bar extraction, which should 
leave a trace, blocking movement to Spec, TP. 

 SF of V participle with A-bar extracted subject. (Ott 2018: 3 ex. 7a) 
 (70)  Hver heldur þú [CP að   stoliði hafi ti hjólinu ]   ...C V -Fx Aux T O  
          who   think   you    that stolen has     the bike                1  5   4     3    2 6     

 Other ways to satisfy subject-gap restriction are to have a postposed (necessarily 
indefinite) subject, or an impersonal. 

 Late subjects: (Ott 2018: 4, ex 8b) 
 (71)  Keypti hafa ti þessa bók   margir stúdentar    V -Fx Aux T O S 
          bought have   this    book many   students     4   3     2   1  5 6 

 Impersonal: (Ott 2018: 4 ex. 9a) 
 (72)  Keypti hefur verið ti tölva            fyrir starfsfólkið    V -Fx2 Aux1 T Aux2 -Fx1 O PP 
          bought has    been     a computer  for   the staff          6    5     2     1    4       3    7  8 

 In the present framework, the Subject-gap restriction parallels the *V S T prediction for 
long head movement discussed in section 5. That is, SF places a medial element in the base order 
left of the higher T head; having a subject (later in the base order than either) between them 
would necessarily create the forbidden *231 permutation pattern. 

7.2 Promiscuity of SF & Accessibility Hierarchy 

One of the more curious properties of SF is that it seems to affect both heads, such as participles, 
and full phrases, such as argument NPs or PPs. This "promiscuity" is especially problematic from 
the point of view of standard approaches that draw a sharp distinction between head and phrasal 
movement. In our framework, however, this is actually an expected result. In (73-75), we see that 
with a verb taking a NP or PP argument, SF can affect the V, or the O/PP, but not both. 

 (73)  Þeir   sem búiði  hafa ti [PP í  Ósló] ...    ... 1 5 4 3 2 6 
                     those that lived  have         in Oslo (Ott 2018: 17, ex. 43b) 

 (74)  Þeir   sem [PP í  Óslo ]i hafa  búið ti ...    ... 1 6 3 2 5 4 
          those that       in Oslo   have lived (Ott 2018: 9 ex. 18d) 
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 (75) *þeir   sem [vP búið  í   Óslo ] hafa ti ...     *...1 5 4 6 3 2  
                     those that       lived in Oslo    have     (Ott 2018: 10, ex. 22a) 

 The index sequences to the right of the examples above come from the following base 
order (76). Thus, our *231 principle makes the right predictions: movement of just the verbal 
participle (73), or just the argument phrase (74), produces a 231-free surface word order. Moving 
both together, however, produces a 231-like permutation, correctly ruling out (75). 

 (76)   sem  -a  haf  -ið   bú [í  Óslo]   base order for (68-70) above 
          C       T  Aux -Fx  V    PP 
          1        2    3     4     5     6 

 If an adverb or negation is present, it can undergo SF, but will "block SF of vP-internal 
material" (Ott 2018: 12) 

 (77) a. þegar búiði      var ti að borða     ... 4 3 2 1 5 6 
            when  finished was   to  eat 
         b. þegar ekkii var ti búið       að borða     ... 7 2 1 4 3 5 6 
             when not    was   finished to  eat  
        c. *þegar búiði      var  ekki ti að borða     ... 4 3 2 1 7 5 6    ok 
             when  finished was not      to  eat  (Ott 2018: 13, ex. 29a,b) 

 (78)  -r   va  -ið  bú  að  borða  ekki  base order for (77a-c) 
          T  Aux -Fx V   T    V      NegAdv 
          1    2     3    4    5    6        7 

 Here, we correctly allow SF of the participle when no adverb or negation is present (77a), 
and SF of the negation (77b). Example (77c), ungrammatical in Icelandic, is actually 231-free, 
and so theoretically generable in our system. In general, this sort of thing is as expected. That is, 
we do not expect any language to allow the full range of possible surface order permutations. 
However, we expect that the ungrammaticality of (77c) arises from a different source (perhaps 
some surface-oriented predictive template specific to Icelandic) than (75), which is ruled out for 
all languages by the *231 principle.  16

 A PP can undergo SF, but only if negation is not present (79). If it is present, only 
negation can undergo SF (80b), blocking SF of the PP (80c). 

