
Joseph Galasso Note on Recursive Syntax

1

Note 4

A Note on Artificial Intelligence and the critical recursive implementation:

The lagging problem of ‘background knowledge’1

Humans tell themselves stories in order to get themselves to work on this or

that. It is almost always the case that these high-level stories are relevant

only as motivation and not really relevant to what eventually happens in

terms of technical understanding.

Allen Newell

Opening Remarks

Most historians of the Cognitive Revolution consider the now historic 1956 MIT

IRE Conference ‘Transactions on Information Theory’ to be the conceptual origin

of the revolution. It was at this conference that three of the most important

papers in the emerging field of AI would be read:

(i) George Miller’s Human memory and the storage of information (coupled

with an earlier 1955 paper The magic number seven, plus or minus two:

Some limits on our capacity for processing information).

(ii) Allen Newell & Herbert Simon’s paper The logic Theory Machine: A

complex Information processing system.

(iii) Noam Chomsky’s paper Three models for the description of language.

But it would not be long before splits would occur in the very defining of AI. For

some, let’s call them the AI-soft crowd, despite the ever-growing consensus that

the brain really did not function like a computer after all, (as was earlier suggested

by the naïve ‘brain is computer’ metaphor of the time), the AI-soft crowd, against

the push-back, were content to go their own way and see just how far they could

actually push their learning algorithms in solving ‘real-world’ problems (eventually

using Bayesian networks). Most early cognitive scientists of this time—while now

at least partially acknowledging and accepting the fact that what they were doing

was indeed not real ‘human-intelligence’ modeling—would nonetheless remain

1 This is a Draft chapter of ‘Note-4’ as part of my monograph entitled ‘Recursive Syntax’ (In
prep, 2019) LINCOM Publications. Joseph Galasso, CSUN~Linguistics Dept. 2019.

Joseph Galasso Note on Recursive Syntax

2

undeterred from learning about how to improve upon these non-human-like

networks. One AI-soft champion that stands out here would be Frank Rosenblatt

and his Perceptron model for visual learning (1959-1962).

 The other side of the split quickly emerged contesting that the brain is not just

composed of neurons firing (viz., that the human brain is indeed much more than

the sum of its parts). The rallying-cry would be that the brain is not at all data-

driven, but that an inner a prior blue-print encodes how humans see and interpret

the environmental data around them. For the hard-AI crowd, the human

brain/mind cut (not necessarily promoting Descartes’s dualism, but dualistic

nonetheless), was said to ‘boot-strap’ a Theory of Mind (via a ‘brain-to-mind’

bootstrapping), and that such a theory was, inter alia, intuitive-based, (even

superstitiously so), full of imaginary concepts (at times unreal)2 and symbolic &

categorical (rule-base)3 in nature—all of which were viewed as being uniquely un-

tethered to actual environmental stimuli & data4. This disconnect between (i) an

inner computational algorithm and (ii) the environmental data would foster

completely different predications and would run completely counter to any

symmetrical algorithmic language of X=x, where weighted probabilistic outcomes

supersede all else. This latter group which countered AI-soft might rather be called

AI-hard, where any naïve attempt to model the brain by simple recurrent, Bayesian

networks were pooh-poohed as being a simple product-calculation of patterns

found in the data, and nothing more. This side of the debate was spawned by the

likes of Marvin Minsky (see Minsky vs. Rosenblatt debates):

‘Where Rosenblatt would argue that his neural networks could do almost

anything, and Minsky would counter that they could do little…’

One essential aspect of the hard-AI crowd was how they viewed human

language as human reasoning. The most recent contribution here comes from

Judea Pearl (a UCLA cognitive scientist who some espouse as the one of the

founders of second-generation AI). Pearl argues that Minsky’s skepticism can be

completely understood now in the sense that all Bayesian networks can do is

achieve a probabilistic outcome as based on symmetrical language, of the sort X=x,

as understood within (B.F. Skinner’s) Behavioral theory of Association. Pearl shows

2 See S. Toulmin’s (1961) great book on the topic of a ‘model-based’ vs ‘model-blind’
dichotomy (attested in the rival approaches between Babylonian and Greek science).
3 See Pinker, (1999) ‘Words & Rules’ Theory.
4 A ‘Poverty of stimulus’ argument originally proposed by Chomsky. (See Chomsky 2002 pp.
5-6, 8 for review).

Joseph Galasso Note on Recursive Syntax

3

how this is the symmetric language of algebra: If X tells us about Y, the Y tells us

about X (a one-to-one relation). But the human brain/mind does not reason like

this: e.g., ‘rain may cause mud, but mud doesn’t cause rain’. Pearl rather is animate

that the only kind of complete AI that could deliver a real-like human thought-

process (AI-hard, or AI-complete) must be based upon asymmetrical language of

the sort: X tells us something about Y, but Y doesn’t tell us anything about X (a one-

to-many relation). Such a calculus for asymmetrical language is non-algebraic

(perhaps rather geometrical) and has only been conceived as a written language

quite recently (over that last two decades). In short, what is needed is recursive

mathematics of the kind Pearl describes. Pearl has worked up such a model for how

to achieve such asymmetrical processing.5

(i) Associative model: P(y|x) (typical activity = seeing on an iconic 1-1

relation).

Theory: Behaviorism, symmetrical language, probabilistic. {α, β}

(ii) Intervention model: P (y/do (x), z) (typical activity = doing of a 1-many

relation).

Theory: categorical, symbolic, non-probabilistic {α {α, β}}.

The former recurrent model tells us: What is this? (as based on frequency of

data).

The latter recursive model tells us: What if? (as based on causal reasoning).

The above dual distinction of ‘recurrent vs. recursive structure’ is what will be

more fully expanded upon in this note on AI—a distinction which draws out a

critical contrast between:

(i) associative/means (with the flat structure of [x,y]), as compared to

(ii) intervention/recursive means (with the hierarchical structure of

[x[x,y]]).

Pearl is one of today’s most animate cognitive scientists who have come out

strongly against any claim that mere association, as defined by the relation of

naked data (which entirely relies on pure input-data of a brute statistical kind), can

ever be an Operating System (OS) which delivers real human-like thought

5 See J. Pearl (2018) The Book of Why: The new science of cause and effect.

Joseph Galasso Note on Recursive Syntax

4

processing. For Pearl, a recursive and causal reasoning algorithm, at the very least,

is required of such an OS.

Finally, as things stand today regarding AI, most cognitive scientists still find

themselves folded somewhere along the Rosenblatt/Minsky cline: for example,

considering current events, such a spectrum might look like this— (a first group)

those faithful to self-driving cars are the children of Rosenblatt, while (a second

group) those who entertain a healthy skepticism of its human-like driving ability are

children of Minsky… (See Gary Marcus and further discussions below).

Overview

More than 20 years ago, it was already being claimed in the emerging AI world that,

following a kind of Gestalt psychology, any putative ‘computing to human-

behavior’ process could not simply rely on analyzing things into their atomic parts

or logical symbols, and then to expect ‘symbol-manipulation’ processings of those

parts to deliver any logical meaning. It turned out that real human cognition was

much more fluid than that, as human behavior produced (at the very least

epiphenomal/peripheral) noise within its own signal (viz., human cognition is not

just the sum of its material atomic parts, even if we were to understand what those

parts actually are, which, a the moment, is very far indeed beyond our current

reckoning). Thus, human behavior cannot survive any material reductionism as

would be required via AI. Two very hard problems, ‘flexiblity’ and ‘context-

sensitive’ procedures most surely be implememented in any viable AI/deep-

learning algorithm. As part of several ongoing experiments (chief among them

today’s experiments for autonoums self-driving vehicals), what the ensuing thesis

seems to be—which continuously emerges and resettles within both AI-advocate

and skeptic camps—is that what we want from a strong AI program is not just to

ask what the input is (as in ‘what’s the source of the encylopedic entry?, etc.’), but

also to ask how that source/input is delivered into the algorithm. While this latter

source of ‘how over what’ is a property often over-looked by those building AI code,

at least to my mind, it is a quientessential property most critical in implementation

if we wish AI-deep learning to come closest to simulating true human behavior. In

order for AI to avoid AI winter6, theory of mind & background-knowledge-based

6 ‘AI-winter’ is a term used by AI skeptics (cognitive scientists who have long-held believed
that AI will not (anytime soon) be able to simulate true human behavior. AI-winter also has

Joseph Galasso Note on Recursive Syntax

5

learning capacities must be implemented in the system: deep-learning computers

must learn not just what, but also how its source-input is being delivered into its

system.

Artificial intelligence (AI) implementations have exponentially grown over the

second half of the last century. However, little can be said about a real ‘qualitative

shift’ since first-generation computing. Today’s AI scientists are seemingly still

grappling with problems—some of which are quite basic, if not altogether

primitive—problems stemming from the fact that AI doesn’t know how to get ‘from

here to there’ in simulating human-like cognition. Real advances have rather come

in a quantitative manner, with speed, size of memory, multilayer connections (so-

called ‘perceptrons’), etc., but little if any headway has come in a substantially

qualitative manner.

Today, as was the case back in the 1950s, most AI-coding operations assume a

‘catastrophic-decision-based’ platform where all its recurrent operating system (OS)

can do is statistically average weighted input [A] with weighted input [B], whereby

the weighed and statistically-average product is the mere sum of its parts [A, B],

etc. In this linear and recurrent manner, [A], [B] have been simply combined with

the two being averaged to produce [[A], [B]=[A, B]]. So-called ‘simple recurrent

networks’ (SRNs) with an OS based on input-outputs with recurrent loops cannot

remember past individual inputs since all information has been consequentially

merged. The OS can’t recall past inputs more than one single computational time-

step (CTS) away: they hold no history. (This computational amnesia will become a

point of interest to us if we wish to simulate human-like cognition, such as intuition

and background- knowledge). But while they can average, they then can’t properly

adjust, it seems, given their tight restrictions of ‘locality’ (another point of interest

for us). This is precisely how recurrent OS differs with recursive OS’s. In human-

cognitive processing—which rely on non-local variables, as well as recursive

multichannel processing—inputs, even of the [A, B]-type, resend via feedback loops

which may go against the grain of averaged distributional weights and frequency

effects. Such loops have an uncanny ability to remember a CTS many steps away. In

other words, the information is preserved throughout the computational history,

thus allowing not just for averages to accumulate across different pathways (say,

from point-α to point-β given parallel processes), but that such accumulations can

be the result of a historical record, where previous input (lost in SRNs) can be

recalled to add an adjustment across variable pathways. This in essence is how

an economic aspect to it since much of the current U.S. economy has priced-in the stock
market billions of dollars of future speculation based on AI promises.

Joseph Galasso Note on Recursive Syntax

6

human learning works: where (de)learning can be established based on past errors

and/or processing glitches.

Now, while this narrative runs for earlier SRNs (of the simple, linear and

recurrent type found in G-1 (see below for history), the same processing essentially

is intact for more up-to-date complex recurrent networks (CRNs). Whereas SRNs

(with no more than one vertical stack of inputs) had notorious trouble generalizing

to new and novel items, CRNs, now allowing for more than one hidden unit (having

multiple hidden units), could multi-channel in the sense that feedback loops could

maintain some history over many CTS. Given this added feature, however, the final

actionable processing by the very nature of its OS, had to give priority to local

constraints.

A case in point is where we currently find ourselves regarding autonomous

(self)-driving vehicles (ADV). These operating platforms are still ‘catastrophic-

decision-based’—they essentially are supped-up SRNs which rely on averages of an

input stored over time, but where the actionable final input is merely the best

calculation that has been added over, say, thousands/millions of generations (CTS)

(data-driven experiences). Each decision is allied to a specific point in the spectrum

of a spread-out data field without so-called gradual decay of past information

which might be preserved in any calculus. Irrespective of these multi hidden units,

the final input has no memory of how those exchanges took place from point α to β

between various generations. Why it should matter becomes a point of contention

for us regarding how we believe human-cognitive learning takes place.

At the very earliest conception of AI, most scientists assumed a ‘brain-to-

computer’ analogy with the rationale that since brains are essentially composed of

neurons (along with a patch-work of neuro-nets) than what AI first needed to do

was begin an OS that mimicked low-level neuron processing. Starting ‘small’ is

always the best path forward whenever beginning a new scientific enterprise—

whether it is with first studying the earthworm for genetic material before inquiring

about the human genome, to analyzing young children speech to understand the

properties and structure of adult language. So, given this logical strategy, the first

AI OSs attempted to mimic lower-level neuron firing (with the Hebbian cliché of

‘what fires together wires together’). SRNs with their local neuro nets seemed to

logically fit the model. In the historical context of behaviorism, the model gained

acceptance.

