
Universal supergrammar: *231 in neutral word order
David P. Medeiros
September 2021

Abstract
I present a model of neutral word order options in natural language. The core proposal is that
languages share a universal base structure with inherent head-complement-specifier linear order,
and a universal "supergrammar" maps this underlying order to the set of typologically possible
information-neutral surface orders, consisting of its stack-sortable (231-avoiding) permutations.
The mapping procedure can be formulated either as a parsing algorithm based on stack-sorting,
or as a generative model involving postorder and preorder traversals of freely-generated n-ary
branching trees. This single-principle universal grammar explains and unifies some well-known
word order universals, while also generating phenomena that challenge traditional approaches.
Applications include Cinque's version of Greenberg's Universal 20, the Final-Over-Final
Condition, a modified Head Movement Constraint allowing attested long head movement,
English Affix Hopping, Germanic cross-serial subject-verb dependencies, and Icelandic Stylistic
Fronting.

1.0 Introduction

In this paper, I explore the consequences of the following proposal about neutral word order
possibilities in natural language.

(1) a. Languages share a common base syntactic structure, with a universal underlying
linear order. Supposing that this base structure can be analyzed in terms of the X-bar
theoretic (Chomsky 1970, Jackendoff 1977, Stowell 1981) notions of head, complement,
and specifier, the universal order of the base is head-complement-specifier.
 b. Across languages, possible information-neutral surface word orders are the stack-
sortable (i.e., 231-avoiding) permutations of the universal base order.

 It is important to point out that we are only aiming for an account of information-neutral
word order possibilities, explicitly setting aside A-bar movement, wh-fronting, topic, focus, etc.
In the present proposal, a mapping procedure relates the base not to a single surface output, but
to a set of outputs. As strings, these surface outputs are exactly the stack-sortable permutations
of the underlying base order, counted by the Catalan numbers (1, 2, 5, 14, 42, etc), growing
much more slowly than the set of all possible permutations, counted by the factorial function n!
(1, 2, 6, 24, 120, etc). These orders can also be characterized as the 231-avoiding permutations of
the underlying base order, considered as the identity permutation i = 123... (A 231-avoiding
permutation is an order of elements in i not containing subsequence *...b...c...a..., for any
subsequence ...a...b...c... in i).
 This mapping can be formulated in two equivalent ways: as a universal parsing
algorithm, based on stack-sorting (Medeiros 2018), or as a competence-level generative

1

procedure involving traversals of freely-generated, n-ary branching, CS-style trees (Medeiros
2021). The mapping determines a unique bracketed structure for each permissible surface order,
which corresponds in detail to standard accounts of the relevant surface structure/derivation.
 The set of surface outputs is generally larger than what is realized in any given language.
But crucially, not all orders can be generated; the orders which cannot be generated this way
account for a range of word order universals that were previously viewed as unrelated. This
includes Cinque's (2005) version of Universal 20 (Greenberg 1963), the Final-Over-Final
Condition (Holmberg 2000, Biberauer et al 2014, Sheehan et al 2017, i.a.), and a version of the
Head Movement Constraint (HMC; Travis 1984) that allows attested Long Head Movement
(LHM; Rivero 1991, Lema & Rivero 1991, i.a.). Beyond ruling out universally-forbidden word
order patterns, the account also successfully generates syntactic phenomena that are problematic
for many current syntactic theories, including Affix Hopping (Chomsky 1957), and cross-serial
subject-verb dependencies in Dutch (Huybregts 1976, Bresnan et al 1982) and Swiss German
(Shieber 1985). Finally, we discover an intriguing account of the possibilities and restrictions of
Stylistic Fronting (SF; Maling 1980/1990; Jónsson 1991; Holmberg 2000, 2006; Ott 2018, i.a.)
in Icelandic, including its Subject-Gap Restriction and Accessibility Hierarchy.
 What is remarkable is that all of the above fall out as immediate consequences of (1),
without invoking any further constraints or mechanisms, within or across languages. This is a
considerable simplification of the mix of existing constraints and mechanisms covering the same
empirical terrain within existing theories. Beyond unifying the technical apparatus, we also find
improved empirical coverage. For example, we derive a novel generalization about where the
HMC can be violated (i.e., where LHM is possible) that has not been noticed before, and appears
to be exceptionless.

1.1 What this paper is not about

 Before moving on, it worth saying something about some important matters that must be
set aside. As mentioned above, the goal is a theory of information-neutral word order
possibilities across languages. This means, first, that I will have nothing to say about many
important syntactic phenomena like wh-movement, topicalization, focus movement, and the like.
This can be taken as an implicit endorsement of Chomsky's ideas about tying the Duality of
Semantics to some fundamental distinction in the workings of syntax. That said, obviously a 1

more complete theory would spell out the nature of this other side of syntax, a task I leave for
future work.
 The second aspect of this proposal worth pointing out is that the theory is mute on the
relationship between the possibilities afforded by the universal "supergrammar" and the more
restricted word order possibilities within individual languages. One strong reading of the

 Chomsky has proposed that the distinction between information-neutral structure and discourse-1

information effects is tied to his distinction between External Merge (EM) and Internal Merge (IM): "The
two types of Merge correlate well with the duality of semantics that has been studied from various points
of view over the years. EM yields generalized argument structure, and IM all other semantic properties:
discourse-related and scopal properties. The correlation is close, and might turn out to be perfect if
enough were understood." (Chomsky 2007: 10)

2

proposal is that the system described here is an adequate description of the basic cognitive
system underlying the processing of neutral order for any language, and that differences between
languages must be attributed to something else. One plausible source of such differences is
predictive learning by language-acquiring children of the subset of universally-available patterns
their language happens to exploit. On such a view, learning the grammar of individual languages
would amount to "learning by forgetting": humans are equipped at birth with an invariant
cognitive system that encompasses the grammatical possibilities of all languages at once, and
learning one language or another reduces to reinforcing only a subset of the richer universal
possibilities. While that may be a reasonable direction to pursue, this too is a topic for another
work, and I keep here to a focus on proposal (1) and its narrow consequences for word order.
 Finally, one may wonder about the status of Merge in this proposal. Obviously, the
relationship between underlying structure and surface structure is rather different here than in
familiar theories. Nevertheless, as in any generative proposal, one needs a basic combinatory
mechanism to build the underlying constituent structure, and this corresponds more or less to the
standard concept of External Merge. However, a crucial claim here is that the base structure is
universally linearly ordered, in head-complement-specifier order, contra Kayne (1994). One
could, I suppose, continue to insist that Merge is inherently unordered set formation, in which
case we would have to introduce an internal, base-level linearization operation, separate from the
mapping procedure which relates the base to various possible surface word orders.
 It seems more reasonable to me to suppose that the relevant implementation of Merge is
inherently asymmetric. This is especially so for the parsing-based view I describe in which, as
we will see, a pre-processing step of stack-sorting rearranges surface word orders into an
invariant output, which is then fed to a universal Shift-Reduce semantic parser. In this way of
thinking about things, the initial stack-sorting step does the work of Internal Merge; that is, it is
the transformational component. The invariant Shift-Reduce parser handles External Merge,
corresponding to the base component. This, of course, revives the old observation that a phrase
structure grammar matches the actions of a Shift-Reduce stack machine. The Reduce step
corresponds closely to the notion of External Merge, building a higher-order non-terminal node
from a contiguous sequence of categories on top of the stack that match a phrase structure rule.
The operands of Merge then have a definite linear order, corresponding to their order in the
stack, which provides a computational basis for an asymmetry in Merge. Yet again, though, a
fuller discussion would take us too far afield. And identifying syntactic operations with a parsing
algorithm likewise raises some difficult questions; for this reason, I provide an alternative
implementation of the theory as a competence-level generative account.

1.2 Structure of the paper

 The remainder of this paper is structured as follows. In section 2, I sketch some
conceptual preliminaries, defining stack-sorting, permutations, subsequences, and permutations
avoiding a forbidden subsequence, and showing how the dynamics of stack-sorting induce
implicit bracketed surface structure. In section 3, I discuss Cinque's (2005) version of
Greenberg's Universal 20, showing that we derive exactly the same predictions in the present
account. This includes not just the same possible and impossible orders, but nearly-identical

3

bracketed structures. I also discuss the apparent counter-examples to Cinque's typology in
Shupamem raised by Nchare (2012), showing that all orders in that language that fall outside
Cinque's typology involve focus, and are thus irrelevant to the generalization about neutral
orders pursued here. Section 4 takes up the Final-Over-Final Condition (FOFC), showing that the
present account derives every major case of FOFC as a consequence of our *231 theorem.
 In section 5, I discuss Travis' (1984) Head Movement Constraint, showing that the core
data taken to support the HMC is predicted by this account. At the same time, known exceptions
to the HMC, in the form of attested long head movement patterns, are also shown to be generated
by this system, obeying a novel generalization concerning the linear position of the subject.
Section 6 presents our treatment of cross-serial relations in surface order, including cross-serial
subject-verb dependencies in Dutch and Swiss German, showing that these patterns too are
readily explained in the present framework, without recourse to additional operations or
constraints. I also provide an analysis of English Affix Hopping, an apparently problematic case
of head lowering, where we reconstruct something remarkably like Chomsky's (1957) classic
transformational analysis. Section 7 provides an account of Icelandic Stylistic Fronting, an
apparently "exotic" movement process affecting both heads and phrases, and governed by an
intricate Accessibility Hierarchy. I show that the present account extends without modification to
this phenomenon as well, readily explaining many of its details. Section 8 discusses some further
refinements and extensions of the basic framework, confronting the issue of cycles. Section 9
presents an alternative conceptualization of the framework as a generative system involving tree
traversals; the final section summarizes and sketches some broad conclusions.

2.0 Some formal preliminaries

This section presents some formal background and definitions that underpin what follows.
Important notions include permutations, forbidden permutations, and stack-sorting.

2.1 Some definitions

(2) Permutation Given a set of symbols, a permutation is a sequential arrangement of those
symbols. Given a reference sequence taken as the identity permutation, we can describe other
permutations of the same set of elements perspicuously in terms of a numerical sequence, where
the identity permutation is the sequence 1 2 3 4 5... . In what follows, the identity permutation is
a language-invariant representation of the underlying hierarchy of an expression, and we will be
considering surface orders as permutations of this basic sequence.

(3) Index. The number associated with a position in the identity permutation, which we will use
to refer to the relative positions of lexical elements within the invariant base order.

(4) Subsequence Given a sequence of symbols (a permutation), a subsequence is any linear
arrangement of a subset of symbols from that sequence that preserves their relative linear order.
For example, the permutation 1 2 5 4 3 contains 2 4 as a subsequence.

4

(5) Forbidden permutation This work characterizes unavailable word orders in terms of a
subsequence contour within their surface order (namely, *231). This condition does not refer to
any three specific lexical items or hierarchical positions. Rather, given a linearly-ordered
representation of the hierarchy as the identity permutation, we rule out any surface order
permutation that contains a subsequence bca, where a < b < c in the identity order. To be clear,
this condition does not require adjacency of the elements in either the surface order or in the
identity permutation/underlying hierarchical order. So, for example, given the identity
permutation 1 2 3 4 5 6 ..., the order 4 1 6 2 3 5 contains the forbidden *231 contour (its
subsequences 4 6 2 and 4 6 3 have mid-high-low index pattern).

(6) Base order A base order is the identity permutation of the lexical elements in an expression.
The idea is that expressions in different languages with commensurable lexical content share the
same underlying hierarchical representation. In the present framework, this representation is a
particular permutation of the elements involved. For example, the base order for a transitive
clause (motivated in section 4) is C < Pol < T < V < O < Adv < S. Thus, C Pol T V O Adv S is
the identity permutation 1 2 3 4 5 6 7; C has index 1, Pol has index 2, etc. Clause orders in
different languages are different permutations of this underlying base order. The English
clause ...that they didn't often eat cake arranges elements in the order C S T Pol Adv V O (taking
the Neg head -n't to instantiate the Pol position; see below). In terms of numerical indices, the
English clause is the permutation 1 7 3 2 6 4 5. This permutation is 231-free; none of its
subsequences form the forbidden *231 contour.

(7) Legal bracketing A legal bracketing is a string consisting of left and right brackets meeting
the following two conditions: (i) at each position in the string, the number of preceding right
brackets may not exceed the number of preceding left brackets, and (ii) at the end of the string,
the number of left brackets and right brackets are equal. So, for example, '() ()' and '((()))' are
legal bracketings, while ') (' and '(()' are not (failing condition (i) and (ii), respectively). The
number of these strings of fixed length is a number from the Catalan sequence (1, 1, 2, 5, 14, 42,
132, ...). With no bracket pairs, we have one legal bracketing (the empty string); there is one
choice for one pair of brackets, two choices for two pairs, 5 for three pairs, 14 for four pairs, etc.

2.2 Stack-sorting

I present a slightly edited version of the stack-sorting algorithm discussed in Medeiros (2018),
itself a minor variant of Knuth's classic algorithm. The algorithm (8) processes an input 2

 The important change here reflects a choice to represent the desired output -- the identity permutation, in 2

present terms -- as an increasing sequence 123... . In Medeiros (2018), the relevant nominal hierarchy
[[[[N] AdjP] NumP] DemP] was instead numbered 4321. One consequence of the convention in that
paper is that the forbidden permutation is then characterized as *213, rather than *231. The increasing
index sequence adopted here is more in line with conventions in other works on permutations and related
computer science notions.

5

sequence into an output sequence, by means of two operations: Push and Pop, which take
elements one at a time from input to stack, and thence from stack to output, respectively.

(8) Stack-Sorting Algorithm
 While input is non-empty,
 If S < I, Pop.
 Else Push.
 While Stack is non-empty,
 Pop.

(9) Definitions for (8)
 I: next item in input.
 S: item on top of stack.
 x < y: x precedes y in the base order.
 Push: move I from input onto stack.
 Pop: move S from stack to output.

 To illustrate how stack-sorting works, let's walk through how the algorithm applies to
some of the permutations of the identity 123. Our goal is to sort any surface order into 123
output; as we will see; this succeeds for five of the six order permutations, but fails for one, 231.
 Stack-sorting is often represented as in the following diagram. The input sequence (here,
132) begins on the right; its elements are "pushed" onto the stack one at a time, interleaved with
operations "popping" elements one at a time to form the output.

 (10) a. 1 3 2 Start: input 132 at right
 Output Input Input is non-empty...
 There is no S, so (S < I) is False...
 So: Push (1)
 b. 3 2 Push 1 onto the stack
 1 Input non-empty
 S < I: True (1 < 3)
 So: Pop (1)
 c. 1 3 2 Pop 1 from the stack
 Input non-empty
 No S element; S < I False
 So: Push (3)
 d. 1 2 Push 3 onto the stack
 3 Input non-empty
 S < I: False (3 > 2)
 So: Push (2)
 e. 1 Push 2 onto the stack
 2 Input empty; stack non-empty
 3 So: Pop(2)

6

 f. 1 2 Pop 2 from the stack
 3 Input empty; stack non-empty
 So: Pop(3)

 g. 1 2 3 Pop 3 from the stack
 Output Input and Stack empty

 In this way, we stack-sort the input permutation 132 into the desired output, the identity
permutation 123. Stack-sorting can successfully rearrange many different permutations into the
underlying identity. For example, if the input is 123, identical to the desired output, each element
is pushed and immediately popped. If the input is the mirror image of the output, 321, the entire
sequence is first pushed onto the stack, and then popped, reversing its order.
 Importantly, however, not all sequences can be stack-sorted. Among the six possible
permutations of 123, five can be stack-sorted (123, 132, 213, 321, 312) , but one cannot: 231.
The following example illustrates why stack-sorting fails for this input sequence.

 (11) a. 2 3 1 Start: input 231 at right

 b. 3 1 Push 2 onto the stack
 2

 c. 1 Push 3 onto the stack
 3
 2

 d. Push 1 onto the stack
 1
 3
 2

 e. 1 Pop 1 from the stack
 3
 2

 At this point, the problem with this order becomes clear. We wish to assemble the output
in the order 123. However, after we have popped the 1, the element on top of the stack is 3. We
would have to somehow reach deeper into the stack to retrieve the 2 before popping the 3; this is
not allowed. Instead, with the input emptied, the algorithm dictates that the top-of-stack element

7

3 must be Popped to the output, followed by Pop of the remaining element 2 in the stack. This
produces the illicit output order 132.

