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Biased statistical learning of closed-class items 

In natural languages, closed-class items predict open-class items but not the other way 

around. For example, in English, if there is a determiner there will be a noun, but nouns can 

occur with or without determiners. Here we asked whether statistical learning of closed-

class items is also asymmetrical. In three experiments we exposed adults to a miniature 

language with the one-way dependency “if X then Y”: if X was present, Y was also 

present, but Y could occur without X. We created different versions of the language in 

order to ask whether learning depended on which category (X or Y) was an open or closed 

class. In one condition, X had the main properties of a closed class and Y had the main 

properties of an open class; in a contrasting condition, X had properties of an open class 

and Y had properties of a closed class. Learners’ exposure in these two conditions was 

otherwise identical. Learning was significantly better with closed-class X. Additional 

experiments demonstrated that it is the perceptual distinctiveness of closed-class items that 

drives learners to analyze them differently, and that the mathematical relationship between 

closed- and open-class items influences learning more strongly than their linear order. 

These results suggest that statistical learning is biased: learners privilege computations in 

which closed-class items are predictive of, rather than predicted by, open-class items. We 

suggest that the distributional asymmetries of closed-class items in natural languages—and 

perhaps the asymmetrical structure of linguistic representations—may arise in part from 

this learning bias. 
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Introduction 

In natural languages an important contrast is between open-class lexical items—for example, 

nouns or verbs—and closed-class or function items—for example, is or the.1 Open-class 

categories like noun or verb contain many members and typically carry the important lexical 

content of the sentence. In contrast, closed-class items, which are used to mark the grammatical 

functions of other words, are typically very short, few in number, are each used with high 

frequency, and occur in predictable positions in their phrases. For example, English marks 

definiteness with the article the, which is one of the most frequent words in the language and 

always occurs before its noun. There is wide variation in the distribution of functional items 

across languages: in contrast to English, definiteness in Amharic is marked as a suffix on lexical 

items in a particular structural position and can attach to nouns, adjectives, numerals, or even 

verbs depending on sentence structure (Kramer, 2010). The distribution of closed-class items is 

always predictable in certain ways, but learners must do a substantial amount of distributional 

analysis in order to learn the particular patterning of closed-class items in their language. The 

goal of the present paper is to explore the computational mechanisms that enable language 

learners to do this. 

From previous research we know that closed-class items draw special attention from 

language learners. Infants can identify them on the basis of their distinctive phonological, 

prosodic and distributional properties such as their short duration, light syllable structure, and 

high frequency (Shi, Morgan, & Allopenna, 1998; Shi, Werker, & Morgan, 1999), and children 

begin to represent these items well before producing them (Shafer, Shucard, Shucard, & Gerken, 

 
1 The terms ‘functional item’ and ‘closed class’ are often used interchangeably. We adopt the terminology 

of closed and open classes because these terms more readily apply to our miniature languages. 



1998; Shi, Werker, & Cutler, 2006). Early attention to closed-class items could facilitate other 

aspects of language acquisition. Research with adults and older children showed that artificial 

languages were more easily learned when they contained words that were relatively high 

frequency or in other ways like the closed-class items of natural languages (Braine, 1963; 

Morgan, Meier & Newport, 1987; Valian & Coulson, 1988). The authors of these studies argued 

that closed-class items focus learners’ attention on grammatically important parts of the 

sentence—such as phrase boundaries, where these items tend to occur—facilitating the 

acquisition of grammatical structure (Valian and Coulson call this the Anchoring Hypothesis). 

Additional empirical support for this hypothesis has come from more recent research showing 

that infants use familiar closed-class items to segment new words, assign words to grammatical 

categories, and form early representations of word order (Shi, Marquis, & Gauthier, 2006; Shi & 

Lepage, 2008; Shi & Melançon, 2010; Höhle et al., 2004; Zhang, Shi, & Li, 2015; Gervain et al., 

2008; Bernard & Gervain, 2012; de Carvalho, He, Lidz, & Christophe, 2019; Mintz, 2006; 

Marino, Bernard, & Gervain, 2020). Like adults, infants also use novel words that are high 

frequency or phonologically like closed-class items to organize words in an artificial language 

(Bernard & Gervain, 2012; Gervain et al., 2008; Marquis & Shi, 2012), indicating that infants do 

not need extensive experience with closed-class items to use them for learning.  

All of these studies support a general version of the Anchoring Hypothesis: learners 

notice closed-class items early on because of their distinctive perceptual and distributional 

properties, and then use these items to guide subsequent distributional analysis. However, it is 

not clear what computational mechanisms underlie this learning process. What do learners 

actually do with closed-class items, once they have noticed them? Only a few statistical learning 

studies have hypothesized specific statistical computations that learners might be using to 



acquire linguistic information (though none of these have focused on closed-class items). These 

studies have suggested, for example, that learners can compute transitional probabilities to find 

word boundaries (Aslin, Saffran, & Newport, 1998; Saffran, Aslin, & Newport, 1996; Saffran, 

Newport, & Aslin, 1996) and to acquire grammatical phrases (Saffran, 2001; Thompson & 

Newport, 2007). More recent work has examined the computations underlying the acquisition of 

grammatical categories (Reeder, Newport & Aslin, 2013; Schuler, Reeder, Newport, & Aslin, 

2017) and productive rules (Schuler, Yang, & Newport, 2016). Despite this progress, we are only 

beginning to identify the computational mechanisms underlying many aspects of language 

acquisition. It thus remains a mystery how learners manage to sort out patterns as complicated as 

(for example) Amharic definiteness. What kind of computations would a learner need to perform 

in order to acquire this type of pattern? 

Consider the statistical information about closed-class items that is present in learners’ 

input. As already noted, closed-class items generally do not independently contribute much 

semantic meaning; rather, they specify the grammatical properties or grammatical function of the 

meaning-bearing elements (the lexical categories). This role gives closed-class items a highly 

predictable syntactic context. For example, the indicates that its noun refers to a specific referent 

identifiable in context and therefore must appear with a corresponding noun, never alone. In 

statistical terms, the probability of seeing a noun, given that there is a determiner, is 100%. The 

reverse is not true, however, since nouns can occur in a variety of grammatical contexts, with or 

without determiners.2  

 
2 In some cases, predictiveness goes both ways (e.g., in French, all non-proper nouns require 

determiners). Nonetheless, computing how often determiners are accompanied by nouns will always 

reveal a pattern, whereas the reverse computation only sometimes will. Thus analyzing closed-class items 

as predictive of open-class items is the most effective way to discover linguistic patterns.  



The statistical asymmetry in the distribution of closed- and open-class items is especially 

interesting in light of the recent emphasis in syntactic theory on the role of functional categories 

in sentence structure (see Rizzi & Cinque, 2016, for discussion and historical context). 