Joseph Galasso Note on Recursive Syntax

7

A very brief AI history

(G-1) The very first pioneers of Artificial Intelligence (AI) (Generation-1 (G-1))

were actually mathematicians and logicians (intellectual philosophers of the

Rationalist persuasion). In 1955, Allen Newell and Herbert Simon created the Logic

Theory approach to AI (at The Rand Corporation think-tank in Santa Monica,

California). They held a rationalist philosophical view (form Descartes, Leibniz, to

Kant, Husserl). This was traditional to their fields at the time—namely, that the

‘body-brain’ cut was indeed real (following from a Cartesian principle) which meant

that there remained a ‘disembodied-mind view’ which saw that knowledge could

only arise out of abstract symbol-manipulation: that knowledge begins in the mind,

and that the world is then copied outside from the inner mind). (The neo-Cartesian

philosophy of the 17th century saw its resurgence come from the Chomskyan

paradigm (nativism) of the 1950s, based out of MIT). Abstraction was assumed

since, in their rationalist framework, that was the only way the mind could possibly

work.

In this view, inner-subjective symbols and rules (brain/mind) necessarily linked

to the objective things in the outside world to give meaning. Hence, any sense of

AI-meaning could only arise via symbols and/or categories. (Recall, the neo-

Cartesian effort of Chomsky came out of studies of human language, syntactic

analyses and child language acquisition). One could claim that G-1 logical-theorists

really didn’t take the word ‘artificial’ in the term ‘artificial intelligence’ seriously,

since what they were in fact grappling with was ‘real’ intelligence of the human-

logic form. In the end, while this ‘cognitive-revolution’ version of AI enhanced our

understanding of symbol manipulation of logical forms (the ‘brain as calculator’

metaphor, the brain as ‘rule-based computer’, or the brain as a ‘digital operator’,

etc.), it ultimately would fail since it avoided the hardware problem of how the

brain is really structured. It would later be rightly claimed that the brain is not really

structured in abstract symbols (nor is it a computer), but rather the brain/mind is

comprised of billions of neuro-net connections (more in-line with

features/properties of connectionism).

So, the hardware question became a critical one: Do we wish to simulate what

the brain is actually doing at the lowest levels of processing (at the neuro-network

connection), or do we wish to just stay within abstract theory (of symbols and rules)

Joseph Galasso Note on Recursive Syntax

8

and see how far we could get? Well, the end result was that Newell and Simon

really didn’t get too far with symbols and rules (outside of basic tasks), and so the

next generation would more seriously have to reconsider the hardware problem

and develop neuro-net connections. This hardware problem was what led to the

second generation (G-2) school called ‘connectionism’ of Rosenblatt (1957).

Another factor in G-1 was the (false) premise that ‘digital-seriality’ was

necessary for human behavior/thought (so-called ‘serial processing’). Otherwise, it

was thought that under a human ‘analog- parallel’ mode of processing (a best-

scenario) one part of your human cognition could simply cancel out the other, or,

perhaps (a worst-scenario), one part could not stop what you are thinking in the

other part. However, upon closer examination, this serial/digital approach to

human thought also turned out to be wrong: (the human mind/brain is an analog

machine (not digital), a parallel-processing machine (not serial) (as observed by

Patricia Churchland).

But human parallel processing turns out to be a very large problem indeed—a

problem still yet to be completely overcome by our fastest computers in current AI.

(Problems such as Common-sense, background-knowledge and intuition are very

unique human-specific procedural activities and seem to defy serial declarative

processing—they are very likely to be the murky residual result of ‘parallel’

processes between two or more modes of input/output channeling at any given

time). Hence, any attempt at AI could never simply be about ‘data collection’

(declarative facts), whether with G-1 linear symbol manipulation or G-2 neuro-net

connectionism (the former dealing in abstract logic, the latter in simple recurrent

networks (SRN). Rather, what future AI would have to do—well beyond the earlier

prosaic modes of programming—would be to take ‘data collectively’ (procedurally)

over a spread of multi-layer processing levels.

The trick, as we will discuss below, is that each time-step of the ‘data collective’

(pace ‘data collection’) must be self-preserving and remain distinct—that is, the

data can never be compromised at any of the intermediate steps as a result of, say,

when one datum {α} is combined with another datum {β} and then averaged

together as a new single result {γ}, thus losing each datum’s individual and unique

value. This problem in fact was what plagued the two aforementioned earlier

modes of AI, and, moving forward, is what continues to plague AI/deep learning

today.

(G-2) But in the beginning of G-2, early networks were very limited in the sense

that they were ‘vertically processed’ (stacked on top of one another) and had no

Joseph Galasso Note on Recursive Syntax

9

more than two layers of stacking. These units were processed ‘vertically’ as linear

units without so-called feedback loops. In other words, the strict associative

(behaviorism) of a one-one input-output algorithm was all that was assumed. Frank

Rosenblatt (1957) (at Cornell University, Cognitive Systems Research Program) was

the first to attempt a connectionist theory (of binary classifiers) towards human

behavior (vision) in this way. His perceptron—an attempt of a first computer

program system that could learn new skills by associative trial and error—used a

type of G-2 neural network that simulated human-thought processes. Of course,

while G-2 was an advance from G-1 symbols, the problem was that the G-2 neuro-

network was much too limited both in memory and in speed, and as a result

ultimately would fail.

The classic Minsky and Papert paper (again, a product of MIT) quickly shot-

down any assumption that human cognitive learning could be simply mapped in

such a stark binary and linear manner (again the brain is analog, not digital). Also,

by this time (1956) Chomsky’s first important paper had already come out

(seemingly in support of the doomed G-1 model) defending the skeptics of linear

behaviorism in his paper Three models for the description of language. Chomsky,

though seemingly in support of the ‘backwards-looking’ G-1 symbol manipulation

theory, was correct and ‘forward-looking’ in calling out that such a simple

associative AI theory would only ever be able, at best, to map top-down input

already installed in the program to tags matching the output. AI, under such

limitations, would never simulate human cognition.

But, advances would still be made on the system: e.g., such top-down

encyclopedic tagging (with knowledge already inputted from the top) would

ultimately pave the way for so-called ‘micro-worlds’ of expert AI-systems (closed-

worlds where only specific, relevant material to the task could be drawn upon and

where the so-called background/commonsense problem that humans innately

enjoy (seemingly without step-processing) wouldn’t be required). In the main,

such simply associative learning was attempted by most connectionist programs of

the day with little success. For about twenty years thereafter, AI was both

frustrated and stagnant: many of the basic problems we thought we could solve

turned out to be ridiculously out of reach: (such problems may be so-called

‘hopeful monsters’)7, requiring a completely new way of bootstrapping our

7 Richard Goldschmidt was the first scientist to use the term ‘hopeful monster whereby it
was thought that ‘small gradual changes’ could NOT cause a change between the (tiny)
microevolution-level and (large) macro level. Hence, something quick and large would have
to be the source, a so-called ‘saltation theory’ (or quick jump, as in Steven J. Gould’s

Joseph Galasso Note on Recursive Syntax

10

understanding. A ‘saltation theory’ is required as in the notion that the evolution of

a species might not come from incremental-gradual adaption over a long period of

time, but rather might ‘jump-up’ (‘salto’, Latin for ‘jump’) all at once and rather

quickly via an ‘exaption’ from micro-changes either in the environment (via neo-

Lamarckian inheritance) or in the genome itself (via cryptogenetics).

For instance, consider one such aspect of the ‘memory and storage’ problem

related to encyclopedic micro-worlds: a seemingly trivial task for human behavior,

but a major problem for AI seems to be the case, even at a basic associative level,

that if one were indeed capable of successfully down-loading all human-

encyclopedic knowledge into a connectionism system, there would still exist the

problem of ‘how’ one would be able to access the right material needed at any one

time (at the right time). Humans get the ‘accessing problem’ right away. It’s called

procedural-access of declarative-knowledge. We don’t even ask the question of

‘how’ to access ‘what’ ‘when’. It’s just part of our background, common-sense

knowledge.

Well, it turns out that even if we get the ‘memory & storage’ problem right, we

still have to deal with the other side of the equation, the proper ‘access & retrieval’

problem. Hubert Dreyfus (while at the Rand Corporation, contemporary with

Newell and Simon) was once quoted (talking about encyclopedic machines at that

time) as saying (my rephrasing in italics) ‘The problem may not be how you can get

the vast amount of knowledge into that super-big memory (he doubts that you

can), but even if you did, how could you possibly access the part that you needed in

any given situation’.

So, for G-2, some of the problems they were already grappling with was

somehow related to this commonsense/background knowledge we all have,

apparently inherent in our design of the brain/mind, with spin-off attributes leading

to subjectivism and theory of mind. The next generation G-3 would either have to

deal with this hopeful monster in new and creative ways, or else sweep it under the

carpet as some imposter artifact, as some unique feature outside the peripheral

realm of AI, and somehow not implicated in the grammar coding of future expert

systems. In other words for G-3, the macro-world of human commonsense-

‘punctuated equilibrium’). In his book The Material Basis of Evolution (1940), Goldschmidt
wrote ‘the change from species to species is not a change involving more and more
additional (small) atomistic changes, but rather a complete (large) change of the primary
pattern or reaction system into a new one, which afterwards may then produce
intraspecific variation by micromutation’ .

Joseph Galasso Note on Recursive Syntax

11

background knowledge will either be an impediment to AI (perhaps provoking

leading AI-skeptics of the day), or it simply won’t factor in to the AI equation.

G-3 Then a breakthrough came in the 1980s (largely from work happening at the

University of California, at San Diego (UCSD)) by the likes of Geoffrey Hinton and

James McClelland, David Zipser (all three who contributed to the seminal book

Parallel Distributional Processing (PDP)), Paul and Patricia Churchland, then later

Jeff Elman—all of whom in one way or another made major contributions to work

in ‘parallel distributive processors’. Most crucially, and different from earlier

associative-connectionists models (of Rosenblatt), these new and immensely more

powerful PDPs were of a very new kind of processor—whereby so-called ‘hidden

units’ (hidden layers) and ‘back propagation’ (feedback loops) where inherently

encoded into the architecture and design of these superfast computers.

Such advanced work at UCSD rekindled old and often heated debates in the

1990s between strong AI-advocates such as Daniel Dennett, James McClelland, and

Jeff Elman (of the Peter Norvig persuasion)8 versus AI-skeptics (of the Noam

Chomsky persuasion) such as John Searle, Jerry Fodor, and Gary Marcus9. I

personally can recall the debates between the latter-two counterparts (Elman v

Marcus) in the 1990s (while I was a doctoral student with Harald Clahsen

(University of Essex)). From the tenor and passion of their arguments at the time,

one got a pretty good sense of the direction to be taken and all the problems to be

had facing future AI as it would pave its way towards the 21century.10

 The ‘PDP-promise’ included a framework which was closest to an artificial

neural network found in human cognition. The model stressed the parallel nature

of neural processing and distribution.

8 Link-29.
9 Link-30. See Marcus for a recent summary.
10 Link-31.

Joseph Galasso Note on Recursive Syntax

12

The new PDP promised: 11

(i) that the computer architecture would connect many more than the previous

G-1 simple ‘two-layer unit’. (In fact, PDPs could now use, at least

theoretically, unlimited amounts of connective networks (perhaps limited

only by the size of its hardware),

(ii) that rules/symbols would no longer be the engine of computation—rejecting

the putative ‘human-like’ (and more analog) manipulation of rules over the

favored (and more digital) connectionist computation (but recall Patricia

Churchland’s observation above that the human brain/mind is analog and

not digital),

(iii) that PDPs would allow for real ‘deep-learning’ to take place via feed-back

loops which fed into multiple hidden-units. These new ‘post-hidden-

structured’ unit would in turn loop backward from the incoming data-

stream and return it as a new forward signal.

G-4 Recursion.

We are about two thousand years from having a serious theory of how the mind

works... Jerry Fodor.

I’d like to address our contemporary Generation-4 (G-4) in specific terms as it

currently relates to the micro-world of autonomous-driving vehicles (ADV)

(currently hot off the press). First of all, most cognitive scientists along with strong

AI researchers today recognize the notion (now, a close truism) that the mind is not

a digital computer. Sure, at one level, say at the lowest level of processing, specific

neuron firing may have certain attributes analogous to binary operations (of off &

11PDPs allowed for: Processing units, represented by a set of integers, to be activated for
each unit. Each output function for each unit is represented by a vector of time-dependent
functions on the activations. An activation rule for combining inputs to a unit determines
its new activation, as represented by a function on the current activation and propagation.
A learning rule (algorithm) is implemented for modifying connections based on experience,
which are represented by a ‘change’ in the weights based on any number of variables. An
environment that provides the system with experience is represented by sets of activation
vectors for some sunset of the units.

Joseph Galasso Note on Recursive Syntax

13

on). But surely, learning and knowledge is not the mere brute result of any single

statistical product: in brief, human learning is not a kind of ‘statistical inference’ but

rather a sort of formation derived by abstract theory. So, at one level, at least at the

lower level, a kind of associative/connectionism may in fact be what is going here: it

is true, for most micro-word expert systems (say, analogous to lower-level mind

operations), statistics do seem to drive the computational result (and the best

result is always on the upside of the ‘statistically averaged’) The bell-shape curve of

a competency of a skill follows a statistical curve. But it may be that the skill-

competency of activity {x} is not the same as knowledge of {x}. Statistics may grant

us an understanding of how a hypothesis of {x} is tested against the body of data {y,

z}, but statistics alone cannot grant us an understanding of how the hypothesis was

generated.