2.3 Putting things together

With these initial definitions in place, we can now elaborate somewhat on the content of what
follows. As stated at the outset, the proposal here is that typologically possible neutral word
orders are the stack-sortable permutations of the base order, taken as the identity permutation.
Put another way, possible neutral word orders are the 231-avoiding permutations of the base
head-complement-specifier order.
 As pointed out in Medeiros (2018), it is rather natural to read the Push and Pop
operations of stack-sorting as left and right brackets, respectively, labeled by the lexical element
they affect (e.g., Push(N) ~ [N ; Pop(N) ~ N]). Reading Pushes and Pops as left and right brackets
in this way, something remarkable emerges:

(12) The set of stack-sortable (231-avoiding) permutations of a given base order corresponds to
the set of all legal bracketings, for a fixed number of bracket pairs.

 That is, the stack-sortable permutations exhaust the set of legal Push and Pop sequences,
which correspond to all legal ways of pairing a given number of left and right brackets. This
invites a way of thinking in which the legal bracketings are generated directly as a first step, with
labels from a base order then written onto right brackets, and word order then read from
corresponding left brackets. In effect, this is the tree traversal view we will develop near the end
of the paper.
 For now, though, the important takeaway is that we can represent Push and Pop
sequences, as dictated by the stack-sorting algorithm, as a sequence of labeled brackets. As we
will see when we turn to Universal 20 in the following section, these bracketings are not
arbitrary, but correspond in detail to the bracketings formed by standard move-and-merge
derivations of the relevant orders. Nevertheless, they are also somewhat simpler, losing some
superfluous structural layers, and allowing n-ary branching. This is an intriguing result, since the
stack-sorting procedure is not merely a notational variant of the standard conception of
derivations. Of particular note, from the parsing perspective, is that rather than performing
movements to disrupt an initial uniform base structure, we are in a sense performing "anti-
movement" to reconstruct the base from a given surface order. Significantly, we do not need
order-particular instructions to accomplish this; the language-invariant stack-sorting algorithm
(8) does the job for any attested orders, but only for those, explaining at the same time why
certain orders are typologically impossible.
 With this in hand, we can now spell out the kind of architecture we have in mind. In
broad strokes, this will be cast as a two-stage parsing device. In the initial pre-processing stage,
the language-invariant stack-sorting algorithm (8) converts all and only the stack-sortable (231-
avoiding) word order permutations into a unique output order, representing the base structure.
This base order is then input to a Shift-Reduce semantic parser, which implements a universal

8

phrase structure grammar, building the familiar kind of constituent structure from the base order.
Figure 1 below summarizes the intended action of the architecture.

 surface orderi
 surface orderj base order base tree
 surface orderk SR device =
 ... stack-sorting universal PSG

Figure 1. The architecture of the proposal as a parsing device. The invariant stack-sorting
algorithm sorts any typologically possible word orders into a unique, universal base order.
The base order is then fed to a Shift-Reduce semantic parser, implementing a language-
invariant phrase structure grammar, which builds the familiar constituent structure.

 Intriguingly, we can maintain that the structure at the base level is entirely context-free; it
is the addition of the stack-sorting pre-processing step that allows this system to handle attested
orders exhibiting cross-serial dependencies and discontinuous constituency. As a simple
example, consider an input containing the common clause order VSO. This order famously
presents a problem to constituent-based analyses of surface order; we want the V and the O to
form a VP constituent, just as in other languages, yet the S intervenes between them in the
surface order. In the usual way of thinking about things, verb movement is taken to raise the verb
out of the VP past the S to create the surface order. Of course, that familiar way of thinking then
faces the problem of how to motivate the relevant movement(s), often linked to morphological
requirements.
 In the present architecture, we do not face the same problem of finding an order-specific
motivation to move the V out of the VP. Instead, the order is input to the universal stack-sorting
algorithm, which performs the steps Push (V), Pop(V), Push(S), Push(O), Pop(O), Pop(S). This
produces the base order, in invariant head-complement-specifier order (in this case, VOS; see
section 4.4 for some remarks on this perhaps-surprising rendering of the base order). This base
order is what is read by the SR device, building the familiar hierarchical constituent structure,
[[VP V O] S], containing a VP excluding the S. The very same base order is produced by stack-
sorting any of the other stack-sortable permutations of the base; these other permissible surface
orders are SVO, SOV, VOS, OVS. On the other hand, *OSV cannot be processed in this way; it
is the non-stack-sortable *231 permutation of the relevant base order. 3

2.4 Rationalizing the architecture

 This would seem to predict that OSV is impossible as a surface word order. A caveat is in order: the 3

prediction is that OSV is impossible as an information-neutral word order. This does not mean that OSV
cannot occur; it means that such an order requires appeal to discourse-information effects, such as topic or
focus interpretation of the O. As for the very small number of languages reported to have OSV as their
basic clause order, we might appeal to Mahajan's (2000) point that few if any full sentences are in fact
information-neutral. For example, surface subjects are often topics. See section 4.4. for more.

9

The present proposal can be seen as an extension of the ideas about parsing proposed in
Medeiros' (2018) ULTRA (Universal Linear Transduction Reactive Automaton) model. The key
innovation in that model is the mechanism of stack-sorting. Stack-sorting is a linear transduction
algorithm, utilizing a last-in, first-out stack memory structure to reorganize an input sequence
into a desired output sequence. Unlike the various more powerful sorting algorithms that are
commonly used, stack-sorting is a partial sorting algorithm: a given output sequence can only be
achieved for a subset of possible inputs (these are the stack-sortable strings).
 In the context of linguistic parsing, Medeiros (2018) suggested that stack-sorting can be
thought of as storage and retrieval of the linguistic input in a memory system dominated by
recency effects, which in effect gives a stack-like structure (the most recent input is the most
accessible, as in a LIFO stack). In that work, the desired invariant output was identified as the
"order of composition", focusing on the case of Universal 20. For that application, the 14 attested
nominal orders identified by Cinque (2005) are exactly the strings that can be stack-sorted into
the order N Adj Num Dem, Cinque's nominal hierarchy read "bottom-up".
 The main difference between the current framework and the ULTRA model concerns the
nature and ordering of the output of stack-sorting. Rather than saying that stack-sorting produces
an "order of composition", we are building the input to a language-invariant Shift-Reduce (SR)
semantic parser. This base order is in head-complement-specifier order. Given that the order is to
be read by an SR device, this is one of four possible orderings for a basic X-bar structure; two
logically possible orderings, namely head-specifier-complement and complement-specifier-head,
are automatically ruled out by the inherent context-free nature of a pushdown automaton like an
SR parser. In fact, it is one of two orders (head-comp-spec, spec-comp-head) that can be
specified by a single statement about the order of heads with respect to everything else, in this
case "heads first". But that is still a stipulation.
 In this regard, we might appeal to another argument made in Medeiros (2018), that this
ordering of the semantic structure resembles Reverse Polish Notation (RPN). Thus, this parsing
architecture closely mirrors a classic architecture for arithmetic calculators, which stack-sort user
input into RPN for computation by an internal SR device. The motivation for this design for
calculators is particularly intriguing, from the Minimalist point of view: it is considered an
optimal design for minimizing the burden on internal memory resources. Insofar as similar
considerations carry over to the present case, then head-complement-specifier order can be
motivated non-stipulatively, on Minimalist grounds.
 Two further considerations might best be thought about from this parsing perspective.
The first concerns discourse-information structure and A-bar movement, which we have set aside
as outside the scope of this work. Drawing on Henson's (1998) extremely successful Start-End
Model of short-term memory, in which recency and primacy are encoded separately, Medeiros
(2018: 11-12) speculates that Henson's recency code underlies information-neutral syntax, while
the primacy code is crucially involved in discourse-information effects and A-bar relations. This
makes immediate sense of two striking properties of this distinct syntactic system: its association
with the left periphery, and its potentially long-distance character. Ultimately, the Duality of
Semantics might be grounded in this dual coding of short-term memory.
 A second consideration which might be resolved in the parsing perspective concerns the
effects described by Abels (2016). Seeking to extend Cinque's theory of nominal ordering to a

10

more general theory of neutral word order, Abels considers the more general case of "satellites"
of a lexical head. He argues that a successful extension must be relativized to classes of satellites,
and that it is impossible to find a single hierarchical ordering encompassing all classes of
satellites of a single head (notably, a verb) at once. On the one hand, this argument may or may
not go through in the present framework, given our different assumptions and architecture. But
granting the point, this effect too can probably be rationalized within the memory-based parsing
framework. Specifically, there is a body of work emphasizing the role of content-addressable
memory in parsing (McElree 2000), and highly successful theories of parsing incorporating cue-
based retrieval (Lewis & Vasishth 2005; Lewis, Vasishth, & Van Dyke 2006). One way of
reconciling Abels' observations with the present mechanism is to say that the present framework
is an abstraction of recency effects in a storage-and-retrieval parser, while Abels' satellite classes
implicate a role for content-addressability in this process. The different classes of satellites, then,
would reflect the "grain size" of content-addressability (apparently implicating a rather small set
of categorial distinctions in this domain), the idea being that items from one category can be
retrieved with relatively little interference from elements belonging to a distinct category, while
recency effects win out within a given category.
 These are intriguing speculations, perhaps, but I have nothing to add beyond pointing out
that this unusual architecture might be rationalized in terms of properties of the memory systems
involved in language processing. Nevertheless, another goal of this paper is to provide an
alternative formulation of the same system as a competence-level generative system, which need
not be interpreted as a theory about processing per se, avoiding the potential pitfalls of
identifying the grammar with the parser. As such, the relationship between abstract grammar and
real-time processing is ultimately orthogonal to our concerns, and the architecture can be
evaluated simply as a theory of the syntax of neutral word order variation. I postpone a
specification of the alternate generative formulation until later in this work. Instead, we have
enough of the technical apparatus in hand to appreciate its consequences for word order
universals; we begin in the following section with Universal 20.

3. Generating Universal 20

As our first empirical application, consider possible and impossible neutral orders in the noun
phrase, as described in Greenberg's Universal 20.

“When any or all of the items (demonstrative, numeral, and descriptive adjective) precede
the noun, they are always found in that order. If they follow, the order is either the same
or its exact opposite.’’ (Greenberg 1963: 87)

Considerable work since Greenberg's seminal study has sought to refine the empirical picture in
this domain. I focus on the proposal of Cinque (2005) below.

3.1 Cinque's typology of attested orders

11

According to Cinque (2005), 14 of 24 possible orders of these four elements are attested.

 (13) Orders of demonstrative, numeral, adjective, noun, after Cinque (2005)
 a. Dem Num Adj N
 b. Dem Num N Adj
 c. Dem N Num Adj
 d. N Dem Num Adj
 e. *Num Dem Adj N
 f. *Num Dem N Adj
 g. *Num N Dem Adj
 h. *N Num Dem Adj
 i. *Adj Dem Num N
 j. *Adj Dem N Num
 k. Adj N Dem Num
 l. N Adj Dem Num
 m. *Dem Adj Num N
 n. Dem Adj N Num
 o. Dem N Adj Num
 p. N Dem Adj Num
 q. *Num Adj Dem N
 r. Num Adj N Dem
 s. Num N Adj Dem
 t. N Num Adj Dem
 u. *Adj Num Dem N
 v. *Adj Num N Dem
 w. Adj N Num Dem
 x. N Adj Num Dem

 Cinque shows that this pattern can be succinctly described by assuming a universal
underlying base, built by a uniform sequence of External Merge operations, affected by phrasal
movement, but not head movement or remnant movement (i.e. Internal Merge in the noun phrase
must affect the noun, possibly pied-piping dominating structure). His hierarchy is given in (14). 4

 (14) [DemP ... [NumP ... [AdjP ... [N]]]]

 The hierarchy in (14) is shorthand for a more articulated structure. Specifically, Cinque
assumes the nominal modifiers are specifiers of associated functional phrases; he also posits
interspersed agreement phrases, to host potential movements. Cinque (2005) does not provide

 Cinque adopts Kayne's (1994) Linear Correspondence Axiom (LCA), which requires extra 4

structure to provide landing sites for movement. Abels & Neeleman (2012) argue that the LCA is
unneeded; the relevant constraint is simply that movement is leftward.

12

bracketed representations for each order, instead describing each derivation in text. Steddy &
Samek-Lodovici (2011), deriving the same result in OT, do:

 (15) Bracketed representations from Steddy & Samek-Lodovici (2011)
 a. [AgrWP [WP DemP W [AgrXP [XP NumP X [AgrYP [YP AP Y NP]]]]]]
 b. [AgrWP [WP DemP W [AgrXP [XP NumP X [AgrYP NP [YP AP Y tNP]]]]]]
 c. [AgrWP [WP DemP W [AgrXP NP [XP NumP X [AgrYP [YP AP Y tNP]]]]]]
 d. [AgrWP NP [WP DemP W [AgrXP [XP NumP X [AgrYP [YP AP Y tNP]]]]]]
 k. [AgrWP [YP AP Y NP] [WP DemP W [AgrXP [XP NumP X [AgrYP tYP]]]]]
 l. [AgrWP [AgrYP NP [YP AP Y tNP] [WP DemP W [AgrXP [XP NumP X tAgrYP]]]]]
 n. [AgrWP [WP DemP W [AgrXP [YP AP Y NP] [XP NumP X [AgrYP tYP]]]]]
 o. [AgrWP [WP DemP W [AgrXP [AgrYP NP [YP AP Y tNP]] [XP NumP X tAgrYP]]]]
 p. [AgrWP NP [WP DemP W [AgrXP [YP AP Y tNP] [XP NumP X [AgrYP tYP]]]]]
 r. [AgrWP [XP NumP X [AgrYP [YP AP Y NP]]] [WP DemP W [AgrXP tXP]]]
 s. [AgrWP [XP NumP X [AgrYP NP [YP AP Y tNP]]] [WP DemP W [AgrXP tXP]]
 t. [AgrWP [AgrXP NP [XP NumP X [AgrYP [YP AP Y tNP]]] [WP DemP W tAgrXP]]]
 w. [AgrWP [AgrXP [YP AP Y NP] [XP NumP X [AgrYP tYP] [WP DemP W tXP]]]]
 x. [AgrWP [AgrXP [AgrYP NP [YP AP Y tNP]] [XP NumP X tAgrYP] [WP DemP W tAgrXP]]]

3.2 On the empirical status of Cinque's revision of Universal 20: the case of Shupamem

There is considerable debate in the literature about the empirical status of Cinque's typology (see,
e.g., Dryer 2009, 2018; Nchare 2012; Cinque 2014; Abels 2016; Steedman 2020, i.a.). A full
discussion goes beyond the scope of this paper. But a crucial caveat is worth discussing and
defending: that the relevant typology concerns information-neutral, unmarked orders.
 A particularly sharp challenge is presented by the extensive discussion of nominal
ordering in Shupamem (Grassfields Bantu) by Nchare (2012). Nchare documents 19 permitted
orders of demonstrative, numeral, adjective, and noun in Shupamem. This set of orders excludes
some of the orders permitted by Cinque, while including a number of others that fall outside
Cinque's typology. I reproduce the list in (16) (after Nchare 2012: 134, ex. 10), alongside
Cinque's for comparison. The examples illustrated in Shupamem permute the orders of
demonstrative ʃì 'this' [sic], numeral kpà 'four', adjective mìŋkɛ't 'dirty', and noun pɔ`n
'children' (note that postnominal modifiers are prefixed with noun class agreement pí-, which in
the case of the demonstrative produces the form pì').