 (79) Þeir   sem í   Danmörkui hafa  verið ti     ... 1 6 3 2 5 4 
        those that  in Denmark      have been 

 (80) a. Þeir   sem hafa  ekki verið í  Danmörku    ... 1 3 2 7 5 4 6 

 Whether these examples have a different status for speakers of Icelandic is an interesting 16

question for future research.
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            those that  have not   been in Denmark  
        b. Þeir   sem ekkii hafa ti verið í   Danmörku    ... 1 7 3 2 5 4 6 
            those that  not   have   been  in Denmark  
        c. *Þeir  sem í   Danmörkui hafa  ekki verið ti    *...1 6 3 2 7 5 4 
             those that in Denmark      have not   been  (Ott 2018:13, ex. 30,31) 

 (81)  sem -a  haf  -ið  ver [í Danmörku] ekki   base order for (79-80) 
           C    T  Aux -Fx  V        PP            NegAdv 
            1    2   3      4    5         6                 7 

Given this base order for the above examples, we correctly generate the attested SF options and 
rule out SF of PP in the presence of negation (80c). 
 In verb-particle constructions, either the verb or the particle can undergo SF. Negation, if 
present, blocks both, being the only candidate for SF then. We correctly exclude particle 
movement in the presence of negation, but not movement of the participle. (Ott 2018: 24, ex. 
57,58) 

 (82) a. fundurinn    sem frami hefur farið ti    ...1 6 3 2 5 4 
             the meeting that forth  has     gone  
         b. fundurinn sem fariði hefur ti fram   ...1 5 4 3 2 6 

 (83) a. *fundurinn    sem frami hefur ekki farið ti   ... 1 6 3 2 7 5 4  *231 
              the meeting that  forth  has    not   gone 
         b. *fundurinn sem fariði hefur ekki ti fram  ... 1 5 4 3 2 7 6 ok 

 (84) sem -ur hef   -ið    far fram (ekki)  base order for (82-83) 
          C     T  Aux1 -Fx1 V  Ptcl   NegAdv  
          1      2   3       4     5    6        7 

 In verb-particle constructions with an object, Extraposition of the object (i.e., postposing 
of O to the end of the Surface String) is a necessary condition for SF to apply. This is correctly 
captured by the present proposal: the order Ptcl ... O V in the ungrammatical (85a) is a *231 
permutation; Ptcl ... V O order in the grammatical (85b) is not. 

 (85) a. *þð var  þa    sem uti   voru [NP einhverjir kettir ] reknir ti  ...*1 6 3 2 7 5 4 
              it   was then that  out were       some        cats     driven 
        b. þð var  þa    sem uti  voru  reknir ti [NP einhverjir kettir ] ... 1 6 3 2 5 4 7 
            it   was then that out were driven         some         cats   (Ott 2018: 26, ex. 64) 

Extraposition of the object is optional in verb-particle constructions without SF.  

 (86) a. þð var  þa    sem það   voru [NP einhverjir kettir ] reknir ut  ... 1 ? 3 2 7 5 4 6 
                       it   was then that EXPL were       some        cats     driven out  
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        b. þð var  þa    sem það   voru  reknir ut [NP einhverjir kettir ]  ... 1 ? 3 2 5 4 6 7 
            it   was then that EXPL were driven out     some        cats 
       (Ott 2018: 27 fn. 37, citing Thráinsson) 

 (87)  sem -u vor   -ir    rekn ut   [NP einhverjir kettir ]       base order for (85-86) 
           C    T Aux1 -Fx1 V     Ptcl   O 
           1     2   3      4     5       6      7 

 Again, the simple *231 principle gets the facts right, given the base order in (87).   17

7.3 Summary on Stylistic Fronting 

Stylistic Fronting is an example of neutral word order variation, the intended explanatory target 
of this account. In general, we see that our framework correctly allows all attested SF 
configurations. At the same time, we rule out many (but not all) of the things SF can't do. This is 
as expected: the current approach aims to capture word order variation across languages, and as a 
result, overgenerates with respect to particular languages. Thus, not all restrictions on SF fall out 
here, the typical result. The crucial claim is that we do allow every neutral expression, in any 
individual language. This is indeed the case, for all instances of SF examined here. 
 In particular, some but not all aspects of the Accessibility Hierarchy are explained. We 
correctly capture the subject-gap restriction, which parallels the *VST prediction about long head 
movement derived in section 5. Most importantly, the account sheds new light on the 
"promiscuous" nature of SF, affecting both heads and phrases of a variety of categories. This is a 
central consequence of our approach: all neutral movement reflects *231 over a unified linear 
representation of the underlying hierarchy, including heads and phrases. The hierarchy-order 
mapping we have developed collapses all varieties of neutral head and phrasal movement to a 
single mechanism. Different movement possibilities for different syntactic categories follow 
from the invariant order of the base and the *231 theorem. 
 In the next section, I take up some various loose ends that have been left aside. 