It seems a more abstract, higher-level processing beyond mere statistics is

required. But it is true, at lower levels, a kind of Hebbian12 calculation seems to

hold: Hebb’s expression ‘what fires (statistically) together wires (statistically)

together’ is now a well-accepted biological truism. But it seems, still at G-4 PDP-

connectionism, that all we have done is push the associative, lower-level ‘binary

statistic’ up towards a pretend ‘higher-level’ processing. But it has not arrived

there. Are we just faking learning? We do this faking whenever we claim that self-

driving cars can ‘learn’ beyond statistics: but statistics have no means of learning:

numbers can’t ‘learn’, they can only ‘average’! Sure, it may turn out that their

averages improve and the bell-shape curve shifts upon more and more experience,

but there is no learning in the sense of how humans learn. Considering the ADV

method of learning, it may be that a hypothesis of the driving act can be measured

and tested against a body of data, but even so, we still don’t know how that

hypothesis was generated in the first place.

For some AI researchers the question may not even come up: What does it

matter to them if they don’t understand how the hypothesis was generated when

they have successfully tested their data? But, sooner or later, it will matter—as

when ADV hypothesizes that a very large white scene just in the view ahead is

statistically analyzed, averaged, and wrongly interpreted as free-open road (and the

self-driving car runs into the lateral side of a tractor-trailer killing its unaware

passenger), or, as a preliminary report from federal safety regulators have detailed,

when an ADV’s sensors had in fact detected a ‘woman pedestrian’ but its decision-

making software discounted the sensor data, concluding it was likely a false positive

12 Donald Hebb way back in 1949 showed that neuron clustering could alter synaptic
coupling which in turn could change synaptic strength.

Joseph Galasso Note on Recursive Syntax

14

(and the ‘woman’ is struck and killed). Again, Learning is never a statistical

gathering of atomic parts, but rather true learning happens at a ‘higher-level’

processing (not the sum of its parts), it is abstract, and it seems to tap into

fundamentally different but parallel modules of the mind. I’d rather prefer to

postulate that for future G-4 AI, the question should be ‘Can we get some success,

even minor success, out of a machine that goes beyond statistics?’ At least we

would then be telling the truth: with such a question, we realistically tether our

promised AI to the very primitive associative methods we have at one’s disposal,

and nothing more beyond that. As Fodor says, it may take us two thousand years to

understand how we get from low-level firing of neurons to higher-level

consciousness and thought. When we finally do, only then can we claim we

understand how the mind works.

At the moment, our best algorithms for ADV semantic imagining (the ability to

recognize the environment) rely totally on trained end-to-end, pixels-to-pixels,

semantic segmentation.13 But, while the best AI-imaging software currently being

deployed, as connected to deep learning, seems to be very good at very difficult

imaging averages, the software has major catastrophic breakdowns when dealing

with the simplest of things. Here’s such an example (quoted from Gary Marcus NY

times, 2017):

Even the trendy technique of ‘deep learning’, which uses artificial neural

networks to discern complex statistical correlations in huge amounts of data,

often comes up short. Some of the best image-recognition systems, for example,

can successfully distinguish dog breeds, yet remain capable of major blunders,

like mistaking a simple pattern of yellow and black stripes for a school bus. Such

systems can neither comprehend what is going on in complex visual scenes

(‘Who is chasing whom and why?’) nor follow simple instructions (‘Read this

story and summarize what it means’).

Such installment of ‘semantic information processing’ into the operating system

reminds me of initial problems beset early SRNs of the 1980s, when problem-

solving programs went in operation hoping to ‘solve problems’ but without any

‘knowledge of relevance’ of the problem itself. It was the improbability of such

tasks that got AI cognitive scientist to rethink the importance of belief, intuition,

13 Link-32. See Marcus for a review.

Joseph Galasso Note on Recursive Syntax

15

and commonsense/background information—what would become known as the

‘commonsense problem’ (See Dreyfus’s book Mind over Machine).

What Gary talks about in the review is the need for future AI to have two modes

of simultaneous processing: namely, slow bottom-up processing which is sensual in

nature (environmental) (perhaps equating to so-called ‘declarative’ knowledge),

plus rather faster top-down processing which is theory-formation based (equating

to so-called ‘procedural’ knowledge). Such an AI dual processing would mimic what

we find at two levels of human processing—with the lower-level and slower serial

processing having a connectionist-network quality (say, at the neuron level in the

brain) and parallel processing, which is bootstrapped by lower-level connectionist

but simultaneously acting in an autonomous manner from the lower level having a

(very human) symbolic and rule-based theory formation quality. The former serial

processing occurs at a much slower in speed in humans and is conscious (as in

‘step-by-step’/ingredient building), while the latter parallel processing is much

faster (and perhaps subconscious in humans), and is rule-based and abstract. I’d

extend the analogy by suggesting that the human brain is rather a slow serial

processor (with neurons firing to make connections)—that’s why computers so

greatly outmatch human capacity, computers are extremely fast serial processors

at every step of the way at the lower levels. Humans get muddled-up between

steps as we attempt to surface up bottom-up results to our top-down

understanding.

It is my attempt below to try to simulate a thought experiment of what it would

mean for an AI algorithm to have such a dual mode of processing, whereby both

(lower-level) recurrent processes overlap with (higher-level) recursive processing.

Neural Networks

Artificial Neural Networks (NN), as the basis for most SRN operating systems, was

the AI response to how brains were thought to compute. The analogy of the brain

as a computer, on one hand, seemed natural enough since brains are indeed

bundles of neuro-circuits (of a binary nature [0,1] off & on switches). NNs, in this

way, were thought as sufficiently capable of handling most brain-related tasks since

such modeling were essentially non-linear. NNs are extremely capable of modeling

nonlinearity tasks such as classification, associative memory and clustering. Such a

diverse means of processing allowed NNs to be modeled to solve many related

tasks. The problems early NNs faced were mostly due to limitations of training:

Joseph Galasso Note on Recursive Syntax

16

large amounts of time had to be reserved in order for the NN OS to learn and cope

with the task at hand. Also, as stated above, the appeal to NNs was that it, like the

brain, consisted of a collection of neurons (or perceptrons/nodes), and each

perceptron had its assigned input to output production. Training of such NNs

(multilayer perceptrons) involved error-feedbacks: each time an error value is fed

back, its weights of that connection is adjusted so that over time, learning can be

achieved. Over time (training) the averaged and weights were adjusted so that

better approximation could be produced (hence, learning). The factors behind NN

amount to how many hidden units or layers were predetermined in the system for

feedback. Also, another factor was how the units were labeled (either via mere

associative chunk of item (for example ‘cat’ [cat]), semantic feature of item ([cat]:

{+furry}, {+ four-legged}, {+ Purrs}, {+whiskers}, {+ animal}), or even based on its

phonological units ([Cat]: onset /k/ nucleus /æ/ coda /t/). The most common use

of NNs are called multi-layer perceptron which have multi inputs along with hidden

units, where labeling and identification of input is determined by either label of

item (chunk), semantic (features) or phonology. However, what’s been overlooked

so far is how to employ syntax into such NNs. Recalling that it is precisely syntax

that allows to depart from strict one-one associative/recurrent formations and

allows for recursive/hierarchical structure to be employed as part of its neuro-

network—recalling that a neuro-node has only one output value. Neurons don’t

actually calculate. They simply pass on the input value to the next layer. The notion

of ‘learning’ for such Networks is tantamount to associative-memorization systems

which operate under ‘rate of frequency’ (occurrence, distribution, position, etc). As

an exercise, try to imagine how such a network would treat {s} in the following two

words:

[1] ‘Fix’ IPA = /fIks/ processing = [fIks]

‘Speaks’ /spiks/ [[spik]s]

(Note: For NNs, there would be no way to tease out the syntactic distinction that

both final {s}’s, though both have exact position (final), have the exact distribution

(_ks) (both verbal), and have the same sound /s/, nonetheless would have

competently different underlying processing. Only an NN with recursive treatment

and comparison of the two {s}’s would show that the {s} in the verb [fix] is part of

the stem, while the {s} in the tensed verb [[speak]s] is an inflectional features of the

syntactic features {3P, SG, Pres} (third person, singular, present tense)).

Joseph Galasso Note on Recursive Syntax

17

Fig. 1 Multilayer feed-forward neural network

(For back propagation, neuro-pathways would also go backwards, in so-called error-

trained learning).

Back-propagation models

In back-propagation models (multi-layer perceptrons) an ‘external teacher’ (or

supervisor) is required to steer learning. This supervisor either must be pre-

installed in the system (innate architecture) or can come via some pieces of

information found in the environment. In any case, learning is not the mere product

of input and outputs but rather is steered via some parameterization. For AI

enthusiasts who claim that the greatest feature of connectionism is that it assumes

no innate structure would be hard pressed to explain-away why such supervision is

required in the first place. But recall, that even the most ardent anti-innate people

have to at least assume some small amount of innate structure in order to first

calibrate an initial (neutral) weight for weighted learning. But, to a large degree,

such an ‘external teacher’ could be made available in the environment itself—e.g, a

small piece of info that could then bootstrap larger chunks of info, thus leading to

wholesale learning. Once trained, such models could, for example, predict the next

word in a sentence (in a sentence-learning program). For instance: what is the next

word in the sentence ‘The dog chased the__’? For a sentence-learning algorithm,

‘the dog chased__’ would have an weighted averaged for [dog= A] + [chase=B__]

which would trigger [C=cat] if we were to have weighted nodes which push the

Joseph Galasso Note on Recursive Syntax

18

probability connection of dog+chase+X as X is a Noun (some other animal, high

average is [+N, cat], etc.). This could be learned from the environment if previous

sentences with certain semantic features behaved accordingly (dogs bark at cats,

dogs fight cats, etc). Of course, one problem might me for a sentence-prediction

algorithm to ascertain embedded structures such as ‘The dogj the girl chased__j’

(predicate what comes next: what is [__])? Such structures which involve object-

raising may prove difficult for mere SRNs without necessary recursive networks.

(We’ll return to recursion in latter sections).

Claims ‘For’ and ‘Against’ Multilayer Perceptrons (ML-P).

‘For’ ML-P

Claim 1. As mentioned above, multilayer-perceptrons (ML-P) seemed to have a lot

going for it since they did well to mimic what we (we thought) we knew about the

brain: nodes are analogous to neurons and connections to synapses. To a large

degree it is true: brains are composed of bundles of neuro nodes (synapses), they

are binary based (+/-habituated), and are valued (=weighted learning) as

determined on the averaged frequency of input. Hence, brains/neuro-nets were

understood to be nothing more than little Skinner schemes (B. F Skinner) as

understood in most behaviorism models of the day (viz., associative-learning

schemes). It was taken for granted that connectionism of the day was the best fit

for how the brain actually functions. This ‘brain to computer’ analogy gained much

favor in the AI world, (at least until Minsky & Papert’s 1969 paper came out to

prove sever limitations on such meager associative models). Also, it was becoming

well established at the time that the brain didn’t work as a symbol manipulator

(based on rules) since rules held no biological foundation (they are only abstract

conventions). These two factors placed together (brain as neuro-net, not as symbol

manipulator) paved the way for NNs over the next couple of decades despite

Minsky & Papert’s disclaimers14 and others how question if the brain was really

digital after all (Minsky, Fodor and others pace Chunchland and others) as discussed

elsewhere in this text). Others preferred ML-Ps since they required very little in the

way of innate architecture (although, that is not quite right since even with

advanced ML-Ps, some amount of pre-installed (innate) values had to be assumed

14 First Minsky & Papert demonstrated the severe limitations of earlier SRNs which lacked
hidden units, and even went so far to dispel how systems with abundant hidden units
would still remain insufficient in handling human-like thought-processing. (See Hadley 2000
for review).

Joseph Galasso Note on Recursive Syntax

19

in order to get the ‘weighted’-values started). People such as Churchland were

animate that brains could learn directly from the environment and no innate

structure had to be presumed. This innate debate that carried over into the AI field

was a direct result of debates being had in the field of language and child language

acquisition (Noam Chomsky)—arguments such as the ‘poverty of stimulus’ debates,

etc.

Claim 2. ML-Ps also seemed to gain much favor in the AI community since such

networks didn’t assume any innate structure (which was the Holy Grail for AI). But,

as hinted above, as it turns out, this is not entirely right: some amount of innate

structure is always required—it being either assumed in the architecture, or is

assumed in the way a search is conducted of the environment.