 (16) Orders in Cinque (2005) (left), vs. orders in Shupamem (Nchare 2012, right)
 a. Dem Num Adj N ʃì kpà mìŋkɛ't pɔ`n
 b. Dem Num N Adj ʃì kpà pɔ`n pí-mìŋkɛ't
 c. Dem N Num Adj *ʃì pɔ`n pí-kpà pí-mìŋkɛ't
 d. N Dem Num Adj *pɔ`n pì' kpà pí-mìŋkɛ't
 e. *Num Dem Adj N kpà ʃì mìŋkɛ't pɔ`n
 f. *Num Dem N Adj kpà ʃì pɔ`n pí-mìŋkɛ't
 g. *Num N Dem Adj *kpà pɔ`n pì' pí-mìŋkɛ't

13

 h. *N Num Dem Adj *pɔ`n pí-kpà pì' pí-mìŋkɛ't
 i. *Adj Dem Num N mìŋkɛ't ʃì kpà pɔ`n
 j. *Adj Dem N Num *mìŋkɛ't ʃì pɔ`n pí-kpà
 k. Adj N Dem Num mìŋkɛ't pɔ`n pì' pí-kpà
 l. N Adj Dem Num pɔ`n pí-mìŋkɛ't pì' pí-kpà
 m. *Dem Adj Num N ʃì mìŋkɛ't kpà pɔ`n
 n. Dem Adj N Num ʃì mìŋkɛ't pɔ`n pí-kpà
 o. Dem N Adj Num ʃì pɔ`n pí-mìŋkɛ't pí-kpà
 p. N Dem Adj Num pɔ`n pì' pí-mìŋkɛ't pí-kpà
 q. *Num Adj Dem N kpà mìŋkɛ't ʃì pɔ`n
 r. Num Adj N Dem kpà mìŋkɛ't pɔ`n pì'
 s. Num N Adj Dem kpà pɔ`n pí-mìŋkɛ't pì'
 t. N Num Adj Dem pɔ`n pí-kpà pí-mìŋkɛ't pì'
 u. *Adj Num Dem N mìŋkɛ't kpà ʃì pɔ`n
 v. *Adj Num N Dem mìŋkɛ't kpà pɔ`n pì'
 w. Adj N Num Dem mìŋkɛ't pɔ`n pí-kpà ʃì
 x. N Adj Num Dem pɔ`n pí-mìŋkɛ't pí-kpà ʃì

 Summarizing, Nchare reports that Shupamem allows nineteen orders of these elements.
In the present framework, we may readily dismiss the orders universally permitted by Cinque
that do not happen to be available in Shupamem, namely orders (16c) Dem N Num Adj and (16d)
N Dem Num Adj. However, the orders that are in fact available in Shupamem, but that lie outside
Cinque's typology, would at first appear to be more of a problem. Specifically, there are seven
orders reported in Shupamem that are outside Cinque's typology: (16e) Num Dem Adj N, (16f)
Num Dem N Adj, (16i) Adj Dem Num N, (16m) Dem Adj Num N, (16q) Num Adj Dem N, (16u)
Adj Num Dem N, and (16v) Adj Num N Dem.
 A crucial point is that Nchare specifically counts non-neutral orders in Shupamem: "The
revisited typology repeated in (10) will include focus as well as non focus orders" (Nchare 2012:
135). Thus, if all seven of the orders (16e, 16f, 16i, 16m, 16q, 16u, and 16v) in Shupamem that
are not counted in Cinque's typology in fact involve focus, then they are irrelevant for present
purposes. Let me repeat that the empirical target of the present study is information-neutral
ordering, explicitly setting aside discourse-information effects including focus.
 Indeed, it turns out that Nchare specifically mentions focus in the derivation of all of
these seven problematic orders. The derivation of (16f) is assumed to be a further movement
applied to (16e), which itself "[...] can be derived if we assume that there is a phrasal movement
of the numeral to the specifier of DP where it checks the focus feature under D" (ibid., 215).
Order (16i) "[...] is derived by fronting the AP mìŋkɛ't 'dirty' to the specifier position of DP to
check its focus feature under D" (ibid., 218). Likewise in order (16m), "[...] the adjective
undergoes a phrasal movement to a focus position" (ibid., 224). As for order (16q), Num Adj
Dem N, Nchare's diagram (64q) shows the Num moving to spec of a D marked with a [+Foc]
feature. (ibid., 227) The same is true for orders (16u) and (16v) (ibid., 231); for the former,
Nchare is explicit that there is "AP movement to spec-DP to check its focus feature" (ibid., 231).

14

 Thus, the results of Nchare's (2012) investigation of ordering in Shupamem are entirely
consistent with the present account. While discourse-information effects make other orders
possible, this is expected from the present perspective, and does not falsify the predictions made
here, which keep solely to information-neutral ordering.
 Before moving on, it is worth highlighting order (16p), N Dem Adj Num. While both
Cinque (2005) and Nchare (2012) count this order as attested, in earlier work Nchare (2011)
argued that is was not a grammatical order in Shupamem. This order presents theoretical
challenges to the different accounts provided by Cinque and Nchare. While the details need not
concern us, the large-bore problem surrounds the pattern of cross-serial dependencies found in
this order. Consider selectional relations among (functional phrases hosting) nominal modifiers
and each hierarchically lower element (what Steedman (2020) calls the order of command). The
local relationship between N and Adj is disrupted in the surface form by the intervening Dem;
likewise, the hierarchically local relationship between Dem and Num is interrupted by the
intervening Adj.
 This pattern turns out to be incompatible with the theoretical apparatus Nchare uses to
account for other orders in Shupamem, which crucially invokes the Freezing Principle. The basic
idea is that in the Merge-based derivation of order (16p), a syntactic object containing both the
noun and the adjective moves above the base position of the numeral. From there, another
movement applies, stranding the adjective in place, while moving the noun to precede the
demonstrative. In Nchare's words, "[...] the extraction of NP from spec-AgrP to front it into the
higher spec-AgrP seems to violates the freezing principle. I have no handy explanation for this
violation in (64p). I will leave this issue for further investigation." (Nchare 2012: 226) Cinque,
meanwhile, noting only three languages with this order, considers it "possibly spurious" (Cinque
2005: 320), suggesting that perhaps "[...] such subextractions should be ruled out entirely" (ibid.,
323, fn. 27).
 This is our first glimpse of an important feature of our treatment of hierarchy-order
relations: it readily generates cross-serial dependencies, of exactly the sort attested in natural
language syntax. In later sections, we will return to this point in the context of better-known
cross-serial dependencies, showing that the theoretical problems they have raised for earlier
theories dissolve under this account.

3.3 Reproducing Cinque's typology and bracketing

Returning to our theoretical account of Cinque's typology, we reconstruct exactly Cinque's (2005
et seq) version of Universal 20. Following his analysis in which demonstrative, numeral, and
adjective are specifiers of functional phrases above the noun, the base order is (17).

 (17) [[[[N] AdjP] NumP] DemP] Base order for U-20 (with underlying brackets)

 To illustrate how we will be stack-sorting nominal orders, consider first the English order
(a), Dem-Num-Adj-N. This is the mirror image of the desired output sequence (17): the head N,
followed by its modifiers as specifiers of stacked functional phrases. In (18), we see the stack-
sorting process for this order, which ends up producing the desired (17) as output.

15

 (18) a. Dem Num Adj N Start: input Dem-Num-Adj-N at right

 b. Num Adj N Push Dem onto the stack
 Dem

 c. Adj N Push Num onto the stack
 Num
 Dem

 d. N Push Adj onto the stack
 Adj
 Num
 Dem

 e. Push N onto the stack
 N
 Adj
 Num
 Dem

 f. N Pop N from the stack
 Adj
 Num
 Dem

 g. N Adj Pop Adj from the stack
 Num
 Dem

 h. N Adj Num Pop Num from the stack
 Dem

 i. N Adj Num Dem Pop Dem from the stack:
 output N Adj Num Dem at left

 At the end of the process illustrated here, we have constructed the desired base sequence
(17), in head-complement-specifier order. The sequence of operations is this:

(19) Push(Dem), Push(Num), Push(Adj), Push(N), Pop(N), Pop(Adj), Pop(Num), Pop(Dem)

16

 As discussed above, we can consider Push operations to be left brackets, while Pop
operations correspond to right brackets, both labeled by the element they affect. Translating (19)
into a bracketed representation in this way, we get (20). As we will see in a moment, this
corresponds systematically to the bracketing in Cinque's derivation, as shown above in (15).

(20) (Dem (Num (Adj (N N) Adj) Num) Dem)

 The set of nominal orders which can be stack-sorted into the base order (17) are exactly
the same 14 attested orders Cinque (2005) describes; the remaining 10 unattested orders are non-
stack-sortable. Collecting the Push and Pop sequences for each attested order and representing
them as bracketed representations (see Medeiros (2018) for full details), as in the conversion of
(19) to (20), we get Table 1.

Nominal order Bracketed representation (from Push-Pop stack-sorting sequence)
a. Dem-Num-Adj-N (Dem(Num(Adj(N N)Adj)Num)Dem)
b. Dem-Num-N-Adj (Dem(Num(N N)(Adj Adj)Num)Dem)
c. Dem-N-Num-Adj (Dem(N N)(Num(Adj Adj)Num)Dem)
d. N-Dem-Num-Adj (N N)(Dem(Num(Adj Adj)Num)Dem)
k. Adj-N-Dem-Num (Adj(N N)Adj)(Dem(Num Num)Dem)
l. N-Adj-Dem-Num (N N)(Adj Adj)(Dem(Num Num)Dem)
n. Dem-Adj-N-Num (Dem(Adj(N N)Adj)(Num Num)Dem)
o. Dem-N-Adj-Num (Dem(N N)(Adj Adj)(Num Num)Dem)
p. N-Dem-Adj-Num (N N)(Dem(Adj Adj)(Num Num)Dem)
r. Num-Adj-N-Dem (Num(Adj(N N)Adj)Num)(Dem Dem)
s. Num-N-Adj-Dem (Num(N N)(Adj Adj)Num)(Dem Dem)
t. N-Num-Adj-Dem (N N)(Num(Adj Adj)Num)(Dem Dem)
w. Adj-N-Num-Dem (Adj(N N)Adj)(Num Num)(Dem Dem)
x. N-Adj-Num-Dem (N N)(Adj Adj)(Num Num)(Dem Dem)
Table 1: Nominal orders and bracketings from stack-sorting operations

 As already mentioned, there is another way of thinking about this pattern. Note that the
bracketings here are simply all possible legal pairings of four left and right brackets
(corresponding to the four elements Dem, Num, Adj, N). We can begin by generating all legal
pairings of four sets of brackets. Writing the base order in (11) onto the right brackets as labels,
and then reading word order from the labels of the corresponding left brackets, we derive the
same word orders and labeled bracketed representations as we do from the stack-sorting
procedure just illustrated (Table 2).

Brackets Label right brackets Label left brackets Nominal order
(((()))) ((((N)Adj)Num)Dem) (Dem(Num(Adj(N N)Adj)Num)Dem) a. Dem-Num-Adj-N
((()())) (((N)(Adj)Num)Dem) (Dem(Num(N N)(Adj Adj)Num)Dem) b. Dem-Num-N-Adj
(()(())) ((N)((Adj)Num)Dem) (Dem(N N)(Num(Adj Adj)Num)Dem) c. Dem-N-Num-Adj
()((())) (N)(((Adj)Num)Dem) (N N)(Dem(Num(Adj Adj)Num)Dem) d. N-Dem-Num-Adj

17

(())(()) ((N)Adj)((Num)Dem) (Adj(N N)Adj)(Dem(Num Num)Dem) k. Adj-N-Dem-Num
()()(()) (N)(Adj)((Num)Dem) (N N)(Adj Adj)(Dem(Num Num)Dem) l. N-Adj-Dem-Num
((())()) (((N)Adj)(Num)Dem) (Dem(Adj(N N)Adj)(Num Num)Dem) n. Dem-Adj-N-Num
(()()()) ((N)(Adj)(Num)Dem) (Dem(N N)(Adj Adj)(Num Num)Dem) o. Dem-N-Adj-Num
()(()()) (N)((Adj)(Num)Dem) (N N)(Dem(Adj Adj)(Num Num)Dem) p. N-Dem-Adj-Num
((()))() (((N)Adj)Num)(Dem) (Num(Adj(N N)Adj)Num)(Dem Dem) r. Num-Adj-N-Dem
(()())() ((N)(Adj)Num)(Dem) (Num(N N)(Adj Adj)Num)(Dem Dem) s. Num-N-Adj-Dem
()(())() (N)((Adj)Num)(Dem) (N N)(Num(Adj Adj)Num)(Dem Dem) t. N-Num-Adj-Dem
(())()() ((N)Adj)(Num)(Dem) (Adj(N N)Adj)(Num Num)(Dem Dem) w. Adj-N-Num-Dem
()()()() (N)(Adj)(Num)(Dem) (N N)(Adj Adj)(Num Num)(Dem Dem) x. N-Adj-Num-Dem
Table 2: Nominal orders from legal bracketings

 Even more significant than merely deriving the same set of orders, we also generate a
simplified version of exactly the same bracketing that results from Cinque's Merge and Move
account. From the bracketed representations in (15), keep only left brackets immediately before
overt items, and the matching right brackets (we assume NP contains ...[N...]...). The result is
identical to the bracketing in Tables 1 and 2. For example, consider order (13n) Dem-Adj-N-
Num, with traditional representation in (15n), repeated in (21), now with [...N...] in NP.

 (21) [AgrWP [WP DemP W [AgrXP [YP AP Y [NP N]] [XP NumP X [AgrYP tYP]]]]]

Keeping only the left brackets immediately preceding overt elements, and their matching right
brackets, yields (22) (I suppress the labels).

 (22) [DemP [AP [N]] [NumP]]

The bracketing derived in the present account for order (13n) is repeated in (23).

 (23) (Dem(Adj(N N)Adj)(Num Num)Dem)

 In this novel kind of representation, left brackets are positions of pronunciation.
Suppressing right bracket labels, and writing overt elements following their corresponding left
bracket positions, gives (24).

 (24) (Dem (Adj (N) (Num))

 This is identical to the simplified standard bracketing for this order shown in (22); the
interested reader may verify that this correspondence holds for every nominal order in (13/15)
and Tables 1 and 2.
 As a final note, we may associate these elements with indices representing their relative
order in the base (17): N = 1, Adj = 2, Num = 3, Dem = 4. If we translate the set of logically
possible nominal orders into their sequence of base indices, we will see that the attested, stack-

18

sortable orders are all 231-avoiding. Continuing with the example of order (15n) Dem-Adj-N-
Num, the corresponding index sequence is 4213. This is 231-free.
 Contrast this with all of the unattested orders; to pick one example, order (13e), *Num
Dem Adj N. In terms of indices representing the base order of these elements, this is a 3412
order. This order contains the forbidden *231 contour (indeed, in two different ways: the
subsequences Num...Dem...Adj, 342, and Num...Dem...N, 341, are both forbidden
subsequences).
 As we continue, it will be convenient to determine whether orders are stack-sortable or
not by simply writing their corresponding base order (generally uncontroversial and fairly trivial,
given our convention that the base order is in head-complement-specifier order), indexing the
elements in their base order, and then examining the surface sequence for instances of the
forbidden *231 contour. If no such contour is present, the order is stack-sortable, and predicted to
be typologically possible. Conversely, finding any 231-like subsequence leads us to predict that
the surface order in question is not possible as a neutral word order, in any language. Needless to
say, this is a remarkably simple, even boring way of "doing syntax": we will not be worrying
about steps of movement and what drives them, for example. Nevertheless, this approach yields
empirically correct predictions across an interesting range of cases, subsuming the effects of a
number of different word order universals and principles that have been thought of as having
some other source (e.g., minimality effects in movement). As we will see, our single *231
principle does the work of all of these principles, and arguably does a better job.

3.4 Interim summary

This section has reviewed Cinque's (2005) version of Greenberg's (1963) Universal 20. We
considered the empirical challenge posed by Nchare's (2012) description of Shupamem,
concluding that all of the putative counter-examples to Cinque's typology presented by that
language are in fact non-neutral focus orders, and as such irrelevant to the present study.
 We have seen an application of the surprisingly simple architecture of our universal
stack-sorting supergrammar. Cinque's set of 14 attested neutral orders prove to be exactly the
stack-sortable permutations of the base order, while his 10 unattested orders are its non-stack-
sortable permutations. Equivalently, we get the same result by simply generating all legal
pairings of brackets, labeling all right brackets in left-to-right order with the invariant base order,
and reading word order in from left brackets, Furthermore, the Surface Trees we generate turn
out to correspond directly to the syntactic structures derived in Cinque's account, though they are
systematically simpler. This is remarkable, as Cinque's account represents a traditional External
and Internal Merge derivation of the relevant orders and structures, obeying a parochial condition
(movement in this domain can only be phrasal, excluding head movement and remnant
movement). Here, by contrast, the same orders and structures are derived in quite a different way,
without invoking movement; the unattested orders are not ruled out by a constraint on
movement, but simply cannot be generated.
 In the next section, we turn to what appears to be an unrelated set of facts, the Final-
Over-Final Condition, and show that they are predicted by the same architecture.

19

4 Generating the Final-Over-Final Condition

In this section, I show that the present account provides a ready explanation for another
intensively studied word order universal, the Final-Over-Final Condition (FOFC; Holmberg
2000, Biberauer et al 2014, Sheehan et al 2017 i.a.). This is a surprising unification, as Universal
20 and FOFC appear to conflict; see for example Roberts (2017) on modifying the hierarchy for
the noun phrase (17) to be compatible with FOFC.

