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Abstract

Wilson & Obdeyn (2009) claim that the use of the Observed/Expected measure (O/E) is mathe-
matically unsound. They argue that O/E fails to reconstruct the underlying structure of a dataset,
and that it should be abandoned in favor of the loglinear model. In this paper we defend O/E
by arguing that the underlying grammatical structure it diagnoses, as well as the structure di-
agnosed by a loglinear model, are just two possible solutions to a problem that has infinitely
many. Based on purely mathematical criteria, the grammar found by O/E is no more or less
plausible than that found by a loglinear model.

1 Background and overview

Aspects of the lexica of natural languages can be characterized by matrices that summarize the

co-occurrence of segments or types of segments. The matrix in (1), for example, is derived from

Maes’s (1959) dictionary of Ngbaka Minagende and summarizes the distribution of coronal, dorsal,

and labial nasal and oral stops (Danis 2019:577). Here, C1 is the first consonant in a transvocalic

sequence of two consonants, and C2 is the second; thus there are 28 coronal-coronal sequences, 43

dorsal-coronal sequences, 33 labial-coronal sequences, and so on.

(1) Consonant co-occurrence matrix for toy language
C2

coronal dorsal labial

coronal 28 34 17

C1 dorsal 43 26 27

labial 33 31 12

A major goal of quantitative and computational phonology is to understand what kind of grammar

the learner would induce given data like those summarized in (1). Would the learner posit (gradient)

*We thank Gillian Gallagher and Maria Gouskova for comments.
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positional restrictions on individual segments? Would the learner posit (gradient) restrictions on

combinations of segments? What would the strength of these restrictions look like?

A number of different methods claim to discover the underlying structure of matrices like (1), to

give us a sense of what the learner might expect to see if there were no restrictions on combinations,

and how (1) deviates from those expectations. The two methods under discussion in this paper are

O/E (first used in phonology by Pierrehumbert 1992, and made explicit by Coetzee & Pater 2008)

and the loglinear model (as popularized in phonology by Hayes & Wilson 2008). These measures

differ markedly in implementation. The O/E statistic is a simple method that can be done on pen

and paper, and its results are easy to interpret. If O/E is over 1, the relevant combination of segments

is overattested, relative to expectation; if O/E is under 1, the relevant combination of segments is

underattested. The loglinear model, by contrast, is harder to implement and interpret, because doing

either of these requires a certain degree of statistical sophistication. Just given these differences, one

might prefer O/E: it is easier to implement and accessible to a wider range of linguists.

Wilson & Obdeyn (2009) (henceforth WO), however, claim that O/E is an inferior and mathe-

matically unsound method, as it is confounded by differences in positional frequency. This, in turn,

makes it unable to accurately identify restrictions on combinations. Their paper has been influential:

various journal articles have cited it as a reason to turn away from the O/E statistic (e.g. Breiss &

Hayes 2020, Gouskova & Gallagher 2020, Stanton 2020), and this conclusion has influenced how

quantitative phonology is taught to students (see e.g. Hayes 2020). In this paper, we raise doubt

about WO’s conclusion; we show that both O/E and the loglinear model discover possible solu-

tions, neither of which may be the intended one. Section 2 walks through WO’s argument. Section

3 summarizes our response. We make three main points: the solution discovered by O/E is a pos-

sible solution, the loglinear model does not always identify the intended solution, and the space of

solutions is vast. Section 4 discusses and concludes.

It is important to note at the outset that our goal is not to argue for O/E over the loglinear model.

The goal of the present paper is more modest: we aim only to show that O/E and the loglinear

model are two different ways of solving the same problem, neither of which is necessarily the right

way. Which of these methods we prefer, if either, should ultimately depend on which model better

resembles the way humans generalize over data.

2 Wilson & Obdeyn’s (2009) argument

In this section, we summarize WO’s argument that the loglinear model should be preferred to O/E.

In Section 2.1, we walk through WO’s example demonstrating that the O/E method fails to discover

an intended underlying matrix. In Section 2.2, we show that a loglinear model succeeds where O/E

fails (see also Hayes 2020 for a similar demonstration, using different tools).
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2.1 Apparent failure of O/E

WO’s (2009) argument begins with a matrix (2). In this matrix, there are three consonants, [p t k].