8 Some loose ends  

This section takes us some matters that have been left hanging in the discussion so far, which 
deserve some comment from the present perspective.  

8.1 Cycles/Phases 

 I do not assign a base position, or corresponding index, to the expletive element það. This is 17

because the base order is a representation of thematic structure, and I assume that the expletive is 
inserted to satisfy some (presumably language-specific) surface-oriented predictive pattern. 
Many interesting questions arise here, which must be put aside for future work.
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We have kept throughout to a relatively simplistic view of phrase structure. In particular, we 
have avoided the topic of recursive embedding, outside of the treatment of cross-serial subject-
verb dependencies in section 6. The astute reader may have noted that we ignored internal 
structure of argument NPs and PPs in the previous section, assigning them a single index and 
deep string position with respect to the clause. 
 A full treatment of the topic is beyond the scope of this paper. But it is immediately clear 
that some notion of cycle is required for this account to get the facts right. To see this, consider a 
classic problem for the Final-over-Final Condition: head-final VPs may embed head-initial DPs. 

 (88)   German 
           Johann hat [VP [DP einen Mann] gesehen].  
              Johann has            a        man     seen  
             ‘Johann has seen a man.’    (Biberauer et al 2014) 

Simply treating all of the elements as part of a unified base order, [Det N] V should be a *231 
order. Why, then, is it possible as a neutral order? 
 In the FOFC literature, the standard approach is to assume that the nominal is a separate 
cycle: a distinct hierarchy, or a different kind of extended projection. I adopt this solution, 
supposing that nominal and verbal cycles are disjoint for the purposes of the *231 condition. 
 One intriguing aspect of the present proposal is that a notion of phase is baked into the 
architecture. That is, the tree traversal algorithms, which take the place of Transfer in a standard 
Minimalist model, cannot apply at each step of incremental construction of the bare trees here. 
Instead, they must apply to whole trees, or subtrees, mapping a hierarchy onto them and reading 
off linear order. If this process is recursive (trees may embed references to already-transferred 
subtrees), further ordering predictions follow. 
 We can sketch how this would work for (88). Suppose a single node within the verbal 
cycle can contain a pointer to a separately-computed nominal cycle. The nominal subtree is 
generated, hierarchized, and linearized by itself, internally obeying the permutation-avoidance 
condition. But the internal structure of the nominal is unavailable, and irrelevant, within the 
embedding verbal cycle; its already frozen word order is "plugged in" at the corresponding node. 
Det-N order itself is 231-free, as is S-Aux-O-V. 
 
 (89)  Illustration of cyclic embedding allowing S Aux [Det N] V order 
   S 
 
 Aux   O  

    V               Det           N 
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 Thus, we have two phases. The nominal einen Mann forms its own 231-avoiding cycle. 
Meanwhile, the embedding clausal cycle manipulates an atomic pointer to the nominal (O). 
Within the clausal cycle, the visible S-Aux-O-V order is 231-avoiding. 
 Many important questions arise at this point, especially about where such cycles are to be 
posited, under exactly what conditions. Here, the extensive discussion of this question in the 
FOFC literature is directly relevant. Further questions specific to this framework concern the 
effect of this additional machinery on possible global surface permutations. I set aside these 
topics for future work.  

8.2 What about case and agreement? 

Much recent work in generative theory has emphasized the roles of Case and agreement in 
driving syntactic operations. The reader may be left wondering about their role here, since they 
have not been mentioned at all. It is certainly notable that such effects play no explanatory role 
here in motivating syntactic movement, which has been radically reconceptualized. 
 In my (surely controversial) view, case and agreement are functionally-motivated E-
language devices to support the identification of nominals with thematic argument positions in 
the base order, crudely and imperfectly. In the base order, and for the purposes of constructing 
the base tree via the Shift-Reduce semantic parser, different nominals are distinguished only by 
their structural context, in the familiar way. That is, the internal argument O is the complement of 
V; external argument S is the specifier of vP, and so on. Put another way, S and O are inherently 
NPs, whose status as S or O is defined only relative to the base structure they appear in, rather 
than by inherent properties of the items themselves. 
 Case and agreement are widely agreed to be uninterpretable at LF. As such, we expect 
that they do not appear in the base order, and have no role in the universal hierarchy-order 
mapping we are describing. Instead, we may hypothesize that they reflect surface-based 
templates (rooted in production-prediction feedback loops), which provide rough guides that 
mismatch the real structure in "exotic" constructions. We further expect that, where they occur, 
deviations from "proper" marking (which may not even be well-defined within the logic of the E-
language) are in the direction of more local and more typical marking patterns in the language. I 
leave the matter here, though surely it is worthy of further pursuit. 
 In the next section, I present an alternative way of understanding the framework we have 
developed. Setting aside the idea of a stack-sorting universal parser, we see that an entirely 
equivalent account can be given as a generative model. 