4.1 Background: The Final Over Final Condition

FOFC prohibits configuration (25):

 (25) *[αP [βP β γP] α] The Final Over Final Condition

 That is, a head-final phrase cannot dominate a head-initial phrase. The example below,
from Finnish, illustrates the phenomenon.

 (26) a. yli [rajan maitten välillä] [P1 [N1 [[N2] P2]]]
 across border countries between
 ‘across the border between countries’

 b.*[rajan maitten välillä] yli *[[N1 [[N2] P2]] P1]
 border countries between across (Biberauer et al 2014: 187, ex. 29)

 In the ungrammatical (26b), the outermost P1 has its NP complement on the left, while the
embedded nominal has its PP complement on the right. This is the banned *head-final over head-
initial configuration. Biberauer et al (2014) list the following FOFC effects; these configurations
are robustly ungrammatical across languages.

 (27) a. *V-O-Aux *[AuxP [VP V DP] Aux]
 b. *V-O-C *[CP [TP T VP] C] or *[CP [TP [VP V O] T] C]
 c. *C-TP-V *[VP [CP C TP] V]
 d. *N-O-P *[PP [DP/NP D/N PP] P]
 e. *Num-NP-D(em) *[D(em)P [NumP Num NP] D(em)] 5

 f. *Pol-TP-C *[CP [PolP Pol TP] C]
 (Biberauer et al 2014: 196, ex. 46)

 These canonical FOFC effects obtain when the elements in question are in a head-
complement relation. This well-known characterization of the domain of this condition is the key

 See Roberts (2017) for motivation of this claim. D(em) here reflects an analysis where Dem 5

originates low in the hierarchy, and in some languages moves to higher head D.

20

to the unification of this class of word order constraints with the Universal 20 pattern, as shown
in the next subsection.

4.2 Head-complement order in Deep Strings

In the current framework, we adopt a rather traditional X-bar format for the base structure. 6

Unlike now-standard approaches involving unordered semantic representations, we assume that
the base has a uniform head-complement-specifier order (which follows from a simpler
stipulation: heads first).

 (19) Head Complement Head-complement base order

This convention, together with the *231 theorem of TTG, predicts the basic phenomenology of
the Final-Over-Final Condition (FOFC; Sheehan et al 2017) in structures characterized by head-
complement relations.
 To see this, consider a configuration with nested complementation: head α takes a
complement headed by β, which in turn has complement γP. The base order is then (29) α β γP,
and the forbidden *231 permutation is (30) *β γP α.

 (29) α [β [γP]] Nested complementation base structure

 (30) * β γP α Forbidden word order

 Order (21) is traditionally described as a head-final phrase (αP) dominating a head-initial
phrase (βP); this is exactly the configuration ruled out by FOFC (25), repeated as (31).

 (31) *[αP [βP β γP] α]

 For example, if head Aux has complement headed by V, with complement Obj, the base
order is Aux V Obj (32). We correctly exclude unattested *231 order *V Obj Aux (33).

 (32) Aux [V [Obj]]

 (33) *V Obj Aux

 Additional stipulations may be required to model conjunction, set aside here. But note that if we 6

treat coordination asymmetrically with the X-bar mechanisms here, akin to [N PP]
complementation (e.g., coordination of N heads would form [N1 [& N2]] in traditional notation),
we would predict an apparent typological gap in monosyndetic coordination (Haspelmath 2017)
for order *& N2 N1 (this application is an observation of Ryan Walter Smith). See also Zwart
(2009), and Roberts (2019: 602-3).

21

 Since the reasoning is about heads and complements (not just verbs and auxiliaries), we
expect this to generalize to any head-complement chain, reconstructing the core of FOFC.

4.3 Further extensions of FOFC

What about structures with both adjuncts and complements? Sheehan (2017) argues that FOFC
extends to certain adjunct relations. Concretely, parallel to the FOFC effect *V Obj Aux, *V Adv
Aux is unattested. A full discussion is put aside, but note that this effect is correctly predicted
here. Following much recent cartographic work, we treat adverbials as specifiers of functional
phrases, which will thus occur in the later portion of the base order. The base structure for the
case Sheehan discusses is then [Aux [[V ...] Adv]] (34); unattested *V Adv Aux (35) is the
forbidden *231 permutation.

 (34) [Aux [[V...] Adv]] Auxiliary, verb, adverb base structure

 (35) *V Adv Aux Forbidden word order

 Next, let us consider a fuller structure for the clause. Arranging standard assumptions
about clause structure into our assumed head-complement-specifier base order, major categories
of a transitive clause are underlyingly as in (36). Here, it is important to note that S and O really
signify thematic subject and object (rather than the superficial grammatical functions); in other
words, external argument and internal argument.

 (36) [C [Pol [T [Asp [v [V O] S]]]]] base structure for transitive clause

 It is helpful to consider elements belonging to a single hierarchy three at a time; we
should find, for each such triple, five attested orders and one forbidden order. Drawing on order
(36), understanding that the O position may be realized as clausal complement CP, we make the
following predictions (among many others) about impossible neutral orders.

 (37) a. *O S V
 b. *CP S V
 c. *O S T
 d. *V O T
 e. *V O C
 f. *V CP T
 g. *[C TP] V
 h. *Pol TP C
 i. *V S T

 An adpositional phrase object O will be hierarchically ordered after a noun head N it
complements (38); I take adposition P to be a head with noun phrase complement NP (39).

22

 (38) N ON base order for noun and complement object

 (39) P NP base order for P and nominal complement

Taken together, this yields base order (40), with forbidden Surface String (41).

 (40) P [N ON] Deep String for PP within PP

 (41) *N ON P Forbidden order

 This explains the typological gap illustrated in Finnish (26b) above, previously described
with FOFC. In fact, setting aside (27e) (we adopt Cinque's hierarchy for Universal 20 effects),
we have reconstructed the list of canonical FOFC effects in Biberauer et al (2014: 196), repeated
below in (42).

 (42) FOFC effects predicted here
 a. *V O Aux see (24)
 b. *V O C (31e)
 c. *C TP V (31g)
 d. *N O P (35)
 e. *Pol TP C (31h)

 Beyond reconstructing this core of FOFC effects, (37) contains other interesting
predictions. If one basic clause order is to be ruled out, *O S V appears to be the right choice
(31a), as it is the rarest cross-linguistic order. Among 1376 languages recorded in WALS (Dryer
2013) as having a single dominant clause order, only four are reported to have this order (Warao,
Venezuela; Nadëb, Brazil; Wik Ngathana, Australia; Tobati, Indonesia). That said, some
mechanism going beyond the simple base-generation system here must be invoked for the
handful of languages with OSV orders. Another interesting prediction is (37i), taken up again in
section 5 below as a reformulation of Travis' (1984) Head Movement Constraint.

4.4 An aside: VOS as the base order?

Before moving on, a comment is probably in order about the assumed underlying order of basic
clausal components V, O, and S, and its relation to more or less frequent surface word orders.
The issue is that we claim VOS is the underlying base order for the clause; this may seem
surprising, as VOS is a rare surface order, exhibited by something like 2% of languages. In fact,
there is an even more basic question looming in the background: given some underlying base
order, why should there be any pre-processing step (like the stack-sorting mechanism explored
here) at all? In other words, why don't we expect the base order to be the surface order for all
languages?
 Thinking more carefully about things, however, this kind of internal-external
isomorphism is probably not what we expect. It is a familiar idea that language presents different

23

problems for adults and children. In seeking to understand typological trends in language
structure, it makes sense to pay particular attention to the problems various configurations
present to children. This is because of a kind of filtering effect: only those languages that are
acquirable by children will survive as possible adult languages.
 A robust finding of studies of language comprehension is that, for native adult speakers,
comprehension is incremental, proceeding word-by-word. Indeed, it is clear that comprehension
is even faster than that, running ahead of the actual input and predicting what is to come. It has
also become clear that word-by-word incrementality relies on this kind of forward predictive
ability. Colin Phillips' group at the University of Maryland has shown, for example, that in OV
languages like Japanese, immediate integration of the O requires prediction of a V, before the V
is actually encountered (Phillips & Lewis 2013, Momma et al 2015; note that this aligns with the
head-complement base order we have proposed). Development of this predictive skill is clearly a
major component of acquiring a language; in the present account, differences between languages
may be exclusively due to this effect.
 At the same time, it is also clear that being able to predict in a language is not to be
identified with being able to comprehend the language at all (contrary to some recent proposals
identifying prediction and cognition). See especially Huettig & Mani (2016) on this point. It
seems, instead, that language comprehension involves dual mechanisms of control, both
proactive and reactive (Braver, Gray, & Burgess 2007).
 With this in mind, consider the situation of a child encountering a language for which
they have not yet developed adult-level predictive skills. Thus, the (apparent) word-by-word
incrementality of adult comprehension is not yet in place, and there is some degree of lag
between receiving auditory input and constructing an internal representation of the signal. The
internal processing may be relatively slow or fast compared to the input stream. When processing
is slow, the received input must be held in a memory buffer until it can be integrated into the
internal structural representation. It is known that, relative to other kinds of input,
comprehensible natural language in the auditory modality exhibits an outsized role for recency
effects (Surprenant, Pitt, Crowder 1993). In computational terms, recency corresponds to a stack-
like memory structure (i.e., last-in, first-out).
 Suppose that our proposal is correct, in that there is a fixed, common linear order for
comprehension across languages, independent of surface order. For example, in the case of verb
and object, this is V-O (consistent with the experimental findings mentioned above indicating
that in OV languages, immediate integration of the O requires prediction of V). More generally,
we have supposed that the underlying order is head-complement-specifier. Given the storage 7

and retrieval routine just described, and assuming that to a first approximation the available
memory store behaves like a stack, it follows that the orders that the child can process are the
stack-sortable orders. That is, this kind of device is capable of comprehending just those orders
that can be passed, one item at a time, into a stack memory, interleaved with operations

 This assumes that the X-bar format is adequate to model natural language semantic structure, 7

which may well be an oversimplification. In particular, effects like coordination and unstructured
iteration seem to require something more (or, especially in the latter case, less). See Krivochen
(2016, 2020) for relevant discussion.

24

retrieving one item at a time to form the desired underlying base order in the correct (head-
complement-specifier) order.
 Thinking of things this way may shed light on our apparent problem in supposing that
VOS is the basic underlying order. This is only a problem on the assumption that the underlying
order should be reflected directly in surface order. Given the remarks just above, this requires the
language-learning child to parse such languages "fast", item-by-item as the input is received, in
order to achieve the desired output order. Particularly in the earliest stages of acquisition, this
seems overly demanding. The least demanding scenario, from the point of view of the child, is if
a clause of the language can be decoded "at leisure" after it has been heard. Given the stack-like
memory correlating with the dominance of recency effects in language comprehension,
underlying VOS order would be easiest to achieve for the mirror-image order, SOV. That sounds
promising, since SOV is indeed the most common order across the languages of the world.
 Continuing in this vein, there is plausibly an asymmetry between V, on the one hand, and
O and S: the former is a head, and the latter are (at least potentially) full phrases. In terms of
speed of processing, it is reasonable to suppose that a single head might be processed "fast",
while a full NP would take rather more time to process. In that case, we expect the positioning of
V to be rather flexible; SVO or VSO order would present relatively little processing difficulty, if
V can be handled relatively quickly. But OVS and VOS surface orders require processing of the
O to be complete before the S is encountered, which, by this reasoning, is significantly more
demanding, possibly explaining the relative rarity of these orders.	

4.5 Interim summary

In this section, we have demonstrated that our basic theorem, *231, extends without additional
machinery to cover the core empirical terrain described by the Final-Over-Final Condition.
Specifically, the head-final over head-initial configuration banned by FOFC instantiates a *231
permutation of the underlying base orders, because the base is organized in head-complement-
specifier order.
 This is interesting for a number of reasons. First, FOFC has been held up as an instance
of a purely syntax-internal constraint that is not explained by other factors. Something of the sort
is still true in this architecture, but FOFC, as an instance of *231, is a necessary consequence of
our system, rather than an additional constraint on movement that could have turned out
otherwise. This result is also significant in that the account unifies Universal 20 and FOFC as
instances of the same phenomenon. This is starkly at odds with the traditional treatment, where
the two effects seem to have little to do with each other. Indeed, they in fact seem to conflict; see
the discussion in Roberts (2017) for relevant considerations.
 In the following section, we turn to another application of our *231 theorem: it derives a
version of the Head Movement Constraint, while allowing known exceptions.

5 The Head Movement Constraint and its exceptions

25

The present account also explains Travis' (1984) Head Movement Constraint (HMC), while
correctly predicting some well-known exceptions. Travis argues that a head cannot move to a
higher head position over an intervening governing head, formalizing this claim with her Head
Movement Constraint (HMC).

 (43) Head Movement Constraint (HMC) (Travis, 1984, 131)
 An Xº may only move into the Yº which properly governs it.

The HMC (43) rules out configurations like (38), where head Zº has "skipped" intervening head
Yº and left-adjoined to Xº.

 (44) *[... Zº-Xº ... [... Yº ... [... tZº]]]]

 Of course, merely requiring head movement to be short does not suffice to rule out (44);
it is also required that Zº cannot move to Yº first and then excorporate, moving without Yº to Xº.
That requirement is a stipulation that does not appear to follow from independent principles, and
is quite different from phrasal movement, which obeys no such restriction (phrases may move
successive-cyclically without picking up additional structure along the way). Indeed, head
movement remains controversial, posing a number of challenges to standard accounts of
syntactic movement, and has inspired a variety of analyses; see Dékany (2018) for a recent
overview.
 That the present account extends to these effects is surprising at first glance, as movement
violating the HMC does not produce an impossible *231 order of the heads themselves. Instead,
HMC-violating movement "skipping" an intervening head, as in (44), produces 312 order among
the heads, readily generated by this system.
 Consider a simplified version of our base clause structure (36). For ease of exposition, we
focus on the core C-T-V categories; adding more elements does not affect the conclusions. First,
we examine each possible permutation of C, T, V order (45). Next to each order permutation, we
write the corresponding index sequence (123, etc), and, for clarity, the traditional description of
the derivation of the order (e.g., V-to-T, indicating head movement of V to T).

 (45) Permutations of C,T,V head order
 a. C T V 1 2 3 base order
 b. V T C 3 2 1 V-to-T-to-C
 c. C V T 1 3 2 V-to-T
 d. V C T 3 1 2 HMC violation, V-to-C skipping T: ok
 e. *T V C *2 3 1 FOFC violation
 f. T C V 2 1 3 T-to-C

 As indicated, our *231 principle only rules out the FOFC-violating order *T-V-C. The
order violating the head movement constraint, V-C-T ("long" head movement of V to C, skipping
T) is generated without problems.

26

 However, something interesting emerges when we consider the order of these elements
with the addition of another element from later in the clause base structure, an external argument
S. We repeat the permutations in (45), now trying all possible surface positions of S with respect
to the orders in (45); a * marks an impossible position (one that will produce the forbidden *231
contour in the surface order).

 (46) Permutations of C,T,V head order with interposed S
 a. (S) C (S) T (S) V (S) (4) 1 (4) 2 (4) 3 base order
 b. (S) V (*S) T (*S) C (S) (4) 3 (*4) 2 (*4) 1 (4) V-to-T-to-C
 c. (S) C (S) V (*S) T (S) (4) 1 (4) 3 (*4) 2 (4) V-to-T
 d. (S) V (*S) C (*S) T (S) (4) 3 (*4) 1 (*4) 2 (4) HMC violation: *231
 e. *T V C (already ruled out) *2 3 1 FOFC violation
 f. (S) T (*S) C (S) V (S) (4) 2 (*4) 1 (4) 3 (4) T-to-C

 In (46), we generate: (46a) C T V (no head movement); (46b) V T C (full roll-up of heads
obeying HMC, "V-to-T-to-C"); (46c) C V T (partial HMC-obeying movement, "V-to-T"); and
(46f) T C V (partial HMC-obeying movement, "T-to-C"). The independently FOFC-violating
order (46e) is ruled out already, and adding the subject anywhere has no effect (the forbidden
subsequence persists regardless of additional material). Meanwhile, (46d) V C T ("V-to-C,
skipping T"), the HMC-violating order, is ruled out only if a higher-index element (e.g., the
external argument S) intervenes between V and T (or another higher head).
 We have generated all the core cases of local head movement in the C-T-V system. Note,
too, that we derive another important effect: obligatory surface adjacency of the head cluster.
That is, a later element from the base order, such as the external argument, may never occur
between an inverted sequence of heads (because the heads then form a 21 sequence; the later 3
between them produces the forbidden *231 permutation). In other words, all of the instances of
head movement forming a "complex word", such as V-to-T, or V-to-T-to-C, necessarily occur
adjacent, without the possibility of other material intervening. Most interesting of all, we arrive
at a new claim: there is nothing wrong per se with the "improper head movement" case (45d) that
violates the HMC. Instead, what we expect to be ruled out is only a subsequence in which a later
element from the base order, in particular the external argument S, occurs between the long head-
moved V and a higher head like C or T in the surface order. Abstracting now from the simple C-
V-T system to a larger set of clausal head positions, we rule out (47):

 (47) *V Subj v/voice/Aux/T

 That is, the verb cannot precede an external argument which precedes some head above V
(in fact, we have seen this prediction already, in (37i) in section 4). As far as I know, that gives
the right facts for V-to-T and T-to-C movement captured by the HMC. Importantly,
understanding the HMC as actually reflecting the condition in (47) also allows us to account for
"long" head movement in Breton, a much-discussed violation of the HMC.