Increasingly, linguists have argued that properties of closed-class items determine the behavior 

of other words in the sentence. This extends beyond the presence or absence of certain open-

class categories to their positions in the sentence as well. To illustrate, consider the pattern of 

verb placement in French. Lexical verbs such as “eat” (mang-) can either precede or follow the 

negative marker (pas), depending on whether the verb is morphologically finite, as in tu manges 

pas? (“You’re not eating?), or non-finite, as in tu vas pas manger? (“You’re not going to eat?”). 

Linguists capture this contingency between finiteness and verb position by positing that the 

abstract features of finite and non-finite morphemes are represented in different positions in the 

sentence. If there is finite morphology, there will be a verb and that verb will occur in the “finite 

position” (pre-negation). In this way the presence and location of verbs is determined by the kind 

of morphology that occurs in the sentence. 

Of course, linguists’ analyses are intended to be formal mathematical descriptions of 

sentence structure and not claims about the psychological representation of sentences. However, 

this kind of analysis demonstrates an important empirical point: regularities of word order and 

word form can be stated as restrictions on the distribution of closed-class items. Consider now 

the problem of distributional learning. One way to begin learning, given this view from syntactic 

theory, would be to identify closed-class items (for example, based on their salient perceptual 

properties) and then learn the distribution of open-class items relative to them. Because this 

distribution is asymmetrical—closed-class categories always predict but are not predicted by 

open-class categories—the most efficient computations that learners perform would also be 



asymmetrical. Learners need to learn what a closed-class item predicts—the presence of other 

categories, the placement of words, and so on—but they need not expend any effort finding 

distributional patterns that a closed-class item is predicted by, because there are none.3 

Here we explore the possibility that learners favor statistical learning computations in 

which closed-class items are predictive of open-class items over computations in which they are 

predicted by open-class items. In Experiment 1 we exposed adults to a miniature language 

containing a one-way grammatical dependency between two form-class categories, X and Y. 

When an X word was present, a Y word always had to be present as well, but Y words could 

occur with or without X words (“if X then Y”). This is mathematically like the relationship 

between determiners and nouns in English. In two contrasting conditions, we assigned different 

types of words to the X and Y categories. In one condition the predictive category (X) was a 

closed class (short, monosyllabic, and containing only one item ka), while in the other condition 

the predictive category was an open class (mono or disyllabic and containing three possible 

lexical items). Learning was better when X was closed-class, suggesting that statistical learning 

is biased: learners identify patterns where closed-class items are predictive of open-class items 

more readily than the reverse, indicating asymmetrical statistical computations. In Experiment 2 

we asked whether this learning bias is driven by the distinctiveness of closed-class items. When 

 
3 Of course closed-class items do not appear randomly in sentences. Their presence is determined by the 

semantic meaning that the speaker wishes to express. The learner does eventually need to learn which 

meanings go with which forms, but this is a separate and somewhat uncorrelated problem. As the 

comparison between Amharic and English definiteness marking illustrates, learning that a given form 

means “definite” does not tell the learner where, distributionally, that form occurs, nor does learning the 

distribution of a form reveal its meaning (e.g., both definite and indefinite articles precede nouns in 

English). Both learning problems are important, but we are concerned here only with the distributional 

one. 



the closed-class item was still high frequency but no longer phonologically distinctive, the group 

differences diminished but did not entirely disappear, consistent with the hypothesis that learners 

analyze closed-class items differently because they are perceptually distinctive. Finally, in 

Experiment 3 we demonstrate that the mathematical relationship between closed- and open-class 

items influences learning more strongly than their linear order. Together the results suggest that 

learners analyze dependencies in certain biased ways, more readily learning the kinds of patterns 

that exist in natural languages.  

In the Discussion we ask why learners are biased in this way. We do not mean to suggest 

that they know innately about languages in particular; rather we suggest that their computational 

biases—which may arise from cognitive constraints outside of language—shape languages and 

cause them to be structured in this way. 

Before proceeding, it is important to clarify an aspect of our experimental design. In 

contrast to many other studies from our lab, the artificial language that we created for these 

experiments is not very language-like. The experiments are focused on a specific computational 

question about how learners analyze closed and open-class items. To test our hypothesis, it was 

necessary to design a language that could only be learned by computing the precise mathematical 

relationship between two specific terms (X and Y). For this reason, X was the only category 

whose distribution was constrained with respect to other words; all other words in the language 

appeared and disappeared freely, which is unlike the more extensively constrained sentence 

structures of natural languages. This experimental design allowed us to test empirically whether 

learners’ computational analyses are biased in a certain way. If the results of these experiments 

do reveal such a bias, there is motivation to explore how this bias affects the acquisition of more 

naturally structured languages—a line of work that is in progress. 



Experiment 1 

As described above, in our first experiment we presented adult participants with a miniature 

language in which class X predicted class Y but not the reverse. In two conditions we varied the 

characteristics of class X in order to see whether learning was better when class X items were 

more like a closed class in natural languages. 

Method 

Participants 

Sixteen adults from the Georgetown University community (age 18-27, mean = 20.4) were 

randomly assigned to one of two conditions (8 participants per condition; see below). Data for 

one additional participant did not save due to an error. Each participant received $10 for 

participating in this study. 

Description of the miniature language 

The design of the language is summarized in Figure 1. The word order was AXYBC, where each 

letter represents a form-class category. All categories were optional, with the constraint that up to 

three categories could be omitted per sentence (i.e. every sentence must have at least two words). 

The fixed and consistent rule of the language was that if X was present, Y had to be present (“if 

X then Y”). Thus every sentence with X also contained Y, but sentences with Y did not have to 

contain X. This relationship is analogous to the one between determiners and nouns in English. 

Note that this dependency is defined in terms of the conditional relationship, not the linear order, 

of X and Y. In Experiment 1 X preceded Y, but in Experiment 3 X followed Y; this difference in 

linear order does not change the conditional relationship between the two terms. The grammar in 

Experiment 1 generates 19 different sentence structures, ranging from two to five words long. 
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Figure 1: Design of the miniature languages used in Experiments 1-3. (a) All versions of the 

language had the same grammar, with a single consistent rule: every sentence with X also 

contained Y, but Y could occur without X (“if X then Y”). Sentence structures are shown for 

Experiments 1 and 2, where X came before Y. In Experiment 3, sentences were the same except 

that X came after Y. (b) Words were assigned to each category to create a distinction between 

open classes (containing three mono or disyllabic words) and closed classes (containing a single 

short monosyllabic word). In one condition, X was a closed class and Y was open (Closed X); in 

a contrasting condition, X was open and Y was closed (Open X). The lexicon is shown for 

Experiments 1 and 3. In Experiment 2, the closed-class item was daygin instead of ka. (c) A 

sentence containing X and Y is shown for each language.  