9 Tree Traversal Grammar 

To this point, we have been describing our basic analytical tool, the *231 condition, as a 
consequence of a processing architecture. As sketched in section 2, this is conceived of as a two-
stage parsing device, with an initial stack-sorting step rearranging surface word order into a 
common base order, which is then read by a Shift-Reduce semantic parser to build up a context-
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free phrase structure representation. Notably, both the initial pre-processing step and the second-
stage parser are language-invariant. 
 In this section, I describe an equivalent formalization. Here, we set aside issues of 
parsing, and instead construct a competence-level, generative account. To distinguish this from 
the stack-sorting perspective, we will call this formalization Tree Traversal Grammar (TTG).  
 Tree Traversal Grammar can be stated very simply. TTG employs two distinct generative 
devices: the Deep Grammar and the Surface Grammar. Related, we will be concerned with two 
different string forms for each sentence, the Deep String and Surface String. The Deep String, 
and its associated Deep Tree, is generated by the Deep Grammar, while the Surface Grammar 
generates ordered, n-ary branching Surface Trees. The Deep String is written onto the nodes of 
the freely generated Surface Tree in a sequence corresponding to postorder traversal of the tree. 
The Surface String is then read from the labeled Surface Tree by preorder traversal.  18

 The notions of Deep and Surface Strings and Grammars correspond rather directly to the 
concepts we have been using within the parsing perspective. Specifically, the Surface String is 
the surface word order, while the Deep String is the base order. Likewise, the action of the stack-
sorting algorithm is handled by the Surface Grammar, while the SR semantic parser which reads 
its output corresponds to the Deep Grammar. 

9.1 Tree traversals 

Tree traversals can be defined in terms of the priority of direction of travel from each node, with 
respect to three directions: Root (up to the dominating node), L (down to the leftmost daughter), 
R (down to the rightmost daughter). By providing an ordering of these three directions, we 
recursively define a method for traversing a tree, starting at the root. We make use of two 
standard tree traversal methods. The first, postorder traversal, is defined by the priority list (L, R, 
Root). Descriptively, postorder traversal visits nodes in a tree left-to-right and bottom-up. The 
other traversal method we will use is preorder traversal, which is defined by the priority list 
(Root, L, R). Descriptively, this visits nodes in the tree top-down and left-to-right. 
 As a first pass at how TTG works, I demonstrate its action for nominal order N Dem Adj 
Num, Cinque's (2005) order (p).  The direction of postorder traversal is indicated by large grey 
arrows; subscript indices record the order in which the nodes are visited. 
 
 (90)  Postorder traversal            N1                 Dem4 

                  Adj2                  Num3 

 Kural (2005) discusses tree traversal algorithms in the context of word order variation. Kural 18

has traditional tree structures, including movement operations, and shows that some common 
word order patterns arise from traversing these trees in different ways, with different traversal 
algorithms corresponding to different word orders. The present proposal is different: the choice 
of traversal patterns does not vary between languages; rather, the two kinds of traversal are fixed 
but different for PF and LF, and what varies is the freely-generated Surface Tree to be traversed.
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 As shown, postorder visits the nodes in the order of the Deep String for this hierarchy; in 
this case, N Adj Num Dem. (See section 3 for much more on Universal 20.) 
 Once the tree has been labeled this way, linear order is read off by preorder traversal, 
which goes top down, left-to-right. The path of preorder traversal is shown with grey arrows in 
(91); this path visits the nodes in an order corresponding to the Surface String, N Dem Adj Num. 
 
 (91)  Preorder traversal         N1                  Dem2 

               Adj3                  Num4 

9.2 Deep Grammar and Surface Grammar 

The Deep String is a universally-linearized underlying form in head-complement-specifier order, 
generated by the Deep Grammar, a bog-standard phrase structure grammar. At this level, we 
reconstruct traditional notions of constituency and c-command in the base, all familiar and well-
motivated. 
 The second, less familiar piece of the generative architecture is the Surface Grammar. 
This takes the head-complement-specifier Deep String as input, and freely generates any Dyck 
tree (see below) with a matching number of nodes. The Deep String is written onto this freely-
generated Surface Tree in postorder, and the Surface String (the word order) is then read off the 
same tree in preorder, as illustrated in (90-91) above. Each tree has a distinct preorder (Surface 
String), but the same postorder (Deep String); this corresponds to the mapping of one meaning to 
many word orders in TTG. 
 Some surface orders cannot be generated; these are universally forbidden. Generated 
orders are universally available, but may or may not follow the ordering conventions of a 
particular language, predictively learned from experience. The claim is that the set of orders 
allowed in a given language is a subset of the set of universally allowed orders; that is, a 
language cannot exceptionally allow a universally-forbidden order as a surface form for an 
information-neutral expression. Figure 2 summarizes the architecture.      
  