Claim 3. True: the style of learning achieved by ML-Ps do seem to mimic human

learning to the extent that e.g., over-regularization can be produced by the

learning algorithm when it comes to the learning of language inflection (in child

language development, as stage exists which sow examples such as singed,

breaked, taked, goed, and even wented—all examples of over-generalization of the

regular rule (past {ed}) onto irregulars. Such a thing we would want to see of a real

learning algorithm. However, only later with back-propagation do they correct such

irregular sound formations (e.g., _ing > _ang, for sing to sang) and so only when the

input has been extremely modified (i.e., abrupt adjustment) to fit such sound

pattern sequences. In other words, the whole vocabulary had to be reinstalled in

order to cope with irregulars, and an entirely different vocab index was used for

regulars. The problem here is that the networks was be sheltered by two different

(artificially supervised) inputs since any ML-P can only work via a single mechanism

(a single mechanism model). (See Marcus et al. 1992 for review. See Pinker 1999 for

review of a dual mechanism model).

Even when trained with irregulars-vocab input, the ML-P was unable to handle

so-called denominals such as ‘ringed’ (here, where an inherent (irregular) verb

takes on regular qualities behind the derivational processes of Noun (a ring) to

Verb (to ring) => [N-V {{ring} ed}]. It seems at the very least a dual mechanism

model is needed to handle such diverging data regarding regular vs. irregular

processing. (See ‘Dual Mechanism Model’ below).

Joseph Galasso Note on Recursive Syntax

20

‘Against’ ML-P:

The Sandwich problem

Claim 1. It remains clear that ML-P can’t deliver the full range of human thought—

viz. ML-Ps seem unable to capture a class of functions such as [+/-partitive, +/-

individual] (a typical ‘object [+/-specific] feature associated with determiners (each,

some) as compared to pronouns and proper nouns—viz., a comparison of

‘kinds/Noun’ versus ‘individuals/Pronoun’, etc). For instance, in the dual

proposition John kissed Maryj & Fred kissed Maryj [kiss M [J&F]] the ML-P can

properly treat ‘Mary’ as one in the same persons [+individual] (as an individually-

coded item)—viz., as the Pronoun (Mary/she) which properly triggers a [-

partitive/+individual] function. But the harder problem rather may be with simple

nouns. For instance, in the dual propositions John ate a sandwichj and Mary ate a

sandwichk an ML-P may not be able to recognize the referential distinction that the

sandwich is not one in the same—namely, ML-P would rather treat both

sandwiches as the same, subscripted with same index (sandwichj).

 In order to capture the partitive function in coding, the register/node which

codes for generic ‘sandwich’ say e.g., [0110110] would also have to be doubly

coded for sandwich-1 [01101101] vs. sandwhich-2 [011011011], etc. Such itemized

weighted functions would place a heavy burden on the limit of coding (which may

create problems associated with so-called ‘cross-talk’, e.g., when an overlap of

coding creates ambiguous functions). (See Blending problems below). It rather

seems what we want out of a well-functioning ML-P is the ability to represent both

relations between local nodes (= sandwiches), as well as distant variables (=

sandwichj & sandwichk)—and to be able to compute across the two representational

systems. (Keep in mind that our upcoming proposal calling for a dual mechanism

mode (DMM) (see below) will be in a unique position to do both: allowing for (i)

local neuro-nets to represent +frequency-based registers (nodes), while (ii) non-

local relations between variables of indexes/diacritics are maintained. It is here that

we find that non-local representations between nodes and variables are unbound

by frequency of the stimulus, but are rather recursive/symbolic in nature. Hence, by

definition, a DMM is inherently a parallel processor, whereby both [+Freq]

sensitivity of nodes and [-Freq] of variables can be simultaneously coded.

 Recall, that the only source of information an ML-P has to ‘sandwich’ is a set of

input nodes that are activated at the moment the item ‘sandwich’ is retrieved.

There seems to be no way a single mechanism model (and serial processor)—which

is completely reliant of local-node frequency—could go beyond this one-one

Joseph Galasso Note on Recursive Syntax

21

associative coding. Of course, in human-thought reference (pragmatics), people

assume that there must be two sandwiches, whereas the Proper noun Mary codes

for an individual.

Another possible problem with ML-P is the matter of frequency (recall, that all

neuro-networks rely heavily on one determining learning-factor—that of

‘frequency’). For example, in work carried out by Harald Clahsen, the German

plural {s} was found to function as the default setting for plural. So, for example,

when a novel word was introduced to a German speaker, the default plural of the

Noun [N] was add {s} : [[N]s]=Pl. However, the problem with this is that German

plural {s} is not the most frequent in the data. In fact, when compared to

alternative plural inflections {en}, {er}, the {s} only occupies less than 10% of

productive plurals (Clahsen 1995, Marcus et al. 1995). In this case, if frequency is

the generator behind (weighted) learning, than there would be no way to handle

such anomalies as default rules untethered to frequency. The only way to

guarantee that ML-Ps can generalize from limited data (in the ways that humans

do)—given that the German plural data show highest frequency plural for {en},

{er}—is to incorporate a Dual Mechanism Model (DMM), a system for frequency

(irregulars), and a system for symbols (rules, defaults). The question becomes: How

can a non-frequency-based weighted distribution be incorporated in a frequency-

based ML-P system?

Perhaps the biggest problem with ML-Ps is that they are simple recurrent

networks, that is, they merely can blend (combine) input data.

Blending

The problem with blending is that in the simple combining of [A], [B], both

individual values attributed to each item is lost as soon at the two items are

calculated and merely averaged together—i.e., blending doesn’t preserve the

individuated information (information is lost over the spreading/blending of the

two). Take for example, the representation of ‘A’ as [1010], ‘B’ as [1100], ‘C’ as

[0011], and ‘D’ as [0101]: if we blend, say ‘A’ with ‘D’, we get [1111], but so too

would be the result of ‘B’ & ‘C’. Hence, there is no way to distinguish the

individuated items. In this case, we have lost the unique code for the specific items

once blended. In order to save the information over, say, several computational

time-steps, we would need some form of recursive measures, such as [1010[0101]]

, set = {‘A’, ‘D’} with order unambiguous set. Here, info is preserved. Conversely,

Joseph Galasso Note on Recursive Syntax

22

such loss of info as a result of blending matters when ‘words’ are assigned such

binary codes (as with standard binary code ASCII)—where e.g., A dog could be

coded as ‘A’ and A cat as ‘D’, hence losing the proposition ‘cats and dogs’.

A second problem with blending (also particulate schemes) is that no word

order is gained from out of the mere combination. As is seen below within the

treelet structure, the phrase ‘box inside pot’ has to somehow insure that it is the

‘box’ that is inside the ‘pot’ (and not ‘the pot that is inside the box’).

A third problem with ‘blending’ here is known as superpositional catastrophe.

Recall, that this blending problem is what we find of non-recursive sister relations

found in our main discussions of syntax, e.g., of the [house, boat] vs. the [boat,

house] variety. Recall, that as long as the two items merely blend as sisters []+[],

there is no way to capture hierarchical structure—viz., is it a kind of boat or a kind

of house? The same would be lost regarding [dog and cat]: is it a kind of dog or cat?

It is only through recursive measures [[]] that the individuated information of the

item is preserved: [house [house, boat]] is a kind of ‘boat’, with unambiguous word

order and meaning. Another problem regarding ‘blending’ is if you are dealing with

the combining of semantic features e.g., {cat: [+ furry], [+animal], [+ purrs]}. If one

feature overlaps, superposition catastrophe of semantics could surface. Such a

problem is cited in the literature regarding {penguin} whereby one of its semantic

feature [-fly] bleeds into the semantics coding for ‘fish’. (See Marcus 2001, p. 94,

where he refers to this as catastrophic interference).

 Blending > Particulate > Recursive schemes.

 a. Blending: [A] + [B] => [C]. Info is lost.

 b. Particulate: [A] + [B] => [A, B] Info is lost.

 (semantic network connectionism)

 c. Recursive Network: [A] + [B] + [C] => [A [_ B, C]] Info is preserved.

 [B [A, _ C]]

 [C [A, B, _]]

Joseph Galasso Note on Recursive Syntax

23

What we want out of a human-like cognitive process is to have a representational

system that can operate over variables across two or more operating systems, run

in parallel whereby such an overlap of Dual systems, along with their

representations, creates a representational hierarchy. Only recursive systems can

deliver these prerequisites: Only Recursion can allow its operations to spread

across variables in this way. In recursive systems, items are not simply nodes based

on frequency, but rather are such primitive (nodes) become codes whose

computations themselves act as symbolic manipulations which can change their

status as determined by their very arrangements (order). This is what we see below

regarding the ‘boat-house’ example. If the scheme was, by innate definition, ‘flat’,

then there could be no distinction between the two-word structure [boat-house]

since in either ‘blending’ or ‘particulate’ schemes, no necessary word order would

arise.

These three types of functions (blending, particulate, recursive) can be defined

in terms of Low vs High-level of processing:

Low-level:

 (i) Blend (combine): is seen in SRN, ML-P networks.

 (ii) Particulate: is seen in semantic networks.

High-level:

 (iii) Recursive (Treelet structure)

(Keep in mind that these low-to-high level distinctions on processing map onto

neurological processes of the human brain/mind—what I have come to refer to as a

Dual Mechanism Model of the brain/mind).

Low level

 At these lower levels (Blend, Particulate), the analogy which works best here is that

of ‘Cell transportation’ whereby neuro strength is activated and reinforced by

neuro bundling found at local, adjacent levels. The region of the brain best suited

for such functions is the Temporal Lobe (insular cortex) areas where ‘frequency of

blend/combine’ works at the highest efficiency. (Note: In terms of language

development, this is where we would find lexical development (a word-learning

Joseph Galasso Note on Recursive Syntax

24

processes associated with Wernicke’s area located in the temporal lobe). At such

low-level processing, frequency has a very strong role to play—the Hebbian

expression holds here: ‘What fires together wires together’.

Low-level, in fact, can be assumed under connectionism/ML-Ps since local-firing

of neurons trigger input-outputs as related to established register-sets.

Fig.2 Register-sets (Copied and reinserted here as found in Fig. 4 of Appendix #).

(Marcus 2001, p. 111)

Within a treelet structure (above), consider the ‘register-sets’ [boxes marked

subject, predicate, relation, etc) to be analogous to neurons (cells) as found in the

brain. The Hebbian express ‘What fires together wires together’ accurately

describes this local level of function as ‘frequency-effects’ plays a critical role at

this level (just as with word learning)—any associative model that relies on strength

of reinforcement must establish such local wiring & firing domains attributed to

one-one associations (behaviorism). In this sense, keen connectionism is a new

form of behaviorism. Notice how treelet structures allow nodes to be coded in ways

Joseph Galasso Note on Recursive Syntax

25

which establish categories, such that (categorical) relations hold between e.g.,

subject and predicate. This is the main difference between a serial search which

would be conducted exclusively via ‘nodes only’ versus searches which could be

done in parallel over nodes and categories. Treelets resolve the problem that other

low-level processing had (SRNs, ML-Ps) since treelets, with these new categorical

relations between nodes can generalize to new concepts. Hence, category,

creativity, and the ability to function with variables inters into the processing

domain. Such ingredients would be critical for any true human-like language to be

mimicked successfully in any AI machine. So, what AI needs is a program (a domain)

that uses (abstract) codes/symbols and not just (associative-based) nodes. Recall,

that in human language, much of our language intuition goes against the evidence

supported by our data—we move beyond data. This fact can only be handled by an

Operation System which can process both/dual nodes and symbols simultaneously

(leading to hypothesis calling for a Dual Mechanism Model (Marcus 2001, Pinker

1999, Clahsen 1999, Marcus et al. 1995).

Note how symbolic codes are reliant on blends, or semantic features (Particulate),

but are rather fully syntactic in nature—hence, the form of the syntactic tree. For

instance, with regards to a simple blend of the lexical items (box, inside, pot)—and

with there being no syntactic subject-predicate relation— there would be no way to

determine the relational predicative arrangements of items: for example, is ‘the

box inside the pot’, or is ‘the pot inside the box’? Such <Subject <Predicate>> is

crucial in order to determine meaning and simple blend/merge sequences do not

provide such information. We’ll look at this below.

As another example, consider our ‘house-boat’ example below in terms of

blend (particulate) vs. recursive formation:

[2] Boat-house example

 ‘House-boat’ => ‘a kind of boat’: recursive

=> Fixed order

 [house] [boat] => ‘a kind of boat’, and/or ‘a kind of house’.

=> Free order

 [house [house boat]] => Flat structure / sister relations.

Joseph Galasso Note on Recursive Syntax

26

The particulate (semantic) units would contain the encyclopedic information having

to do with the entries of <boat> & <house>. A Blend of the two items could yield

either <house, boat> or <boat, house> without word order. It is only at a recursive

level would we be able to interpret ‘house-boat’ (a kind of boat) from ‘boat-house’

(a kind of house), etc.