In the absence of any constraints on combination, in both first (C1) and second (C2) position, [p]

would occur 1
3 of the time, [t] would occur 1

2 of the time, and [k] would occur 1
6 of the time. In ad-

dition to these asymmetries, there are restrictions on consonant combination. These constraints on

combination are expressed as co-occurrence multipliers in the cells: the 1
2 values indicate that com-

binations of [p]s, [t]s, and [k]s occur half as often as would be expected, given the probabilities of

the constituent consonants. The 1 values indicate that the remainder of the combinations occur just

as frequently as expected. This distribution can be thought of as the result of Optimality Theoretic

(Prince & Smolensky 2004) constraints acting on certain pairs of consonants. The underattestation

of identical pairs could be attributed to a co-occurrence constraint on identical segments (see Suzuki

1998 for an implementation of this in Optimality Theory).

(2) Terms for margins and cells
C2

[p] 1
3 [t] 1

2 [k] 1
6

[p] 1
3

1
2 1 1

C1 [t] 1
2 1 1

2 1

[k] 1
6 1 1 1

2

To determine how frequent we expect each combination of consonants to be, we need to multiply

the terms in the margins by the co-occurrence multipliers in the cells. Thus words in which C1 and

C2 are [p] would make up 1
3 × 1

3 , or 1
9 , of the lexicon, if there were no constraints on combination;

because this combination occurs at half the frequency it is expected to, however, it makes up 1
9 ×

1
2 ,

or 1
18 , of the lexicon (apart from a subsequent normalization). Words in which C1 is [p] and C2 is

[t] will make up 1
3 × 1

2 , or 1
6 , of the lexicon. If we follow this procedure for each of the cells in (2),

and then normalize the values so that they sum to one, we get the normalized products in (3).

(3) Normalized products
C2

[p] [t] [k]

[p] 0.069 0.207 0.069

C1 [t] 0.207 0.155 0.103

[k] 0.069 0.103 0.017

We can now use these normalized products to construct a toy lexicon. Let us assume that the lexicon

contains 5,000 words. By multiplying 5,000 by each of the normalized products in (3), we reach a

lexicon with the word frequencies in (4). This is the only aspect of this procedure that is observable
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to the linguist; the goal of the linguist is then to discover the underlying matrix in (2) from (4).

(4) Frequencies in a sample
C2

[p] [t] [k]

[p] 345 1034 345

C1 [t] 1034 776 517

[k] 345 517 86

One well-known method of working from (4) to a matrix like (2) is Observed/Expected. To calculate

the Observed/Expected ratio, we first need to calculate what the expected frequencies of each cell

should be, assuming no constraints on consonant combination. We illustrate first with a calculation

for words in which [p] is C1 and C2.

Summing across the top row, we see that there are 1724 words in which [p] is C1; summing

down the first column, we see that there are 1724 words in which [p] is C2. Words in which C1 is

[p] therefore make up 34.48% (1724/5000) of the lexicon, as do words in which C2 is [p]. Assuming

no constraints on consonant combination, we expect words in which [p] is C1 and C2 to make up

roughly 11.89% ((1724/5000)2) of the lexicon, or 594 words. To get the O/E value, we divide the

observed number in (4), 345, by the expected number, 594. The result is 0.58, suggesting that words

in which C1 and C2 are [p] are underattested.

We get a different result by considering words in which C1 is [p] and C2 is [t]. The first step

is the same: summing across the top row, we see that 1724 words, or 34.48% of the lexicon, have

[p] as C1. Summing across the second column, we see that 2327 words, or 46.54% of the lexicon,

have [t] as C2. Assuming no constraints on consonant combination, we expect words in which [p]

is C1 and [t] is C2 to make up roughly 16.05% of the lexicon, or 802 words. To get the O/E value,

we divide the observed number in (4), 1034, by the expected number, 802. The result here is 1.29,

suggesting that words in which C1 is [p] and C2 is [t] are overattested.

By calculating the O/E for each cell in (4), we reach the result in (5).

