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Abstract

Distributional semantics provides multi-dimensional, graded, empiri-

cally induced word representations that successfully capture many as-

pects of meaning in natural languages, as shown in a large body of work

in computational linguistics; yet, its impact in theoretical linguistics has

so far been limited. This review provides a critical discussion of the lit-

erature on distributional semantics, with an emphasis on methods and

results that are of relevance for theoretical linguistics, in three areas: se-

mantic change, polysemy and composition, and the grammar-semantics

interface (specifically, the interface of semantics with syntax and with

derivational morphology). The review aims at fostering greater cross-

fertilization of theoretical and computational approaches to language,

as a means to advance our collective knowledge of how it works.
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1. INTRODUCTION

This survey provides a critical discussion of the literature on distributional semantics, with

an emphasis on methods and results that are of relevance for theoretical linguistics, in three

areas: semantic change, polysemy and composition, and the grammar-semantics interface.

Distributional semantics has proven useful in computational linguistics and cognitive

science (Landauer & Dumais 1997; Schütze 1992, and subsequent work); yet, its impact

in theoretical linguistics has so far been limited. A greater cross-fertilization of theoretical

and computational approaches promises to advance our knowledge of how language works,

and fostering such cross-fertilization is the ultimate goal of this survey. Accordingly, I will

cover mostly research within computational linguistics, rather than cognitive science.

1.1. Distributional semantics in a nutshell

Here I provide only a brief introduction to distributional semantics, such that the survey

is self-contained; for more comprehensive introductions, see Erk (2012), Clark (2015), and

Lenci (2018). Distributional semantics is based on the Distributional Hypothesis, which

states that similarity in meaning results in similarity of linguistic distribution (Harris 1954):

Words that are semantically related, such as post-doc and student, are used in similar

contexts (a poor , the struggled through the deadline; examples from Boleda & Herbelot

2016, p. 623). Distributional semantics reverse-engineers the process, and induces semantic

representations from contexts of use.

In its most basic and frequent form, illustrated in Figure 1, distributional semantics rep-

resents word meaning by taking large amounts of text as input and, through an abstraction

mechanism (symbolized by the arrow), producing a distributional model, akin to a lexicon,

with semantic representations in the form of vectors —essentially, lists of numbers that de-

termine points in a multi-dimensional space (see below). However, many more possibilites

are available and have been experimented with: The definition of distributional semantics

encompasses all kinds of contexts, including for instance the visual context in which words
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are used (Baroni 2016b); some models take morphemes, phrases, sentences, or documents

instead of words as units to represent (Turney & Pantel 2010); and units can be represented

via more complex algebraic objects than vectors, such as matrices or tensors (Grefenstette

& Sadrzadeh 2011).

Any grad student or post-doc he’d have

would be a clonal copy of himself.

During that post-doc, I didn’t publish much.

. . .

⇓
dim1 dim2

post-doc 0.71038 1.76058

student 0.43679 1.93841

wealth 1.77337 0.00012
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post−doc (0.71038,1.76058)
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NEAREST NEIGHBORS

cosine(post−doc,student) = 0.99
cosine(post−doc,wealth) = 0.37

Figure 1: Distributional semantics in a nutshell: Inducing semantic representations from

natural language data (left); visualizing and operating with these representations (right).

Words are points in a space determined by the values in the dimensions of their vectors,

like 0.71028 and 1.76058 for post-doc. Post-doc and student are nearer in semantic space

than post-doc and wealth, and in fact they are nearest neighbors of (words closest to) each

other. Adapted from Boleda & Herbelot (2016, Figure 1; CC-BY).

The collection of units in a distributional model constitutes a vector space or semantic

space, in which semantic relations can be modeled as geometric relations. Vectors deter-

mine points in space, and the graph in Figure 1 (right) is a graphical rendering of our toy

lexicon. The vectors for post-doc and student are closer in the space than those of post-

doc and wealth, because their vector values are more similar. The abstraction mechanisms

used to obtain distributional models are such that similar contexts of use result in similar

vectors; therefore, vector similarity correlates with distributional similarity, which in turn

correlates with semantic similarity, or more generally semantic relatedness. The most com-

mon similarity measure in distributional semantics is the cosine of the angle between two

vectors: the closer the vectors, the larger the cosine similarity. For instance, the cosine

between post-doc and student in our space is 0.99, while it is 0.37 for post-doc vs. wealth

(cosine values for positive vectors range between 0 and 1).

Our example is two-dimensional, but in actual distributional models many more di-

mensions are used, 300-400 being a frequent range. While we cannot represent so many

dimensions visually, the geometric properties of two-dimensional spaces that we discuss here

apply to any number of dimensions. Given that real distributional vectors are not directly

interpretable, a very common way for researchers to gain insight into the information en-

coded in word vectors is to inspect their nearest neighbors. These are the words that are

closest to a given target; for instance, student is the nearest neighbor of post-doc in our

mini semantic space.

Finally, there are many different versions of the abstraction function (the arrow in

Figure 1). Earlier distributional models were built by extracting and transforming co-
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occurrence statistics, while recently models based on neural networks have gained ground

due to their good performance (Baroni et al. 2014b). Neural networks are a versatile machine

learning type of algorithm, used for tasks like machine translation or image labeling; for

reasons of scope, in this survey we cover only uses of neural networks that are specifically

targeted at building semantic spaces akin to those in classic distributional semantics.

1.2. Distributional semantics as a model of word meaning

Distributional semantics largely arises from structuralist traditions (Sahlgren 2008). As

in structuralism, words are defined according to their position in a system, the lexicon,

based on a set of features; their values are defined by contrasts in the words’ contexts

of use. However, in structuralism usually only a few features are used, they are defined

manually, and they have an intrinsic meaning; for instance, they can be semantic primitives

of the sort ±male. As Boleda & Erk (2015) point out, in distributional semantics the

individual features lack an intrinsic meaning and what gains prominence are the geometric

relationships between the words. Semantic notions like ±male are instead captured in a

distributed fashion, as varying patterns across the whole vector. There are three further key

differences to traditional feature-based approaches in linguistics that render distributional

semantics attractive as a model of word meaning.

