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Abstract

Human languages vary in terms of which meanings they lexicalize, but there
are important constraints on this variation. It has been argued that languages are
under pressure to be simple (e.g., to learn or to cognitively represent) and to be in-
formative (i.e., to allow for a precise communication), and that a good compromise
between these two pressures determines which meanings get lexicalized (Kemp and
Regier 2012 and much subsequent work). We argue that the way informativeness is
operationalized in that line of work is problematic because it assumes a communica-
tion model where interlocutors communicate with monomorphemic expressions. In
reality, however, morphosyntactically complex expressions greatly enrich the range
of meanings we are able to express in many semantic domains. One such domain is
number: many languages lexicalize few number meanings as monomorphemic ex-
pressions, but can precisely convey any number meaning using morphosyntactically
complex numerals. We argue that a different notion of communicative efficiency
plays a role in which meanings get lexicalized in semantic domains such as number:
languages are trying to find a good compromise between the pressure to lexicalize
as few meanings as possible (i.e, to minimize lexicon size) and the pressure to pro-
duce as morphosyntactically simple utterances as possible (i.e., to minimize average
utterance length). This case study in conjunction with previous work on commu-
nicative efficiency suggests that, in order to explain which meanings get lexicalized
across languages and across semantic domains, a more general approach may be
that languages are finding a good compromise between not two but three pressures:
be simple, be informative, and minimize average utterance length.

Keywords: numerals; number; simplicity; informativeness; average utterance
length; trade-off

1 Introduction

Human languages vary in terms of which meanings they lexicalize as monomorphemic ex-
pressions. There are nonetheless important constraints on this variation: some meanings
or meaning types are very frequently lexicalized, while others very rarely. Such con-
straints have been identified in both content and functional vocabulary. For instance, in
the domain of content words, color terms have a well-established order of appearance in
language evolution — certain semantic contrasts must be established before others (Berlin
and Kay 1969). In addition, color terms label only convex regions of conceptual color
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space (Gärdenfors 2014, Jäger 2010). In the domain of function words, multiple seman-
tic constraints have been identified for quantificational determiners (Horn 1972, Barwise
and Cooper 1981, Keenan and Stavi 1986, Peters and Westerst̊ahl 2006, Hackl 2009). For
instance, the meaning akin to ‘majority’ is often lexicalized as a quantificational deter-
miner across languages (e.g., English most), but the meaning akin to ‘minority’ never is
(Hackl 2009). Where do these constraints come from? Three prominent answers to this
questions include learnability (e.g., certain meanings are rarely or not lexicalized because
they are harder to learn, cf. Hunter and Lidz 2013, Chemla, Buccola, and Dautriche
2019, Steinert-Threlkeld and Szymanik 2018, 2020, Maldonado and Culbertson 2022),
syntax-semantics interface (e.g., certain meanings are not lexicalized because they would
be degenerate due to how syntactic structures are semantically interpreted, cf. Fox 2002,
Romoli 2015), and communicative efficiency (e.g., certain meanings are rarely or not lex-
icalized because lexicalizing them wouldn’t significantly improve communication success
between language users, cf. Kemp and Regier 2012 and much subsequent work).

In this paper, we won’t discuss learnability and syntax-semantics interface explana-
tions, and will focus instead on the communicative efficiency explanation. According
to the most prominent version of the communicative efficiency explanation, languages
are under two competing pressures: the pressure to be simple and the pressure to be
informative, i.e., to allow for a precise communication. Natural languages have been ar-
gued to lexicalize the meanings which allow them to achieve a good compromise between
these two pressures, i.e., to optimize the simplicity/informativeness trade-off (Kemp and
Regier 2012, Regier, Kemp, and Kay 2015, Xu, Regier, and Malt 2016, Xu, Liu, and
Regier 2020, Kemp, Xu, and Regier 2018, Zaslavsky, Kemp, Regier, and Tishby 2018,
Steinert-Threlkeld 2019, 2021, Mollica, Bacon, Zaslavsky, Xu, Regier, and Kemp 2021,
Denić, Steinert-Threlkeld, and Szymanik 2021, Denić, Steinert-Threlkeld, and Szymanik
2022, Zaslavsky, Maldonado, and Culbertson 2021, Uegaki 2022).