(5) O/E values for the sample
C2

[p] [t] [k]

[p] 0.58 1.29 1.06

C1 [t] 1.29 0.72 1.17

[k] 1.06 1.17 0.48

The problem, as Wilson & Obdeyn (2009) point out, is that the result of the O/E calculation appears

to be generated from a different matrix than the one that was actually used to generate the dataset.

Recall that in (2), each identical combination occurrs at 1
2 the rate it was expected to. While the
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O/E calculation does suggest that combinations of identical consonants are underattested relative

to combinations of different consonants, the result of the O/E calculation in (5) suggests that the

degree of underattestation is different for words with two [p]s, words with two [t]s, and words with

two [k]s. The O/E method has thus failed to discover the intended co-occurrence multipliers in (2).

2.2 Apparent success of a loglinear model

Wilson & Obdeyn (2009) do not explicitly show that a loglinear model discovers the intended matrix

in (2), so we demonstrate that here (see also Hayes 2020). The structure of the data submitted to the

loglinear model is in Table 1. We included one predictor per consonant per position (so p1, p2, t1,

etc.), as well as one predictor for each combination: pp, tt, kk, pt, pk, and so on. The count of each

sequence (in bold) is the dependent variable, while the rest of the factors in Table 1 are independent

variables. Factors were included in the model in the (left-to-right) order that they are presented here.

Table 1: Input to loglinear model
Count p1 p2 t1 t2 k1 k2 pp tt kk pt pk tp tk kp kt
345 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1034 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
345 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1034 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0
776 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0
517 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
345 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
517 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1
86 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0

We fit a loglinear model to the data in Table 1 using R’s glm function and the poisson link

function. The results of the fitted model are in Table 3.

The intercept of this model is the log predicted frequency of kk assuming no constraints on

co-occurrence. This is why k1 and k2 are not defined in (3): the model has included their values in

the baseline. To evaluate the fit of the model, we can compare the values it returns with the common

logarithm (ln) of the observed frequencies. To derive the log predicted frequency of any consonant

pair, all that’s necessary is to add or subtract from the intercept according to the consonants in that

pair (plus any penalty for co-occurrence). To derive the predicted frequency of kk, for example, we

simply subtract the penalty for co-occurrence (-0.70) from the intercept (5.15). This gives us 4.45;

the log of the observed frequency (86) is 4.45 as well. To give another example: the log predicted

frequency of pp is 5.15+0.69+0.69−0.69 = 5.84; the log of the observed frequency (345) is 5.84 as

well. More generally, the predictions of the loglinear model match exactly the observed frequencies;

this was confirmed by using R’s fitted.values function.
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Table 2: Results of loglinear model
Predictor Coefficient z value Significant?
Intercept 5.15 – –
p1 0.69 7.43 Yes (p < .001)
p2 0.69 12.87 Yes (p < .001)
t1 1.10 17.65 Yes (p < .001)
t2 1.10 12.48 Yes (p < .001)
k1 NA NA NA
k2 NA NA NA
pp -0.69 -7.43 Yes (p < .001)
tt -0.69 -8.21 Yes (p < .001)
kk -0.70 -5.27 Yes (p < .001)
pt 3.83−16 0.00 No
pk NA NA NA
tp NA NA NA
tk NA NA NA
kp NA NA NA
kt NA NA NA

The important point here is that the loglinear model succeeds in reconstructing the matrix in

(2) that was used to generate the data. Reconstructing the co-occurrence multipliers is simple:

given a coefficient c, the multiplier for a given segment pair is exp(c). Thus the multiplier for pp,

tt, and kk is 0.5; the multipliers for the rest of the cells are 1. While the model does not give

us the terms for the frequencies of individual segments, we can calculate these in a roundabout

way by finding the expected frequencies of each combination, were there no restrictions on each

combination. For each C1C2 pair, where x and y are the coefficients for C1 and C2 respectively,

the expected frequency is exp(Intercept+x+y). For example, the expected frequency for pp, given

no constraints on combination, is exp(5.15+0.69+0.69) = 685. Performing this calculation for each

cell yields the counts in (6).