First, the fact that distributional representations are learnt from natural language data,

and thus radically empirical. The induction process is automatic, scaling up to very large vo-

cabularies and any language or domain with enough linguistic data to process; for instance,

Bojanowski et al. (2017) provide semantic spaces for 157 languages, built from Wikipedia

text. This provides semantic representations on a large scale, in a single, coherent system

where systematic explorations are possible.

Table 1: Near-synonyms in semantic space: The words closest to man, chap, lad, and guy

in the distributional model of Baroni et al. (2014b), adapted from Baroni (2016a).

Word Nearest neighbors

man woman, gentleman, gray-haired, boy, person

lad boy, bloke, scouser, lass, youngster

chap bloke, guy, lad, fella, man

guy bloke, chap, doofus, dude, fella

Second, high multi-dimensionality. The information abstracted from the data is dis-

tributed across all the dimensions of a vector, typically a few hundred, which allows for rich

and nuanced information to be encoded. In traditional approaches, again for methodological

and practical reasons, comparatively few features are specified. Semantic distinctions can

be very subtle, as shown by the phenomenon of near-synonymy. All the words in Table 1

(man/lad/chap/guy) denote male adult humans, but each presents different nuances that

are difficult to express in a symbolic system using few features. Their nearest neighbors

illustrate the capacity of distributional semantic models to capture both generic and specific

semantic features: On the one hand, most of the neighbors are human- or male-denoting

words, suggesting that information akin to semantic features in decompositional approaches,

like ±male, is captured in the space (Mikolov et al. 2013b provide quantitative evidence);

on the other hand, the nearest neighbors reflect semantic differences between them, like lad

being used for younger men (its closest word in the space is boy, and it is also near lass,
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used to refer to girls in some English dialects, and youngster).

Third, and relatedly, gradedness. The information in the vectors is expressed in the form

of continuous values, and measures such as cosine similarity are graded: Two vectors can

be more or less similar, or similar in certain dimensions but not others. In the example in

Table 1, even if all four words are near-synonyms, chap and guy are “nearer near-synonyms”,

if we go by the standard test for synonymy in linguistics (substitutability in context; Lyons

1977). Correspondingly, their vectors are the closest of the set, as shown by their sharing

many nearest neighbors.

2. SEMANTIC CHANGE

Diachronic semantics, especially lexical semantic change, is an area where the interaction

between use and meaning (crucial for distributional semantics) has traditionally been the

focus of interest already in theoretical linguistics (Traugott & Dasher 2001; Deo 2015). For

instance, the word gay gradually changed during the 20th century from a meaning similar

to ‘cheerful’ to its current predominant use as ‘homosexual’, and its contexts of use in

language reflect this change: Examples in (1) are from the year 1900, and those in (2) from

2000 (source: COHA, Davies 2010-). The three key properties of distributional semantics

mentioned above are useful to model semantic change, and this is currently a blooming topic

in computational linguistics (for overviews, see Kutuzov et al. 2018; Tahmasebi et al. 2018):

High dimensionality allows it to represent many semantic nuances that can be subject to

change, gradedness in representations is crucial to account for the gradual nature of change,

and, as we will see below, its data-driven nature allows it to detect semantic change from

changes in usage.

(1) She was a fine-looking woman, cheerful and gay.

We assembled around the breakfast with spirits as gay and appetites as sharp as

ever.

(2) [. . . ] the expectation that effeminate men and masculine women are more likely to

be seen as gay men and lesbians, respectively.

‘I don’t personally support gay marriage myself,’ Edwards said.

2.1. Distributional approaches to diachronic semantics

Distributional methods started being used for semantic change around the 2010s, with initial

works using classic distributional methods (Sagi et al. 2009; Gulordava & Baroni 2011) and

Kim et al. (2014) introducing neural network representations, which have been predominant

in later work (Hamilton et al. 2016; Szymanski 2017; Del Tredici et al. 2019). Distributional

approaches are based on the hypothesis that a change in context of use mirrors a change in

meaning, which can be seen as a special case of the Distributional Hypothesis. They thus

infer a change in meaning when they observe a change in the context of use.

This is typically done by building word representations at different points in time and

comparing them (although Rosenfeld & Erk 2018 include time as a variable in the model

instead). This method is used to both detect semantic change and track its temporal

evolution. For instance, Kim et al. (2014) built one distributional lexicon per year from

1850 to 2009 using data from the Google Book Ngrams corpus (Michel et al. 2011). The

cosine similarity of the word gay, when compared to its representation in the 1900 lexicon,

www.annualreviews.org • Distributional Semantics and Linguistic Theory 5



goes down through the 20th century, with the drop accelerating at the end of the 70s from

around 0.75 to around 0.3 in 2000.

Figure 2 visualizes the trajectory of three words across time in another study (Hamilton

et al. 2016), with nearest neighbors in gray font along the words of interest. It illustrates

how inspection of nearest neighbors can help trace the specific meaning shift taking place. In

1900, gay is near words like daft or cheerful, and by 1990 it is instead near to homosexual.

the change in broadcast is metaphorical in nature, from a concrete to a more abstract

meaning (from spreading seeds to spreading information or signal); and awful undergoes

pejoration, from a positive to a negative denotation. Another method used to track specific

semantic changes is targeted comparisons to words related to the old and the new meanings:

For instance, Kim et al. (2014) compare how the cosine similarities of cell to dungeon and

phone evolve through the years. However, the latter requires previous knowledge of the

specific change taking place.

Figure 2: Two-dimensional visualization of semantic change for three English words, repro-

duced from Hamilton et al. (2016). The figure was obtained via dimensionality reduction

from a space with 300-dimensional vectors. Reproduced with permission.

There is current experimentation on two related efforts (Tahmasebi et al. 2018): sense-

specific semantic change, where sense representations are induced and then tracked (also

see Section 3.2), and detecting not only the presence but also the type of semantic shift.