 

 

(a) Grammar: If X then Y 

(b) Lexicon 

(c) Example sentences 



We created different versions of the language in order to ask whether learning the 

conditional relationship between X and Y depended on which of these terms was a closed-class 

or an open-class category. None of the words had any meaning; this contrast was defined by the 

number of words in each category and the phonological properties of those words.  

In one condition, X was closed class and Y was open class (Closed X). The closed-class 

category contained a single item ka, which had several properties common to closed-class items 

in English: it was short, lacked a coda or consonant clusters, and was high frequency by virtue of 

being the only member of its form class. In contrast, each open-class category contained three 

words that were either mono- or disyllabic forms. All words in the language, including the 

closed-class item, carried stress (i.e., ka was not prosodically dependent on any other item). In 

the Closed X condition, the X category contained ka and Y contained lapal, tombur, and zup. 

The closed-class item ka predicted any of these three open-class items.  

In a contrasting condition, X was open class and Y was closed class (Open X). The items 

in the X and Y categories were the exact opposite of the Closed X condition: X contained lapal, 

tombur, and zup and Y contained ka. In this condition the closed-class item ka is predicted by 

each of three open-class items (rather than being the predictor of them).  

Other than the specific lexical items in the X and Y categories, the two versions of the 

language were identical. In both versions, sentences with X must also contain Y, while sentences 

with Y may or may not contain X. Because either X or Y is ka, learners in both conditions had an 

“anchor” for their distributional analyses. In both conditions, the predictive category (X) comes 

before the category it predicts (Y); this linear order was like participants’ native language, 

English, where (for example) determiners precede nouns. (In Experiment 3 we reversed the 

linear order such that the predictive category came last, as in languages like Japanese.) At a 



lexical level, in both conditions the dependency involved exactly one closed-class item and three 

open-class items; acquiring the dependency required computing exactly three word-level forward 

transitional probabilities (either X1-Y1, X1-Y2, X1-Y3 in the Closed X condition or X1-Y1, X2-

Y1, X3-Y1 in the Open X condition). 

Because these languages are identical except for the closed/open class contrast for X and 

Y, learning outcomes will differ only if learners’ computational analyses treat closed-class and 

open-class items differently. If learners preferentially analyze closed-class items as predictive, 

they should more easily learn “if X then Y” in the Closed X condition, where ka predicts an 

open-class category; but they should struggle in the Open X condition, where ka is predicted by 

an open-class category. Alternatively, if learners analyze closed-class and open-class items 

similarly, learning outcomes will be equivalent across conditions.  

Materials 

Words were selected from a lab corpus based on their length and syllable structure in order to 

create a distinction between closed and open-class items as described above. Individual words  

were recorded in list intonation by a female native speaker of English and then concatenated to 

form sentences with 50 msec of silence beetween words. 

We generated a 38-sentence exposure set by selecting two sentence types for each of the 

19 possible structures of the language. The sentence structures were the same for all of the 

experiments in this paper, but the actual sentence strings differed across conditions and 

experiments according to the lexical items that were in the X and Y categories (sentences are 

included in the Appendix). The 38-sentence exposure set was presented 16 times in a 1-back task 

(see Procedure). Sentences were presented in a different order on each loop.  



Procedure 

Participants learned the language through a computer game programmed in PsychoPy (Peirce, 

Gray, Simpson, et al., 2019). Instructions were spoken aloud by a robot named “Bot,” who told 

participants to listen as an alien named Zooma practiced saying sentences in a made-up language 

spoken by aliens on a planet to which she was traveling. Instructions were synthesized in 

MacInTalk using the Alex voice. Then Zooma began flying around the screen saying sentences 

in the language. After each sentence, participants pressed a button to indicate whether Zooma 

had just repeated herself. This 1-back task was designed to ensure that participants paid attention 

to the sentences but did not otherwise provide feedback or explicit information about the 

structure of the language. As the experiment progressed, the background image changed so that 

Zooma appeared to be traveling from Earth through various galaxies to the new planet. When she 

arrived on the new planet, the test began. Bot explained that Zooma would try to say each 

sentence two different ways, and the participants’ job was to decide which one was better. They 

pressed a button on the screen to indicate their choice. The entire experiment lasted 

approximately 45 minutes. 

Test 

Learning was measured as accuracy on a two-alternative forced-choice (2AFC) test. The target 

choice on each trial was always a complete grammatical sentence. The alternative was identical 

to the target except that one word was changed, or the words were the same but in a different 

order. Test items were of several types. 

XY test items, controlled (4 items). The primary goal of the test was to ask whether 

participants had acquired a very specific piece of knowledge: the conditional relationship 

between X and Y. In order to answer this question it was important to create test items on which 



all other distributional properties (e.g., bigram frequency) were controlled. Only two types of test 

items could be carefully controlled in this way, so items with confounds were also included but 

scored separately (see below). The first type of well-controlled XY test item served as a 

constituency test, with participants choosing between XY and YB (“Constituency Test”). Both 

choices are legal two-word sequences and complete sentences, have the same relative frequency 

in learners’ input (each bigram occurred in 16 out of 38 exposure sentences, including twice each 

as a complete sentence), and are medial bigrams in the basic sentence structure (AXYBC). 

However, X and Y are related grammatically whereas Y and B are not. A preference for XY 

would indicate that participants represent this grammatical relationship. A second type of XY 

test item tested whether participants learned that X predicts Y, but not the reverse (“Dependency 

Test”). The alternatives were AY and AX. Again, both choices are legal two-word sequences and 

occurred in learners’ input with the same relative frequency (each bigram occurred in eight of 38 

exposure sentences). In addition, the two sequences had exactly the same forward transitional 

probability (.36). However, only AY is a complete sentence. AX is a grammatical sequence but 

not a complete sentence, since it contains X but not Y. If participants have learned that X 

predicts Y (but not the reverse), they should prefer AY over AX. Note that while participants in 

the Closed X condition could succeed on the first item type by selecting the choice that contains 

ka, the same strategy would not work on the second item type, since there the choice with ka is 

incorrect. 

XY test items, with confounds (4 items). As described above, it was critical to ensure 

that the target and foil on XY test items were matched on various distributional properties. 

However, because only a small number of test items could meet this criterion, we also included 

some items where distributional properties could not be matched. These had the same structure 



as the constituency test described above: participants chose between XY and BC or XY and AX. 

On these trials, the target and foil differed in their distribution in various ways (e.g., XY is more 

frequent than either BC and AX, but AX and BC are both edge bigrams in the basic sentence 

structure while XY is medial). Therefore participants might or might not prefer the target choice 

on these for a variety of reasons unrelated to the main hypothesis of this study. Nonetheless, 

results for these items can contribute to a general understanding of how well participants learned 

each language overall. 