(6) Expected counts, given no constraints on co-occurrence
C2

[p] [t] [k]

[p] 685 1033 344

C1 [t] 1033 1556 518

[k] 344 518 172

From here, we can calculate the frequencies of [p], [t], and [k] in each position. For p1, for example,

we divide the number of forms where C1 is [p] (2062) by the total number of forms (6203), yielding
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0.33. If we perform this calculation for each consonant in each position, we can complete the matrix.

The result, in (7), is identical to the intended matrix (2).

(7) Reconstructed grammar from the loglinear model
C2

[p] 0.33 [t] 0.50 [k] 0.17

[p] 0.33 0.50 1 1

C1 [t] 0.50 1 0.50 1

[k] 0.17 1 1 0.50

It appears, then, that the loglinear model is capable of doing something that O/E cannot; that is,

finding the intended solution for a set of data. If this conclusion holds more broadly, it would

provide a reason to favor the loglinear model over alternatives, such as O/E.

3 Our response

Our response to WO’s argument has three parts. In Section 3.1, we show that the matrix found by

O/E is a possible solution: it can be used to regenerate the toy dataset. In Section 3.2, we show

that the success of the loglinear model in Section 2.2 has to do with properties of the underlying

matrix; a loglinear model does not always discover the intended solution. Finally, in Section 3.3,

we show that the space of possible solutions to a collection of count data is much larger than the

two solutions discovered by O/E and the loglinear model. These methods should be thought of as

two possible ways of solving a problem, neither of which is necessarily correct.

3.1 The solution found by O/E is a possible solution

WO conclude that, because the O/E statistic does not reconstruct the underlying matrix, it does

not find the correct solution. Here we show, however, that the O/E statistic finds a solution that is

equally plausible as the one discovered by the loglinear model. We begin by considering again the

O/Es that the statistic generates, reproduced in (8).

(8) O/E values for the sample
C2

[p] [t] [k]

[p] 0.58 1.29 1.06

C1 [t] 1.29 0.72 1.17

[k] 1.06 1.17 0.48

To re-generate a toy lexicon, we need to first know what the positional probabilities of the con-
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sonants are in each position. To calculate this, we need to know what the expected counts of the

lexicon would be, given no constraints on combination. We can find these expected numbers by

simply dividing the observed numbers (4) by the O/E. The result of this calculation is in (9).

(9) Expected values for the sample
C2

[p] [t] [k]

[p] 595 802 325

C1 [t] 802 1078 442

[k] 325 442 179

From here, we can calculate the positional probabilities of each segment by following the procedure

outlined in Section 2.2. To discover the expected frequency of p1, for example, we can divide the

total number of forms where C1 is [p] (1722) by the total number of forms (4990), yielding 0.355.

If we perform this calculation for each of the segments in (9), we reach the matrix in (10).

(10) Grammar found by the O/E statistic
C2

[p] 0.345 [t] 0.465 [k] 0.190

[p] 0.345 0.58 1.29 1.06

C1 [t] 0.465 1.29 0.72 1.17

[k] 0.190 1.06 1.17 0.48

We can now follow the procedure outlined in Section 2.1 to generate a toy lexicon given the under-

lying grammar in (10). First, we calculate the probability of each segment pair by multiplying the

frequencies in the margins by the co-occurrence multipliers; the probability of [pp], for example, is

0.345×0.345×0.58 = 0.069. Normalizing these so that the probabilities sum to 1 results in (11).

(11) Normalized products
C2

[p] [t] [k]

[p] 0.069 0.207 0.069

C1 [t] 0.207 0.155 0.103

[k] 0.069 0.103 0.017

If we multiply these by 5,000, we find the counts in (12). Notice that these are identical to the

frequencies in (3), which were generated using the matrix in (2).
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(12) Frequencies in a sample
C2

[p] [t] [k]

[p] 345 1034 345

C1 [t] 1034 776 517

[k] 345 517 86

The significance of this exercise is that there are at least two possible matrices that could underlie

the count data in (12): the solution found by the loglinear model (7) and the solution found by

O/E (10). Instead of asking why the O/E statistic is incapable of finding (7), we could ask why the

loglinear model is incapable of finding (10). Both are possible solutions; there is no reason, internal

to this exercise, to prefer one over the other.