           Surface Stringi 
        Deep  Deep String      Surface Stringj 
     Grammar         Surface Stringk 
          Surface    ... 
        Grammar 

Figure 2. The generative architecture of Tree Traversal Grammar. The Deep Grammar builds a 
uniform Deep String, which is "refracted" through the different Surface Trees built by the 
Surface Grammar to produce an array of Surface Strings. 

 Notice that Figure 2 is very similar to the stack-sorting + SR architecture shown in Figure 
1, except that the flow is reversed. That is, in the parsing perspective we start with a given 
surface word order, convert it into the base order, and build a base tree from it by SR parsing. 
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Here, we begin with a PSR generating the Deep String (base order), which is then transformed 
into the set of possible Surface Strings (word orders). 
 By hypothesis, any rooted, non-tangling, n-ary branching, ordered tree (Dyck tree) is a 
possible Surface Tree. These correspond 1-to-1 with legal bracketings: strings of left and right 
brackets in which, summing left-to-right, there are never more right brackets than left brackets, 
with equal numbers of each at the end. Figure 3 illustrates the correspondence, together with the 
corresponding order, explained below in (92): 
 
 1: 
            1 
           ( ) 

 2: 
  
                  2 1   1 2 
       (( ))             ( )( ) 
 
 3: 

              
                 3 2 1       2 1 3          1 3 2          3 1 2          1 2 3 
      ((( )))     (( ))( )        ( )(( ))        (( )( ))        ( )( )( ) 
 
 4: 

              

               4 3 2 1     3 2 1 4      3 1 2 4          2 1 4 3    1 4 3 2         1 4 2 3          4 2 1 3  
    (((( ))))    ((( )))( )    (( )( ))( )       (( ))(( ))    ( )((( )))      ( )(( )( ))        ((( ))( )) 
 

    4 1 3 2     4 1 2 3      4 3 1 2          2 1 3 4       1 3 2 4       1 2 4 3             1 2 3 4 
              (( )(( )))    (( )( )( ))    ((( )( )))       (( ))( )( )     ( )(( ))( )    ( )( )(( ))         ( )( )( )( ) 

Figure 3: Legal bracketings (Dyck words) and possible Surface Trees (Dyck trees), with 
corresponding orders, for one, two, three, and four elements. 

 In terms of bracketed representations (recall that these are a notational variant of our n-
ary branching trees), we can formulate the generative procedure as the following algorithm: (a) 
generate all legal bracketings, (b) label right brackets left-to-right with the Deep String, (c) copy 
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labels to matching left brackets, (d) read Surface String from left bracket labels. (92) illustrates; 
note that one logically possible permutation, *231, cannot be generated. 

 (92) Generate orders from bracketings, for abstract Deep String 123 
   a. ( )( )( )          (( ))( )         ( )(( ))          (( )( ))         ((( )))  
   b. ( 1)( 2)( 3)      (( 1)2)( 3)     ( 1)(( 2)3)      (( 1)( 2)3)     ((( 1)2)3)  
   c. (1 1)(2 2)(3 3)  (2(1 1)2)(3 3)  (1 1)(3(2 2)3)  (3(1 1)(2 2)3)  (3(2(1 1)2)3)    
   d.  1 2 3     2 1 3            1 3 2         3 1 2     3 2 1 *2 3 1 

 Returning to the tree notation, I provide further illustration of the property that the Deep 
String (base order) is written by postorder traversal, and the Surface String (word order) is read 
by preorder traversal. We repeat our example of English Affix Hopping, They hadn't been eating 
cake. I show again the tree next to a copy of the same tree with individual nodes numbered in 
preorder. Grey arrows show the direction of the path. 
 
 (93)          they             1 
 
    have     be      eat      cake                 2          5           7          9 
 
     -dT       -en       -ing                              3          6           8 

     -n't                                                       4 

Assembling the words and morphemes from the nodes in the order visited by this path, we get 
string (94). As claimed, this is identical to the surface word order. 

 (94)  They  have  -d  -n't  be  -en  eat  -ing  cake 

And as for the second property, (95) shows the postorder traversal path. 
 