 The above ‘Boat house’ example can be projected onto a treelet scaffolding:

[3] Treelet structure 2. Level of relationship between nodes

 [node-1] [node-2] 1. Level of environmental input per node

 [node-3] [node-4]

[Nodes 1-4 are ‘register sets’)

Each node plays a neuro analogy to a cell (low-level, frequency driven). This

processes is analogous to what is referred to as cell transport and can easily be

replicated by connectionist models such as SRN and ML-Ps. What the high-level

processing allows is for relationships to form between such nodes, creating

hierarchical arrangements. Let’s assume Nodes 1-4 (= register-sets) to be analogous

to neurons (cells) such that their formation (wiring) is determined by the strength

of frequency (firing). The relation between input (environment) and the coding of

the register-set has been referred to as a kind of cell transport. This cell transport

takes place a low-level processing akin to associative mechanisms which drive any

kind of behaviorist model. Of course, in order to capture true human thought,

other higher-order processes must take place. These higher-order processes inter

alia involve relationships between nodes in building a hierarchy (e.g., mother-

daughter relations which break otherwise flat sister-sister relations). For example

the relationship between nodes 3, 4 are sister relations such that two words may

be constructed to form a phrase {boat-house//house-boat} (showing no order).

Once movement takes place, say, between node-3 and node-1 such rising has

moved a sister item from out a flat structure into a recursive hierarchical structure

(showing necessary syntax) e.g., [boat [boat-house]].

Joseph Galasso Note on Recursive Syntax

27

So with blending processing, the specific information of the item [A, B] is lost

(as the info is averaged and/or combined): e.g., Blend [A] + [B] = [C]. Again, this is

exactly what we find with simple recurrent networks. Regarding

particulate/semantic networks, what we come up with is [A]+[B] = [A, B]. Recall,

what we want out of a human-like operating system is a processing network which

breaks symmetry in order to represent unambiguous orders. As presented herein,

what we are claiming is that only a true recursive processing procedure can achieve

this: e.g., [A] + [B] = [A [B, C]]. Returning to the ‘box-pot’ (#) example above, what

we need is a formation that delivers a recursive [box [inside pot]] and not a serial

flat structure of [box inside pot] (the former being recursive, the latter

blend/particulate). Marcus has a very clever way to describe the drawbacks found

in particulate/blending processing vs recursion—he goes on to suggest that, e.g.,

the two items (colors) [black] & [white] are not somehow halfway between black

and white (like some shade of gray) (Marcus 2001, p. 87). Rather, while it may be

true that particulate features must be self-preserving (information must not be lost

[A] + [B] = [A, B], etc.) there is still no way to represent unambiguous distinct

relations between elements or semantic features.

Problem: ‘A box inside a pot’.

It would not be enough to simply activate the individual elements [+box], [+ put],

[+inside] since the same coding would trigger ‘a pot inside a box’. Hence, semantic

features via particulate function cannot generate order. If box = A [1010], put = B

[1100] and inside = C [0011], the coding of [A, B, C] even if info is preserved doesn’t

render a hierarchical order. Again, what is needed is a recursive structure which

yields [A [B, C]] or [box [inside pot]] (as seen in English SVO word order).

High-level

The relation between register-sets doesn’t seem reliant on local/frequency-based

computations, but rather a relation is formed via rule-based/symbolic

manipulation. It is in fact the codes with symbol manipulation that leads to

recursive treelet-structures—a treelet structure allows search to be performed in

parallel (parallel search). The human brain (at low level processing) is enriched with

the capacity to bootstrap itself up to higher-level processing thus allowing for the

creation of the uniquely specific human mind. In the same way as the brain

bootstraps neurons and creates symbol manipulation, so too do treelet-structures

Joseph Galasso Note on Recursive Syntax

28

allow for nodes to be abstracted away in order to make room for abstract and

symbolic codes—codes which can establish categories.

Note. Symbolic codes are not reliant on:

(i) Blends [A] + [B]= [C] or,

(ii) Particulates (semantic features) [A] + [B] = [AB],

 …but rather are syntactic in nature, yielding

(iii)Recursive structures [A [B, C]].

This is the main difference between the search of ‘nodes’ (a serial, low-level

manipulation) versus the parallel search over codes and categories. Treelet-

structures resolve the problem that other low-level processing had regarding SRNs

and ML-Ps—treelets can generalize to new concepts. SRNs and ML-Ps have a very

difficult time generalizing novel items or extending into realms of new information.

The most celebrating problems cited in the AI literature we find when we attempt

to use common set of nodes (in either a semantic capacity or in a combined

capacity) is that there is very often a catastrophic interferences which follows.

Catastrophic Interferences. One such example (cf. the ‘Rumelhart-Todd’ network)

showed how if a network was taught that <birds have wings and can fly>, and then

taught that <a penguin could not fly>, it falsely assumed/learned that <the penguin

must be a fish> (and as a learned subsequent of cascading features, assumed it also

to have gills, scales, etc.). This is just one example of how semantics and blending

may bleed into other unwanted interpretations. Of course, it is always possible to

code such additional info into the network, but I think you can see how

overwhelmed a model can get by what humans take for granted in terms of

irregular exceptions (‘to the rule’), intuition about how the world words, common-

sense, etc. The multitude dynamics that enter into any meager attempt to encode

all such features into a SRN or ML-P (without recursive parallel search) very quickly

outpaces the capacity for such rudimentary models.

Joseph Galasso Note on Recursive Syntax

29

The Two-Horse Problem

Consider the ‘Two-horses’ problem (Norman 1986 cited in Marcus 2001, p. 123), or

another example referred to above as the ‘Sandwich problem’. The problem is to be

able to handle different instances of the same concept, at the same time. For

instance, let’s code <sandwich> as [01101], then if Helene eats a sandwich [01101]

and John eats a sandwich [01101], the system has to somehow go beyond the

simple one-one coding in order to treat these sandwiches as different. Specifically,

the problem here is how can we get an operating system (OS) to handle both (i)

general properties of categories (‘sandwich’) as well as (ii) properties of individuals

(Helene’s sandwich). If coding denotes only general properties of objects/items,

then we need some overlapping code to distinguish between kind vs. token.

The ‘two-horses’ problem is the same: in order to capture the ASCII code for

HORSE as e.g., [100011], how do we distinguish e.g., ‘John’s horse’ from ‘Mary’s

horse’—where the one-one code for HORSE has no way to handle the individual

distinction (there are two individual horses involved). Formal semanticists using

predicate calculus often denote representations of ‘individuals’ with lower case

(<horse> = John’s horse) and representations of KIND as upper case <HORSE>

(general property of HORSE). Returning to ‘the box inside the pot’ example above,

there is something very similar to how an operating system (OS) might deal with

this distinction—namely, we’ll have to devise a single processing domain to handle

two fundamentally different procedures at the same time: one processing which

handles the items and one which handles individuals. Embedded structures seem to

be the best bet to handle such a duality or processing. The expression ‘The box

inside the pot’ has to distinguish somehow that ‘the box is inside the pot’ and that

‘the pot is NOT inside the box’. If simple one-one nodes only codes for items, then

there is no way to tease out the distinction. But keep in mind if we can somehow

show a coding system which delivers two distinct processes, then we might be in

luck. Consider just how a recursive code (using diacritics) might be used:

[4] a. [box [inside pot]] b. John’s horse [horse [of John]]

 box horse

 inside pot John’s

Joseph Galasso Note on Recursive Syntax

30

As represented by the ‘two-horse’ problem (as well as the ‘sandwich’ problem

above, cited in Marcs 2001), both SRNs as well as ML-Ps—in fact much of what is

behind current platforms which support AI today—have a very difficult time in

handling both individual tracking (over time) as compared to kind representations

(static). The ability to represent general, associative properties of an

object/entity/event is one thing, but to represent individual over kind seems to

place an overwhelming burden on the SO. Cognitive scientists and linguists use

diacritic indexes (which are by their very nature recursive) in order to handle such

dynamic information. Only via an implementation of a DMM where nodes and

features (blending & particulate structures) can merge with recursive co-indexing

would we have an OS worthy of capturing this full dynamic.

 So, what might a DMM look like in capturing this twin processing? Let’s consider

again the difference between the ‘kind’ [Horse] vs. the ‘individual’ [John’s horse].

The OS (operating system) of a dymanic DMM would look as follows (using

indexes):

[5] Item Kind

(i) John’s horse = [horsej] => [HORSEj]

(ii) Mary’s horse = [horsem] => [HORSEm]

(j = John, m= Mary).

Formal semanticists using predicate calculus often denote representation of

individual with lower case, and representation of kind with upper case. Diacritic

usage as a recursive means would looks as follows:

(iii) HORSE => ‘John’s horse’

 John

(iv) HORSE => ‘Mary’s horse’

 MARY

Joseph Galasso Note on Recursive Syntax

31

Clearly, this is very similar to what we saw above showing how the ‘flat recurrent’

structures, typical of SRNs and/or ML-Ps, have a difficult time handling such

embedded dual processing: for instance, just as there is no way to capture ‘boat-

house’ vs. ‘house-boat’ as discussed above by simply coding for <boat> and

<house>, so too would there be no way to handle ‘box inside pot’ from ‘pot inside

box’, or the kind HORSE vs the individual ‘John’s horse’, etc. A flat structure would

ambiguously code both instances as [box/pot inside box/pot] as well as not being

able to capture the dynamics that ‘John’s horse’ and ‘Mary’s horse’ (or ‘Mary’s

sandwich’ for that matter), is not one in the same item.

 The above discussion provides some details into why mere particulate

argument structure (semantics) and/or simple statistical averages of blends cannot

suffice to produce human-like learning model (as fully expressed within human

language).

Intermediate Summary on the Dual Mechanism Model (DMM).

The DMM proposal calls for a single domain which encodes for a dual processing

whereby a single representational format operates over variables across two or

more operating systems run in parallel within a single domain. Such an overlap of

operating systems (within one domain) along with their (co-indexed)

representations creates a unique ability to recognize and process representational

hierarchy.

The DMM: Human-brain processing // AI Platform, processing

(i) Low-level (local): Cell transport15 Temporal Lobe, Insular Cortex,

[+Frequency]

// SRN, ML-P, 1. Blending: [A] + [B] = [C].

 2. Particulate: [A], [B] = [A, B].

(ii) High-level (distant): Broca’s region, displacement

[-Frequency] (symbolic: syntax, music)

 // Rule-based, Hierarchical (diacritic, index)

3. Recursive [A [B, C]], or [A [A, B]].

15 (Local) ‘cells which fire together, wire together’ (an adjacency condition) (See Hebb).

Joseph Galasso Note on Recursive Syntax

32

With a DMM, both systems can coexist in a single domain (i.e., the human

brain/mind). This duality is what we find as the unique operating system behind

human language.

Intermediate Conclusion to remarks on ‘Two-Horses’ Problem as it has to do with

a Single Mechanism Model (SMM) and/or Multi-layer Perceptions (ML-Ps) versus

a Dual Mechanism Mode (DMM).

The above problems point to processing of representation tasks which have to be

performed in a multi-fold manner. If codings (as sequenced in a single mechanism

model (SMM) have no way to code for token over kind, or item (individual) over

kind, then the operating system essentially becomes very impoverished in the kind

of knowledge humans entertain. Of course, there may be ways to override this

problem by coding for item and subsequent coding for type (two interdependent

codes), but as it turns out, such overlapping coding places huge amounts of burden

on processing: a problem that is not easily overcome by ML-Ps. But such processing

is easily secured by children, even effortlessly done, by the age of three-years.

Young children innately know how to identify individuals over kinds. (See

Sorrentino 1998 for experiments such as the so-called ‘Zavy’ experiment presented

in Marcus, 2001, p. 125). Experiments such as Zavy—where stuffed animals are

shown to children first as ‘kinds’ and then as ‘individuals’, and then where they are

tested on tracking one over the other—demonstrate that what poses a significant

problem for SMM, ML-Ps, is easily performed by children as young as three years of

age. (Such knowledge is often termed Object Permanence).

We’ll take a look on how the ‘kind versus individual’ distinction can easily be

coded in recursive structures via diacritics. The claim for recursive/syntax (=DMM)

over recurrent/semantic (=SMM) will be extended in the following sections where it

will be argued that the distinction (along with its tracking, as demonstrated by the

Zavy experiment) requires two types of search capacities: one search for the item

itself (associative/recurrent), and another parallel search for how to determine how

the items are manipulated as a category (intervention/recursive). So, what we want

out of a well-functioning ML-P (if that is what is called for our AI operating system)

is the ability to represent relations between local nodes and distant variables, and

to be able to compute across the two representations.

Joseph Galasso Note on Recursive Syntax

33

ML-P intermediate summary

In sum, ML-Ps have several difficulties, as listed below:

 The model has a hard time—

(i) presenting novel items, since the model can only blend/combine

pre-existing representations previously encoded.

(ii) computing across two different representations, such as nodes plus

variables.

(iii) using semantic features in a syntactic manner.

The limits of a SMM/ML-P vastly reduce how representations can be computed

over time and across space. ML-Ps are prewired and can only be altered via so-

called strength condition (à la behaviorism) of frequency. This is not ‘learning’

(learning is not of a sole, brute-force memorization). What we want of a true AI

operating system that comes closest in mimicking human learning/thought is a

system of input/units that are not prewired as determined by strength alone, but

rather that their unit-values are computed freely over competing pathways—

pathways, possibly cascading in parallel over a dynamic and hierarchical domain.