3.2 Some matrices are not reconstructed by O/E or a loglinear model

A further piece of evidence that WO’s (2009) argument lacks rigor comes from consideration of

matrices that do not resemble that in (2). Namely, it is possible to construct a toy lexicon whose

underlying matrix neither O/E nor a loglinear model can reproduce. We provide one example here,

though it is possible to construct many more.

In this example, we consider a matrix that is minimally different from the matrix in (2). The

probabilities of individual segments remain the same, as do the restrictions on the co-occurrence

of identical consonants. The difference is that combinations of [p]s and [k]s are overattested; they

occur at 3
2 times the rate that would be expected, given the independent probabilities of [p] and

[k]. The multipliers in the cells can be thought of as arising from the interaction of two different

Optimality Theoretic constraints: one co-occurrence constraint that disprefers identical consonants,

and a second constraint that prefers the co-occurrence of [p]s and [k]s.

(13) Terms for margins and cells
C2

[p] 1
3 [t] 1

2 [k] 1
6

[p] 1
3

1
2 1 3

2

C1 [t] 1
2 1 1

2 1

[k] 1
6

3
2 1 1

2

By calculating the probability of each combination and normalizing the products so that they sum

to 1, and then multiplying those products by 5,000, we generate a lexicon with the counts in (14).
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(14) Frequencies in a sample
C2

[p] [t] [k]

[p] 323 968 484

C1 [t] 968 726 484

[k] 484 484 81

3.2.1 Apparent failure of O/E

To find the underlying matrix discovered by O/E, we first need to calculate how frequent each

combination of consonants is predicted to be, if there were no constraints on co-occurrence. The

result of this calculation, following the description of calculating expected frequencies in Section

2.1, is in (15).

(15) Expected frequencies, given observed frequencies in (14)
C2

[p] [t] [k]

[p] 630 773 372

C1 [t] 773 948 457

[k] 372 457 220

By using these expected frequencies, we can find the underlying matrix, or the solution, that the

O/E statistic assumes. To calculate the multipliers, we divide the observed numbers in (14) by the

expected numbers in (15). To find the assumed frequencies of each consonant in each position, we

follow the procedure outlined in Section 2.2. Doing this results in the matrix summarized in (16).

(16) Matrix discovered by O/E
C2

[p] 0.354 [t] 0.435 [k] 0.210

[p] 0.354 0.513 1.252 1.301

C1 [t] 0.435 1.252 0.766 1.059

[k] 0.210 1.301 1.059 0.368

The reader can verify that this is a possible solution to the problem by following the procedure out-

lined in Section 3.1: finding the expected frequency of each cell, normalizing these frequencies so

that they sum to one, and then multiplying them by 5,000. Minor differences between the numbers

found by following this procedure and those in (14) are due to rounding.
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3.2.2 Apparent failure of the loglinear model

The loglinear model, in this case, faces the same problem as the O/E statistic: it finds a possible

matrix that could underlie (14), but the matrix that it finds is not the same as the matrix that was

used to generate the data (13).

We fit a loglinear model to the data in (14) that was identical to the loglinear model in Section

2.2 (see Table 1), save of course for the different count numbers. The loglinear model’s fit to the

data is summarized in Table 3. R’s fitted.values function confirms that the model fits the data.

Table 3: Results of loglinear model
Predictor Coefficient z value Significant?
Intercept 5.49 – –
p1 0.69 8.15 Yes (p < .001)
p2 0.69 12.45 Yes (p < .001)
t1 0.69 12.45 Yes (p < .001)
t2 0.69 8.15 Yes (p < .001)
k1 NA NA NA
k2 NA NA NA
pp -1.10 -12.08 Yes (p < .001)
tt -0.29 -3.56 Yes (p < .001)
kk -1.09 -8.27 Yes (p < .001)
pt 1.083−15 0.00 No
pk NA NA NA
tp NA NA NA
tk NA NA NA
kp NA NA NA
kt NA NA NA

To reconstruct the matrix that the loglinear model finds, we can first find the multipliers by

taking exp(c), where c is the coefficient for pp, tt, and kk. Following this, we can find the rest of

the matrix by finding numbers that the loglinear model expects to occur, given no constraints on

co-occurrence. The expected value for [pp], for example, is exp(5.49+0.69+0.69). Crucially, the

penalty for co-occurrence (-1.10) is not added in here. The expected values found using this method

are in (17).
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(17) Expected numbers, given no constraints on co-occurrence
C2

[p] [t] [k]

[p] 963 963 483

C1 [t] 963 963 483

[k] 483 483 242

To find the assumed frequencies of each consonant in each position, we again followed the proce-

dure outlined in Section 2.2. Doing this results in the matrix summarized in (18).