In the latter literature, starting with the pioneering work of Sagi et al. (2009), there is

some evidence that distributional methods can spot narrowing and broadening, two classi-

cally described types of diachronic shift (Hock 1991). A case of narrowing is ‘deer’, which

evolved from Old English deor, meaning ‘animal’, to its current narrower denotation; one

of broadening is dog, from Late Old English docga, which used to denote a specific breed of

dog, to its current broader meaning. An extreme form of broadening results in grammat-

icalization, as in verb do going from a lexical to an auxiliary verb between the 15th and

the 18th century. Sagi et al. (2009) trace these three words by representing each context of

use individually, with one vector per sentence. They show that, for dog and do, contexts

become more separate over time, corresponding to the broadening effect, and the reverse for

deer. Moreover, their distributional measure correlates with the proportion of periphrastic

uses of do through the centuries, independently estimated via manual annotation of texts.

Up to now, most research has focused on showing that distributional semantics can

model semantic change, rather than on systematically exploring data and advancing our

knowledge of the phenomenon. An exception is Xu & Kemp (2015), a study assessing two

previously proposed laws that make contradicting predictions. Their large-scale computa-
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tional analysis, based on distributional semantic models of English on the Google Ngrams

corpus, shows that pairs of synonyms tend to stay closer in space than control pairs across

the 20th century, in four dataset jointly comprising tens of thousands of words. They thus

provide support for the law of parallel change (Stern 1921), that posits that related words

undergo similar changes, and against the law of differentiation (Bréal 1897), that defends

that synonyms tend to evolve different meanings because it is not efficient for languages

to maintain synonyms. Other generalizations about semantic change emerging from work

with distributional methods have been proposed, but controlled experiments have called

them into question (Dubossarsky et al. 2017).

2.2. Discussion

Distributional semantics has tremendous potential to accelerate research in semantic change,

in particular the exploration of large-scale diachronic data, in four main crucial points:

(1) detecting semantic change, as a change in the representation of a word across time;

(2) temporally locating it, by monitoring the rate of change in the distributional repre-

sentation; (3) tracking the specific semantic evolution of the word, via an inspection of

the nearest neighbors or targeted examination of cosine similarities; (4) testing competing

theories via large-scale empirical studies. It can also help detecting the type of semantic

change, although this is still an under-researched topic.

A major challenge is the fact that distributional methods, especially those based on

neural networks, are quite data-hungry, while many datasets in diachronic semantics are

rather small (Kutuzov et al. 2018). This means that most studies are for English, and

other languages are neglected: Of 23 datasets used for diachronic semantics, identified in

Tahmasebi et al. (2018)’s survey, only 4 are not in English. Moreover, the vast majority of

studies focus on the Google Book Ngrams corpus, which covers only the 1850-2009 period.

When the amount of data is scarce, spurious effects easily arise. For instance, Del Tredici

et al. (2019), in a study of meaning shift in a community of soccer fans with data from 2011

to 2017, find that reference to specific people or events causes changes in cosine similarity

that do not correspond to semantic change; an example is stubborn, which in 2017 was

mostly used when talking about a new coach.1 Effects like this challenge the Distributional

Hypothesis, as a change in context does not signal a change in meaning, and call for more

nuanced methods. This kind of issue is typically less problematic for studies involving longer

time scales, because of the larger amount and variety of data, but it can arise when data

are scarce or when there are systematic differences in the sources for different time periods

—for instance if texts are from different genres.

Another issue is that research has mostly focused on lexical semantic change, while

in diachronic semantics there is much work on grammaticalization processes (Deo 2015).

While classic distributional approaches could not account for function words (to the point

that they were typically removed from the vocabulary), recent neural network models do

provide usable representations for them (Mikolov et al. 2010; Peters et al. 2018), opening

new possibilities.

1Del Tredici et al. (2019) detect such cases with a complementary distributional measure, based
on the specificity of the contexts of use.
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3. POLYSEMY AND COMPOSITION

Words are notoriously ambiguous or polysemous, that is, they adopt different meanings

in different contexts (Cruse 1986, among many others). For instance, post-doc refers to a

person in the first sentence in Figure 1, and to a period of time in the second. Distributional

semantics has traditionally tackled this issue in two ways, which resonate with linguistic

treatments of polysemy (Lyons 1977). The predominant approach, by far, is to take the

word as a unit of representation and provide a single representation that encompasses all

its uses (Section 3.1). The second approach is to provide different vectors for different word

senses (Section 3.2).

3.1. Single representation, polysemy via composition

The predominant, single representation approach is similar in spirit to structured ap-

proaches to the lexicon like the Generative Lexicon (Pustejovsky 1995), Frame Semantics

(Fillmore et al. 2006), or HPSG (Pollard & Sag 1994), even if not directly inspired by them.

These approaches aim at encoding all the relevant information in the lexical entry, and then

define mechanisms to deploy the right meaning in context, usually by composition. As an

example, Pustejovsky (1995, 122-123) formalizes two readings of bake, a change of state

(John baked the potato) and a creation sense (John baked the cake), by letting the lexical

entries of the verb and the noun interact: If bake combines with a mass-denoting noun, the

change of state sense emerges; if it combines with an artifact, the creation sense emerges.

This has the advantage of capturing aspects of meaning that are common to the different

contexts, while being able to account for the differences. Sense accounts of polysemy strug-

gle with this, and face a host of other serious theoretical, methodological, and empirical

issues (see Pustejovsky 1995; Kilgarriff 1997, for discussion).

corpus-based

dim1 dim2

cut 4 5

cost 1 5

cut cost 4 9

synthetic

dim1 dim2

cut cost 5 10

2 4 6 8 10

4
6

8
10

12

dim1

di
m

2

cut
rip chop

slash

scissors

CUT COST
expensive

pay
worth

buy
save

cut cost

Figure 3: Compositional distributional semantics: Illustration with vector addition. Left:

The synthetic vector cut cost is built by component-wise addition of the vectors for cut

and cost. Right: The argument cost pulls the vector for cut towards its abstract use (see

nearest neighbors, in gray). The corpus-based vector for cut cost can be used to check the

quality of its synthetic counterpart.