 (95)          they             9 
 
    have     be      eat      cake                 3          5           7          8 
 
     -dT       -en       -ing                              2          4           6 

     -n't                                                       1 

Following this traversal path, we find the following sequence: 

 (96)  -n't   -d  have  -en   be     -ing  eat  cake  they 
                     Neg  T  Aux1  -Fx1 Aux2 -Fx2  V     O       S 
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 There may seem to be something crucial missing from the account: we have said nothing 
about how the Surface Tree representations are derived. In a standard approach, this would 
involve specifying the base structure, and then positing movements to transform it, deriving the 
surface configuration step by step (in modern theories, applying Internal Merge operations 
interleaving with the External Merge operations constructing the base structure). The subject 
moves to specifier of TP,  the auxiliary raises to T, some kind of morphological adjustment or 
syntactic lowering rule combines verbal stems and affixes, and so on. 
 In TTG, such devices are unnecessary. We do not need to distinguish and motivate head 
movement, and A-movement,  and the various phrasal movements deriving neutral word order 19

variants. As a consequence, we also don’t need features or other devices to drive such 
movements. Rather, given a realization of the underlying meaning as a Deep String, *231 is the 
only relevant (cross-linguistic) constraint on possible Surface Strings. Relatedly, it does not make 
much sense to think of elements moving to, or even being in, fixed structural positions such as 
Spec, TP, which are defined only in the Deep Tree. 
 TTG's Surface Trees do not represent constituents in the usual way; that is, units of 
meaning and continuous strings do not correspond to whole subtrees. Instead, constituency holds 
within the postorder traversal sequence (the Deep String), where a fairly trivial and language-
invariant context-free phrase structure grammar (the Deep Grammar) suffices to build a standard 
LF structure Deep Tree, with inherent underlying head-complement-specifier order. Important 
questions remain about this conception of LF, especially about discourse-information related 
movement and its representation, not pursued here. 
 The architecture presents only a slight variation on the familiar assumption that LF and 
PF derive from the same pure-syntactic representation, but are interpreted by different processes. 
The standard implementation involves significant complications, especially with respect to 
chains created by movement: they must be pronounced in one position, while interpretation must 
read their scopal properties high, and their thematic properties low. Given a set structure built by 
traditional Merge, it is not trivial to identify chains (distinguishing them somehow from two 
independent instances of the same lexical form).  
 At least for the class of displacement considered here (i.e., information-neutral variations 
in word and morpheme order) the issues related to chains simply do not arise. Any n-ary 
branching Surface Tree is built, and each lexical element has a single, fixed position in that tree. 
However, hierarchization and linearization traverse the tree in a different order, and the linear 
order of lexical items within semantic and phonological string representations differs as a result. 

9.3 Where do the Surface Trees come from? 

This may still seem unsatisfactory. To the question of what is a possible Surface tree, TTG's 
answer resembles a zen koan: at the cross-linguistic level, by hypothesis, any n-ary branching 
tree is a possible Surface Tree. Even so, we are still left with the practical question of how to 

 At least, insofar as A-movement is information-neutral. This would seem to be the case for 19

something like subject-to-subject raising, but is much less clear for something like passivization. 
Many subtle and important questions arise at this point, which must be left for future research.
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actually find the right tree for a given order, given an analysis of its underlying structure. It's easy 
to verify by inspection whether or not a Surface String is a 231-free permutation of the Deep 
String; if so, TTG generates it. But how do we draw the Surface Tree for a given order?  
 The procedure turns out to be fairly trivial, and to have a nice computational property of 
monotonicity. We will illustrate with the same English sentence we have been examining, They 
hadn't been eating cake. The first, crucial step is to segment and rearrange elements from the 
Surface String into the corresponding Deep String. We then index surface items according to 
their position in the underlying Deep String, as shown in (97).   

 (97)  -n't   -d   have  -en   be     -ing  eat  cake  they      
                     Pol   T   Aux1 -Fx1 Aux2 -Fx2  V     O        S 
           1       2      3      4     5        6     7      8        9 

 We then copy these indices onto the order in the Surface String, which lets us draw the 
tree. Compare indices of each pair of adjacent items in the Surface String a, b, writing a < b or a 
> b as appropriate. Each '<' corresponds to a horizontal relation between the respective nodes. If 
a < b, b attaches as sister to the highest-index node dominating a with lesser index than b. 
Meanwhile, a > b indicates node b is immediately dominated by node a.  Each adjacent 
comparison thus gives a "treelet", which can be assembled without ambiguity. (98) illustrates. 