Basic order (4 items). On items testing basic word order, participants chose between AB 

or AC and an ungrammatical alternative containing the same words in reverse order (that is, *BA 

or *CA). These items were included as a basic measure of learning; we expected both conditions 

to succeed on these items. 

Fillers (6 items). We included filler trials to balance the frequency with which targets and 

foils for the XY Dependency trials appeared on the test. This ensured that participants could not 

succeed on the critical test trials by selecting the response they had heard most frequently on the 

test overall (which without these filler items would have been XY). These items were not scored. 

Longer sentences (20 items). With longer sentences, it is even more difficult to isolate 

structural properties of the language for test. For example, if participants are asked to choose 

between AYB and *AXB, a preference for AYB could reflect either knowledge of the XY 

dependency or a preference for the bigram YB over *XB. This was problematic. If learners are 

computationally biased in the way we have suggested, learners in the Open X condition are 

predicted to focus on their closed-class item (Y) and the categories with which it most reliably 

occurs (B and C, each with a conditional probability of .42; the forward transition probabilities 

of YB and YC are .53 and .27, respectively). In other words, learners might perform well on this 



test for different reasons: learners in Closed X might reject *AXB based on knowledge of the 

XY dependency, while learners in Open X might prefer AYB based on recognition of the YB 

bigram. Thus these trials also cannot be used to determine whether participants acquired the 

precise mathematical relationship between X and Y. However, these items do add information 

about how well each set of participants acquired the language in general. Items testing longer 

sentences were always presented at the end of the test, after all of the item types described above. 

Analysis 

Accuracy on the 2AFC test was measured as the proportion of trials on which participants chose 

the target sequence. Note that in some cases (e.g., the XY constituency test) both choices are 

complete sentences. If participants show a preference, this indicates that one choice is more 

strongly represented in their knowledge of the language. 

 Results were analyzed statistically using logistic regression models run in R (Version 

3.6.1, R Core team, 2019). For each model described in the paper, we first generated a mixed-

effects logistic regression model using the lme4 package (Bates et al., 2015) with condition 

(Closed X (reference level) vs. Open X) as a fixed effect and random intercepts for participants 

and items. In most cases, including random by-participant and by-item intercepts led to 

convergence errors, so in these cases the results were re-analyzed using standard fixed-effects 

logistic regression models. 

Results 

XY test items 

The results for the critical test items in Experiment 1 are presented in Figure 2. Performance on 

these items was analyzed in a standard logistic regression model with condition (Closed X vs. 

Open X) as a fixed effect. (Mixed-effect models with random by-participant and/or by-item 



intercepts did not converge.) The proportion of trials on which participants chose the target 

sequence was significantly higher for Closed X than Open X (Closed X: M = .84, SD = .13, 

Open X: M = .53, SD = .25, β = -1.56, SE = 0.60, z = -2.59, p < .01). The strong performance of 

Closed X was also robust at the individual level: all eight participants in this condition reached 

75% accuracy or higher. Table 1 presents the results separately for the two types of test items; 

performance was similar across item types.  

 The structure of the XY dependency was identical across the two conditions, since class 

X always perfectly predicts class Y. Yet learning outcomes differed: the “if X then Y” rule was 

more easily learned when X was a closed class than when X was an open class and Y was a 

closed class. These results support our hypothesis that learners analyze closed-class items as 

predictive of open-class items more readily than the reverse. 

Table 1: Results for XY test items 

Experiment Test alternatives Closed X Open X 

Experiment 1 XY vs. YB 

AY vs. *AX   

 

.88 (.23) 

.81 (.26) 

 

.50 (.46) 

.56 (.42) 

 

Experiment 2 XY vs. YB 

AY vs. *AX   

 

.75 (.27) 

.56 (.32) 

.44 (.32) 

.44 (.32) 

Experiment 3 YX vs. *XB 

AY vs. *†AX 

.69 (.26) 

.75 (.27) 

.81 (.26) 

.31 (.37) 

Note. Means (standard deviations) reflect choice of the target item on the 2AFC test. The target 

item is the first sequence in each pair listed under Test Alternatives. These pairs are the test items 

where it was possible to match crucial distributional properties of the target and foil; additional 

results are presented in Table 2. The means in Figure 2 are collapsed across both trial types 

represented in this table. *Ungrammatical sentence (X occurs without Y); †illegal sequence.  

 



Basic Structure 

As a general measure of learning, we also tested knowledge of basic sentence structure (Table 

2). On these items, participants in both conditions chose the target sequence more often than the 

foil (Closed X: M = .94, Open X: M = .84). These results indicate that both groups of participants 

acquired basic knowledge of the language. 

Additional items 

Results for the remaining test trials are presented in Table 2. The distributional confounds in 

these remaining items (see Methods) mean that participants could perform well on these items 

without knowing the precise mathematical relationship between X and Y. Therefore, results on 

these items do not provide evidence for or against our hypothesis. On these items, participants in 

both groups performed well, choosing XY more often than AX/BC (Closed X: M = .72, Open X: 

M = .66) and preferring longer grammatical sentences to longer ungrammatical sentences 

(Closed X: M = .66, Open X: M = .65). These results indicate that participants in both groups 

acquired some knowledge of the language. 

 



 

Figure 2: Choice of the target item on the critical XY test trials in Experiments 1, 2, and 3. 

Learning of the “if X then Y” rule was consistently better when X was a closed class (Closed X) 

as compared with when X was an open class and Y was closed (Open X). 

 

  



Table 2: Results for the remaining test trials 

Experiment Trial type   Closed X Open X 

Experiment 1 Two-word sentences 

     “if X then Y” 

     Basic structure 

 

Longer sentences 

 

 

 

  

 

.72 (.16) 

.94 (.12) 

 

.66 (.10) 

 

.66 (.30) 

.84 (.27) 

 

.65 (.16) 

Experiment 2 Two-word sentences 

      “if X then Y” 

     Basic structure 

 

Longer sentences 

 

   

.66 (.13) 

.88 (.19) 

 

.63 (.05) 

 

.63 (.30) 

.88 (.19) 

 

.61 (.18) 

Experiment 3 Two-word sentences 

      “if X then Y” 

     Basic structure 

 

Longer sentences 

  

.52 (.16) 

.88 (.13) 

 

.57 (.12) 

 

.75 (.09) 

.84 (.13) 

 

.66 (.12) 

Note.  Means (standard deviations) reflect choice of the target item on the remaining trials of the 

2AFC test. Results for the “if X then Y” trials should be interpreted with caution: on these items, 

the target and foil could not be matched on various crucial distributional properties (see text). 

The most important results are presented in Table 1.  

 

Discussion 

In Experiment 1, adults were exposed to a miniature language with a single fixed and consistent 

rule: if X was present, Y was also present (“if X then Y”). We created two versions of the 

language, varying whether X or Y was a closed class. When X was a closed class and Y was 

open, participants easily acquired the XY rule. However, when X was open and Y was closed, 

learning was significantly worse. These results suggest that, during statistical learning, learners 

favor computations in which closed-class items are predictive—the same computations that are 

most relevant for acquiring natural language dependencies. 