(18) Matrix discovered by loglinear model
C2

[p] 0.400 [t] 0.400 [k] 0.200

[p] 0.400 0.33 1 1

C1 [t] 0.400 1 0.75 1

[k] 0.200 1 1 0.33

As with the matrix discovered by O/E, the reader can verify that this is a possible solution to the

problem by following the procedure outlined in Section 3.1: finding the expected frequency of each

cell, normalizing these frequencies so that they sum to one, and then multiplying them by 5,000.

3.2.3 Local summary

In this subsection, we have shown that there are at least three possible matrices that can underlie the

toy lexicon in (14). The first, (19), was originally used to generate the data. While both O/E (20)

and the loglinear model (21) discovered possible solutions, and both found that pairs of identical

consonants are underattested relative to expectation, neither of them found a matrix identical to the

one originally used to generate the data.

(19) Original matrix
C2

[p] 1
3 [t] 1

2 [k] 1
6

[p] 1
3

1
2 1 3

2

C1 [t] 1
2 1 1

2 1

[k] 1
6

3
2 1 1

2
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(20) Matrix discovered by O/E
C2

[p] 0.354 [t] 0.435 [k] 0.210

[p] 0.354 0.513 1.252 1.301

C1 [t] 0.435 1.252 0.766 1.059

[k] 0.210 1.301 1.059 0.368

(21) Matrix discovered by the loglinear model
C2

[p] 0.400 [t] 0.400 [k] 0.200

[p] 0.400 0.33 1 1

C1 [t] 0.400 1 0.75 1

[k] 0.200 1 1 0.33

In particular, note that while the co-occurrence restriction used in the matrix used to generate the

data was consistent across [pp], [tt], and [kk]: the identical combinations occur at 1
2 the rate they

would be expected to, assuming no constraints on co-occurence. Neither O/E nor the loglinear

model is able to recover this consistency, instead finding (in both cases) that the co-occurrence

restriction targeting [tt] is stronger than the restriction targeting [pp] and [kk].

This finding reveals weakness in WO’s argument: it does not generalize. A loglinear model,

just like O/E, cannot necessarily discover the intended matrix that underlies a toy lexicon.

3.3 There are many more solutions

In the above section we have demonstrated that there are at least two possible matrices that can

underlie the toy lexicon in (4). In this section we demonstrate that these two possible matrices form

part of a vastly larger set. In brief, for any set of positional frequencies (i.e. [p] occurs at 1
3 , [t]

occurs at 1
3 , and [k] occurs at 1

3 ), it is possible to solve for a set of co-occurrence multipliers. To

verify this, we wrote a program that first calculates the values in (4), given the underlying matrix

in (2). It then asks for possible positional frequencies of the consonants, and from this, calculates

the co-occurrence multipliers. Valid inputs include those in which the individual frequencies of the

consonants are between 0 and 1, and in which the frequencies, together, sum to 1.

We include three possible solutions returned by this program. In the first, [p t k] occur at equal

frequency. The co-occurrence matrix discovered by the program suggests that combinations of [p]s

and [k]s are underattested, while combinations of [t]s are overattested.
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(22) Example 1
C2

[p] 1
3 [t] 1

3 [k] 1
3

[p] 1
3 0.621 1.862 0.621

C1 [t] 1
3 1.862 1.397 0.931

[k] 1
3 0.621 0.931 0.155

In the second, [p] occurs at a rate of 1
2 , while [t] occurs at a rate of 1

3 . The co-occurrence multipliers

discovered by the the program is qualitatively similar to that in (22): pairs of [p]s and [k]s are

overattested, while pairs of [t]s are overattested.