In standard distributional semantics, each word is assigned a single vector, which is

an abstraction over all its contexts of use, thus encompassing all the word senses that are
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attested in the data (Arora et al. 2018). The pioneering work of Kintsch (2001) in Cognitive

Science started extending distributional methods to compose such generic word representa-

tions into larger constituents. The computational linguistic community took this research

line up almost a decade later (Erk & Padó 2008; Mitchell & Lapata 2010; Baroni & Zam-

parelli 2010; Coecke et al. 2011; Socher et al. 2012; Mikolov et al. 2013a). Compositional

distributional methods build representations for phrases out of the representations of their

parts, and the corresponding meaning is expected to emerge as a result of the composi-

tion (Baroni et al. 2014a). Figure 3 provides an illustration, with the simplest composition

method: adding the word vectors. The synthetic vector cut cost created via this compo-

sition method has a value of 4+1=5 for the first dimension (dim1 ) because the values of

cut and cost for this dimension are 4 and 1, respectively.

To give an intuition of how this may account for semantic effects, let’s assume that di-

mension 1 is associated to abstract notions and dimension 2 to concrete notions (of course

this is a simplification; remember that properties like concreteness are captured in a dis-

tributed fashion). The verb cut has a concrete sense, as in cut paper, and a more abstract

sense akin to save, as in cut costs, and so it has high values for both dimensions. Instead,

cost is an abstract notion, and so it has low values for dimension 1 and high values for

dimension 2. When composing the two, the abstract dimension gets highlighted, pulling

the vector towards regions in the semantic space related to its abstract sense. This is shown

in Figure 3 (right); while the vector values are fictitious, the neighbors (in gray) are a se-

lection of the 20 nearest neighbors of cut and cut cost in a real semantic space (Mandera

et al. 2017).2 As the nearest neighbors show, the representation of cut is dominated by

the physical sense, but its composition with cost shifts it towards the abstract sense. This

mechanism by which matching semantic dimensions reinforce each other, and mismatched

dimensions remain less active, is reminiscent of the mechanisms by Pustejovsky (1995) dis-

cussed above for bake a potato vs. bake a cake. The main difference is that distributional

representations are not explicitly structured like those in the Generative Lexicon, although

that does not mean that they lack structure; rather, the structure is implicitly defined in

the space.

A substantial body of work has shown that composition methods in distributional se-

mantics largely account for polysemy effects in semantic composition. Baroni & Zamparelli

(2010) and subsequent work compare the synthetic vector for a phrase, like cut cost in

Figure 3, to a phrase vector cut cost that is extracted directly from the corpus with stan-

dard distributional methods. The closer the synthetic vectors are to the corpus-based ones,

the better the composition method. In Boleda et al. (2013), the best composition method

obtains an average cosine similarity of 0.6 between synthetic and corpus-based vectors for

adjective-noun phrases; for comparison, phrases have an average cosine similarity of 0.4 to

their head nouns. Another common method is to compare model results to human intuitions

about the semantics of phrases. Mitchell & Lapata (2010) introduced this for phrase simi-

larity (in turn inspired on methods to evaluate word similarity), with participant data such

as reduce amount - cut cost being very similar, encourage child - leave company very dissim-

ilar, and present problem - face difficulty obtaining medium scores. The best composition

methods yield Spearman correlation scores with participant data around 0.4 (minimum is

0, maximum 1) for adjective-noun, noun-noun, and verb-noun phrases; for comparison, cor-

relation scores between different participants are around 0.5. Other work experiments with

2User-friendly interface to this semantic space: http://meshugga.ugent.be/snaut-english.
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ditransitive constructions (Grefenstette & Sadrzadeh 2011), with triples such as medication

achieve result - drug produce effect, or even full sentences (Bentivogli et al. 2016), but going

beyond short phrases proves difficult. There is not much work on function words because,

as mentioned above, these are traditionally hard to model with distributional semantics.

An exception is Bernardi et al. (2013), which seeks to identify paraphrasing relationships

between determiner phrases (e.g., several wives) and words that lexically involve some form

of quantification (e.g., polygamy). They obtain reasonable but not optimal results.

A particularly exciting application of compositional distributional methods is that

of Vecchi et al. (2017), who showed that distributional models are able to distinguish be-

tween semantically acceptable and unacceptable adjective-noun phrases. Crucially, their

data involves phrases that are unattested in a very large corpus; some phrases are unat-

tested because they are semantically anomalous (angry lamp, legislative onion), and some

due to the generative capacity of language, with its explosion of combinatory properties,

together with the properties of the world, which make some combinations of adjectives and

nouns unlikely even if they are perfectly acceptable (warm garlic, sophisticated senator).

The fact that distributional models are able to predict which combinations are acceptable

for human participants, and which are not, suggests that they are able to truly generalize.

Work in this area has investigated much more sophisticated approaches to composition

than vector addition. I cannot do justice to this research for reasons of space, but see Erk

(2012) and Baroni (2013). Much of this work is inspired by formal semantics (Garrette

et al. 2011; Beltagy et al. 2013; Baroni et al. 2014a; Coecke et al. 2011; Lewis & Steed-

man 2013; Herbelot & Vecchi 2015; Erk 2016); Boleda & Herbelot (2016) surveys research

at the intersection between formal and distributional semantics. However, a robust result

that has emerged from all this literature is that vector addition is surprisingly good, of-

ten outperforming more sophisticated methods. This suggests that the greatest power of

distributional semantics lies in the lexical representations themselves.

