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It is laudable for Yang and Piantadosi (1, henceforth YP) to tackle the important question of
how language is generated and learned. Their reported success in learning a range of grammars from
small amounts of data is striking, especially since some of these grammars belong to classes which
are provably unlearnable under such conditions (2). However, their project is severely undermined
by their evaluation method and by their conception of language.

Following standard machine learning practice, models are trained and tested on disjoint sets
of data so that their generalization efficacy can be accurately assessed. YP, however, tested their
model on training data, and moreover only on its top 25 most probable strings. This cuts against
the very heart of learning: a successful grammar must extend to novel (and rare) sentences, and
must also reject sentences not generated by the grammar. Under YP’s scheme, a grammar that
massively over/under-generates would nevertheless be deemed successful as long as its 25 most
probable strings match the training target. Even granting these unconventional methodological
choices, YP’s model fails to learn natural and artificial languages that humans easily learn. Figure
1 displays the results of an n-gram model, a demonstrably inadequate model for human language
(3), on the same data. It can appear successful – sometimes more successful than YP–under their
evaluation method: a reductio ad absurdum.

YP’s conception of language as strings fails to recognize that language has internal structures
not manifested by the surface sequence of words. For example, the sentence they are flying airplanes
has two meanings: an English speaker can assign two distinct structures and thus interpretations
to the same string (3). Some of the successful grammars (by YP’s metric) accept a similar set
of strings but assign very different structures to them (see their SI). For example, the grammars
obtained by training on a set of toy English sentences (1, Fig. 5) show no consistency on sentences
not used for training. These results are strikingly at odds with human language learning: Children
form grammars with “a high degree of uniformity in both the categorical and variable aspects” (4)
as revealed by the quantitative study of language use.

YP’s model transforms candidate hypotheses into probabilistic context-free grammars that are
evaluated against the training data via Bayesian inference. This method was proposed by Horning
over 50 years ago (5). But as Horning himself noted, the method is neither psychologically plausible
nor computationally practical, as it needs to enumerate and evaluate an astronomically large space
of grammars. What is novel to YP is the advancement in computing hardware: intractable solutions
can now be approximated even though the model still failed to learn a 35-sentence fragment of
English (6) after seven days (1, SI). Hence, we surmise, YP’s disclaimer that “we do not claim
that they [humans] necessarily use the same methods as our implementation (1, p9)”. But if a
model for the learning of language is not for understanding how language is actually learned, what
is it for?
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Figure 1: The apparent success of an inadequate model: Performance of a trigram model on natural and
artificial languages from the published literature; see (1, Fig. 2) for references. Based on YP’s evaluation
scheme, the trigram model performs well on several of the languages, even outperforming YP on some (e.g.,
6). “Total P” measures performance of the model against the entire string set rather than just the top 25,
which more accurately corresponds to grammar learning. This is clearest for Saffran, which was designed to
be learnable by a bigram model. The n-gram model learns it perfectly but is unfairly penalized under YP’s
evaluation because it generates strings that are in the language but outside the 25 most probable ones. All
language data is from https://github.com/piantado/Fleet.
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