(23) Example 2
C2

[p] 1
2 [t] 1

3 [k] 1
6

[p] 1
2 0.276 1.241 0.828

C1 [t] 1
3 1.241 1.397 1.862

[k] 1
6 0.828 1.862 0.621

Finally, we considered a situation in which [k] is twice as frequent as [p] and [t] (in contrast to

the intended solution, where it is far less frequent). In this situation, the co-occurrence multipliers

discovered by the program suggests that combinations of [k]s are underattested, combinations of

[t]s are overattested, and combinations of [p] are about as frequent as would be expected.

(24) Example 3
C2

[p] 1
4 [t] 1

4 [k] 1
2

[p] 1
4 1.103 3.310 0.552

C1 [t] 1
4 3.310 2.483 0.828

[k] 1
2 0.552 0.828 0.069

The reader can verify that each of these matrices generates the toy lexicon in (4), using the

procedure outlined in Section 2.1. More generally, it is possible to input any set of normalized

frequencies and solve for the co-occurrence multipliers in the center. The space of possible matrices

that underlie the lexicon in (4) is thus much larger than the two solutions found by O/E and the

loglinear model, and is in fact infinite. Again, there is no reason internal to this exercise to prefer

any of these solutions to the others.

An analogy may be instructive here. Suppose you have a sample box filled with a supply of red,

yellow and blue balls following a certain distribution (i.e. 1
8 red, 1

4 yellow, 5
8 blue; these correspond

to the positional probabilities of the consonants). You then form fused pairs of balls according to a
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set of rules (i.e. red-yellow pairs are always retained, red-red pairs are retained only half of the time,

etc.; this corresponds to the co-occurcence matrix). When a pair is chosen and survives the rules

that govern its formation, it is placed into a collection box. After 5000 pairs have been placed into

this collection box, an observer inspects its contents (which corresponds to the sample frequencies,

as in (4)).

The task at hand corresponds to rediscovering the nature of the distribution in the sample box

and the set of rules governing the pairings, given only an inspection of the contents of the collection

box. The point made here is that this cannot be done by either of the methods discussed in this

paper: there is no way to discover the positional probabilities without inspecting the balls in the

sample box. The contents of the sample box do not correspond to an observable property, as one

analyzing a lexicon only has access to the contents of the collection box. Rather, one can simply

invent a set of positional probabilities and use these to construct a co-occurrence matrix. And there

are an infinite number of ways of doing this.

4 Discussion and conclusion

This paper makes two main points.

The first is that WO’s argument for the superiority of loglinear models over O/E is flawed, for

two reasons. First, the solution that O/E discovers is a possible solution: it can be used to re-generate

the lexicon that it analyzes. Second, the loglinear model, just like O/E, is not always successful in

discovering the analyst’s intended solution. As shown in Section 3.2, it is possible to construct toy

matrices that neither O/E nor the loglinear model can reconstruct. Arguments for loglinear models

over O/E must rest on claims other than the mathematical insufficiency of O/E, because in terms of

their ability to discover possible solutions underlying a dataset, the two are indistinguishable.

The second point is more nuanced. The primary conclusion of Section 3.3 is that the space of

possible solutions is infinite: given any set of valid positional frequencies, it is possible to solve

for co-occurrence multipliers. And given that the solutions discovered by O/E and the loglinear

model are just two of these possible solutions, there is no reason to prefer one over the other, or to

indeed prefer either of them at all. Put more bluntly, it is entirely possible that neither O/E nor the

loglinear model is the correct way of analyzing count data. Arguments for one way of analyzing

count data over the other need to be based not on mathematical sufficiency and elegance but rather

on how closely they resemble the generalizations that humans draw when they are exposed to this

data. (See Gallagher et al. 2019 for an example of this kind of argumentation.) A major goal of

theoretical linguistics, after all, is to build models that reflect speakers’ knowledge.

Returning to the main thrust of this paper: if we are to prefer the loglinear model over O/E,

it needs to be shown that the way humans generalize better-resembles a matrix discovered by the

loglinear model than it does a matrix discovered by O/E. One way of achieving this goal would
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be to compare the matrices discovered by these two methods with aspects of speakers’ grammars

discovered through experimental tasks. To the best of our knowledge, this has not been done. Thus

there is no reason that we know of to disfavor O/E.
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