Relatedly, this research has also shown that, while distributional semantics can model

composition of content words in short phrases, scaling up to larger constituents and account-

ing for function words remains challenging. Recall that distributional semantics provides

abstractions over all occurrences of an expression. Compositionally built phrases remain

generic rather than grounded to a specific context. Therefore, distributional approaches

can account for the fact that, in general, red box will be used for boxes that are red in

color, but they cannot really account for highly context-dependent interpretations, like red

box referring to a brown box containing red objects (McNally & Boleda 2017). This is be-

cause distributional semantics does not come equipped with a mechanism to integrate word

meaning in a given linguistic and extralinguistic context, or to represent that context in the

first place (Aina et al. 2019). Note that functional elements like tense or determiners need

a context to be interpreted, so it makes sense that they are challenging for distributional

semantics.

Accordingly, Westera & Boleda (2019) defend the view that distributional semantics

accounts for expression meaning (more concretely, how an expression is typically used by

speakers), but not for speaker meaning (how a speaker uses an expression, in terms of com-

municative intentions, in a given context, cf. the red box example above). Newer generation

neural networks are contributing to expanding these limits, as they natively incorporate

mechanisms to compose new words with a representation of the context (Mikolov et al.

2010). However, the extent to which they can account for speaker meaning, and contextual

semantic effects more generally, remains to be seen; the results in Aina et al. (2019) suggest
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that some of these models still overwhelmingly rely on lexical information.

Finally, another area where distributional semantics shows potential is the phenomenon

of semantic opacity and semi-opacity, which is the opposite end of compositionality; see

Section 4.2 for work on the compositionality of noun compounds.

3.2. Different representations, polysemy via word senses

Other work aims at building sense-specific distributional representations, where typically

each word sense is assigned a different vector (for a recent survey, see Camacho-Collados &

Pilehvar 2018). The key insight here is that, because distributional semantics is based on

context of use, and uses of a word in a given sense will be more similar to each other than

to uses of the same word in a different sense, we can detect word senses by checking the

similarity of the contexts. The pioneering work of Schütze (1998) did this by representing

single instances of word use, with one vector for each sentence in which the word occurs.

Then, word senses were automatically identified as coherent regions in that space. This work

started a tradition, within distributional semantics, of research on word sense induction and

sense-specific word representations (McCarthy et al. 2004; Reisinger & Mooney 2010). Erk

and colleagues instead aimed at providing a representation of the specific meaning a word

takes in a given context, entirely bypassing word senses (Erk & Padó 2008; Erk & Padó

2010; Erk et al. 2013). This work is related to compositional distributional semantics, with

the difference that it provides a use-specific word vector representation instead of going

directly to the representation of the larger constituent.

Two crucial problems in sense-based approaches to polysemy are 1) deciding when two

senses are different enough to warrant the addition of an item to the vocabulary, 2) how to

represent the information that is common to different senses (Kilgarriff 1997). Distributional

semantics does not improve things with respect to the first issue, but it does alleviate the

second. Two sense-specific vectors can be similar in some dimensions (e.g., for cut, those

related to reducing or splitting) and different in others (like the abstract/concrete axis of

cut), in a graded fashion. The same way that it can capture similarities and differences

between words, it can capture similarities and differences between word senses.

3.3. Discussion

Polysemy is a pervasive phenomenon that is difficult to model in a discrete, symbolic sys-

tem (Kilgarriff 1997). Distributional semantics provides an attractive framework, comple-

mentary to traditional ones (Heylen et al. 2015). Multi-dimensionality allows it to capture

both the common core to different uses of a word and the differential factors, as some

dimensions of meaning can specialize in the former and some in the latter. Gradedness

allows it to capture the degree of the semantic shift in different contexts of use, be it in the

composition route or the word sense route. Moreover, the fact that distributional semantics

provides data-induced representations for a large number of words makes it possible to use

it to make predictions and test specific hypotheses driven by linguistic theory.

As an example, Boleda et al. (2013) test the hypothesis, stemming from formal seman-

tics, that modification by a certain class of adjectives is more difficult to model than other

classes. The specific prediction is that synthetic phrases with these adjectives (like alleged

killer) will be further away from their corpus-based vectors than synthetic phrases with

other adjectives (like severe pain). Their results are negative, and they instead observe the

influence of another factor in the results: If an adjective denotes a very typical property of a
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noun, like severe for pain, then it is easy to model; if it is less typical, like severe for budget,

then it is more difficult. In many of the difficult cases, such as likely base, it is not even clear

how the two words compose; out of context, it is not easy to come up with possible inter-

pretations for this phrase. This led the authors to further explore the context-dependence

of modification, resulting in a theoretical proposal (McNally & Boleda 2017). The authors

propose that composition exploits two aspects of meaning: on the one hand, the conceptual

aspect, with regularities in how words match (box denotes a physical object, and red is

typically used to specify colors of physical objects); on the other hand, the referential as-

pect, specifically the information about the referent of the phrase (for instance, red box can

be used in a context that requires distinguishing a brown box containing red objects from

another, identical-looking brown box containing blue objects). Distributional semantics

can model conceptual, but not referential effects, for the same reason that it cannot model

contextual effects and speaker meaning more generally (see Section 3.1). McNally & Boleda

(2017) took distributional semantic data themselves as an object of empirical inquiry; they

asked what made certain phrases difficult for compositional distributional models, and the

answer proved theoretically worthy. This work is thus an example of fruitful collaboration

between computational and theoretical approaches to language.

4. GRAMMAR-SEMANTICS INTERFACE

There is ample evidence that content-related aspects of language interact with formal as-

pects, as is salient for instance in argument structure and the expression of arguments in

syntax (Grimshaw 1990; Levin 1993, see Section 4.1), as well as in derivational morphol-

ogy (Lieber 2004, see Section 4.2).

4.1. Syntax-semantics interface

Beth Levin’s seminal work on the syntax-semantics interface was based on the observation

that “the behavior of a verb, particularly with respect to the expression of its arguments,

is to a large extent determined by its meaning” (Levin 1993, p. 1). She defines semantic

verb classes on the basis of several syntactic properties. This is a particular case of the

Distributional Hypothesis, and thus it is natural to turn it around and use distributional

cues to infer semantic classes —as Levin herself does in her research in a manual fashion.