 (48) Breton

27

 Lennet en deus Anna al levr
 read.pprt has Anna the book
 'Anna has read the book' (Roberts 2010: 194)

I take the base order for this example to be (49); (50) shows the indexing of the Surface String,
which is indeed 231-free, and thus generable in this system (the treatment of the auxiliary Aux
and associated affix -Fx will be discussed in much more detail in the following section, where I
discuss English Affix Hopping).

 (49) T Aux -Fx V O S
 1 2 3 4 5 6

 (50) Lennet en deus Anna al levr
 V -Fx Aux T S O 8

 4 3 2 1 6 5

Certain Slavic languages also allow fronting of a bare participle, as in Bulgarian.

 (51) a. Bjah pročel knigata.
 had read the.book
 ‘I had read the book.’
 b. Pročel bjah knigata.
 read had the.book
 ‘I had read the book.’ (Harizanov & Gribanova 2019:482)

 (52) a. Bihte bili arestuvani ot policijata.
 would been arrest.PTCP by the.police
 ‘You would be arrested by the police.’
 b. Arestuvani bihte bili ot policijata.
 arrest.PTCP would been by the.police
 ‘You would be arrested by the police.’ (Embick & Izvorski 1997:231)

 Interestingly, in all these cases information-neutral long head movement obeys the *V S T
condition in (47). That is, either the subject is placed after the entire verbal complex, as in 9

Breton (48), or the subject is null, as in the Bulgarian examples in (49); (50) shows a
prepositionally-marked passivized thematic subject, which again does not intervene between
participle and higher heads right of the participle.

 The relative order of T and Aux within en deus is unknown to me, but ordering T before the 8

Aux produces a 231-free order (431265) as well.

 Ian Roberts (p.c.) and Maria-Luisa Rivero (p.c.) observe that this appears to be true quite 9

generally.

28

 An important aspect of this analysis is that it treats head movement in the same terms as
cases of apparent lowering, most famously in the English verbal system (in Affix Hopping), but
proposed for phenomena in other languages as well, such as C-to-Neg lowering in Irish as
proposed by McCloskey (2017). This is a step forward, as such cases closely resemble upward
head movement, with the single exception of the linear position of the cluster of heads (the
morphologically complex word). Despite this phenomenological similarity, lowering and Affix
Hopping have generally been viewed as effects distinct from head movement.
 The analysis of head movement has long presented theoretical problems. In standard
analyses, it violates the Extension Condition on Merge, and produces a structure in which the
moved element does not c-command its trace. Here, this kind of pattern is united with other
information-neutral ordering phenomena. No special counter-cyclic mechanisms, morphological
readjustment, construction-specific constraints such as a ban on excorporation, or other such
special machinery is invoked. As we will see, the analysis also treats lowering operations like
Affix Hopping in the same terms, a welcome result.
 Summarizing, our *231 principle of neutral word order derives a version of
Travis' (1984) Head Movement Constraint (HMC) that covers core cases of (V-to-)T(-to-C)
movement, including obligatory surface adjacency of the "head cluster", while also allowing
attested LHM as in Breton and Bulgarian. We discover a novel and apparently exceptionless
generalization about when neutral LHM is possible: only when it obeys *V S T/Aux. No special
principles or mechanisms are invoked; head movement, often seen as unlike other kinds of
syntactic movement, falls together with Universal 20 and FOFC as an immediate consequence of
our single *231 principle.

6 Generating some well-known crossing dependencies

Thus far, we have mostly been concerned with ruling out typologically unattested orders. In this
section, I turn to showing that the analysis of allowed orders extends to somewhat exotic
constructions that have figured prominently in arguments that natural language grammars are
mildly context-sensitive (Joshi 1985). Specifically, the architecture provides simple analyses of
attested cross-serial dependencies, including unbounded crossing subject-verb dependencies in
certain Germanic languages, as well as the more limited crossing pattern seen in English Affix
Hopping.
 We have already glimpsed this additional generative power. For example, we briefly
discussed the discontinuous constituency seen in the common word order VSO (section 2.3), and
we noted that some of the orders allowed by Cinque's version of Universal 20 contain cross-
serial dependencies (for example, his order (p) N-Dem-Adj-Num). While phenomena like VSO
order have been taken as strong motivation for transformations (in this case, head movement of
the verb to some higher position), the effects that we will examine in this section have proven
much more challenging to describe within the usual conception of transformations. That is, even
allowing upward, leftward movement does not suffice to generate them. In the case of English
Affix-Hopping, the problem is that the relevant movement seems rather to be rightward lowering
movement (of affixes associated with higher auxiliary verbs onto lower verbal stems).

29

Meanwhile, the long-distance cross-serial dependencies we will see immediately below would
seem to require something like Richards' "Tucking in" movement, failing to obey the Extension
Condition, or a radically different notion of movement, as in Tree-Adjoining Grammar. As we
will see, our framework suffices to describe these patterns and how they are sorted into standard
head-complement-specifier base structures, without any additional devices.

6.1 Cross-serial subject verb dependencies

Bresnan et al (1982) discuss unbounded crossing subject-verb dependencies in Dutch (Huybregts
1976). Example (53), taken from Steedman (2000: 25), illustrates the phenomenon.

 (53) ...omdat ik Cecilia Henk de nijlpaarden zag helpen voeren
 ...because I Cecilia Henk the hippos saw help feed
 '...because I saw Cecilia help Henk feed the hippos'

 Shieber (1985) discusses similar word orders in Swiss German, which also show long-
distance cross-serial case dependencies, as in (54).

 (54) ... das mer d'chind em Hans es huus lönd hälfe aastriiche
 ... that we the children Hans the house let help paint
 '...that we let the children help Hans paint the house'

 Interestingly, the system already established can base-generate these orders. I take the 10

Dutch example (53) above to contain the categories in (55), abstracting away from internal
structure of the object de nijlpaarden (see section 8) and segmenting a Tense suffix from
inflected and non-finite verbs, even if realized as zero.

 (55) ...omdat ik Cecilia Henk de nijlpaarden zag-Ø help-en voer-en
 C S1 S2 S3 O3 V1 T1 V2 T2 V3 T3

 The categories in (55) will be rendered as a single base order, which we assemble
incrementally for clarity. Following the general clause ordering (36), with the standard
assumption that complement clauses occupy the canonical direct object position, allows us to

 Stabler (2004) discusses four different classes of cross-serial dependency constructions, with 10

distinct formal properties. I restrict attention to the two classes in this section.

30

assemble the base order for iterated clausal complementation. For single clausal embedding, 11

[CP1 ...[CP2]], we have the base order C-T1-V1-T2-V2-O2-S2-S1. Replacing O2 with another
embedded clause, we derive (56), the base structure for sentence (53) above.

 (56) Base structure for (53)
 CP

 C T1P
 omdat
 T1 v1P
 -Ø
 V1P S1

 V1 T2P ik
 zag
 T2 v2P
 -en
 V2P S2

 V2 T3P Cecilia
 help
 T3 v3P
 -en
 V3P S3

 V3 O Henk
 voer
 de nijlpaarden

 Given this base structure, we can write the bracketed surface structure representation for
the Dutch word order (53), shown in (57). Here, I only show the categories, for reasons of 12

space.

 At least for these structures, we are implicitly developing a simple account of recursion by 11

substitution. For this example, the account requires that the entire structure be available at once;
the clauses in this example cannot be cyclic domains, sorted one at a time (see discussion in
section 8). Other clauses may be; I leave fuller consideration of recursion in this architecture to
future work, beyond the brief comments below.

 An important question is whether these trees provide a basis for a successful theory of prosody. 12

See also section 6.3 below, where it is shown that these trees are closer to standard
representations of clausal architecture than initial appearances suggest.

31

 (57) (C C) (S1 (S2 (S3 (O (V1 (T1 T1) V1) (V2 (T2 T2) V2) (V3 (T3 T3) V3) O) S1) S2) S1)

 At this point, it is worth introducing some further representational technology, as the
bracketed representation in (57) is difficult to read. There is a natural correspondence between
legal bracketings and n-ary branching trees. We will go into more detail on this correspondence
later in the paper; for now, let us simply illustrate how to convert labeled bracketings into
corresponding n-ary branching trees. We do this in the obvious way: each bracket pair
corresponds to a single node in the tree. Where a bracket pair encloses another bracket pair, the
relevant nodes will stand in a dominance (containment) relation in the tree. And the matched
labels of left and right brackets will simply be taken as the label of the corresponding tree node.
Finally, to ensure that disconnected bracketings, like ()(), make a single rooted tree, we add an
unlabeled root node dominating everything else.
 Let us illustrate this tree notation with some simple examples first before applying it to
the Dutch structure. Suppose we had a bracketed surface structure (A A)(B B). This corresponds
naturally to the following tree structure.

 (58) Tree corresponding to bracketed representation (A A)(B B)

 A B

 It should be clear that this tree representation encodes exactly the same information as the
bracketed representation (A A)(B B); namely, we have two disjoint objects, neither containing the
other. It is rather subtle, but we understand the expression (A A)(B B) to itself be a whole object,
hence the "spurious", unlabeled node dominating them both.
 Now consider the other way of organizing a pair of labeled brackets: (B (A A) B). This will
be drawn as a tree structure as in (59).

 (59) Tree corresponding to bracketed representation (B (A A) B)

 B

 A

 Again, it should be obvious that this is just another way of representing the same
information: node/bracket pair A contains node/bracket pair B. We will have more to say about
this in section 8, but since we want these brackets to represent stack-sorting operations, these two
options exhaust the possibilities. That is, we will not allow *(B B)(A A) or *(A (B B) A), assuming
the base order is AB (rather than BA). The brackets have meaning as Push and Pop operations,
and only the forms in (58-59) order these operations correctly to output the base order.
 The point of introducing this tree notation is that we can now represent the surface
structure for the Dutch order (or, indeed, any stack-sortable surface order of any base structure)
perspicuously. We will find an interesting use for this kind of representation in the generative

32

formulation presented later on. For now, though, (60) is the surface tree corresponding to the
rather opaque bracketed form in (57), for Dutch sentence (53).

 (50) ...omdat ik Cecilia Henk de nijlpaarden zag-0 help-en voer-en
 Category C S1 S2 S3 O3 V1 T1 V2 T2 V3 T3
 Index 1 11 10 9 8 3 2 5 4 7 6

 omdat ik

 Cecilia

 Henk

 de nijlpaarden

 zag help voer

 -Ø -en -en

 Note that with the relevant universal base structure resolved as in (56), we can readily
represent other surface word orders of the same elements, as in English (61).

 (61) ...because I saw -0 Cecilia help -Ø Henk feed -Ø the hippos
 C S1 V1 T1 S2 V2 T2 S3 V3 T3 O3 Category
 1 11 3 2 10 5 4 9 7 6 8 base order index

 because I

 saw Cecilia

 -Ø help Henk

 -Ø feed the hippos

 -Ø

 We will see later on that two natural ways of moving from node to node in this tree
(namely, preorder and postorder traversal) yield the word order and base order, respectively. This
corresponds to the fact that in the less-readable equivalent bracketed surface structure
representation, left brackets are positions in word order, and right brackets are positions in the
base order.

6.2 Affix Hopping

33

The same architecture that provides a successful analysis of cross-serial subject-verb
dependencies also readily allows another crossing configuration that has figured prominently in
generative work. This is the pattern known as Affix Hopping. Chomsky's (1957) analysis of
Affix Hopping provided a strong argument for the necessity of transformational rules, going
beyond the generative capacity of phrase structure systems. Interestingly, however, this pattern
has not been easy to analyze with the tools available in later iterations of generative theories. For
example, early Minimalist work proposed that the relevant pattern did not involve overt syntactic
movement at all, but rather resulted from checking features on fully inflected lexical item
inserted from the lexicon. As we will see, the present account allows a return to something very
close to the original transformational analysis, without introducing any new machinery.
 Sentence (62), They hadn't been eating cake, illustrates the phenomenon. As Chomsky
(1957) noted, affixes group with preceding auxiliaries in distribution and meaning, despite being
separated by the intervening verb in surface order. This involves a more limited and local form of
cross-serial relations than those illustrated for Dutch in the previous section.

 (62) They have -d -n't be -en eat -ing cake Surface String
 S Aux1 T Pol Aux2 -Fx1 V -Fx2 O categories

In (63), I show the bracketed surface structure derived from stack-sorting (62).

 (63) (They (have (-d (-n't -n't) -d) have) (be (-en -en) be) (eat (-ing -ing) eat) (cake cake) they)

 This is, no doubt, difficult to read. Utilizing the correspondence between bracketed
representations and n-ary branching trees described above, we can represent this instead as (64).

 (64) they

 have be eat cake

 -dT -en -ing

 -n't

 The representations in (63-64) above rely on the base structure given in (65) below,
which I take to be a fairly uncontroversial proposal about the underlying hierarchy of the
relevant categories. The only unusual property here is the rightward positioning of the specifiers,
according to our head-complement-specifier convention for the base order. Note that auxiliaries
and their associated affixes are adjacent in the base, plausibly constituting pieces of a single
category. In other words, the auxiliary and associated affix reflect a multiple exponence rule
specific to English. 13

 We could also treat auxiliaries and affixes as hierarchically adjacent heads, as in Harwood (2013).13

34

 (65) PolP base structure for They hadn't been eating cake

 Pol TP
 -n't
 T PerfP
 -d
 Perf ProgP

English multiple have -en Prog vP
exponence rules
 be -ing v' S

 v VP they
 Ø
 V O
 eat
 cake

 In effect, we have recovered Chomsky's (1957) classic analysis of Affix Hopping,
wherein auxiliaries and associated affixes are introduced as a single lexical item, and a
transformation "hops" the affix onto the following verbal element. Here, the relevant
transformation is part of the standard deformation of the surface order into the base order by
stack-sorting, the basic mechanism of this framework. No special principles or extra machinery
is required; this is run-of-the-mill neutral syntactic displacement as implemented here. This
seems an encouraging result.

6.3 Motivating the surface structure trees for clauses

At this point, the reader may well be curious about the surface trees here. At first glance, they
bear little relation to well-established descriptions of branching structure. Consider again (64).

 (66) they

 have be eat cake

 -0T -en -ing

 -n't

 Obviously, this differs from standard representations of the structure of clauses in
English. Rather than strict binary branching, we have an instance of quaternary branching. And

35

"terminal" elements are represented as directly dominating other terminals, with the subject on
top of the tree. This seems quite alien.
 But recall from the discussion of Universal 20 in section 3 that the bracketing in this
theory is systematically "flatter" than standard representations. In particular, in going from
standard representations and derivations to our representations, we lose left brackets that don't
immediately precede a lexical item (and their associated right brackets).
 To recover a more familiar version of the surface structure tree, we might try inserting
some extra layers of structure that we may imagine have been lost in this mapping. Inspired by
how Cinque's tree structures correspond to the simpler n-ary branching surface trees we find for
nominal structures, we can reverse the process, arriving at something like (67). The labels of 14

the "recovered" phrasal non-terminals are included for familiarity, but should not be taken too
seriously.