In the Introduction we hypothesized that learners might analyze closed-class items in this 

way because they are distinctive. That is, learners notice closed-class items first, hence these 

items come to serve as the constant terms around which to organize knowledge of other patterns. 

To test this aspect of the hypothesis, we did a second experiment in which the closed-class item 

was less distinctive (but still high frequency). We predicted that learning in the Closed X 

condition of this experiment would be reduced compared to Experiment 1. 

Experiment 2  

Method 

Participants 

Sixteen adults from the Georgetown University community (age 18-22, mean = 19.5) were 

randomly assigned to the two conditions (8 participants per condition). Each received $10 for 

participating in this study. 

Description of the miniature language 

The language in Experiment 2 was identical to Experiment 1 except that the closed-class item 

was less distinctive. Here the closed-class item (daygin) was disyllabic, carried initial stress, and 

had a closed final syllable, making it phonologically like the open-class words in the language; 

its only distinguishing property was its high frequency. If distinctiveness of ka drove learning 

outcomes in Experiment 1, learning should be weakened in Experiment 2. However, since 

daygin is still high frequency, learning may still be better for Closed X relative to Open X.  

Results 

Part of our hypothesis was that learners analyze closed-class items differently because they are 

distinctive. In Experiment 2 we tested this by making the closed-class item less distinctive: there 



was one closed-class item that was high frequency but phonologically like the open-class words 

in the language. The main results are shown in Figure 2. Results are broken down by test item 

type in Table 1 and Table 2. 

Performance on the critical test items was analyzed with a standard logistic regression 

model with condition (Closed X vs. Open X) as a fixed effect. In contrast to Experiment 1, where 

there was a significant effect of condition, in Experiment 2 the effect of condition was marginal 

(Closed X: M = .66, SD = .23, Open X: M = .44, SD = .22, β = -.90, SE = .52, z = -1.74, p = .08). 

The intercept of this model was also marginal, indicating that performance for the two groups 

combined was not significantly above chance (β = .65, SE = .37, z = 1.74, p = .08). To directly 

compare learning in Experiments 1 and 2, we ran an additional model specifying fixed effects for 

condition, Experiment, and their interaction. There was a main effect of condition (β = -1.56, SE 

= .60, z = -2.59, p < .01), a marginal effect of Experiment (β = -1.04, SE = .61, z = -1.70, p = 

.09), and no interaction (β = .66, SE = .79, z = .84, p = .40).  

This pattern of results is consistent with our hypothesis. Learning was somewhat weaker 

in Experiment 2, as reflected in numerically lower performance and marginal effects in the 

logistic regression model for that experiment. This suggests that making the closed-class item 

less distinctive—i.e., changing it from ka to daygin—weakens learning, as we predicted. 

Interestingly, however, this manipulation did not entirely eliminate the effect of condition. (If it 

had, we would have observed a Condition x Experiment interaction.) This suggests that the 

presence of a single high-frequency item—even if the item has no other distinguishing 

properties— begins to introduce some asymmetry in learners’ distributional analyses, somewhat 

facilitating discovery of patterns in which the high-frequency item predicts other elements. 



Discussion 

Experiment 2 demonstrated that the distinctiveness of closed-class items drives learners to 

analyze them in a certain way. When we changed the closed-class item from ka to daygin, 

learning in the Closed X condition was only marginally better than in the Open X condition, 

whereas this difference in Experiment 1 was much greater. This is exactly what we would expect 

if the learning asymmetry we observed in Experiment 1 was driven by the distinctiveness of 

closed-class items. In Experiment 2 the closed-class item was still distinctive (due to its high 

frequency), but not strongly so, with the consequence that learning was still better for Closed X 

relative to Open X, but only a little bit. Thus the results of both Experiment 1 and Experiment 2 

are consistent with our hypothesis that learners analyze closed-class items in certain biased ways 

and that this bias is driven by the distinctive phonological and distributional properties of those 

items.  

A simpler explanation: Linear order effects 

In Experiments 1 and 2, in the Closed X version of the language, the closed-class item came 

before the open-class item in the XY sequence (kaX tomburY; Figure 1). This matches the order 

of function words and their complements in our participants’ native language, English (cf. “the 

dog”), and contrasts with the word-order patterns of head-final languages such as Japanese. 

Therefore it is possible that the effects we have seen so far—better learning for Closed X in 

Experiments 1 and 2—might not be due to our hypothesized account but could simply arise from 

native speakers of English being better at acquiring dependencies where the closed-class item 

comes first, as in English. Of course, English also has suffixes—bound morphemes that occur 

after their stems, as the plural marker does in “dogs”—and at least one artificial language study 

has found that English speakers are better at learning the category membership of words when 



categories are cued with suffixes relative to prefixes (St Clair, Monaghan, & Ramscar, 2009). 

The affixes in that study were similar in form to our closed-class item ka (all were high-

frequency CV sequences). Based on that study, one could argue that the word order of the 

language in Experiments 1 and 2 actually favored the Open X condition, not the Closed X 

condition. 

However, other evidence suggests that there is still reason to be concerned about the role 

of English transfer in explaining our results. Studies by Gervain and colleagues (Gervain et al. 

2008, Bernard & Gervain 2012, Gervain et al. 2013) suggest that the word order of one’s native 

language shapes adults’ and infants’ expectations about how words in a miniature language are 

grouped. For example, Italian infants expect word pairs to have a frequent word first, while 

Japanese infants expect word pairs to have a frequent word last (Gervain et al., 2008). This 

expectation alone cannot explain our results. If participants were simply selecting test sequences 

in which frequent items come first, participants in the Open X condition would have preferred 

YB (“kaY flugitB”) to XY (“lapalX kaY”). This is not what we found: the Open X condition was at 

chance on these items in both Experiment 1 and Experiment 2.4 However, particpants’ 

expectations about word groupings may have influenced the results in other ways. In particular, 

learners may use the grouping structure of a language to identify the domains within which 

grammatical dependencies may hold (Morgan et al., 1987). The expectation that high-frequency 

 
4 Interestingly, we did see a slight preference for YB in the Open X condition in pilot studies run on 

Mechanical Turk. We also saw a corresponding preference in the Open X condition of Experiment 3. 

There are multiple ways to account for this pattern of results, including through our original hypothesis; 

see the Discussion of Experiment 3. But in any case, even if some participants are using a linear-order 

strategy on the test, there might still be a computational bias that affects learning independently of linear 

order. Experiment 3 was designed to investigate this possibility.  



elements mark the beginnings of phrases may have led participants in Closed X to search for 

patterns within sequences beginning with X, which always included Y (e.g. XY, XYB…), 

whereas this expectation may have led participants in Open X to search for patterns within 

sequences beginning with Y, which never included X (e.g. YB, YBC…) This could have 

produced better learning of the XY dependency for Closed X without a computational bias to 

analyze closed-class items in a particular way. 