This uncanny ability to track similar and/or competing inputs across two parallel

operating systems is what is called upon for learning. Only a DMM run in parallel

could perform this feat. A SMM would not only be too slow, but would also lack the

architecture required for such true learning.

Poverty of stimulus.

In addition to arguments that have been laid out in our 4-sentences section,

consider that claims made by the linguists Peter Gordon (1985) that young children

know not the keep plurals embedded within compounds—what do you call a

person who eats rats? Children respond ‘rat-eater’ (the delete the {s}) and they

never respond *rats-eater. Gordon suggests that children innately know that

inflectional morphology {s} can’t be kept embedded within a compound, even

though they have never been explicitly shown that such data is in violation of some

English grammar. The mere fact that they never hear it (because it is, in fact,

ungrammatical) doesn’t explain why children never entertain the prospect: children

say loads of erroneous things that they have never heard before. Hence, even

though children have no empirical evidence (negative stimulus) that such

constructs are wrong, they still shy away from compound-embedded plurals. This is

Joseph Galasso Note on Recursive Syntax

34

what is referred to as the ‘poverty of stimulus’—namely, when children’s inferences

go beyond the data they receive. Gordon suggest in this sense that there must be

some innate built-in machinery constraining child learning of language. So, to put

this into our discussion of ML-Ps, if input-to-outputs models are the square product

of environmental learning, one question that will come up is: How does such

learning deliver a result such as found with the poverty of stimulus case? Perhaps

symbol manipulation of rules will be required in some fashion after-all. But, if so,

perhaps we need to rethink the brain as a mere neuro/digital net. In fact, the

analogy of the brain as a digital computer had been under attack for some time—as

Gary Marcus (2001) claims (we still know very little about how the brain works at

the higher level. Perhaps at the lower level the brain-to-computer analogy holds

(where local firing of neurons takes place, etc.) but with higher functions, when we

talk of a ‘mind over brain’ of how a brain bootstraps a mind) there may need to be

a fundamentally different processing with an entirely different underwriting.

Michael Tomasello vs. Ken Wexler (See ‘Lenneberg’s Dream’, Wexler 2003)

Perhaps one of the more passionate debates which have arisen regarding how this

distinction of ‘recurrent/association’ vs. ‘recursive/rule-based symbolism’ can be

played-out in developmental child syntax is that (naïve) notion that the errors

found in early child syntax is simply the product of a lack of memory, or a ‘bottle-

neck’ of cognitive-processing sorts. Let’s just take a last moment to flesh this

hypothesis out.

 There is a case to be made that if, for example, a child says ‘He open it (where

agreement {s} is missing (e.g., He opens it)), one could claim that such an utterance

is in fact available in the input via the utterance ‘[Should [he open it]]’, etc.

Likewise, ‘She eat grapes’ could come from available positive evidence of ‘Does she

eat grapes? etc. where if the initial finite verb is dropped (forgotten) of the matrix

main clause, the remaining structure would be consistent of what young children

say. This theory relies on a partial mimicking theory of an X=x type, where the

initial mimic has been lost. Tomasello argues for such a theory of child language

which is completely based on associative mimicking (and/or the lack thereof of

certain parts of the base mimic). Well and good! But problems quickly emerge from

such a naïve theory. For one thing, if a partial mimicking theory is correct, young

children (two years of age) would also say things like ‘Did you want’? as derived

from the partial mimic of [what [did you want]]? However, they don’t say such

utterances. Rather, a more typical stage-1 expression (years and younger) might be

Joseph Galasso Note on Recursive Syntax

35

‘What _ you want?’ where the second word (auxiliary verb) is missing from the

string. Children at stage-1 don’t produce such Aux-first words with Wh-words

missing. They rather deleted Aux and maintain the fronted Wh-word. The fact that

positional errors can no longer be part of the theory suggests that the child is

operating under a structure-dependent hypothesis of language, and not a

positional-dependent (or structure independent) hypothesis.

 Other even more interesting examples include why a child might say ‘Him do it’.

Tomasello might argue that they hear [I saw [him do it]], and so on. But still, even if

children process in this way, we would have to account for why the first part of the

sentence is ignored given that in frequency, first-parts are most marked. This would

seem to strike at the heart of Tomasellos theory. Note that such a theory of

mimicking is completely reliant on Frequency. (But the highest frequency word in

English is the word ‘The’. But the word ‘the’ is notoriously the last word acquired by

a young child (e.g, ‘The car is broken’ => ‘Car broken’)). ‘Him do it’ as shown above

are so-called Small Clauses. While it may be true that such small clauses are

abundant in the data, such a theory would also predict the following: [Mary knows

[I like candy]], and so the prediction would be that the child might drop the initial

‘Mary knows’-clause and say [I like candy] with nominative case ‘I’ (the adult

utterance and the small clause are homogeneous)16. However, the child does

nothing of the sort. The child strictly says ‘Me like candy’, etc. Such utterances pose

a problem for any naïve theory based on mimicking or forgetfulness of mimic. In

this case, children could be said to go beyond their data, they go beyond frequency

of input. Their stage-1 utterances are rather the result of a lack of structure, and

not the lack of positional memory. Stage-1 child grammars are systematic, rule-

based (or the lack thereof), are constituency-sensitive and based on syntactic

properties (provided by UG).

 In sum, returning to our AI-discussion, any ML-P system which hopes to learn

human language would have to be sensitive to such a processing of learning. The

system must be symbolic and rule-based and must be able to go beyond mere

+Frequency/mimicking of structure.

ML-Ps, as prewired, can alter settings via strength—but this is not learning. Again,

what we want of a true-learning algorithm is that units/inputs are NOT prewired as

determined by strength alone, but that their values can be accessed over

competing pathways, cascading in parallel over a dynamic hierarchy. Language

16 There is a clear relationship (syntactic) between [+Nom] nominative case and [+Fin] finite
verbs.

Joseph Galasso Note on Recursive Syntax

36

learning/acquisition is the ability to track similar and/or competing inputs across

two or more operating systems. Such ‘checking-off’ of a retrieval of input between

the two or more pathways (operating systems (OS)) must work in parallel since a

serial OS between the two would be too slow. Recall, this is the minimum of what

we want…to be able to handle human-like processing between __ks as found in [1]

above.

Brain-mind bootstrapping

The idea that a brain can bootstrap a mind may have its origins in theoretical

linguistics, particularly looking at child language development of syntax. One very

promising model which has implications to AI and the cognitive sciences is the

notion that these low-level brain processes which map local configurations on a

frequency-based threshold may be only one part of the brain’s processing of

language (a more primitive part which is responsible for lexical look-up, retrieval

mechanisms dealing with objects, items, etc.) while a second more abstract mode

of processing takes such general properties of items and spreads them over

categories whereby recursive operations may allow diacritics and indexes to work

as variables. Steven Pinker’s 1999 book entitled Words & Rules captures this dual

mechanism model distinctly. By extension, mush of what I am on about here in this

section speaks to the notion that within a single domain of processing, a dual

operating system may be in use which allows for this individual versus kind

distinction. Minds can nicely grapple with categories and recursive structures which

can handle the tracking of individuals (where indexes, diacritic variables are in

operation) while the brute-force calculating brain serves one-one properties of

kinds. (Recall in ‘Against ML-P’ Claim #1 above the use of diacritics to help resolve

the so-called ‘two-horses (sandwich) problem’).

The ‘Brain-to-Computer’ Analogy: ‘Low vs High’ levels as a linguistic function.

Low-levels. At the lowest levels of the hierarchical brain spectrum are found

neuro connectionist systems which rely on approximation to ‘local-dependency’–

these are so-called finite-state grammars of the SRN type discussed below (G-1).

(Included in such OS’s would be so-called ‘multilayer perceptron’). At these low

levels, statistical regularities work in local configurations so that they bundle

together. In linguistics terms, these low-level grammars create so-called Merge

properties: {X, Y} = {XP {X, Y}} (where X is Head and Y is complement) as when two

Joseph Galasso Note on Recursive Syntax

37

word/items merge in becoming a phrase. Also linguistic compounding can be said

to be a result of such merge. For a slightly more sophisticated example, consider

linguistics Root-compounds: e.g., ‘chain-smoker’ where only the two items merge

{chain} {smoker} and where no movement is required. (Notice a move-based

product becomes ungrammatical, one can’t derive the compound as *A smoker of

chains). It’s only at a higher-level of processing where two merged items become

more than the sum total of their parts. Consider what happens to the seemingly

similar linguistic compound ‘cigarette-smoker’ where one can say ‘A smoker of

cigarettes’. This is such an example of a higher-level processing (albeit linguistic)

which shows how the two merged items retain their specific past memories over

two or more computational time-steps (CTS).

Consider the two distinct processes below (starting with low-level/Merge to high-

level/Move:

[6] (1) Local: [X, Y] => {XP}: [Chain] + [smoker] = [chain-smoker]

(2) Distant [X, [X, Y]] => {XP}t (where t is trace of prior memory of structure)

 [Cigarette] + [smoker] = [cigarette-[smoker of cigarettes]]

In [6,1], a local neuro function, say within one CTS (CTS-1), shows the memory limit

in how two adjacent inputs (and adjacency does seem to be a prerequisite,

common to how neuro firings work in adjacent bundling) combine to achieve an

averaged-weighed product. However, if we were to apply the same ‘local neuro-

firing’ to the syntactic compound found in [6,2] above, the interpretive distinctions

between root vs synthetic compounds would be lost. Consider (1-2) restated in (3-

4) below showing CTS numerations:

Root Compounds (RC) vs. Syntactic Compounds (SC) as an analogy to

computational time-steps (CTS)

(3) Local: [X, Y] => {XP}: [Chain] + [smoker] = [chain-smoker]

 [X] + [Y] => (memory between one CTS)

 CTS-1

Joseph Galasso Note on Recursive Syntax

38

CTS-1 [X= chain], [Y= smoker] => local firing of two units as found in a multilayer

recurrent system.

[7] [Cigarette] + [smoker] = [cigarette-[smoker of cigarettes]]

 i. [X + Y]

 CTS-1

 = {of cigarettes}

 ii. [W + [X, Y]]

 CTS-2

= {smoker {of cigarettes}}

 iii. [Yt [W+ [X, Y]]]

 CTS-3

= {cigarette {smoker {of cigarettes}}}

Showing a linguistics syntactic tree, the CST-1 found in [7i] would be represented in

[8] below:

[8] YPβ

 N YPα

cigarette N XP

 smoker {poss} N

 (of cigarrete)

Joseph Galasso Note on Recursive Syntax

39

The above notion of ‘locality vs. distance’ as bound by computational time-steps

(CTS) has antecedence to levels of computational processing found in the brain—

with ‘Low-level’ computations being assigned to exact one-to-one neuro firing (say,

having to do with the triggering of a specific node within a connectionists model),

while ‘High-Level’ processing establishes distant relationships, say, between nodes.

The expression that the brain bootstraps itself in creating a mind can be played out

in such a dualist scenario of local vs. distant neuron triggering (with the brain being

pegged to locality conditions (the ‘associative brain’/Temporal lobe region) and the

mind to non-local freedom (the symbolic ‘rule-based’ brain/Broca’s region). (See

‘treelet’ structure below for further discussion).

High-levels. At the higher levels, statistical regularities seem not to be dependent

on local constraints, as shown in [7] above. Hence, the syntactic/semantic

interpretational distinctions found between the above ‘root vs syntactic’

compounds could be drawn as analogous to ‘local vs distant’ neuro/unit firing

(where unit would be labeled here as word (cigarette) and grammatical feature

(possessive). This same dual distinction is also very nicely seen within linguistic rules

(so-called regular-rules/distant versus irregular-rules/local).

For instance, notice how sound patterns of irregulars work on a low-level where

frequency-effects of ‘bundling of feature’ can impact either neuro or linguistic

processing: e.g. [_ [ing]] > [_ [ang]] > [_ [ung]] which generates sing>sang>sung

may over-generate (over-trigger) based on a sound-frequency effect to

bring>brang>brung, (but not *bling> blang> blung). Notice how such novel words

(so-called made-up ‘nonce’ words used for experiments) generate the distant

rule—e.g., Today I bling it, yesterday I blinged it.

Such distant true rules never become dependent on local frequency-effects (or

local neuro-firings), with true rules projecting over a variable/category such as

instruction: <do x to category Noun>, <do y to category Verb>: add {s} to N when

plural one wug > two wugs (see Berko), or, as just demonstrated above, but with an

altered final consonant from /g/ to /t/ e.g., today I blink, and yesterday I blinked.

True rule-formations of [N+s], [V+ed] work independently of frequency-bundling

and their productivity allows new and novel items to be freely expressed as

categorical variables across data spreads. Such a multilayer-perceptron model

would have difficulty showing such a dual-level processing since perceptron models

(SRN’s, CRN’s) would only code for a single mechanism model (SMM)—viz., the

Joseph Galasso Note on Recursive Syntax

40

same mechanisms would have to be involved between RC’s and SC’s, thus losing

the distinction.