 (67) TP

 Subj T'
 they
 ProgP
 Aux
 have T VP
 -d Pol Prog
 -n't be FxPerf O
 -en V cake
 eat FxProg
 -ing

 This way of "decompactifying" the surface structures we derive from stack-sorting leads
us to conclude that head-adjunction structures are right-branching rather than left-branching; the

 For those interested in how this tree is found, we begin by formulating the surface structure 14

representation as a string of labeled brackets, which can be understood to give the proper order
of Push and Pop operations sorting the surface order into the base order:
(i) [They [have [-d [-n't -n't] -d] have] [be [-en -en] be] [eat [-ing -ing] eat] [cake cake] they].
To recover a "normal" representation with overt material on terminals, insert the terminals before
the associated left brackets:
(ii) [They They [have have [-d -d [-n't -n't -n't] -d] have] [be be [-en -en -en] be] [eat eat [-ing -ing -ing] eat] [cake
cake cake] they].
Finally, we insert extra brackets (or relabel existing brackets) to make the structure binary-
branching in the familiar way:
(iii) [TP They [T' [Perf have[-d[-n't]]] [ProgP [Prog be[-en]] [VP[V eat[-ing]] [NP cake]]]]]].
The tree in (67) matches (iii). One might quibble about the proper labels at various places in (iii),
but the point concerns the branching structure, which, modulo the remarks above about the
direction of branching within head clusters, follows standard assumptions.

36

classical head-adjunction treatment of head-movement leading to that conclusion is, as we have
seen, problematic anyway. One positive consequence of this kind of tree structure is that
hierarchical and linear-order relations within head clusters mimic the Kaynean correspondence of
hierarchy and order in larger structures (i.e., rightward in the string is downward in the tree, even
within head-adjunction structures). Otherwise, this looks similar to standard representations of
the surface structure, with the subject in a high specifier (of TP, or AgrSP perhaps).
 To be clear, the above should not be read as an endorsement of this more complicated
kind of analysis (i.e., I don't think we're collapsing the "real" tree). The cleaner relationship
between word order and base order provided by the stack-sorting account is to be preferred, I
would argue, unless some argument can be mustered in favor of the more complicated traditional
analysis. The point is simply that the structure we find in this theory is a good deal closer to
standard conclusions about the surface form than appearances may at first indicate.

6.4 Summary

In this section, we have seen that the present account readily allows cross-serial dependencies
that have proven challenging to capture in other frameworks. In particular, both the cross-serial
subject-verb dependencies of some Germanic languages, as well as the familiar pattern of Affix
Hopping in English, turn out to require nothing beyond the tools we have already developed.
Both patterns obey our fundamental *231 condition, given a relatively uncontroversial
understanding of their base structure; as such, they are expected to be typologically possible.
 There is, perhaps, something unsatisfying about all of this; it is so trivial as to be almost
uninteresting. And while it is no doubt a good thing to do more work with less theoretical
machinery, eliminating devices like morphological readjustment rules that have been invoked to
get the proper orders, something else is lost too. For example, consider Bobaljik's (1994) Merger-
Under-Adjacency (MUA) account of Affix Hopping. While adding complexity to the theory of
syntax and its interaction with morphology, the MUA account is also able to nicely capture facts
about do-insertion in English. This is the kind of effect that we do not expect to be able to
explain within the present framework. That is, given that other languages allow main verbs to
appear in the position obligatorily occupied by do in English under certain circumstances, we
cannot explain why English must insert do where it does. This grammatical residue must be
attributed to something specific to the grammar of English, and has no possible source in a
universal theory of word order. At best, all we can say from the current vantage point is which
orders are typologically possible, and which are universally forbidden; the logic of individual
languages' more intricate rule systems must be explained in other ways.
 We have also introduced a tree notation equivalent to our surface structure bracketing,
which itself can be understood as representing the Push and pop operations of stack-sorting. This
notation will play a large role in the alternative generative formulation introduced in section 9. In
the following section, we turn to another "exotic" movement phenomenon that challenges
standard conceptions of syntactic movement: Icelandic Stylistic Fronting.

7 Stylistic Fronting

37

This section sketches an account of the syntactic phenomenon known as Stylistic Fronting (SF;
Maling 1980/1990, Jónsson 1991, Holmberg 2000, 2006, Ott 2018, a.o.) in terms of our *231
stack-sorting architecture. This phenomenon, although relatively "exotic" (it is found in
Icelandic, Faroese, and Old Scandinavian, but not in other modern Scandinavian languages),
presents a number of features that are puzzling from the point of view of standard theories of
phrase structure and movement. Three properties in particular stand out in this regard: (i) SF is
optional and information-neutral; (ii) SF can apply to a broad array of syntactic objects, both
head-like and phrasal, including verbal participles, adverbs, negation, and argument NP or PP,
dependent on the presence or absence of other such categories; (iii) SF is contingent on not
having an overt subject in the typical subject position. I show that all of these facts are consistent
with the predictions of TTG. The exposition below relies heavily on the work of Ott (2018), from
which I draw the majority of the examples I consider.
 Since its first description by Maling (1980/1990), SF has received various analyses.
Platzack (1987) proposes that SF is movement to Spec, TP. Rögnvaldsson & Thráinsson (1990)
pursue a similar analysis, analyzing SF as topicalization movement to Spec, TP. According to the
treatment of Holmberg (2000), in SF T agrees with the subject, but moves a different category to
fill Spec, TP at PF. Jónsson (1991) proposes to treat SF as head movement, adjoining to T.
Bošković (2004), in turn, argues that SF moves to a null affixal F head above T. Finally, Ott
(2018) argues that SF involves remnant movement, which gives a way to treat the phenomenon
as strictly phrasal movement, even when only an overt head appears to move.

7.1 The subject-gap restriction

In descriptive terms, SF gives the appearance of movement of other categories to the typical
subject position, which must not contain the external argument. The subject-gap restriction
closely parallels the *V S T prediction in the TTG account of long head movement. Bošković
(2004) ascribes this to an affixation requirement on a null F head. Other analyses try to derive the
subject-gap restriction by moving the stylistically-fronted element into Spec, TP, with
considerable problems (notably, that that position is presumably filled by a trace when the
subject is A-bar moved).
 The basic phenomenon of the subject-gap restriction can be seen in (68): the negation
element ekki, which is otherwise capable of being stylistically fronted, cannot be fronted if the
subject position is filled. Note that, unlike English -n't, analyzed as an instance of the relatively
high head Pol, I treat Icelandic ekki as a negative adverb (in a rightward specifier position
between the internal argument O and the external argument S). 15

 Subject-gap violation (Bošković 2004: 40, ex. 5b)
 (68) *Ég held að ekki Halldór hafi séð þessa mynd. ...*1 7 8 3 2 5 4 6

 See Roberts (2019: chapter 7) for extensive discussion of different cartographic sites for 15

negation. Although the arguments must be reexamined in light of the different assumptions in
this account, it is clear that Icelandic ekki cannot be analyzed as an instance of Pol here.

38

 I think that not Halldor has seen this film *2 3 1

 (69) að -i haf -ð sé [þessa mynd] ekki Halldór base order for (68)
 C T Aux -Fx V O NegAdv S
 1 2 3 4 5 6 7 8

 Note, though, that the subject gap can be the result of A-bar extraction, which should
leave a trace, blocking movement to Spec, TP.

 SF of V participle with A-bar extracted subject. (Ott 2018: 3 ex. 7a)
 (70) Hver heldur þú [CP að stoliði hafi ti hjólinu] ...C V -Fx Aux T O
 who think you that stolen has the bike 1 5 4 3 2 6

 Other ways to satisfy subject-gap restriction are to have a postposed (necessarily
indefinite) subject, or an impersonal.

 Late subjects: (Ott 2018: 4, ex 8b)
 (71) Keypti hafa ti þessa bók margir stúdentar V -Fx Aux T O S
 bought have this book many students 4 3 2 1 5 6

 Impersonal: (Ott 2018: 4 ex. 9a)
 (72) Keypti hefur verið ti tölva fyrir starfsfólkið V -Fx2 Aux1 T Aux2 -Fx1 O PP
 bought has been a computer for the staff 6 5 2 1 4 3 7 8

 In the present framework, the Subject-gap restriction parallels the *V S T prediction for
long head movement discussed in section 5. That is, SF places a medial element in the base order
left of the higher T head; having a subject (later in the base order than either) between them
would necessarily create the forbidden *231 permutation pattern.

7.2 Promiscuity of SF & Accessibility Hierarchy

One of the more curious properties of SF is that it seems to affect both heads, such as participles,
and full phrases, such as argument NPs or PPs. This "promiscuity" is especially problematic from
the point of view of standard approaches that draw a sharp distinction between head and phrasal
movement. In our framework, however, this is actually an expected result. In (73-75), we see that
with a verb taking a NP or PP argument, SF can affect the V, or the O/PP, but not both.

 (73) Þeir sem búiði hafa ti [PP í Ósló] 1 5 4 3 2 6
 those that lived have in Oslo (Ott 2018: 17, ex. 43b)

 (74) Þeir sem [PP í Óslo]i hafa búið ti 1 6 3 2 5 4
 those that in Oslo have lived (Ott 2018: 9 ex. 18d)

39

 (75) *þeir sem [vP búið í Óslo] hafa ti ... *...1 5 4 6 3 2
 those that lived in Oslo have (Ott 2018: 10, ex. 22a)

 The index sequences to the right of the examples above come from the following base
order (76). Thus, our *231 principle makes the right predictions: movement of just the verbal
participle (73), or just the argument phrase (74), produces a 231-free surface word order. Moving
both together, however, produces a 231-like permutation, correctly ruling out (75).

 (76) sem -a haf -ið bú [í Óslo] base order for (68-70) above
 C T Aux -Fx V PP
 1 2 3 4 5 6

 If an adverb or negation is present, it can undergo SF, but will "block SF of vP-internal
material" (Ott 2018: 12)

 (77) a. þegar búiði var ti að borða ... 4 3 2 1 5 6
 when finished was to eat
 b. þegar ekkii var ti búið að borða ... 7 2 1 4 3 5 6
 when not was finished to eat
 c. *þegar búiði var ekki ti að borða ... 4 3 2 1 7 5 6 ok
 when finished was not to eat (Ott 2018: 13, ex. 29a,b)

 (78) -r va -ið bú að borða ekki base order for (77a-c)
 T Aux -Fx V T V NegAdv
 1 2 3 4 5 6 7

 Here, we correctly allow SF of the participle when no adverb or negation is present (77a),
and SF of the negation (77b). Example (77c), ungrammatical in Icelandic, is actually 231-free,
and so theoretically generable in our system. In general, this sort of thing is as expected. That is,
we do not expect any language to allow the full range of possible surface order permutations.
However, we expect that the ungrammaticality of (77c) arises from a different source (perhaps
some surface-oriented predictive template specific to Icelandic) than (75), which is ruled out for
all languages by the *231 principle. 16

 A PP can undergo SF, but only if negation is not present (79). If it is present, only
negation can undergo SF (80b), blocking SF of the PP (80c).

 (79) Þeir sem í Danmörkui hafa verið ti ... 1 6 3 2 5 4
 those that in Denmark have been

 (80) a. Þeir sem hafa ekki verið í Danmörku ... 1 3 2 7 5 4 6

 Whether these examples have a different status for speakers of Icelandic is an interesting 16

question for future research.

40

 those that have not been in Denmark
 b. Þeir sem ekkii hafa ti verið í Danmörku ... 1 7 3 2 5 4 6
 those that not have been in Denmark
 c. *Þeir sem í Danmörkui hafa ekki verið ti *...1 6 3 2 7 5 4
 those that in Denmark have not been (Ott 2018:13, ex. 30,31)

 (81) sem -a haf -ið ver [í Danmörku] ekki base order for (79-80)
 C T Aux -Fx V PP NegAdv
 1 2 3 4 5 6 7

Given this base order for the above examples, we correctly generate the attested SF options and
rule out SF of PP in the presence of negation (80c).
 In verb-particle constructions, either the verb or the particle can undergo SF. Negation, if
present, blocks both, being the only candidate for SF then. We correctly exclude particle
movement in the presence of negation, but not movement of the participle. (Ott 2018: 24, ex.
57,58)

 (82) a. fundurinn sem frami hefur farið ti ...1 6 3 2 5 4
 the meeting that forth has gone
 b. fundurinn sem fariði hefur ti fram ...1 5 4 3 2 6

 (83) a. *fundurinn sem frami hefur ekki farið ti ... 1 6 3 2 7 5 4 *231
 the meeting that forth has not gone
 b. *fundurinn sem fariði hefur ekki ti fram ... 1 5 4 3 2 7 6 ok

 (84) sem -ur hef -ið far fram (ekki) base order for (82-83)
 C T Aux1 -Fx1 V Ptcl NegAdv
 1 2 3 4 5 6 7

 In verb-particle constructions with an object, Extraposition of the object (i.e., postposing
of O to the end of the Surface String) is a necessary condition for SF to apply. This is correctly
captured by the present proposal: the order Ptcl ... O V in the ungrammatical (85a) is a *231
permutation; Ptcl ... V O order in the grammatical (85b) is not.

 (85) a. *þð var þa sem uti voru [NP einhverjir kettir] reknir ti ...*1 6 3 2 7 5 4
 it was then that out were some cats driven
 b. þð var þa sem uti voru reknir ti [NP einhverjir kettir] ... 1 6 3 2 5 4 7
 it was then that out were driven some cats (Ott 2018: 26, ex. 64)

Extraposition of the object is optional in verb-particle constructions without SF.

 (86) a. þð var þa sem það voru [NP einhverjir kettir] reknir ut ... 1 ? 3 2 7 5 4 6
 it was then that EXPL were some cats driven out

41

 b. þð var þa sem það voru reknir ut [NP einhverjir kettir] ... 1 ? 3 2 5 4 6 7
 it was then that EXPL were driven out some cats
 (Ott 2018: 27 fn. 37, citing Thráinsson)

 (87) sem -u vor -ir rekn ut [NP einhverjir kettir] base order for (85-86)
 C T Aux1 -Fx1 V Ptcl O
 1 2 3 4 5 6 7

 Again, the simple *231 principle gets the facts right, given the base order in (87). 17

7.3 Summary on Stylistic Fronting

Stylistic Fronting is an example of neutral word order variation, the intended explanatory target
of this account. In general, we see that our framework correctly allows all attested SF
configurations. At the same time, we rule out many (but not all) of the things SF can't do. This is
as expected: the current approach aims to capture word order variation across languages, and as a
result, overgenerates with respect to particular languages. Thus, not all restrictions on SF fall out
here, the typical result. The crucial claim is that we do allow every neutral expression, in any
individual language. This is indeed the case, for all instances of SF examined here.
 In particular, some but not all aspects of the Accessibility Hierarchy are explained. We
correctly capture the subject-gap restriction, which parallels the *VST prediction about long head
movement derived in section 5. Most importantly, the account sheds new light on the
"promiscuous" nature of SF, affecting both heads and phrases of a variety of categories. This is a
central consequence of our approach: all neutral movement reflects *231 over a unified linear
representation of the underlying hierarchy, including heads and phrases. The hierarchy-order
mapping we have developed collapses all varieties of neutral head and phrasal movement to a
single mechanism. Different movement possibilities for different syntactic categories follow
from the invariant order of the base and the *231 theorem.
 In the next section, I take up some various loose ends that have been left aside.

8 Some loose ends

This section takes us some matters that have been left hanging in the discussion so far, which
deserve some comment from the present perspective.

8.1 Cycles/Phases

 I do not assign a base position, or corresponding index, to the expletive element það. This is 17

because the base order is a representation of thematic structure, and I assume that the expletive is
inserted to satisfy some (presumably language-specific) surface-oriented predictive pattern.
Many interesting questions arise here, which must be put aside for future work.

42

We have kept throughout to a relatively simplistic view of phrase structure. In particular, we
have avoided the topic of recursive embedding, outside of the treatment of cross-serial subject-
verb dependencies in section 6. The astute reader may have noted that we ignored internal
structure of argument NPs and PPs in the previous section, assigning them a single index and
deep string position with respect to the clause.
 A full treatment of the topic is beyond the scope of this paper. But it is immediately clear
that some notion of cycle is required for this account to get the facts right. To see this, consider a
classic problem for the Final-over-Final Condition: head-final VPs may embed head-initial DPs.