In this paper, we will refine the notion of communicative efficiency which plays a role
in which meanings get lexicalized, making four main contributions.

First, we argue that the way informativeness is operationalized in the aforementioned
work on communicative efficiency is problematic because it assumes a communication
model where interlocutors communicate with monomorphemic expressions. While this
simplification may be justified in certain semantic domains, in many semantic domains
morphosyntactically complex expressions greatly enrich the range of meanings we are able
to express. In other words, when morphosyntax is taken into account, languages may be
able to reach very high levels of informativeness even in semantic domains in which they
lexicalize very few meanings. Consider a semantic domain of natural numbers: many lan-
guages lexicalize few number meanings as monomorphemic expressions, but can precisely
convey any natural number meaning using morphosyntactically complex numerals. For
instance, even though English doesn’t lexicalize the number meaning 61, English speak-
ers are able to precisely convey it with a morphosyntactically complex numeral sixty-one.
Morphosyntax thus needs to be taken into account when informativeness of a language
is computed.

Second, if morphosyntax is taken into account when informativeness is computed, we
demonstrate that the simplicity/informativeness trade-off optimization approach cannot
explain which meanings get lexicalized, using number meanings and numeral systems as
a case study.

Third, we propose another notion of communicative efficiency to explain which number
meanings are lexicalized across languages. According to our proposal, languages are under
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the pressure to lexicalize as few meanings as possible (i.e, to minimize lexicon size) and
the pressure to produce as morphosyntactically simple utterances as possible (i.e, to
minimize average utterance length). Lexicon size and average utterance length are in
competition: reducing the average morphosyntactic complexity of utterances will often
require lexicalizing more meanings, and reducing the size of one’s vocabulary will often
result in needing expressions of greater morphosyntactic complexity to communicate.
We demonstrate that natural languages numeral systems indeed optimize the trade-off
between lexicon size and average utterance length.

Finally, once these results are in place, we abstract away from numeral systems and
discuss which notion of communicative efficiency may explain what meanings get lexical-
ized across semantic categories more generally. We propose that, in light of the present
case study on numeral systems and the previous work on simplicity/informativeness op-
timization approach, in order to explain which meanings get lexicalized across languages
and across semantic domains, a more general approach may be that languages are finding
a good compromise between not two but three pressures: be simple, be informative, and
minimize average utterance length.

2 Background: Simplicity/informativeness trade-off

We start by introducing the notion of communicative efficiency as the simplicity/informativeness
trade-off optimization.

Complexity One could distinguish between at least two sources of complexity (the
opposite of simplicity) in language: (i) complexity of the lexicon of the language, and
(ii) complexity of the morphosyntactic rules of the language. In most existing simplic-
ity/informativeness trade-off analyses the focus is restricted to specific semantic categories
and not to the entire language: this has motivated considering the lexicon as the sole
source of complexity.1

Two approaches to operationalizing the complexity of the lexicon have been explored
in the literature (Kemp and Regier 2012, Kemp et al. 2018, Steinert-Threlkeld 2021,
Denić et al. 2022, Uegaki 2022, Xu et al. 2020). The first approach is the number of
elements in the lexicon (i.e., morphemes). The second approach is rooted in assumptions
about cognitive representations of morphemes in, for instance, the language of thought
(Fodor 1975): a common assumption is that cognitive representations of morphemes are
the shortest combination of primitives of the language of thought with an appropriate in-
terpretation (cf. also van de Pol, Lodder, van Maanen, Steinert-Threlkeld, and Szymanik
2021, Katzir 2014, Feldman 2000, Goodman, Tenenbaum, Feldman, and Griffiths 2008,
Piantadosi, Tenenbaum, and Goodman 2016, a.o.). According to that approach, the com-
plexity of the lexicon may correspond to the sum of lengths of cognitive representations
of morphemes in the lexicon.