Experiment 3 was designed to assess this alternative explanation. We changed the word 

order of the language so that Y preceded X. Now the Closed X condition is superficially more 

like Japanese (frequent element last: tomburY kaX), whereas the Open X condition is 

superficially like English (frequent element first: kaY tomburX). English-based expectations 

about word groupings would highlight the sequences containing both X and Y in the Open X 

condition, theoretically providing an advantage for learning the XY dependency. In contrast, in 

the Closed X condition these expectations would highlight sequences containing X but excluding 

Y, theoretically putting these learners at a disadvantage for learning the XY dependency. If the 

higher performance for Closed X in Experiments 1 and 2 reflects transferred expectations from 

English, then the results of Experiment 3 should be opposite to those of Experiment 1, with 

better learning for Open X. However, if learning outcomes depend on the structural relationship 

between closed-class and open-class items, results should be qualitatively similar to the results of 

Experiment 1: Closed X should learn “if X then Y” and Open X should fail. This is the outcome 

we predict.  

Note that our hypothesis does not require learning in the Closed X condition of 

Experiment 3 to reach the same absolute level as in the Closed X condition of Experiment 1. If 

learning of Closed X is worse in Experiment 3 than in Experiment 1, this would simply indicate 



that English-speaking adults are better at learning a within-phrase dependency in a miniature 

language when the phrase begins with a frequent word, as in English. This would not be 

surprising in light of the evidence reviewed above. The question in Experiment 3 is whether 

transfer from English can fully account for the better performance of Closed X in Experiments 1 

and 2. The important prediction is that the relative ease of learning Closed X over Open X should 

be the same as in previous experiments, even with non-English word order. 

Experiment 3 

Method 

Participants 

Sixteen adults from the Georgetown University community (age 18-28, mean = 21.1) were 

randomly assigned to one of the two conditions (8 participants per condition). One additional 

participant did not complete the experiment due to a technical error. Participants received $10 for 

participating in this study. 

Description of the miniature language 

We used the same miniature language as Experiment 1, except that the word order was AYXBC 

instead of AXYBC. Here Y came before X in the linear order of the language, but X still 

predicted Y rather than the reverse (Y←X). This is like the relationship between determiners and 

nouns in a head-final language like Japanese. As in Experiment 1, we included two conditions 

that maintained the linear order of Y and X but differed in which member of the dependency (X 

or Y) was closed-class (Figure 1). The closed-class item was always ka. 



Test 

The 2AFC test was modified slightly to take into account the linear order change. On the “if X 

then Y” dependency test, participants were now asked to choose between YX and XB instead of 

XY and YB. These are the two medial bigrams in the new basic sentence structure and, like XY 

and YB in Experiment 1, overlap by one word. These two sequences have nearly the same 

forward transitional probabilities (YX: .53, XB: .50) but different backwards transition 

probabilities (YX: 1.0, XB: .36) and different frequencies (YX: 16, XB: 8). The other trial type 

on the “if X then Y” dependency test (AY vs. *AX) stayed the same. However, whereas both of 

these sequences were legal in Experiment 1 (and had the same forward transition probabilities), 

*AX is not a legal sequence in Experiment 3, since X cannot be preceded by any item other than 

Y. Based on the distributional properties of these test items, it should be relatively easier in 

Experiment 3 than in Experiments 1 and 2 for both conditions to select the target item on the test. 

Results 

This experiment was designed to ask whether the learning advantage for Closed X in previous 

experiments is attributable to the fact that the closed-class item (ka or daygin) occurred first in 

the XY sequence. We tested learning of the same dependency, “if X then Y”, when X occurred 

after Y in the linear order of the language. The Closed X condition now has ka occuring at the 

end of the YX sequence, making that condition superficially unlike English and more like 

Japanese.  

 Results are presented in Figure 1. To understand the effect of linear order on learning, 

we ran two logistic regression models. First, we analyzed just the results of Experiment 3 in a 

mixed model with condition (Closed X vs. Open X) as a fixed effect, and random intercepts for 

individual test items. (The model did not converge with random by-participant intercepts.) The 



effect of condition was not statistically significant (Closed X: M = .72, SD = .16, Open X: M = 

.56, SD = .26, β = -.70, SE = .54, z = -1.31, p = .19). In the second model we directly compared 

the results of Experiments 1 and 3, specifying fixed effects for condition (Closed X vs. Open X) 

and linear order (XY vs. YX) as well as an interaction between these terms. (A mixed model 

with random intercepts for participants and/or items did not converge.) The effect of condition 

was significant (β = -1.56, z = -2.59, p < .01) but the effect of linear order was not (β = -0.75, z = 

-1.20, p = .23). The interaction between condition and linear order was also not significant (β = 

0.87, z = 1.089, p = .28). 

 The results of the combined model for Experiments 1 and 3 suggest that the most 

important factor for learning is the mathematical relationship between closed-class and open-

class items—and not the linear order of these items. Consistent with this, the model analyzing 

just Experiment 3 found no learning advantage for Open X over Closed X (i.e. no significant 

effect of Condition). This refutes a possible explanation for the results of our previous 

experiments: that learning was better for Closed X only because that condition was superficially 

most like English. If this were true, the results of Experiment 3 would have been a mirror image 

of Experiment 1. Instead, the results of all three experiments are qualitatively quite similar 

(Figure 3), with higher accuracy for Closed X than Open X.  

Quantitatively, the effect of condition was somewhat weaker in Experiment 3 relative to 

Experiment 1. Closed X dropped from 84% to 72% correct, while Open X improved slightly 

from 53% to 56%, and the effect of condition in the Experiment 3 model did not reach 

significance. This is not surprising and suggests that participants were at a slight disadvantage 

when learning a language with non-English-like word order (i.e., in the Open X condition in 

Experiment 1 and the Closed X condition in Experiment 3). However, the results of the 



combined model for Experiments 1 and 3 indicate that this effect of linear order is relatively 

small (it did not reach significance) and, most importantly, it is distinct from the much larger and 

significant effect of condition. 

  The results just reported are for two types of items: the constituency test (YX vs. *XB) 

and the predictive direction test (AY vs. *AX). In previous experiments, results were similar 

across item types (Table 1). The same was true for the Closed X condition of this experiment. 

However, the Open X condition of Experiment 3 showed a different pattern. These participants 

performed extremely well on the Constituency test (88% correct)—even outperforming the 

Closed X condition—but poorly on the Dependency test (31% correct). The results for the 

Dependency test are particularly striking because these items should have been easy: the foil 

(*AX) was not only an incomplete sentence, it was an illegal sequence (unlike in Experiment 1 

where AX was an incomplete sentence but a legal sequence). There are several possible 

explanations for this pattern of results, one of which is provided by our original hypothesis. We 

consider these explanations in the following section.  