 (88) German
 Johann hat [VP [DP einen Mann] gesehen].
 Johann has a man seen
 ‘Johann has seen a man.’ (Biberauer et al 2014)

Simply treating all of the elements as part of a unified base order, [Det N] V should be a *231
order. Why, then, is it possible as a neutral order?
 In the FOFC literature, the standard approach is to assume that the nominal is a separate
cycle: a distinct hierarchy, or a different kind of extended projection. I adopt this solution,
supposing that nominal and verbal cycles are disjoint for the purposes of the *231 condition.
 One intriguing aspect of the present proposal is that a notion of phase is baked into the
architecture. That is, the tree traversal algorithms, which take the place of Transfer in a standard
Minimalist model, cannot apply at each step of incremental construction of the bare trees here.
Instead, they must apply to whole trees, or subtrees, mapping a hierarchy onto them and reading
off linear order. If this process is recursive (trees may embed references to already-transferred
subtrees), further ordering predictions follow.
 We can sketch how this would work for (88). Suppose a single node within the verbal
cycle can contain a pointer to a separately-computed nominal cycle. The nominal subtree is
generated, hierarchized, and linearized by itself, internally obeying the permutation-avoidance
condition. But the internal structure of the nominal is unavailable, and irrelevant, within the
embedding verbal cycle; its already frozen word order is "plugged in" at the corresponding node.
Det-N order itself is 231-free, as is S-Aux-O-V.

 (89) Illustration of cyclic embedding allowing S Aux [Det N] V order
 S

 Aux O

 V Det N

43

 Thus, we have two phases. The nominal einen Mann forms its own 231-avoiding cycle.
Meanwhile, the embedding clausal cycle manipulates an atomic pointer to the nominal (O).
Within the clausal cycle, the visible S-Aux-O-V order is 231-avoiding.
 Many important questions arise at this point, especially about where such cycles are to be
posited, under exactly what conditions. Here, the extensive discussion of this question in the
FOFC literature is directly relevant. Further questions specific to this framework concern the
effect of this additional machinery on possible global surface permutations. I set aside these
topics for future work.

8.2 What about case and agreement?

Much recent work in generative theory has emphasized the roles of Case and agreement in
driving syntactic operations. The reader may be left wondering about their role here, since they
have not been mentioned at all. It is certainly notable that such effects play no explanatory role
here in motivating syntactic movement, which has been radically reconceptualized.
 In my (surely controversial) view, case and agreement are functionally-motivated E-
language devices to support the identification of nominals with thematic argument positions in
the base order, crudely and imperfectly. In the base order, and for the purposes of constructing
the base tree via the Shift-Reduce semantic parser, different nominals are distinguished only by
their structural context, in the familiar way. That is, the internal argument O is the complement of
V; external argument S is the specifier of vP, and so on. Put another way, S and O are inherently
NPs, whose status as S or O is defined only relative to the base structure they appear in, rather
than by inherent properties of the items themselves.
 Case and agreement are widely agreed to be uninterpretable at LF. As such, we expect
that they do not appear in the base order, and have no role in the universal hierarchy-order
mapping we are describing. Instead, we may hypothesize that they reflect surface-based
templates (rooted in production-prediction feedback loops), which provide rough guides that
mismatch the real structure in "exotic" constructions. We further expect that, where they occur,
deviations from "proper" marking (which may not even be well-defined within the logic of the E-
language) are in the direction of more local and more typical marking patterns in the language. I
leave the matter here, though surely it is worthy of further pursuit.
 In the next section, I present an alternative way of understanding the framework we have
developed. Setting aside the idea of a stack-sorting universal parser, we see that an entirely
equivalent account can be given as a generative model.

9 Tree Traversal Grammar

To this point, we have been describing our basic analytical tool, the *231 condition, as a
consequence of a processing architecture. As sketched in section 2, this is conceived of as a two-
stage parsing device, with an initial stack-sorting step rearranging surface word order into a
common base order, which is then read by a Shift-Reduce semantic parser to build up a context-

44

free phrase structure representation. Notably, both the initial pre-processing step and the second-
stage parser are language-invariant.
 In this section, I describe an equivalent formalization. Here, we set aside issues of
parsing, and instead construct a competence-level, generative account. To distinguish this from
the stack-sorting perspective, we will call this formalization Tree Traversal Grammar (TTG).
 Tree Traversal Grammar can be stated very simply. TTG employs two distinct generative
devices: the Deep Grammar and the Surface Grammar. Related, we will be concerned with two
different string forms for each sentence, the Deep String and Surface String. The Deep String,
and its associated Deep Tree, is generated by the Deep Grammar, while the Surface Grammar
generates ordered, n-ary branching Surface Trees. The Deep String is written onto the nodes of
the freely generated Surface Tree in a sequence corresponding to postorder traversal of the tree.
The Surface String is then read from the labeled Surface Tree by preorder traversal. 18

 The notions of Deep and Surface Strings and Grammars correspond rather directly to the
concepts we have been using within the parsing perspective. Specifically, the Surface String is
the surface word order, while the Deep String is the base order. Likewise, the action of the stack-
sorting algorithm is handled by the Surface Grammar, while the SR semantic parser which reads
its output corresponds to the Deep Grammar.

9.1 Tree traversals

Tree traversals can be defined in terms of the priority of direction of travel from each node, with
respect to three directions: Root (up to the dominating node), L (down to the leftmost daughter),
R (down to the rightmost daughter). By providing an ordering of these three directions, we
recursively define a method for traversing a tree, starting at the root. We make use of two
standard tree traversal methods. The first, postorder traversal, is defined by the priority list (L, R,
Root). Descriptively, postorder traversal visits nodes in a tree left-to-right and bottom-up. The
other traversal method we will use is preorder traversal, which is defined by the priority list
(Root, L, R). Descriptively, this visits nodes in the tree top-down and left-to-right.
 As a first pass at how TTG works, I demonstrate its action for nominal order N Dem Adj
Num, Cinque's (2005) order (p). The direction of postorder traversal is indicated by large grey
arrows; subscript indices record the order in which the nodes are visited.

 (90) Postorder traversal N1 Dem4

 Adj2 Num3

 Kural (2005) discusses tree traversal algorithms in the context of word order variation. Kural 18

has traditional tree structures, including movement operations, and shows that some common
word order patterns arise from traversing these trees in different ways, with different traversal
algorithms corresponding to different word orders. The present proposal is different: the choice
of traversal patterns does not vary between languages; rather, the two kinds of traversal are fixed
but different for PF and LF, and what varies is the freely-generated Surface Tree to be traversed.

45

 As shown, postorder visits the nodes in the order of the Deep String for this hierarchy; in
this case, N Adj Num Dem. (See section 3 for much more on Universal 20.)
 Once the tree has been labeled this way, linear order is read off by preorder traversal,
which goes top down, left-to-right. The path of preorder traversal is shown with grey arrows in
(91); this path visits the nodes in an order corresponding to the Surface String, N Dem Adj Num.

 (91) Preorder traversal N1 Dem2

 Adj3 Num4

9.2 Deep Grammar and Surface Grammar

The Deep String is a universally-linearized underlying form in head-complement-specifier order,
generated by the Deep Grammar, a bog-standard phrase structure grammar. At this level, we
reconstruct traditional notions of constituency and c-command in the base, all familiar and well-
motivated.
 The second, less familiar piece of the generative architecture is the Surface Grammar.
This takes the head-complement-specifier Deep String as input, and freely generates any Dyck
tree (see below) with a matching number of nodes. The Deep String is written onto this freely-
generated Surface Tree in postorder, and the Surface String (the word order) is then read off the
same tree in preorder, as illustrated in (90-91) above. Each tree has a distinct preorder (Surface
String), but the same postorder (Deep String); this corresponds to the mapping of one meaning to
many word orders in TTG.
 Some surface orders cannot be generated; these are universally forbidden. Generated
orders are universally available, but may or may not follow the ordering conventions of a
particular language, predictively learned from experience. The claim is that the set of orders
allowed in a given language is a subset of the set of universally allowed orders; that is, a
language cannot exceptionally allow a universally-forbidden order as a surface form for an
information-neutral expression. Figure 2 summarizes the architecture.

 Surface Stringi
 Deep Deep String Surface Stringj
 Grammar Surface Stringk
 Surface ...
 Grammar

Figure 2. The generative architecture of Tree Traversal Grammar. The Deep Grammar builds a
uniform Deep String, which is "refracted" through the different Surface Trees built by the
Surface Grammar to produce an array of Surface Strings.

 Notice that Figure 2 is very similar to the stack-sorting + SR architecture shown in Figure
1, except that the flow is reversed. That is, in the parsing perspective we start with a given
surface word order, convert it into the base order, and build a base tree from it by SR parsing.

46

Here, we begin with a PSR generating the Deep String (base order), which is then transformed
into the set of possible Surface Strings (word orders).
 By hypothesis, any rooted, non-tangling, n-ary branching, ordered tree (Dyck tree) is a
possible Surface Tree. These correspond 1-to-1 with legal bracketings: strings of left and right
brackets in which, summing left-to-right, there are never more right brackets than left brackets,
with equal numbers of each at the end. Figure 3 illustrates the correspondence, together with the
corresponding order, explained below in (92):

 1:
 1
 ()

 2:

 2 1 1 2
 (()) ()()

 3:

 3 2 1 2 1 3 1 3 2 3 1 2 1 2 3
 ((())) (())() ()(()) (()()) ()()()

 4:

 4 3 2 1 3 2 1 4 3 1 2 4 2 1 4 3 1 4 3 2 1 4 2 3 4 2 1 3
 (((()))) ((()))() (()())() (())(()) ()((())) ()(()()) ((())())

 4 1 3 2 4 1 2 3 4 3 1 2 2 1 3 4 1 3 2 4 1 2 4 3 1 2 3 4
 (()(())) (()()()) ((()())) (())()() ()(())() ()()(()) ()()()()

Figure 3: Legal bracketings (Dyck words) and possible Surface Trees (Dyck trees), with
corresponding orders, for one, two, three, and four elements.

 In terms of bracketed representations (recall that these are a notational variant of our n-
ary branching trees), we can formulate the generative procedure as the following algorithm: (a)
generate all legal bracketings, (b) label right brackets left-to-right with the Deep String, (c) copy

47

labels to matching left brackets, (d) read Surface String from left bracket labels. (92) illustrates;
note that one logically possible permutation, *231, cannot be generated.

 (92) Generate orders from bracketings, for abstract Deep String 123
 a. ()()() (())() ()(()) (()()) ((()))
 b. (1)(2)(3) ((1)2)(3) (1)((2)3) ((1)(2)3) (((1)2)3)
 c. (1 1)(2 2)(3 3) (2(1 1)2)(3 3) (1 1)(3(2 2)3) (3(1 1)(2 2)3) (3(2(1 1)2)3)
 d. 1 2 3 2 1 3 1 3 2 3 1 2 3 2 1 *2 3 1

 Returning to the tree notation, I provide further illustration of the property that the Deep
String (base order) is written by postorder traversal, and the Surface String (word order) is read
by preorder traversal. We repeat our example of English Affix Hopping, They hadn't been eating
cake. I show again the tree next to a copy of the same tree with individual nodes numbered in
preorder. Grey arrows show the direction of the path.

 (93) they 1

 have be eat cake 2 5 7 9

 -dT -en -ing 3 6 8

 -n't 4

Assembling the words and morphemes from the nodes in the order visited by this path, we get
string (94). As claimed, this is identical to the surface word order.

 (94) They have -d -n't be -en eat -ing cake

And as for the second property, (95) shows the postorder traversal path.

 (95) they 9

 have be eat cake 3 5 7 8

 -dT -en -ing 2 4 6

 -n't 1

Following this traversal path, we find the following sequence:

 (96) -n't -d have -en be -ing eat cake they
 Neg T Aux1 -Fx1 Aux2 -Fx2 V O S

48

 There may seem to be something crucial missing from the account: we have said nothing
about how the Surface Tree representations are derived. In a standard approach, this would
involve specifying the base structure, and then positing movements to transform it, deriving the
surface configuration step by step (in modern theories, applying Internal Merge operations
interleaving with the External Merge operations constructing the base structure). The subject
moves to specifier of TP, the auxiliary raises to T, some kind of morphological adjustment or
syntactic lowering rule combines verbal stems and affixes, and so on.
 In TTG, such devices are unnecessary. We do not need to distinguish and motivate head
movement, and A-movement, and the various phrasal movements deriving neutral word order 19

variants. As a consequence, we also don’t need features or other devices to drive such
movements. Rather, given a realization of the underlying meaning as a Deep String, *231 is the
only relevant (cross-linguistic) constraint on possible Surface Strings. Relatedly, it does not make
much sense to think of elements moving to, or even being in, fixed structural positions such as
Spec, TP, which are defined only in the Deep Tree.
 TTG's Surface Trees do not represent constituents in the usual way; that is, units of
meaning and continuous strings do not correspond to whole subtrees. Instead, constituency holds
within the postorder traversal sequence (the Deep String), where a fairly trivial and language-
invariant context-free phrase structure grammar (the Deep Grammar) suffices to build a standard
LF structure Deep Tree, with inherent underlying head-complement-specifier order. Important
questions remain about this conception of LF, especially about discourse-information related
movement and its representation, not pursued here.
 The architecture presents only a slight variation on the familiar assumption that LF and
PF derive from the same pure-syntactic representation, but are interpreted by different processes.
The standard implementation involves significant complications, especially with respect to
chains created by movement: they must be pronounced in one position, while interpretation must
read their scopal properties high, and their thematic properties low. Given a set structure built by
traditional Merge, it is not trivial to identify chains (distinguishing them somehow from two
independent instances of the same lexical form).
 At least for the class of displacement considered here (i.e., information-neutral variations
in word and morpheme order) the issues related to chains simply do not arise. Any n-ary
branching Surface Tree is built, and each lexical element has a single, fixed position in that tree.
However, hierarchization and linearization traverse the tree in a different order, and the linear
order of lexical items within semantic and phonological string representations differs as a result.

9.3 Where do the Surface Trees come from?

This may still seem unsatisfactory. To the question of what is a possible Surface tree, TTG's
answer resembles a zen koan: at the cross-linguistic level, by hypothesis, any n-ary branching
tree is a possible Surface Tree. Even so, we are still left with the practical question of how to

 At least, insofar as A-movement is information-neutral. This would seem to be the case for 19

something like subject-to-subject raising, but is much less clear for something like passivization.
Many subtle and important questions arise at this point, which must be left for future research.

49

actually find the right tree for a given order, given an analysis of its underlying structure. It's easy
to verify by inspection whether or not a Surface String is a 231-free permutation of the Deep
String; if so, TTG generates it. But how do we draw the Surface Tree for a given order?
 The procedure turns out to be fairly trivial, and to have a nice computational property of
monotonicity. We will illustrate with the same English sentence we have been examining, They
hadn't been eating cake. The first, crucial step is to segment and rearrange elements from the
Surface String into the corresponding Deep String. We then index surface items according to
their position in the underlying Deep String, as shown in (97).

 (97) -n't -d have -en be -ing eat cake they
 Pol T Aux1 -Fx1 Aux2 -Fx2 V O S
 1 2 3 4 5 6 7 8 9

 We then copy these indices onto the order in the Surface String, which lets us draw the
tree. Compare indices of each pair of adjacent items in the Surface String a, b, writing a < b or a
> b as appropriate. Each '<' corresponds to a horizontal relation between the respective nodes. If
a < b, b attaches as sister to the highest-index node dominating a with lesser index than b.
Meanwhile, a > b indicates node b is immediately dominated by node a. Each adjacent
comparison thus gives a "treelet", which can be assembled without ambiguity. (98) illustrates.

 (98) They have -d -n't be -en eat -ing cake
 S Aux1 T Pol Aux2 -Fx1 V -Fx2 O
 9 3 2 1 5 4 7 6 8 index sequence
 > > > < > < > < < horizontal; > vertical
 treelets
 9 3 2 1 5 4 7 6 8

With these pairwise index comparisons, we produce a set of treelets, indicating how each node
attaches to the partial Surface Tree formed by preceding elements in the Surface String. For the
treelets in (98), we build the tree in (99). These are assembled incrementally in Surface String
order. First, Aux have (index 3) attaches directly below external argument S They (index 9).
Next, T -d is attached below the Aux, and in turn the polar negation -n't is below the T. The next
category is progressive Aux be; it has higher index (5) than the Pol -n't (index 1), and also higher
index than T -d (index 2) and Aux have (index 1), but lower index than S they. Thus, be attaches
as a sister to have and a daughter of they. And so on; we end up with the tree in (99).

 (99) they9

 have3 be5 eat7 cake8

 -d2 -en4 -ing6

 -n't1

50

 This, of course, is exactly the Surface Tree for this order; compare (93) and (95) above.
Recall that the structure of a tree can be thought of as simply a list of pointers from parent nodes
to child nodes. In these terms, the Surface Tree assembly procedure is strictly monotonic: it only
adds new parent-child pointers to the partial list already assembled, never disrupting existing
parent-child relations. In terms of tree geometry, we add new branches only at the bottom or right
edge of the existing partial tree.