 (98) They  have  -d  -n't   be    -en   eat -ing  cake     
                     S      Aux1   T  Pol Aux2 -Fx1 V   -Fx2   O                 
          9         3      2    1      5       4     7      6     8 index sequence 
     >       >     >    <       >     <      >     <  < horizontal; > vertical 
        treelets 
            9   3      2      1        5     4        7  6         8 

With these pairwise index comparisons, we produce a set of treelets, indicating how each node 
attaches to the partial Surface Tree formed by preceding elements in the Surface String. For the 
treelets in (98), we build the tree in (99). These are assembled incrementally in Surface String 
order. First, Aux have (index 3) attaches directly below external argument S They (index 9). 
Next, T -d is attached below the Aux, and in turn the polar negation -n't is below the T. The next 
category is progressive Aux be; it has higher index (5) than the Pol -n't (index 1), and also higher 
index than T -d (index 2) and Aux have (index 1), but lower index than S they. Thus, be attaches 
as a sister to have and a daughter of they. And so on; we end up with the tree in (99). 
 
 (99)    they9       
            
          have3    be5      eat7 cake8   
                          
 -d2    -en4      -ing6    
               
            -n't1 
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 This, of course, is exactly the Surface Tree for this order; compare (93) and (95) above. 
Recall that the structure of a tree can be thought of as simply a list of pointers from parent nodes 
to child nodes. In these terms, the Surface Tree assembly procedure is strictly monotonic: it only 
adds new parent-child pointers to the partial list already assembled, never disrupting existing 
parent-child relations. In terms of tree geometry, we add new branches only at the bottom or right 
edge of the existing partial tree. 

9.4 Possible Surface Strings grow much more slowly than logically possible orders  

One concern about the minimal constraints on possible surface realizations of underlying 
structures in TTG is inherent in the many-to-one mapping of orders to meanings. Simply put, the 
number of possible Surface String realizations grows as the length of the Deep String increases. 
We can quantify this exactly: the number of possible Surface Strings for a Deep String of length 
n is the nth Catalan number, drawn from the sequence (1, 2, 5, 14, 42, 132, ...). However, this 
quantity grows much more slowly than the number of logically possible orders, which are 
counted by the factorial function n! = n(n-1)(n-2)...(2)(1). (100) compares these quantities; the 
last column shows the nth Catalan number divided by n! as a percentage. 

 (100)  Number of 231-avoiding orders (Cat) compared to possible orders of n items (n!) 
  n Cat  n!   (Cat/n!) % 
  1 1  1   100% 
  2 2  2   100% 
  3 5  6   83.3% 
  4 14  24   58.3% 
  5 42  120   35.0% 
  6 132  720   18.3%  
  7 429  5040   8.51% 
  8 1430  40320   3.55% 
  9 4862  362880  1.34% 
  10 16796  3628800  .462% 
  11 58786  39916800  .147% 
  12 208012 479001600  .043% 
  13 742900 6227020800  .012% 
  14 2674440 87178291200  .0031% 
  15 9694845 1307674368000          .0007% 

 Thus, 231-avoidance is a rather weak condition for shorter sequences: it has no effect for 
Deep Strings of length 2 (i.e., both logically possible orders are also 231-avoiding), and only 
rules out one of six logically possible orders of length 3. For four items, more than half of 
possible orders are generated by the TTG system (14 out of 24, as for Universal 20). However, as 
the length of the relevant strings increases, 231-avoidance becomes highly characteristic and 
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unlikely to arise by chance. For the simple English sentence (52) They hadn't been eating cake, 
we identified nine categories; at this size, only about 1% of possible strings are 231-avoiding.  
 This is likely significant in the context of acquisition, and the problem of identifying the 
categories of items segmented from the input stream. Observing many input strings containing 
the same elements in construction with various other elements, it should be relatively easy to 
narrow possible assignments of categories to such elements, as relatively few of them will satisfy 
the *231 condition. This is especially so when the same set of elements are observed in multiple 
possible orders. In other words, relative freedom of word order in a language may actually be of 
benefit to this aspect of language acquisition, a somewhat surprising conclusion. 

9.5 Interim summary of TTG 

This section has sketched another way of formulating the theory developed in this paper. 
Previously, we described the architecture as a universal parsing device, converting various word 
orders into a universal order and building a base tree from that. This implicitly identifies the 
grammar with the parser (Phillips 1996, 2001), a not uncontroversial proposal. In this section, we 
have shown that there is a formally equivalent notational variant, conceived of as a generative 
system. In this alternative, we begin by generating the base structure, then convert it into a set of 
possible surface structures and word orders by a write-read dual-traversal protocol over freely 
generated n-ary branching trees.  
 As we have seen, we end up with an entirely equivalent account of possible word orders 
and associated surface branching structures (which can themselves either be seen as strings of 
labeled bracket pairs, or as trees). That said, there may be other factors which favor one 
interpretation over the other. For example, the parsing model may better be able to accommodate 
Abels' 2016 data suggesting distinct "satellite classes" of verbs, as an interaction of cue-based 
retrieval interacting with recency effects, as discussed in section 2. On the other hand, the 
generative account abstracts away from real-time performance, and may be more useful for 
studying formal properties of the proposal.  
  