There is however a choice to be made in determining what exactly the morphemes in
the lexicon are. This is due to the fact that, in many languages, multiple phonetic forms
are associated with the same meaning. For instance, -ty in numerals twen-ty, thir-ty,
for-ty,... is phonetically different from -teen in numerals thir-teen, four-teen,..., as well
as from ten, albeit they all semantically denote the number 10 in English. As another

1Adding the complexity of morphosyntactic rules can be motivated for semantic categories where learners
arguably acquire not only the lexicon, but also the category-specific morphosyntax.
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example, consider ´s and ´en which contribute plural meaning in cats and oxen. Does
this mean that English has multiple lexicon entries for 10, or does it have one lexicon
entry for 10 which has different phonetic realizations (similarly for plural)? This question
is still debated (cf. Haspelmath (2020) for a recent discussion), but a prominent approach
is to take the latter route, that is, treat ten, -teen, and -ty, and similarly, -s and -en as
different phonetic realization of a single abstract morpheme (cf. Halle and Marantz 1993
and much subsequent work). In general, the work in simplicity/informativeness trade-off
tradition (explicitly or implicitly) adopts such an approach, measuring the complexity
of the lexicon as the number of abstract morphemes (i.e., the number of lexicalized
meanings). This choice needs to be kept in mind when the results of such studies are
interpreted.

Informativeness The informativeness of a language measures how precisely its expres-
sions allow its users to communicate the intended meanings. One way to formalize this
notion is as the probability that the users of the language, i.e., a speaker and a listener,
will communicate successfully, defined in (1) (Steinert-Threlkeld 2021, Denić et al. 2022,
Uegaki 2022; cf. however Kemp and Regier 2012 for an information-theoretic notion of in-
formativeness). This probability depends on the speaker distribution PS (how likely is the
speaker to use a word w from the lexicon of a language L given that they want to convey
a meaning m from the set of meanings M?), the listener distribution PL (how likely is the
listener to guess a meaning m from the set of meanings M given that they have heard a
word w from the lexicon of a language L?), and the need probability distribution P (how
likely are the speaker and a listener to need to communicate about a meaning m from
the set of meanings M?). This definition of informativeness ensures that if a language
has a non-ambiguous word in the lexicon for every possible meaning, the informativeness
of the language will be 1; on the other hand, semantic gaps (not having any word in the
lexicon to express a meaning) and ambiguity (not having a non-ambiguous word in the
lexicon to express a meaning) in general decrease informativeness of a language: by how
much depends on PL, PS, and P .

(1) Informativeness of a language:

IpLq “
ÿ

mPM

ÿ

wPL

P pmqPLpm|wqPSpw|mq

Simplicity/informativeness trade-off A language which has a non-ambiguous lexi-
cal item for every possible meaning would allow for a maximally precise communication
(i.e., it would be maximally informative), but it would be complex. On the other hand, a
language which only has one expression that can be used for any meaning would be simple,
but completely uninformative. Simplicity and informativeness are in a tension: languages
cannot both be minimally complex and maximally informative. This tension is known as
the simplicity/informativeness trade-off problem. There can be many optimal solutions
to this problem: the set of optimal solutions is called the Pareto frontier . A language is
(Pareto) optimal if there is no language better at one of the simplicity and informative-
ness dimensions without being worse on the other. Remarkably, computational modeling
of cross-linguistic semantic data has demonstrated that natural languages are at or very
near the Pareto frontier — the sets of meanings that natural languages lexicalize are (in
the proximity of) optimal solutions to the trade-off problem (Denić, Steinert-Threlkeld,
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and Szymanik 2021, Denić et al. 2022, Kemp and Regier 2012, Kemp et al. 2018, Steinert-
Threlkeld 2019, 2021, Uegaki 2022, Xu et al. 2020, Zaslavsky et al. 2018, 2021). Impor-
tantly, that natural languages optimize the simplicity/informativeness trade-off is not
inconsistent with cross-linguistic diversity found in many semantic domains: different
Pareto-optimal languages can have very different properties and different natural lan-
guages may thus be (approaching) different optimal solutions to the trade-off problem.