9.4 Possible Surface Strings grow much more slowly than logically possible orders

One concern about the minimal constraints on possible surface realizations of underlying
structures in TTG is inherent in the many-to-one mapping of orders to meanings. Simply put, the
number of possible Surface String realizations grows as the length of the Deep String increases.
We can quantify this exactly: the number of possible Surface Strings for a Deep String of length
n is the nth Catalan number, drawn from the sequence (1, 2, 5, 14, 42, 132, ...). However, this
quantity grows much more slowly than the number of logically possible orders, which are
counted by the factorial function n! = n(n-1)(n-2)...(2)(1). (100) compares these quantities; the
last column shows the nth Catalan number divided by n! as a percentage.

 (100) Number of 231-avoiding orders (Cat) compared to possible orders of n items (n!)
 n Cat n! (Cat/n!) %
 1 1 1 100%
 2 2 2 100%
 3 5 6 83.3%
 4 14 24 58.3%
 5 42 120 35.0%
 6 132 720 18.3%
 7 429 5040 8.51%
 8 1430 40320 3.55%
 9 4862 362880 1.34%
 10 16796 3628800 .462%
 11 58786 39916800 .147%
 12 208012 479001600 .043%
 13 742900 6227020800 .012%
 14 2674440 87178291200 .0031%
 15 9694845 1307674368000 .0007%

 Thus, 231-avoidance is a rather weak condition for shorter sequences: it has no effect for
Deep Strings of length 2 (i.e., both logically possible orders are also 231-avoiding), and only
rules out one of six logically possible orders of length 3. For four items, more than half of
possible orders are generated by the TTG system (14 out of 24, as for Universal 20). However, as
the length of the relevant strings increases, 231-avoidance becomes highly characteristic and

51

unlikely to arise by chance. For the simple English sentence (52) They hadn't been eating cake,
we identified nine categories; at this size, only about 1% of possible strings are 231-avoiding.
 This is likely significant in the context of acquisition, and the problem of identifying the
categories of items segmented from the input stream. Observing many input strings containing
the same elements in construction with various other elements, it should be relatively easy to
narrow possible assignments of categories to such elements, as relatively few of them will satisfy
the *231 condition. This is especially so when the same set of elements are observed in multiple
possible orders. In other words, relative freedom of word order in a language may actually be of
benefit to this aspect of language acquisition, a somewhat surprising conclusion.

9.5 Interim summary of TTG

This section has sketched another way of formulating the theory developed in this paper.
Previously, we described the architecture as a universal parsing device, converting various word
orders into a universal order and building a base tree from that. This implicitly identifies the
grammar with the parser (Phillips 1996, 2001), a not uncontroversial proposal. In this section, we
have shown that there is a formally equivalent notational variant, conceived of as a generative
system. In this alternative, we begin by generating the base structure, then convert it into a set of
possible surface structures and word orders by a write-read dual-traversal protocol over freely
generated n-ary branching trees.
 As we have seen, we end up with an entirely equivalent account of possible word orders
and associated surface branching structures (which can themselves either be seen as strings of
labeled bracket pairs, or as trees). That said, there may be other factors which favor one
interpretation over the other. For example, the parsing model may better be able to accommodate
Abels' 2016 data suggesting distinct "satellite classes" of verbs, as an interaction of cue-based
retrieval interacting with recency effects, as discussed in section 2. On the other hand, the
generative account abstracts away from real-time performance, and may be more useful for
studying formal properties of the proposal.

10 Conclusion

This paper has introduced a novel framework for understanding neutral word order variation.
The basic ingredients are twofold. First, we have claimed that there is a base structure shared by
all languages, and that this structure is underlying ordered "heads first" (i.e., in head-
complement-specifier order, to use familiar X-bar terms). Second, we have claimed that
typologically possible word orders are the 231-avoiding permutations of the base order. We have
focused on a realization of the architecture as a stack-sorting transducer feeding an SR machine,
though we also introduced an alternative formulation fo the theory as a generative model
involving tree traversals.
 Some immediate questions arise, when presented with any new formalism for language
structure. Does it overgenerate, creating many configurations not found in human language? Or
do its inherent limits correspond in an interesting way to observed word order universals?

52

 Next we must ask, does it undergenerate, failing to account for well-attested structures? A
particularly thorny case is presented by constructions with cross-serial dependencies, which are a
challenge for classic phrase structure theories.
 Finally, and most importantly, we must ask about strong generation. Beyond merely
generating attested orders and failing to generate unattested ones, does the formalism assign
them the proper structure?
 As we have seen, if we take the target of explanation to be the set of typologically
possible orders (rather than the orders permitted in just a single language), the present account
performs well on these metrics. We capture a range of word order universals, including Universal
20, the Final-Over-Final Condition, and a version of the Head Movement Constraint, in that
orders violating these generalizations cannot be parsed (or generated) by our architecture. At the
same time, we find that the system correctly allows a range of constructions that have been
challenging to accommodate within other theories, including discontinuous constituency, cross-
serial dependencies, head movement including apparent lowering, and so on. In certain cases,
such as our treatment of long head movement, we appear to have improved on existing accounts
in our empirical coverage. Importantly, we have done more than simply capture the proper range
of string orders; we also automatically assign a surface structure representation to each allowed
surface word order that corresponds very closely to existing descriptions.
 Appealingly, all of these effects have been shown to follow from a single principle
regulating the hierarchy-word order mapping: *231. This principle is itself a theorem, a
necessary consequence of the framework. One could not keep the same basic mechanisms here
while deriving any other principles of permitted and forbidden orders and structures.
 This contrasts with contemporary accounts in which constraints on movement are
extrinsic to the basic structure-building mechanisms that implement movement, especially where
multiple devices are available to achieve a given surface output. Needless to say, a proliferation
of devices for movement leads to a problem in acquisition: how is the child to distinguish
between equivalent "movement" effects achieved by distinct modules? For example, observing a
variation in word order, is this variation due to genuine syntactic movement, free linearization of
a symmetric (e.g., head-complement) structure without movement, PF movement, or
morphological raising or lowering operations? The more mechanisms a theory admits to
implement movement, the more severe this acquisition problem becomes. What we would like to
find is that the problem dissolves, and given the basic properties of the constructions, there is
little or no choice about how the surface form and underlying representation are related.
Moreover, we hope to find the identity of the mechanism(s) involved to be determined by
universal rather than language-particular principles.
 The cost of covering all these phenomena in a single stroke is giving up on the dominant
conception of Merge as unordered set formation, and Internal Merge as the engine of (neutral, at
least) displacement. Certainly, we need recursive structure-building in syntax. And just as clearly,
surface word order is not directly relevant to semantic interpretation. But the architecture
described above shows that assuming an inherently ordered underlying representation simplifies
and improves our understanding of the relationship between hierarchy and word order. At the
same time, the present theory represents something of a retreat from understanding the details of
individual languages, in particular with respect to how they select a subset of universally-

53

possible orders, placing a greater explanatory burden for this aspect of language variation on
predictive learning during language acquisition. The payoff for this move is a conception of
language acquisition that removes any need for variation in the underlying cognitive system,
ascribing all variation in effect to learning from experience. Put simply, we are born knowing
how to compute and comprehend language; what we learn is how to predict and produce a
particular language. Much work remains to cash out this view, but it seems to me a promising
direction to pursue.

References
Abels, K., & Neeleman, A. (2012). Linear asymmetries and the LCA. Syntax 15(1), 25-74.
Abels, K. (2016). The fundamental left–right asymmetry in the Germanic verb cluster. The
Journal of Comparative Germanic Linguistics 19(3), 179-220.
Biberauer, T., Holmberg. A., and Roberts, I. (2014). A syntactic universal and its consequences.
Linguistic Inquiry 45, 169-225.
Bošković, Z. (2004). PF merger in stylistic fronting and object shift. In Minimality effects in
syntax, eds. A. Stepanov, G. Fanselow, and R. Vogel, 37–71. New York: Mouton de Gruyter.
Bresnan, J., Kaplan, R.M., Peters, S., & Zaenen, A. (1982). Cross-serial dependencies in Dutch.
Linguistic Inquiry 13(4), 613-635.
Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.
Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht: Foris.
Chomsky, N. (1995). The Minimalist Program. Cambridge, MA: MIT Press.
Chomsky, Noam. (2007). Approaching UG from below. In Uli Sauerland & Hans- Martin
Gärtner (eds), Interface + Recursion = Language? Chomsky’s Minimal- ism and the View from
Syntax and Semantics, 1–29. Berlin: de Gruyter.
Cinque, G. (1999). Adverbs and Functional Heads: A Cross-linguistic Perspective. New York:
Oxford University Press.
Cinque, G. (2005). Deriving Greenberg’s universal 20 and its exceptions. Linguistic Inquiry
36(3), 315-332.
Culbertson, J., Smolensky, P., and Wilson, C. (2013). Cognitive biases, linguistic
universals, and constraint-based grammar learning. Topics in Cognitive Science 5 392–424.
Dékány, É. (2018). Approaches to head movement: A critical assessment. Glossa: A Journal of
General Linguistics 3(1), 65.
Dryer, M. (2013). Order of subject, object and verb. In Dryer, M., & Haspelmath, M., (eds.), The
World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary
Anthropology. [http://wals.info/chapter/81, accessed 4 January 2021.]
Dryer, M. (2018). On the order of demonstrative, numeral, adjective, and noun. Language 94(4),
798-833.
Embick, D. & Izvorski, R. (1997). Participle-auxiliary word orders in Slavic. In Browne, W.,
Dornisch, E., Kondrashova, N., & Zec, D. (eds.), Annual workshop on Formal Approaches to
Slavic Linguistics: The Cornell meeting, 210–239. Ann Arbor, MI: Michigan Slavic Publications.

54

Greenberg, J. (1963). Some universals of grammar with particular reference to the order of
meaningful elements. In Greenberg, J. (ed.), Universals of language, 73-113. Cambridge, MA:
MIT Press.
Harizanov, B., & Gribanova, V. (2019). Whither head movement? Natural Language &
Linguistic Theory 37(2), 461-522.
Haspelmath, M. (2007). In Shopen, T. (ed.), Language typology and syntactic description Vol. II:
complex constructions, 1-51. Cambridge, MA: Cambridge University Press
Hauser, M., Chomsky, N., and Fitch, T. (2002). The faculty of language: what is it, who has it,
and how did it evolve? Science. 2002 (5598):1569-79.
Henson, R. (1998). Short-term memory for serial order. The start-end model. Cognitive
Psychology (36), 73–137.
Holmberg, A. (2000a). Deriving OV order in Finnish. in Svenonius, P., (ed.), The Derivation of
VO and OV. Philadelphia: John Benjamins.
Holmberg, A. (2000b). Scandinavian stylistic fronting: How any category can become an
expletive. Linguistic Inquiry 31:445–484.
Holmberg, A. (2006). Stylistic fronting. In The Blackwell companion to syntax, eds. M. Everaert
and H. van Riemsdijk, 532–565. Oxford: Blackwell.
Hrafnbjargarson, G. H. (2004). Stylistic fronting. Studia Linguistica 58:88–134.
Huybregts, R. (1976). Overlapping dependencies in Dutch. Utrecht Working Papers in
Linguistics 1:24–65.
Jónsson, J. (1991). Stylistic fronting in Icelandic. Working Papers in Scandinavian Syntax 48:1–
43.
Joshi, Aravind (1985). "How much context-sensitivity is necessary for characterizing structural
descriptions". In Dowty, D., Karttunen, L., and Zwicky, A. (eds.). Natural Language Processing:
Theoretical, Computational, and Psychological Perspectives. New York: Cambridge University
Press, 206–250.
Kayne, R. (1994). The Antisymmetry of Syntax. Cambridge, MA: MIT Press.
Koopman, H., and Szabolcsi, A. (2000) Verbal Complexes. Cambridge, MA: MIT Press.
Kural, M. (2005). Tree traversal and word order. Linguistic Inquiry 36(3):367-387.
Laka, I. (1990). Negation in Syntax: on the nature of functional categories and projections. Ph.D.
dissertation, MIT.
Lema and Rivero, M.-L. (1991). Types of verbal movement in Old Spanish: Modal & futures,
and perfects. Probus 3(3).
Lenneberg, E.H. (1967). Biological foundations of language. Wiley.
Lewis, R. L., & Vasishth, S. (2005). An activation-based model of sentence processing as skilled
memory retrieval. Cognitive Science, 29, 375–419.
Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (2006). Computational principles of working
memory in sentence comprehension. Trends in Cognitive Sciences, 10, 44–54.
Maling, J. (1990). Inversion in embedded clauses in Modern Icelandic. Modern Icelandic syntax,
eds. J. Maling and A. Zaenen, 71–91. San Diego, CA: Academic Press.
McCloskey, J. (2017). Ellipsis, polarity and the cartography of verb-initial orders in Irish. In
Aboh, A., Haeberli, E., Puskás, G., & and Schönenberger, M., (eds.), Elements of Comparative
Syntax: Theory and Description, 99–151. Berlin: De Gruyter.

55

McElree, B. (2000). Sentence comprehension is mediated by content-addressable memory
structures. Journal of Psycholinguistic Research (29), 111–123.
Medeiros, D.P. (2018). ULTRA: Universal Grammar as a Universal Parser. Frontiers In
Psychology: Language Sciences 9.
Nchare, A. (2011). The Syntax of Agreement in Shupamem and Greenberg's Universal 20. NYU
Working Papers in Linguistics 3, 136-198.
Nchare, A. (2012). The Grammar of Shupamem. Ph.D. thesis, New York University.
Ott, D. (2018). Stylistic Fronting as Remnant Movement. Studia Linguistica 72(1): 1-38.
Pearson, M. (2000). Two types of VO languages. In Svenonius, P. (ed.), The derivation of VO
and OV. Philadelphia: John Benjamins.
Perlmutter, D. (1970). Surface structure constraints in syntax. Linguistic Inquiry 1(2), 187-255.
Platzack, C. (1987). The Scandinavian languages and the null-subject parameter. Natural
Language and Linguistic Theory 5:377–401.
Rivero, M-L. (1991). Long head movement and negation: Serbo-Croatian vs. Slovak. The
Linguistic Review 8(2–4). 319–351.
Rizzi, Luigi. (1990). Relativized Minimality. Cambridge, Mass.: MIT Press.
Rizzi, L. (1997). The fine structure of the left periphery. In Haegeman, L. (ed.), Elements of
Grammar: Handbook of Generative Syntax. Dordrecht: Kluwer.
Roberts, I. (2010). Agreement and head movement: clitics, incorporation, and defective goals.
Cambridge, MA: MIT Press.
Roberts, I. (2017). The Final-over-Final Condition in DP: Universal 20 and the Nature of
Demonstratives. In Sheehan, M., Biberauer, T., Roberts, I., & Holmberg, A. (eds.) The Final-
Over-Final Condition: A Syntactic Universal (Vol 76), 151-186. Cambridge, MA: MIT Press.
Roberts, I. (2019). Parameter Hierarchies and Universal Grammar. New York: Oxford
University Press.
Rögnvaldsson, E. & Thráinsson, H. (1990). On Icelandic word order once more. Modern
Icelandic syntax, eds. J. Maling and A. Zaenen, 3–40. San Diego, CA: Academic Press.
Sheehan, M., Biberauer, T., Roberts, I., & Holmberg, A. (eds.). (2017). The Final-Over-Final
Condition: A Syntactic Universal (Vol. 76). Cambridge, MA: MIT Press.
Shieber, S.M. (1985). Evidence against the context-freeness of natural language. Linguistics &
Philosophy 8(3), 333-344.
Stabler, E. (2004). Varieties of crossing depemdencies: structure dependence and mild context
sensitivity. Cognitive Science 28: 699-720
Steddy, S., and Samek-Lodovici, V. (2011). On the ungrammaticality of remnant movement in
the derivation of Greenberg’s Universal 20. Linguistic Inquiry 42 445–469.
Steedman, M. (2000). The syntactic process (Vol. 24). Cambridge, MA: MIT press.
Steedman, M. (2020). A formal universal of natural language grammar. Language 96(3),
618-660.
Townsend, D., and Bever, T.G. (2001). Sentence Comprehension: The Integration of Habits and
Rules. Cambridge, MA: MIT Press.
Travis, L. (1984). Parameters and effects of word order variation. Ph.D. Dissertation, MIT.
Zwart, Jan-Wouter. (2009). The relevance of typology to minimalist inquiry. Lingua 119:
1589-1606.

56