10 Conclusion 

This paper has introduced a novel framework for understanding neutral word order variation. 
The basic ingredients are twofold. First, we have claimed that there is a base structure shared by 
all languages, and that this structure is underlying ordered "heads first" (i.e., in head-
complement-specifier order, to use familiar X-bar terms). Second, we have claimed that 
typologically possible word orders are the 231-avoiding permutations of the base order. We have 
focused on a realization of the architecture as a stack-sorting transducer feeding an SR machine, 
though we also introduced an alternative formulation fo the theory as a generative model 
involving tree traversals. 
 Some immediate questions arise, when presented with any new formalism for language 
structure. Does it overgenerate, creating many configurations not found in human language? Or 
do its inherent limits correspond in an interesting way to observed word order universals? 
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 Next we must ask, does it undergenerate, failing to account for well-attested structures? A 
particularly thorny case is presented by constructions with cross-serial dependencies, which are a 
challenge for classic phrase structure theories.  
 Finally, and most importantly, we must ask about strong generation. Beyond merely 
generating attested orders and failing to generate unattested ones, does the formalism assign 
them the proper structure? 
 As we have seen, if we take the target of explanation to be the set of typologically 
possible orders (rather than the orders permitted in just a single language), the present account 
performs well on these metrics. We capture a range of word order universals, including Universal 
20, the Final-Over-Final Condition, and a version of the Head Movement Constraint, in that 
orders violating these generalizations cannot be parsed (or generated) by our architecture. At the 
same time, we find that the system correctly allows a range of constructions that have been 
challenging to accommodate within other theories, including discontinuous constituency, cross-
serial dependencies, head movement including apparent lowering, and so on. In certain cases, 
such as our treatment of long head movement, we appear to have improved on existing accounts 
in our empirical coverage. Importantly, we have done more than simply capture the proper range 
of string orders; we also automatically assign a surface structure representation to each allowed 
surface word order that corresponds very closely to existing descriptions.  
 Appealingly, all of these effects have been shown to follow from a single principle 
regulating the hierarchy-word order mapping: *231. This principle is itself a theorem, a 
necessary consequence of the framework. One could not keep the same basic mechanisms here 
while deriving any other principles of permitted and forbidden orders and structures.  
 This contrasts with contemporary accounts in which constraints on movement are 
extrinsic to the basic structure-building mechanisms that implement movement, especially where 
multiple devices are available to achieve a given surface output. Needless to say, a proliferation 
of devices for movement leads to a problem in acquisition: how is the child to distinguish 
between equivalent "movement" effects achieved by distinct modules? For example, observing a 
variation in word order, is this variation due to genuine syntactic movement, free linearization of 
a symmetric (e.g., head-complement) structure without movement, PF movement, or 
morphological raising or lowering operations? The more mechanisms a theory admits to 
implement movement, the more severe this acquisition problem becomes. What we would like to 
find is that the problem dissolves, and given the basic properties of the constructions, there is 
little or no choice about how the surface form and underlying representation are related. 
Moreover, we hope to find the identity of the mechanism(s) involved to be determined by 
universal rather than language-particular principles. 
 The cost of covering all these phenomena in a single stroke is giving up on the dominant 
conception of Merge as unordered set formation, and Internal Merge as the engine of (neutral, at 
least) displacement. Certainly, we need recursive structure-building in syntax. And just as clearly, 
surface word order is not directly relevant to semantic interpretation. But the architecture 
described above shows that assuming an inherently ordered underlying representation simplifies 
and improves our understanding of the relationship between hierarchy and word order. At the 
same time, the present theory represents something of a retreat from understanding the details of 
individual languages, in particular with respect to how they select a subset of universally-
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possible orders, placing a greater explanatory burden for this aspect of language variation on 
predictive learning during language acquisition. The payoff for this move is a conception of 
language acquisition that removes any need for variation in the underlying cognitive system, 
ascribing all variation in effect to learning from experience. Put simply, we are born knowing 
how to compute and comprehend language; what we learn is how to predict and produce a 
particular language. Much work remains to cash out this view, but it seems to me a promising 
direction to pursue. 
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