Levin’s work had a big impact in Computational Linguistics, inspiring work on the

automatic acquisition of semantic classes from distributional evidence (Dorr & Jones 1996;

Merlo & Stevenson 2001; McCarthy 2000; Korhonen et al. 2003; Lapata & Brew 2004;

Schulte im Walde 2006; Boleda et al. 2012). For instance, Merlo & Stevenson (2001) used

manually defined linguistic features, with data extracted from corpora, to classify English

verbs into three optionally transitive classes: unergative, unaccusative and object-drop.

They achieved around 70% accuracy. Other work targets a finer-grained classification, with

Levin-style semantic classes, such as Schulte im Walde (2006) for German. This early

work used distributional evidence, but not distributional semantics strictu sensu. Baroni &

Lenci (2010) replicated Merlo & Stevenson (2001)’s experiment using a proper distributional

model, obtaining comparable accuracies.

Erk et al. (2010) initiated a line of work using distributional methods to model selectional

restrictions, or the thematic fit between an argument and a predicate (usually, a verb). They

capitalize on the fact that distributional models capture gradedness in linguistic phenomena,
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since selectional restrictions are graded: cake is a better object for eat than chalk, which is

in turn better than sympathy. Again, this is not easy to capture in symbolic models with

discrete features like [±edible]. Erk et al. computed the plausibility of each verb-argument

combination as the similarity between a candidate argument and a (weighted) average of

the arguments observed with a verb. For instance, when deciding whether hunter is a

plausible agent for the verb shoot, they computed its similarity to an average of the vectors

for poacher, director, policeman, etc. (see Figure 4). This average vector can be seen as a

prototype for the argument of the verb.

poacher!

director!
policeman!

deer!
doe!

buck!

hunter!

Seen patients"
of“shoot”!

Seen agents"
of “shoot”!

Figure 4: Visualization of the approach to selectional preferences in Erk et al. (2010).

Partial reproduction of their Figure 1, p. 731; CC-BY.

Erk et al. compared the scores of the model to human ratings (where participants

were asked to rate the plausibility that e.g. hunter is an agent of shoot). Their model

achieved a Spearman correlation score of 0.33 and 0.47 (p < 0.001) with the human ratings

in two different datasets for English involving agent and patient roles. Erk et al.’s idea of

working with argument prototypes has been further refined and developed in subsequent

models (Baroni & Lenci 2010; Lenci 2011; Greenberg et al. 2015; Santus et al. 2017) with

improved empirical results and a broader coverage of phenomena.

4.2. Morphology-semantics interface

Derivational morphology is at the interface between grammar and semantics (Lieber 2004).

Stem and affix need to match in both morphosyntactic and semantic features: For in-

stance, the suffix -er applies to verbs, as in carve → carver, but only those that have

certain kinds of arguments. The effects of derivational processes are also both grammati-

cal (-er produces nouns) and semantic (these nouns have some agentive connotation, like

carver). Derivational processes are semi-regular; they are largely compositional, but not

always (mainly due to lexicalization processes), and they present subregularities (for in-

stance, carver, driver denote agents, but broiler, cutter denote instruments). Moreover,

both stem and affix semantics exhibit the properties typical of word semantics, such as

polysemy and gradedness (Marelli & Baroni 2015); cf. the polysemy of -er between agent

and instrument. Thus, accounting for morphological derivation requires fine-grained lexical

semantic representations for both stem and affix and mechanisms to combine them, in a

clear analogy to phrase composition (see Section 3.1).

In recent years, researchers have explored methods to produce distributional representa-

tions for morphologically complex words from the representations of their parts (Lazaridou

et al. 2013; Marelli & Baroni 2015; Padó et al. 2016; Lapesa et al. 2018; Cotterell & Schütze

2018, a.o.); most of this work has adapted compositional methods initially developed for
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word composition. The motivation in this work is two-fold. From a theoretical point

of view, distributional semantics offers new tools to investigate derivational morphology, in

particular its rich, data-driven semantic representations. From a practical perspective, such

methods address “the data problem” of distributional semantics (Padó et al. 2016, p. 1285):

In general, morphologically complex words are less frequent than morphologically simple

words, and thus distributional representations for morphologically complex words can be

expected to be of a comparatively lower quality; moreover, because morphology is produc-

tive, new words are continuously created, and, in these cases, data is simply unavailable,

making it imperative to rely on methods to build synthetic word vectors for morphologically

complex words.

Researchers have experimented with simple composition methods and more complex

ones, often based on machine learning. Again, the simplest method is addition, which here

implies summing up the vectors for the stem and the affix, as in carver = carve + er.

However, affixes are not observed as units in corpora. A common method to obtain affix

representations is to average derived words (Padó et al. 2016) —for instance, averaging the

vectors for carver, drinker, driver, etc. to obtain a representation for -er.

Table 2: Derivational phenomena captured with compositional distributional semantic

methods: Examples from Marelli & Baroni (2015).

Phenomenon Word Nearest neighbors (selection)a

Affix polysemy carverb potter, engraver, goldsmith

broiler oven, stove, to cook, kebab, done

Sense selection column arch, pillar, bracket, numeric

columnist publicist, journalist, correspondent

Differential effect industrial environmental, land-use, agriculture

of the affix industrious frugal, studious, hard-working

aMarelli & Baroni (2015) provide a selection of the 20 nearest neighbors; bin small caps, synthetic word

representations, produced by derivation operations with distributional semantics (see text).