Discussion 

In Experiment 3, we changed the order of X and Y such that X came after Y (AYXBC). In the 

Closed X condition, the closed-class item ka came last in the critical sequence, matching the 

superficial position of closed-class items in head-final languages like Japanese and contrasting 

with participants’ native language, English. Our question was whether the effect of condition 

would be reversed, with Open X now outperforming Closed X. This would indicate better 

learning for the language that was superficially most like English and would suggest that transfer 

from English explains the results of the previous experiments. This is not what we found. 

Instead, results were qualitatively similar to Experiments 1 and 2, with better learning for Closed 



X. In an analysis comparing the results of Experiments 1 and 3, only the class type of X—and 

not the linear order of X and Y—had a significant effect on test performance. These results 

suggest strongly that the mathematical relationship between closed-class and open-class items 

strongly influences learning—significantly more than the linear order of these items. 

Although the overall results of Experiment 3 converge with prior experiments, the 

specific pattern of results across item types was slightly different. In previous experiments, 

performance was equivalent across item types (Table 1). In Experiment 3, however, learners in 

Open X performed very well on the Constituency test (preferring YX to *XB) and poorly on the 

Dependency test (preferring *AX to AY). It is possible that this pattern reflects random variation 

in participants’ responses, especially given the small number of items of each type. It is also 

possible that this pattern is a genuine reflection of participants’ preferences. Our hypothesis, in 

its strongest form, actually predicts this pattern of results (and we had this in mind when 

designing the test). For this reason, we discuss this finding below. However, our general 

conclusions do not rest on how we interpret this small piece of the results. 

There are two potential reasons that participants in the Open X condition of Experiment 3 

might prefer YX to *XB, but *AX to AY. One is that they were using an English-based linear 

order heuristic on the test, choosing YX on the Constituency test because the frequent item (Y) 

came first, and *AX on the Dependency test because the alternative had a frequent item last. We 

considered and rejected the idea that participants were using a linear-order heuristic when 

discussing the results of Experiments 1 and 2, because, in those experiments, there was no 

evidence that the Open X learners were using this strategy (see the Discussion of Experiment 2). 

However, there was a difference in the distribution of Y in Experiment 3 (due to the linear order 

of the language) that could have led the Open X participants in Experiment 3 to use this strategy, 



even if their counterparts in earlier experiments did not. In Experiment 3, Y occurred earlier in 

the sentence’s linear order, making it much more likely to be the first word of the sentence. (In 

Experiments 1 and 2, 6/38 sentences began with Y; in Experiment 3, 14/38 sentences did.) This 

may have increased learners’ attention to Y, and specifically to this element’s frequent 

occurrence as the first item in a sequence, leading to an enhanced preference for sequences in 

which Y occurred first. If this explains the pattern of results for Open X, it would indicate that 

linear order is driving their preferences. Note that this explanation can only account for the 

specific pattern of performance across item types for Open X in Experiment 3. The general 

advantage of Closed X across experiments, including in Experiment 3, indicates that the 

closed/open contrast has a significant effect on learning that is separate from the effect of linear 

order. 

A second explanation for the pattern of results in the Open X condition in Experiment 3 

comes from our original hypothesis. We have proposed that humans analyze dependencies in 

certain biased ways, more readily learning patterns in which closed-class items are predictive. 

Such a bias might lead learners in the Open X condition to initially analyze their closed-class 

item, Y, as predictive of some other item—such as X, the item that most frequently follows Y in 

this version of the language. Thus, a preference for YX (vs. *XB) and *AX (vs. AY) might 

reflect a generalization along the lines of “if Y then X”. This generalization is not consistent with 

learners’ input (the probability of X, given Y, is only .53), but it is consistent with the 

mathematical structure of dependencies in natural languages. Similar findings—where learners 

form a generalization that is not supported by the statistical structure of their language input—

have been reported in other experiments where adult learners were exposed to miniature 

languages that were unnatural in certain ways (Hudson Kam & Newport, 2009; Fedzechkina, 



Jaeger, & Newport, 2012; Culbertson & Newport, 2017). There is parallel evidence from child 

learners, who appear even more likely than adults to generalize beyond their input when that 

input is inconsistent or comes from a miniature language that is unlike natural languages 

(Hudson Kam & Newport, 2005; Singleton & Newport, 2004; Culbertson & Newport, 2015). As 

with the linear-order heuristic, the reason we observed this pattern in Experiment 3 but not 

Experiment 1 could be that Y occurred at the beginnings of sentences much more frequently in 

Experiment 3. Elements that occur in first position are known to be particularly salient to 

learners (Ebbinghaus, 1885/1913) and this could have magnified the effects of a computational 

bias to analyze perceptually distinctive items as predictive. 

It is worth noting that, when piloting Experiment 1 online through Mechanical Turk, we 

saw a pattern of results in the Open X condition that corresponded to the pattern observed in the 

Open X condition of Experiment 3 in this paper. That is, participants in Open X in the pilot 

version of Experiment 1 preferred *YB to XY and *AX to AY, resulting in significantly below-

chance performance overall. (Participants in Closed X were reliably above chance in all of our 

pilot experiments, consistent with the experiments we report here.) As with the results for 

Experiment 3 in this paper, this pattern of performance could reflect either a linear-order strategy 

or an analysis in which the closed-class item Y is predictive of the item that comes after it most 

frequently (in this case B)—or both. Either of these biases may be more likely to manifest in 

situations where there is decreased learning of the actual statistics of the language, which we do 

sometimes observe when running studies online. 

General Discussion 

In three experiments, we asked whether learners analyze closed-class and open-class items 

differently. We exposed participants to an artificial language with one consistent rule: when X 



was present, Y was also present (“if X then Y”). In Experiment 1 participants easily acquired the 

rule when X was a closed class but failed to acquire the same dependency when X was an open 

class and Y was a closed class. In that experiment, the closed class had several properties of 

closed classes in natural languages. When the closed class had no distinguishing properties other 

than high frequency (Experiment 2), group differences diminished but did not disappear, 

indicating that learning in Experiment 1 was partially driven by the distinctive perceptual 

properties of the closed class and partially driven by its frequency. In Experiment 3 we altered 

the linear order of the language so that Y came before X in the language’s linear order, but X’s 

presence still predicted Y’s presence in any given sentence. Results were qualitatively the same 

as in the first two experiments, indicating that the primary determinant of learning is the 

mathematical relationship between closed and open classes not their linear order. Taken together, 

these results suggest that learners privilege computations in which closed classes predict open 

classes—the same computations that are most relevant for natural language dependencies. 