In other words, regarding CTS’s, ‘cigarette-smoker’ would be forced into a local

neuro-firing between two local units as expressed in [9] below:

[9] [cigarette] [smoker]

 [X] + [Y] => (memory only between one CTS)

 CTS-1

For example, multilayer-perceptrons can only average (approximate) a broad range

of functions, based on local distributions of a single mechanism model (SMM). It

has been found (Marcus, Brinkmann, Clahsen, Wiese & Pinker, 1995; (Hadley, 2000)

that these SMM’s cannot capture such a class of operations which spread of two or

more CTS’s and/or that follow from a recursive, embedded coding: (noticing how

the progressive structure in [7i,ii, iii] require embedded clusters (i.e., recursive

nesting)). (See Pinker 1984 for initial reports of grammar modeling, and Pinker 1999

for review of a dual mechanism model, Galasso 2016 for ‘First Merge, then Move’

model in early child syntax).

The conclusions reached here are that multilayer-perceptrons cannot generalize

from a limited data the same way as humans do.

Joseph Galasso Note on Recursive Syntax

41

Thought-experiment on recurrent vs. recursive implementation in AI

<Insert>

[0] Code snippets (taken from Fitch 2010. p. 77).

(1) define function [AnBn] (n) :

if n is 1, then return “AB”

else return (“A” + [AnBn] (n-1) + “B” ; //recursive call

 This grammar generates a recursive [A [AB] B], structure-preserving

embeddedness.

(2) define function [AnBn] (n):

interger counter i

A_ section = “A”;

B_ section = “B”;

If n >1 then {

 for (i=2) to (i=n)

 A_section = A_section + “A”;

 B-section = B_section + “B”;

end

}

Return A_section + B_section

 This grammar generates a flat-recurrent/non-recursive [AB], a simple

recurrent network.

Joseph Galasso Note on Recursive Syntax

42

AI-Statements (code snippet functions):

[1] True AI-Recursive (AI-R) (strong generating) grammars project at least a

dual tracking of constituencies:

a). AI-R codes AB-strings in the middle of other AB-strings (center-

embedded): [A [AB]B]. Such a recursive rule has the unique property of self-

embedding.

b). AI-R is structure-preserving and can span memory across two or more

phrases. (A circuit which remembers past structures only for a single

computational time-step is not capable of representing complex structures.

Memory must be able to span across multiple time-steps, while, at the same

time, being able to look into multiple center-embedded structures).

[2] Center-embedded structure can affect left/right peripheral strings and

vice versa.

e.g, [A [AB [AB]]] :

Recursive = structure-preserving loops, and not just 1-way feedback loops.

[3] ‘The ability to retrace a stack of function calls [from peripheral to embedded

stings] must be specifically designed into the programming language and

hardware’ (Fitch 2010, p. 77, italics belong to JG). Any recursive grammar

which cannot maintain statements 1 & 2 are not full, true AI-R grammars

and may be more recurrent in nature. This ability to retrace (track) also

includes not only strings but variables associated with strings—some

additional memory mechanism must be designed into the system to keep

track of differences between variables(nm) –e.g., [AnBm]-grammars where the

variable n= “repeat number of string” and the variable m= “alternate string

within embedded structure”. The fact that a single function must be able to

count and compare requires feedback loops which may arise from one

structure and fall into another, whereby an embedded unit/circuit1 may

affect a string unit/circuit2 found in the left/right periphery.

[4] The code itself must contain representation of structure—codes, and

tracking of codes must be structure-dependent (like natural language where

syntactic tree diagrams contain representation of structure). A nice analogy

to the tree would be that words/strings Nouns, Verbs make-up a beads-on-

Joseph Galasso Note on Recursive Syntax

43

a-string grammar (a weak-generation found e.g., in non-recursive flat

grammars [AB]), while the phrase NP/(DP), VP/(TP) would make-up

representation of structure (a strong-generation). The embedded nature

between the two (weak vs strong) is both implicit and explicit in the design.

[5] So, while we read through this brief note on recursive AI-grammars, let’s

keep in mind that what we want from a well-advanced AI-operating

system—a system which could come closest in dealing with what we know

of human-behavioral processing—is a grammar-system which not only looks

into its ‘left/right-peripheral’ adjacent AB-strings [AB] (so-called weak

generation), but also has the ability to look into its ‘center-embedded’ [A

[AB] B]-structure (so-called strong generation). In the latter case, the

grammar calls itself. This is found in the defined function of the snippet code

found in [0] above.

[6] Introduction

Much of current AI, as I understand it, either uses as an operating system

(OS) (i) a simple recurrent network (SRN) (as much discussed in Jeff Elman’s

early work (cf), or (ii) a complex recurrent network (CRN)—the former which

is more or less an approximate calculation of the combined net-value

reached of two inputs, (with or without architectural hidden levels), and the

latter which uses not only feedback loops at the ‘on-time’ computational

time-step (CTS)17— (so-called time-1 ‘hidden structures’), but also

‘backward-looking’ (time-2) interactions across at least one previous CTS. In

either case, both (non-recursive) SRN & CRN AI-platforms are of a ‘brute-

force’ nature which delivers an on-time catastrophic decision based upon

probabilistic on-time calculi. Let’s consider how the two aforementioned

operating systems might differ from a truly recursive operating system in

regards to what we might hope to build of an AI machine worthy of

simulating true human behaviors (e.g., autonomous vehicles, machine

language learning and language translation, decision-making tasks based

upon CRN-encyclopedic knowledge, etc.).

Let’s first consider an [AnBn]-grammar which derives e.g., AnBn (4) as

AAAA, BBBB (as discussed in Fitch 2010). This OS is what is referred to as a

17 The time-step is the incremental change in time for which the governing equations are
being solved.

Joseph Galasso Note on Recursive Syntax

44

recurrent grammar whereby the stacking of two items (which could go on

indefinitely) works in a flat non-recursive manner. This is a non-recursive

structure and would be similar to any SRN: the crucial note here is that the

variables within AB {n,n} would not need to be tracked since they are

identical. Now consider a more complex system (CRN) with memory of

backward feedback-loop connections (between stem-nodes and their

respective variables) which may compare inputs and outputs over the span

of maximally one CTS. This could potentially give us an [AnBm]-grammar

where variables:

(n= “repeat” form a list of what you know),

(m= “alternate” from a list of what you know)

yields AnBm(4) as AAAA, AB A BA BAB*.

*But the problem here is that from this point in the memory, a backwards

look-up device would have to store in memory two simultaneous non-

congruent inputs (and both inputs would be structure dependent)—namely,

[7] (i) that [AB…] is the product of the sequence, and

 (ii) that [BA…] is not the product of the sequence (since ‘BA’ is the result of

[B [AB]].

In other words, there would have to be some additional memory

mechanism (of variables) embedded within memory of nodes, viz.,

[memory2 [memory 1]] or, say, a [declarative [procedural]] interchange held

across at least two or more phases.

It is my current understanding that what we are usually implementing in all

AI/OSs across the broad these days is mostly based on either a upgraded

SRN or a CRN OS, but that there are few if any currently implemented AI-

OS’s that can:

[8] (i) maintain a sufficiently dual-memory embeddedness (DME2),

(ii) hold and compare memory inputs from prior CSTs across at least two or

more phrases, and perhaps most crucially, and

Joseph Galasso Note on Recursive Syntax

45

(iii) whose code itself contains a representation of structure18.

Why are these three properties found in [8] so important? Well, it may have

something to do with how the unique human brain/minds works, how

intuition can ultimately be gained, and how humans over our evolutionary-

time span have bootstrapped a simple neuro-network brain into a ‘much-

more-than-the-some-of-its-parts’ complexity of theory of mind.

Let’s flesh out what (DME2) might look like via the following thought-

experiment (having to do with, say, an AI-encyclopedic OS): The task is: Who

is the first president of the United States?

A ‘look-inside-two-boxes’ scenario:

[9] AI-OS: so, here’s the (very tentatively) imagined system:

(i) Let’s say the left/right periphery [x, y] of [x [a,b,c] y] codes for overt

declarative processing of the kind associated with questions and responses

of a certain task. Only this overt/declarative operation has an interface with

the outside world and is reinforced by the input received (self-learning). So,

for example, when the (Q)uestion is asked, it processes the language of the

question and maps the Q onto a relevant (R)esponse. The periphery [x, y]

however is able to look into the covert center-embedded [a,b,c]-grammar as

its procedural-knowledge source, with both peripheral and center-

embedded structures allowing for ‘feedback loops’ for reinforcement of net-

values, adjustments, etc.

(ii) Let’s say the center-embedded [[a,b,c]] codes for covert procedural

processing of the kind associated with the mapping of an internal look-up

(“a list”) which then allows retrieval of the item to surface to the declarative

mode of processing (with the interface):

[declarative [procedural] declarative]

18 Note that our hypothesized DME2 may lead to the two types of human knowledge
systems, declarative and procedural knowledge.

Joseph Galasso Note on Recursive Syntax

46

[10] (Q)uestion put to our AI-OS : Who is the first president of the United

States?

So, there are two boxes:

box-1 = three (P)eople (P1,2,3) (box-1 = time-step-1 of input for box-2)19

 box-2 = AI (with DME2-recursion)

Box-1: P1 and P2 think they know the answer to Q, but P3 is unsure. As each

of the three people in box-1 (outside the computer, say a room) enters into

box-2 (the computer) to deliver his input/answer, a scenario unfolds: the

third person (P3) is unsure of the answer and so waits until P2 exits box-2

and returns to box-1 (imagine P2 and P3 bump into one another, and P3

whispers to ask what the (R)esponse is to Q: P2 says incorrectly (as P2’s

grammar is erroneously operating under an ‘alternating response’

procedural grammar) that R=John Adams (erroneously generated from an

mistaken AnBm grammar):

= Center-embedded code [A [AB] B] (procedural processing, “a list”)

 [A [(George Washington), [John Adams1 [George Washington2, John Adams]]] B]

P3 now enters into Box-2 to deliver his R-input ‘John Adams’. At this time-

step, the AI (box-2) finds the net-value R to Q (2 over 1 out-weight

responses) and moves on. So when P3 returns to ask google (AI) a follow-up

Q ‘Who the first president of the United States?’ the Response from a 2-1

weighted input-to-output system is ‘John Adams’ and so P3 feels reassured

of the ‘correct’ response and assumed ‘knowledge’ of Q.

19 Recall, that for box-1, this constitutes (G)eneration-1 of input—virgin input which would
be used for the first time to deliver an approximate result. Of course, over many thousands
of generations, any input/answer may change over time until it reaches stabilization.
Usually, such G-1 (as a starting point) is either soft-wared/ programmed into the OS (top-
down) as initial default settings, or that some predesigned architectural template is built-in
(innately) to capture tailored types of weights and distributions of the specified incoming-
data stream.

Joseph Galasso Note on Recursive Syntax

47

[11] Now the question is precisely: What is wrong with all of this? For the

computer, there can be no knowledge outside of box-2, (outside of its own

OS) and so the matter is moot. All that an AI-OS can do is approximate the

values of multiple inputs (n=three at this step) to average the answer (and

there can be no looking inside another box for any additional reference,

e.g., another encyclopedic entry which may list all the presidents in order

(say, an [AB]-grammar generating a list which can’t be item-based

manipulated upon and which is quite distinct from the task at hand). And so

the matter comes to a close.

But for P1,2,3, when the three learn what AI ‘thinks’ is the right answer

they become confused: namely, the group’s intuition begins to determine

that something has gone wrong. But for the computer, nothing could have

gone wrong (outside of the input)—there is nothing that the AI system could

learn from such a scenario without the capability to look inside of an

embedded structure. (Of course, the more input (correct) the system

receives over time (over time-steps), the noise of incorrect input will

become increasingly less and less significant (as its input-to-output weight

(frequency) will gradually dissipate over time). This is True! But the question

of how the system goes about the learning, de-learning and adjusting is of

interest to the computational theorist, and this poses an interesting

challenge for AI.

What we want from a fully operational (recursive) self-learning AI

machine is the processing-capacity to “learn” not only from mistakes within

its own box-2, but also to learn from a memory that allows the comparing of

different variables across two or more different phrases (phrases = boxes).

Sure, no one would expect the AI system to have to deal with the (human)

“intuition factor” as presented by the three people as they discern the

wrong answer (the group intuition). But surely, an AI system would want to

be able to trace, and cross reference competing models and structures

(declarative/procedural) as might be associated with the input of a singular

question. In other words, we want AI to understand how the slip was made

by P2 (but not by P3).

Joseph Galasso Note on Recursive Syntax

48

[12.1] Correct: Let’s consider how a “center-embedded” structure would look

like for the R given by P1:

[A: who is the first US Pres? [AB list of all US presidents in order] B: George Washington]

[A: Question [ABn = George Washington, John Adams, Thomas Jefferson…..etc.] B: Response]

(where variable {n} = repeat list as you know it)

[12.2] Incorrect: Let’s consider how a “center-embedded” structure would look

like for the R given by P2:

[A: who is the first US Pres? [AB list of all US presidents in order] B: John Adams]

[A: Question [ABm= John Adams, George Washington, __Thomas Jefferson.etc.] B: Response]

(where variable {m} = alternate list as you know it)

 Where ABm = [John Adams, George Washington, John Adams, Thomas Jefferson…..etc.]