3 Proposal: Revising the notion of communicative

efficiency

The operationalization of informativeness as in definition (1) in Section 2 is problem-
atic because it doesn’t take into account that we can express many meanings which are
not lexicalized in our language by means of morphosyntactically complex expressions.
For instance, the English word grandmother is ambiguous between paternal and mater-
nal grandmother. However, we are able to eliminate ambiguity and thus the possibility
of miscommunication if we use syntactically complex paternal grandmother or maternal
grandmother. If the computation of informativeness of a language relies only on the ele-
ments of the lexicon as in Section 2, how precisely language users are able to communicate
with that language will be significantly underestimated.

One way to correct this would be to consider L in the definition (1) to be not the
lexicon of the language, but all expressions of the language, that is, both the lexicon and
morphosyntactically complex expressions.

When such a correction is made, does simplicity/informativeness trade-off optimiza-
tion remain a viable explanation for which meanings get lexicalized in different semantic
domains? In the present work, we will show that it doesn’t. In order to do so, we
will conduct a case study in a semantic domain in which many languages allow for a
maximally informative communication: that is, any meaning in this semantic domain
can be unambiguously conveyed with a (morphosyntactically complex) expression of that
language. The semantic domain in question is the set of natural numbers in languages
such as English, French and Serbian, among many others. Languages in which one can
unambiguously refer to any natural number are called languages with a recursive numeral
system. We will ask what determines which number meanings get lexicalized in recursive
numeral systems.

We will contrast two hypotheses. The first hypothesis, summarized in (2), is the sim-
plicity/informativeness trade-off optimization hypothesis adapted to semantic domains
where languages reach maximal informativeness.

(2) Hypothesis 1: Simplicity/informativeness trade-off
In a semantic domain in which maximal informativeness is reached, languages
lexicalize the smallest number of meanings which allows them to be maximally
informative in view of the language’s morphosyntax.

The second hypothesis, summarized in (3), is that languages balance between two different
pressures in semantic domains where they reach maximal informativeness: (i) the pressure
to minimize the complexity of the language and (ii) the pressure to minimize the average
morphosyntactic complexity of utterances. We consider that the relevant dimension of
complexity for both (i) and (ii) is the number of linguistic elements, rather than the
length of their cognitive representations in, for instance, a language of thought (although
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one may explore the latter avenue in future work). More specifically, we consider that
the complexity of a language is its lexicon size. We take the morphosyntactic complexity
of an utterance to be the number of morphemes in it, which we will refer to as utterance
length (UL). Average utterance length (ULpS, Lq) for semantic domain S in language
L is defined in (4). That pressures (i) and (ii) are in competition is due to the fact
that reducing average utterance length will often require lexicalizing more meanings, and
reducing the size of one’s vocabulary will often result in needing expressions of greater
length to communicate precisely.

(3) Hypothesis 2: Lexicon size/utterance length trade-off optimization
In a semantic domain in which maximal informativeness is reached, languages
lexicalize those meanings which allow them to optimize the trade-off between
lexicon size and average utterance length.

(4) Average utterance length UL for semantic domain S in language L, where P pmq

is the probability that the meaning m needs to be communicated and ULpm,Lq

is the length of the utterance conveying meaning m in language L:

ULpS, Lq “
ÿ

mPS

P pmqULpm,Lq

In what follows, we will show that Hypothesis 1 cannot explain which number mean-
ings are lexicalized in recursive numeral systems, while Hypothesis 2 can shed light on this
question. In other words, when languages achieve the maximal degree of informativeness
in a semantic domain, the pressures to minimize lexicon size and the pressure to minimize
average utterance length are key to understanding which meanings are lexicalized across
languages.

In light of these results, we will discuss what can be concluded more generally about
pressures at play in determining which meanings get lexicalized — what do these results
imply for semantic domains in which languages do not allow for the maximal degree of
informativeness, which is arguably a more common scenario? Ultimately, the balance
between three pressures — minimize lexicon size, minimize average utterance length and
maximize informativeness — may be a promising path to explaining which meanings get
lexicalized across semantic domains and languages.

4 Experiment

In this section, we present an experiment2 investigating how close natural languages’ re-
cursive numeral systems are to trading off optimally between lexicon size and average
utterance length (Hypothesis 2). We will evaluate this hypothesis by comparing natu-
ral languages to artificially generated languages. The artificial languages represent the
space of possibilities in terms of lexicon size/average utterance length trade-off in recur-
sive numeral systems, and will reveal what the (approximately) optimal solutions to this
problem are. To preview the findings, the results speak in favor of natural languages’
recursive numeral systems trading off optimally between lexicon size and average utter-
ance length (Hypothesis 2), and against them trading off optimally between simplicity
and informativeness (Hypothesis 1).