It is important to note that, within each experiment, the Closed X and Open X conditions 

had exactly the same statistical evidence for the rule “if X then Y”. When class X was present, 

class Y was always also present in the same sentence (the conditional probability of Y, given X, 

was 1.0). Furthermore, the other statistical properties of the language were matched as well. 

Participants in contrasting conditions were exposed to the same number of lexical items, 

sentence structures, and sentence types. There were always exactly three item-level transitional 

probabilities from X to Y (or from Y to X), and these individual XY (or YX) bigrams occurred 

equally frequently across conditions (each occurred either 5 or 6 times in the exposure set of both 

conditions). Within each experiment, the linear direction of the XY dependency was the same, 

such that learners across the two conditions needed to compute transition probabilities in the 



same direction (forward for Experiments 1 and 2, backward for Experiment 3). Despite this 

mathematical equivalence, we observed a consistent learning advantage when X was a closed 

class. These results illuminate two important properties of learners’ distributional analyses. 

First, learners’ distributional analyses are sophisticated. Our participants apparently were 

not simply storing high-frequency word sequences or chunks (cf. Ambridge, 2020; Freudenthal 

et al., 2007; McCauley & Christiansen, 2019; Perruchet, 2019). This approach would have 

produced equivalent learning across conditions, since the XY/YX bigrams were matched in 

frequency in the two versions of the language. The fact that we saw a consistent advantage for 

Closed X indicates that learners must have been tracking the conditional relationships among 

word classes. The experiments in this paper thus add to a growing body of evidence that the 

computation of higher-order statistics such as conditional probability, and not simply storing 

high-frequency chunks, is important for acquiring language patterns. 

Second, learners’ distributional analyses are asymmetrical. Participants in our 

experiments apparently did not compute all of the pairwise conditional probabilities involving 

the closed-class item ka (or daygin). Like a chunk-based approach, this approach would have 

produced equivalent learning across conditions, since both versions of the language contained a 

consistent predictive dependency between a closed class and an open class. Instead, our results 

suggest that learners computed only a subset of the possible conditional probabilities involving 

the closed-class item: those in which the closed-class item was the constant (given) term. This 

finding sheds light on the statistical computations underlying anchored learning, as we discuss in 

the following section.  



Extending the Anchoring Hypothesis 

The original idea of the Anchoring Hypothesis (Valian & Coulson, 1988; Morgan, Meier, & 

Newport, 1987; see also Christophe, 1997 and Mintz, Newport, & Bever, 2002) was that, 

because closed-class items tend to occur at grammatically important points in the sentence such 

as phrase boundaries, focusing on them could help learners acquire grammatical structure. That 

is, closed-class items were thought to help primarily by indicating to learners the domains within 

which distributional analysis would be most productive. Our results add a computational 

component to this approach. Because closed-class items are noticed first, due to their distinctive 

phonological properties and their high frequency, these will be the constant terms in learners’ 

computations; other patterns are learned and represented relative to them. Thus, in addition to 

highlighting important domains for distributional analysis, closed-class items may also help by 

providing learners with a consistent term to use in their computations, structuring learners’ 

analyses in a way that highlights natural language patterns.  

Effects on language representations 

A learning mechanism that operates in this way would ultimately represent a broad range of 

language patterns in terms of the distribution of a small set of closed-class items. As we pointed 

out in the Introduction, this is increasingly the way that language patterns are described by 

syntactic theory as well. A widely held view in contemporary linguistics is that this 

representational structure results from innate knowledge about how languages are organized. Our 

results are consistent with this claim: if learners know innately that sentences are structured 

around functional categories, this is the kind of computational analysis that they should do. 

Alternatively, however, there is another explanation that does not require such a strong claim 

about innate linguistic content. On this alternative account, learners do not know innately that 



there are functional categories and that the purpose of such categories is to organize sentence 

structure. Rather, learners attend to closed-class items because these items occur frequently and 

sound different from other elements. As a result, these items are learned early and are ultimately 

available to learners as units around which to organize their knowledge of sentences. If this is 

right, the privileged status of closed-class items in humans’ mental representations is a 

consequence of the particular way in which learners analyze and learn language input. 

The role of anchored learning in natural language acquisition  

If closed-class items are so critical to learners’ early distributional analysis, why do children omit 

these items from their early sentence productions? Some researchers have interpreted these 

omissions as evidence that children initially represent only open-class items (Brown, 1973; 

Gleitman & Wanner, 1984). However, research by Rushen Shi, Louann Gerken, and others has 

argued that, even when children omit closed-class items from their speech, they perceive, 

represent, and actively use these items to learn about the grammatical organization of their 

language (Gerken & McIntosh, 1993; Shafer et al., 1998; Shi et al., 1999). Other research has 

suggested that there is a prosodic explanation for children’s omissions. For example, laboratory 

experiments and studies of natural language acquisition have found that children are more likely 

to produce elements that bear stress, regardless of their meaning or grammatical function 

(Demuth & McCullough, 2009; Echols & Newport 1992; Gerken, Laudau & Remez, 1990; Pye, 

1983), and Gerken (1991) has shown that young English speaking children are more likely to 

produce syllable sequences that form a trochaic (rather than iambic) pattern. Thus the absence of 

closed-class items from children’s speech may reflect prosodic factors most relevant to 

production, rather than a failure to represent those items altogether. Children’s omissions are 

therefore not evidence against the learning procedure we have proposed. However, more 



research is needed to understand what kinds of representations of closed-class items are 

necessary for the proposed learning procedure. Must children have complete, phonetically 

specified representations of a closed-class item in order to analyze it in this way? If so, this 

procedure will not be available until after these representations have developed, beginning in the 

second year of life for the highest-frequency items in the language (Shi et al., 2006). 

Alternatively, children might be able to apply this learning procedure to an underspecified, 

collapsed category of closed-class items (Bloom, 1970; Echols & Newport, 1992; Mintz et al., 

2002; Peters, 2001) or even to distinctive elements that they have just begun to learn (Marquis & 

Shi, 2012; Babineau et al., 2021), making the procedure more viable for the early stages of 

distributional analysis. 

Another issue for future research concerns how this learning procedure operates in the 

acquisition of natural languages. At present, the evidence that learners analyze closed-class items 

in certain privileged ways is limited to the artificial and carefully designed experiments reported 

in this paper. To test our mathematical predictions most cleanly, these languages were unlike 

natural languages in a variety of ways: all categories other than X and Y were optional, there was 

only a single grammatical phrase (XY), and none of the words had meaning. We are in the 

process of asking whether learners privilege the same types of computations in the acquisition of 

languages that are more natural. This work promises to illuminate the kinds of natural language 

patterns that can be acquired and represented using these privileged computational mechanisms 

and can us help to understand whether these learning mechanisms may explain why these 

patterns have come to exist in languages of the world. 
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