[13] Recall, what we want from a self-learning AI-OS ability is two-fold:

(i) To identify that the nature of the error is actually encoded in the center-

embedded structure—to realize that such encoding can actually be

examined by the periphery [a,b,c] in determining the nature of P2’s error

(that [ABm]-procedural grammar was wrongly put in operation rather than

the correct [ABn]-grammar).

(ii) To assume the correct hypothesize despite the counter input given to the

peripheral nodes [x, y].

Joseph Galasso Note on Recursive Syntax

49

[14] Note for such embedded recursive structures:

∙Grammar: S => A S B (recursion) where a phrase structure rule contains S

center embedded.

∙S has the ability to look inside an AB function [A1 [AB2] B]—both AB1,2 is

preserved in memory and the structure can be recalled to be examined.

Let’s imagine as the strongest approximate to (DME2) a single non-squared

(DME) with CST (1-4) (the first 4 time steps in a derivation). So, the

combined net value of (1-4) get read at 4 as an approximate of steps 1-3. In

this case there is no need for backwards integration, only a look-ahead

value is given for the combined approximate net value. But the problem

here is that the earlier values of 1-3 have been lost. What (DME2) allows us

to have is a memory of past input-output products to hold and compare

across time. Allowing for such embedded memory takes into consideration

not only the net value but also how the value was reached and may have

evolved over a span of several CSTs.

For instance, imagine that a combined net value (output) is reached and

read as ‘John Adams’ to the question (input) Who is the first president of

the United States? (Reached by our G-1 AI). And of course, as AI gathers

more and more input to stock-pile its database, (i.e., more CSTs have been

accumulated over time) the best approximate answer becomes George

Washington (self-correcting learning, so to speak). At this point the

old/wrong answer of ‘John Adams’ is lost. But why should we care, we have

reached the ‘correct answer’ (and John Adams was a fluke, certainly not of a

significant ratio).

 But this hypothetical question strikes at the heart of theory: In theory, if

input and outputs are, and can only be catastrophic with no ability for

graceful degradation (not in terms of hardware but in terms of software),

then the OS is not able to preserve its past structure over time (and memory

is lost). In fact, the most oft-remark assumption made about both SRNs and

CRNs is their inability for self-preserving of previous structure…

Joseph Galasso Note on Recursive Syntax

50

[15] So, the upshot of this exercise is that we want to be sure—in whatever AI-

OS we are dealing with which attempts to mock true human

learning/behavior (and not just to gleam encyclopedic knowledge, since all

that that entails is a feed-back looping CRN)—is that the statements found

above are considered when coding for true recursive tasks.

We want an AI-OS to always get the answer right to the question Who is

the first president of the united states? irrespective of the two diverging

input-responses from P1 and P2: (P3’s “intuition” is outside of the AI-OS,

(perhaps for now—something the cognitive sciences will be grappling with

for some time to come)). In other words, what we expect a fully recursive

(DME2) operating system to do is not simply count frequency and

distributional net-values within its matrix processing layer, say the

peripheral [x, y] connectionist layer, but also to be able to dip into non-

matrix connection-layers in reaching a (corrected) net-value result. Hence,

oft-spoken hidden units can’t just be a matrix orientated, for its own nodes,

but must be able to cross-reference connectionist pathways and routes

from other structure dependent layers, making AI truly recursive and

structure dependent.

This last point is exactly what we find for human/nature language. Consider

the embedded sequence below:

[16] [John knows that [Mary doesn’t know that [Bill knows the truth about what

happened]]]

For such positive to negative embedded strings/clauses, we need to keep in

memory ‘who’ is in the ‘know’ and ‘who’ is ‘not’…and this memory spans

over the length of the sentence. Sure, very long embedded strings may

place heavy burdens on memory, but it’s only via recursive structures that

allow such processing to take place—certainly, a processing of mere

adjacency-based input factors could not perform the task. Consider one last

example (*marks for ungrammatical processing):

[17]*[The boy Bill asked to meet Mary thinks he is clever] (Bickerton 2010: p. 202).

If the reading of mere flat/adjacent nodes [a, b, c,] was all that was needed,

then ‘Mary’ would most certainly be primed as the subject of ‘thinks’ (based

Joseph Galasso Note on Recursive Syntax

51

on the fact the ‘Mary’ sits leftward via a positional node of right-positioned

finite verb thinks’). Of course this is wrong. Not unless the parsing

mechanism is allowed to dip into non-matrix embedding clauses would the

processing be validated:

(1) [The boyj [Bill asked to meet Mary] thinksj he is clever]

 (2) [The boyj [Bill asked the boyj to meet Mary] thinksj he is clever]

 The boy thinks he is clever.

 Bill asked the boy to meet Mary.

 (*Mary thinks he is clever).

Conclusion

Coupling these observations made above with what we know of the ‘recurrent vs.

recursive’ distinction, it becomes clear that what we want out of a fully human-like

operating system (OS) is a recursive structure which can allow its operations to

spread across variables. Items of the {X}={X} sort, reduced to simple nodes and

based on frequency do not suffice. Rather, what we want out of an OS is an

asymmetrical language {x {y, z}} whose very computations themselves act as

symbolic manipulators, which can change their status as determined by their

arrangements (what was seen by our example of [house boat]//[boat house]). If the

OS scheme was by innate design ‘flat’, then there could be no distinction between

the two structures, since in either a ‘blending’, or ‘particulate’ algorithm, no

necessary word order would arise. It was at this point that Marcus’ treelet-

structure was advanced in order to create a hierarchical/representational structure.

It was shown, as presented by the ‘two-horse’ problem, and ‘sandwich’ problem

(cited in Marcus 2001), that both SRNs as well as ML-Ps—in fact much of what is

currently behind platforms which support today’s state-of-the-art AI—have a very

difficult time in handling both individual tracking (over time) as compared to ‘Kind’

representations (static). The ability to represent general, associative properties of

an object/entity/event/ is one thing, but to represent ‘individuals over kinds’ seems

to place a too overwhelming burden on the OS. It seems very likely that only a Dual

System (DMM), one which can represent ‘general look-up’ properties with brute-

force statistics as well as a second system embedded within the same domain,

which can track individual properties over kinds, can fully capture human-like

Joseph Galasso Note on Recursive Syntax

52

processing. Thus, the human OS is necessarily dual-like in structure, recursively so—

where, at times, frequency of data is overridden by sheer categorization.

 Finally, we reach the conclusion that only a Dual Mechanism Model which encodes both for

recurrent as well as recursive means could possibly serve as an approximate to AI. The DMM

proposal calls for a single domain which codes for a dual-capacity processing, whereby a single

representational format operates over variables across two or more operating systems run in

parallel within the same domain. Such an overlap of systems, along with their representations,

creates the unique ability to recognize and processes representational hierarchy, the one

essential ingredient necessary for human thought.

Works cited for Note 4.

Abler, W.L. (1989). On the particulate principle of self-diversifying systems. J. of Social and

Biological Structures, 12, 1-13.

Baumgartner, P. & Sabine Payr (Eds. 1995). Speaking Minds: Interviews with twenty eminent

cognitive scientists. Princeton University Press.

Bickerton, D. (2010). ‘On two incompatible theories of language evolution’ (chapter 14) In

Larson, R., V. Déprez., & H. Yamalido (eds). The Evolution of Human Language: A

Biolinguistic Perspective. Cambridge University Press.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on

Information Theory. (MIT).

 (1957). Syntactic Structures. Mouton & co. The Hague.

 (1958). Review of B.F. Skinner, ‘Verbal Behavior’. Language, Vol 35. pp.26-58.

 (1966). Cartesian Linguistics: A chapter in the history of rationalist thought. University

Press of Amercia.

 (2002). On Nature and Langauge. Cambridge University Press.

Clahsen, H. (1999). Lexical entries and rules of language. A multidisciplinary study of German

inflection. Behavioral and Brain Science, 22. 991-1060. (Target article).

Clahsen, H., G. Marcus., S. Bartke & R. Wiese (1995). Compounding and inflection in German

child language. In G. Booij and J. van Marle (eds) Yearbook of Morphology. Kluwer.

Fitch, W. (2010). ‘Three meanings of “recursion”: Key distinctions for biolinguists (Chapter 4) In

Larson, R., V. Déprez, H. Yamakido (eds). The evolution of Human Language.

Joseph Galasso Note on Recursive Syntax

53

Dreyfus, H & S. Dreyfus (1986). Mind over Machine. The Free Press: NY.

Galasso, J. (2016). From Merge to Move: A Minimalist Perspective on the design of language

and its role in early child syntax. LINGCOM Studies in Theoretical Linguistics, 59.

Goldschmidt, R. (1940/1982). The material Basis of Evolution. Yale University Press.

Gordon, P, (1985). Level-ordering in lexical development. Cognition, 21. 73-98. (See ‘Rat-eater’

experiment).

Gould, S.J. (2007). Punctuated Equilibrium. Harvard University Press.

Hadley, R.F. (2000). Cognition and the computational power of connectionist networks.

Connection Science, 12.

Hebb, D. (1949). Organization of Behavior. New York: Wiley.

Marcus, G. (2001). The Algebraic Mind: Integrating Connectionism and Cognitive Science. MIT

Press.

 (2017). Artificial Intelligence is Stuck. Here’s how to move if forward. New York Times,

July 29.

 (2018). The deepest problem with deep learning. Article reprinted on TheAtlantic.com.

https://medium.com/@GaryMarcus/the-deepest-problem-with-deep-learning-

91c5991f5695

For summary of Marcus v Elman debates, see

http://psych.nyu.edu/marcus/TAM/author_response.html

Marcus, G., S. Pinker, M. Ullman, J. Hollander, T. Rosen & F. Xu (1992). Over-regularization in

language acquisition. Monographs of the Society for Research in Child Development. 57.

Marcus, G., U, Brinkmann, H. Clahsen, R. Wiese & S. Pinker (1995). German Inflection: The

exception to the rule. Cognitive Psychology, 29. 189-256.

Miller, G. (1955). The magic number seven, plus or minus two: Some limits on our capacity for

processing information. Published in 1956, Psychological Review 63: 81-97.

 (1956). Human memory and the storage of information. IRE Transactions on

Information Theory. (MIT).

Minsky, M. & S. Papert (1969). Perceptrons: An Introduction to Computational Geometry. MIT

Press.

Newell, A. & H. Simon (1956). The logic theory machine: a complex information processing

system. IRE Transactions on Information Theory. (MIT).

https://medium.com/@GaryMarcus/the-deepest-problem-with-deep-learning-91c5991f5695
https://medium.com/@GaryMarcus/the-deepest-problem-with-deep-learning-91c5991f5695
http://psych.nyu.edu/marcus/TAM/author_response.html

Joseph Galasso Note on Recursive Syntax

54

(PDP) ‘Parallel Distributional Processing’ Research Group. UC San Diego.

Pearl, Judae (2018). Theoretical Impediments to Machine Learning with Seven Sparks from the

Causal Revolution. Technical Report R-475, July 2018.

 (2018). The Book of Why: The new science of cause and effect. Basic books.

Pinker, S. (1999). Words and Rules. Basic Books.

Rosenblatt, F. (1959). Two theorems of statistical separability in the perceptron. Ms.

Proceedings of a symposium on the mechanism of thought processes. London.

Tomasello, M. & J. Call (1997). Primate Cognition. Oxford Press.

Toulmin, S. (1961). Forecast and Understanding. University Press, Indiana.

Wexler, K. (2003). ‘Lenneberg’s Dream’ (Chapter 1, pp 11-61) In Levy, Y. & J. Schaeffer (eds).

Language Competence across Populations. Mahwah, Erlbaum.

Newell, A. & H. Simon (1956). The logic theory machine: a complex information processing

system. IRE Transactions on Information Theory. (MIT).

(PDP) ‘Parallel Distributional Processing’ Research Group. UC San Diego.

Pearl, Judae (2018). Theoretical Impediments to Machine Learning with Seven Sparks from the

Causal Revolution. Technical Report R-475, July 2018.

 (2018). The Book of Why: The new science of cause and effect. Basic books.

Pinker, S. (1999). Words and Rules. Basic Books.

Rosenblatt, F. (1959). Two theorems of statistical separability in the perceptron. Ms.

Proceedings of a symposium on the mechanism of thought processes. London.

Tomasello, M. & J. Call (1997). Primate Cognition. Oxford Press.

Toulmin, S. (1961). Forecast and Understanding. University Press, Indiana.

Wexler, K. (2003). ‘Lenneberg’s Dream’ (Chapter 1, pp 11-61) In Levy, Y. & J. Schaeffer (eds).

Language Competence across Populations. Mahwah, Erlbaum.