Table 2 showcases phenomena captured by the distributional model of Marelli & Ba-

roni (2015), illustrated through nearest neighbors (see the original paper for quantitative

evaluation; also note that their composition method is more sophisticated than addition,

but the kinds of effects modeled are similar for different composition functions). Words in

small caps correspond to synthetic word vectors, the rest to corpus-based word vectors. The

first block of the table shows that the distributional method captures the agent/instrument

polysemy of the affix, and is able to produce different results depending on the stem: The

synthetic vector for carver is near agents for professions, like potter or goldsmith, whereas

broiler is in the region of cooking instruments (oven, stove). In the second block, we see

that the relevant sense of the stem is captured even in cases where it is not the predominant

one: In the vector for the word column, the senses related to architecture and mathematics

dominate (see nearest neighbors), but -ist correctly focuses on the sense related to journal-

ism when producing columnist. Because -ist often produces professions, its distributional

representation is able to select the dimensions of column that match one of the meaning

types produced by the morpheme. Finally, the examples in the third block show that dif-

ferent affixes produce different meanings when applied to the same stem. For instance, -al

and -ous have quite different consequences on the same base form.

Distributional semantics has clear potential to capture linguistic phenomena related to
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derivation; the extent to which they are able to do so is still under investigation, since

distributional methods exhibit a large variance in performance across invididual words and

across derivational patterns (Padó et al. 2016). The factors intervening are still not fully

understood, but it seems clear that some are methodological and some are linguistic. As

for the former, if a word is very frequent, it will have probably undergone lexicalization; if

it is very unfrequent, then its corpus-based representation will be of low quality. In both

cases, the word will not be a good candidate to participate in the creation of the affix

representation, or as a comparison point to evaluate distributional methods. It is thus

not surprising that overall scores are good but not optimal. For instance, Lazaridou et al.

(2013), in a study on English, showed that derived forms have a mean cosine similarity

of 0.47 with their base forms (e.g. carver compared to carve). The best compositional

measure provides a mean similarity of 0.56 between synthetic and corpus-based vectors

—significantly higher, but not a big jump. However, they also provide evidence that, in

cases where the quality of the corpus-based word representations is low, the compositional

representation is substantially better, suggesting that distributional methods can provide

useful semantic representations for derived words in a productive way, and alleviate the

data problem explained above. For instance, the nearest neighbors of rename in their

distributional space are defunct, officially, merge, whereas those for the synthetic vector

rename are name, later, namesake.

As for linguistic factors, for instance Padó et al. (2016), in a large-scale study of deriva-

tion in German, find that the derivational pattern is the best predictor for model perfor-

mance (that is, some derivational processes are intrinsically harder to model than others),

and argue that derivations that create new argument structure tend to be harder for dis-

tributional models: For instance, the agentive/instrumental nominalization with suffix -er

(fahren → Fahrer, English drive-driver), where the external argument is incorporated into

the word, is difficult to capture, whereas deverbal nominalizations that preserve argument

structure are comparatively easy (e.g. with suffix -ung, umleiten → Umleitung, English

redirect-redirection).

Research in derivational morphology also shows that vector addition works surprisingly

well, as was the case with composition (see Section 3.1). This again suggests that the

distributional representations themselves do most of the job, and are more important than

the specific method used. Cotterell & Schütze (2018)’s results underscore this interpreta-

tion. They propose a probabilistic model that integrates the automatic decomposition of

words into morphemes (carver → [carve] [er]) with the synthesis of their word meaning,

jointly learning the structural and semantic properties of derivation. They test different

derivation models and different word representations on English and German data, with

representations having by far the most influence on the results.

The robustness of addition has emerged also in the study of semantic opacity and semi-

opacity, which typically aims at predicting the degree of compositionality in compound

nouns and multi-word expressions. Reddy et al. (2011), a representative study, aimed at

reproducing human ratings on the degree of compositionality of 90 English compound nouns

(climate change, graduate student, speed limit obtaining maximum compositionality scores,

silver bullet, ivory tower, gravy train minimum). Adding the two component vectors (with a

higher weight of the modifier; see paper for details) achieved a Spearman correlation score

of 0.71 with human data. Other work uses different methods; for instance, Springorum

et al. (2013) do not use compositional methods but explore how the modifier and the

head contribute to compositionality ratings for German data. Against their prediction, the
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modifier is a much better predictor of compositionality than the head.

Again, most work is directed at showing that distributional semantics can model deriva-

tional morphology, rather than tackling more specific linguistic questions. An exception is

Lapesa et al. (2017), an interdisciplinary collaboration between theoretical and computa-

tional linguists that tests hypotheses about the effect of derivation on emotional valence (the

positive or negative evaluation of the referent of a word), on German data. For instance, one

of the predictions is that diminutives shift words towards positive valence (consider Hund

→ Hündchen, English dog-doggie). The work provides overall support for the hypotheses,

but in a nuanced form. The most interesting result is a hitherto unobserved interaction of

many valence effects with concreteness: The diminutive makes nouns positive if they de-

note concrete objects, whereas it tends to make abstract nouns negative (compare the case

of dog with Idee → Ideechen, English idea-small idea), and verbal prefixation with über-

(over-) tends to make concrete verbs, but not abstract verbs negative (fahren → überfahren,

Eng. drive-run over vs. nehmen → übernehmen, Eng. take-take over). This work again

showcases the potential of distributional semantics to uncover linguistically relevant factors.

Although most work is on derivational morphology, some research has tackled inflection,

too. A very influential study, with a model first proposed by Rumelhart & Abrahamson

(1973), is Mikolov et al. (2013b), which showed that several morphological and semantic

relations are organized according to simple additive relationships in distributional space.

For instance, good-better+rough creates a synthetic vector that is very near rougher. The

idea is that if you subtract an inflected word from its stem, you obtain a representation of

the affix (here, the comparative), which can then be applied to a new stem (here, rough)

by addition. Mikolov et al. tested eight patterns involving nominal, adjectival, and verbal

inflection, obtaining an average accuracy of 40% on the task of predicting the missing

element in the tuple. 40% may not look very impressive, but it is if we consider that the

model is required to find the exact right answer in a vocabulary of 82,000 words —that

is, in the case above, the answer is counted as correct only if the nearest neighbor of the

synthetic vector rougher is the word vector of rougher.

4.3. Discussion

The work reviewed in this section has three main assets to offer to theoretical approaches

to the grammar-semantics interface. The first is a wealth of data, created as part of the

research in order to develop and evaluate distributional methods. For example, participant

ratings on the compositionality of compounds (Reddy et al. 2011) can be used when selecting

material for experimental research. Other examples are ratings of typicality and semantic

relatedness (Springorum et al. 2013; Lazaridou et al. 2013) or information about derived

words, such as derivational pattern and degree of polysemy (Padó et al. 2016). This kind of

contribution is common to other quantitative and computational work (Baayen et al. 1993).

The second is tools to create and explore data via distributional methods. For instance,

the similarity between a derived form and a combination of its components in distributional

space can be used as a proxy for its degree of compositionality, which is useful to explore

processes of derivation and lexicalization. Other linguistic features can be simulated with

distributional measures: For instance, Padó et al. (2016) measure how semantically typical

a base form is for a given morphological pattern by comparing it to the average of all the

bases in the pattern (e.g. for -er, the word vector for carve compared to the average of the

vectors for carve, drink, drive, broil, cut, etc.).
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The third is its potential to uncover new empirical facts that are of potential theoretical

significance: For instance, the suggestion in Padó et al. (2016) that derivation processes that

affect argument structure are more challenging to model computationally, or the relevance

of the concreteness/abstractness axis in the study of Lapesa et al. (2017).

5. CONCLUSION AND OUTLOOK

The above discussion summarizes robust results in distributional semantics that can be

directly imported for research in theoretical linguistics, as well as challenges and open

issues. Among the robust results are that (1) distributional semantics is particularly use-

ful in areas where the connection between use, meaning, and grammar is relevant, such as

the areas reviewed in this survey; (2) geometric relationships in distributional models corre-

spond to semantic relationships in language; (3) gradedness in distributional representations

correlates with gradedness in semantic phenomena (e.g., the degree of semantic change);

(4) averaging the distributional representations of classes of words yields useful abstrac-

tions of the relevant classes (e.g., of arguments accepted by specific predicates); (5) simple

combinations of distributional representations produce quite accurate predictions as to the

semantics of phrases and derived words. I have argued that the multi-dimensional, graded,

and data-driven nature of its representation are key aspects that contribute to these results.

There are at least four ways for distributional semantic research to contribute to lin-

guistic theories. The first is exploratory. Distributional data such as similarity scores and

nearest neighbors can be used to explore data on a large scale. The second is as a tool

to identify instances of specific linguistic phenomena. For instance, changes in distribu-

tional representations of words across time can be used to systematically harvest potential

instances of semantic change in diachronic data (Section 2). The third is as a testbed for

linguistic hypotheses, by testing predictions in distributional terms. The fourth, and hard-

est, is the actual discovery of linguistic phenomena or theoretically relevant trends in data.

This requires collaboration between computational and theoretical linguists.

There are also a number of challenges that distributional methods face. Like other

data-driven methods, distributional models mirror the data they are fed. This is good,

because they provide radically empirical representations, and also dangerous, because rep-

resentations are subject to biases in the underlying data (Caliskan et al. 2017). A related

challenge is the fact that distributional methods need large amounts of data to learn reason-

able representations. A rule of thumb is to have at least 20-50 instances of each expression

to represent; many languages, domains, or time periods simply lack these data. There is

active research on faster learning, as this is a problem for many other areas, but no working

solution for the moment. A final, crucial issue is the lack of adequate researcher training,

which prevents a wider use of distributional semantics in linguistics, and of quantitative and

computational methods more generally. Strengthening student training in such methods in

linguistics degrees is of paramount importance to allow the field to adequately exploit the

vast amounts of linguistic data that have become available in the last few decades.

In this survey, to maximize readability, I have focused on simple methods such as vector

similarity, nearest neighbors, vector addition, and vector averaging. While these are the

basic methods in the field, a glaring omission are methods based on machine learning

techniques, which are also commonly used to extract information from semantic spaces and

operate with distributional representations. I refer the reader to the references in the survey

for more information.
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For reasons of scope, I have also left out of the discussion research on neural networks

that is not specifically targeted at building semantic spaces. Neural networks are a type

of machine learning algorithm, recently revamped as deep learning (LeCun et al. 2015),

that induce representations of the data they are fed in the process of learning to perform a

task. For instance, they learn word representations as they learn to translate from English to

French, given large amounts of bilingual text. They proceed by trial and error, attempting to

translate a sentence, measuring the degree of error, and feeding back to the representations

such that they become more helpful for the task. Linguistic tasks that are general enough,

like machine translation or word prediction, result in general-purpose representations of

language. Most deep learning systems for language include a module that is akin to a

distributional lexicon, and everything I have said in this survey applies to such modules.

However, crucially, these systems also have other modules that represent linguistic context,

and mechanisms to combine this context with word representations. This is a big step with

respect to classic distributional models, and deep learning is being adopted in the community

at top speed. To illustrate, the examples in (3)-(4) (from Peters et al. 2018, p. 2233)

show the nearest neighbors of two sentences containing the polysemous word play, where

the representations for the sentences are vectors produced by the complex compositional

function implemented in the neural network. The nearest neighboring sentences illustrate

that the model has captured not only the relevant sense of the word, but also more nuanced

aspects of the meanings of the sentences (commenting on good plays in (3), referring to

signing for plays rather than to the acting itself in (4)).

(3) Sentence: Chico Ruiz made a spectacular play on Alusik’s grounder [. . . ]

Nearest neighbor : Kieffer [. . . ] was commended for his ability to hit in the clutch,

as well as his all-round excellent play.

(4) Sentence: Olivia De Havilland signed to do a Broadway play for Garson [. . . ]

NN : [. . . ] they were actors who had been handed fat roles in a successful play [. . . ]

Given the success of these models, and their complexity, there is a booming interest in the

computational linguistic community in understanding what aspects of language they cap-

ture, and how (Alishahi et al. 2019). Recently, Pater (2019) has argued for the integration

of neural network models in linguistic research (also see the responses to his article). I could

not agree more.
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