2All data and scripts used for the analysis are available at https://drive.google.com/file/d/

1HnC0axDP24I4FKRujMSSZU5hXD74aQEh/view?usp=sharing.
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4.1 Natural languages

We assume that numerals across languages semantically denote numbers (e.g., the nu-
meral two denotes the number 2), noting that this is a simplification (see Bylinina and
Nouwen (2020), Spector (2013)). We collected cross-linguistic data on number-denoting
morphemes and how these are morphosyntactically combined to construct numerals de-
noting numbers 1-99 in the sample of languages of the Numeral bases chapter in The
World Atlas of Language Structures (WALS) (Comrie 2013).3 Out of 172 recursive nu-
meral systems in Comrie (2013), 44 were excluded due to challenges with data collection
or data interpretation.4 128 languages were thus included in the analysis.5 WALS lan-
guage samples are compiled with an aim to maximize genealogical and areal diversity of
languages in them (Comrie, Dryer, Gil, and Haspelmath 2013) — we can thus have some
confidence that we are analyzing a representative sample of world’s languages’ recursive
numeral systems.

For each of the 128 studied numeral systems, for each numeral denoting a number in
the range 1-99, its morphosyntactic components and their denotations were identified (cf.
Table 1 for a few examples of numerals in Georgian); more details on how this was done
will be provided in Section 4.2. The studied numeral systems differ in terms of which
number meanings they lexicalize as monomorphemic expressions. Some recurring options
are listed in (5):

(5) Lexicalized number concepts:

a. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (75 languages)
b. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 (19 languages)
c. 1, 2, 3, 4, 5, 10 (9 languages)

Even when they lexicalize the same number meanings, languages sometimes make
different choices in constructing morphosyntactically complex numerals. For instance,
Kunama and Fulfulde lexicalize number meanings in (5c); Kunama constructs the nu-
meral for number 9 as 10 ´ 1, while Fulfulde does it as 5 ` 4. As another example,
Greek and Georgian lexicalize number meanings in (5b); Greek constructs the numeral
for number 45 as 4 ¨ 10 ` 5, while Georgian does it as 2 ¨ 20 ` 5. Morphosyntactically
complex numerals for numbers 1-99 across languages reveal that addition, multiplication
and subtraction are productively involved in their construction6 (cf. also the discussion

3Two main sources were used to collect the cross-linguistic data. The primary source were descrip-
tive grammars of individual languages, in most cases those referenced in Comrie (2013). When no
descriptive grammar of a language was accessible to us, we used as a secondary source the data
from the website https://lingweb.eva.mpg.de/channumerals/, maintained by Eugene Chen. This web-
site is a collective effort of language scholars to document world’s language’s numeral systems. The
sources used for each language can be found in Appendix at: https://drive.google.com/file/d/

1HnC0axDP24I4FKRujMSSZU5hXD74aQEh/view?usp=sharing.
4For some of the languages from the sample in Comrie (2013), no complete description of the numeral
system was accessible to us. Furthermore, a small number of languages were excluded due to difficulties
with data interpretation. In most cases, this happened when morphosyntax of certain numerals was not
aligned with their interpretation (e.g. in Zoque, the numeral for number 9 is morphologically 6+4; this
is dubbed ‘correct misinterpretation’ in Hurford (1975)). Additionally, Danish was excluded for reasons
explained in footnote 6 and Ainu was excluded for reasons explained in footnote 7.

5The list of analyzed languages and detailed descriptions of their numeral systems can be found in Ap-
pendix at: https://drive.google.com/file/d/1HnC0axDP24I4FKRujMSSZU5hXD74aQEh/view?usp=

sharing.
6In the Danish numeral system, a morpheme denoting the fraction half is used to construct certain
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Table 1: Georgian numerals for numbers 6, 30 and 62

Denoted number (numeral) Morphosyntactic make-up
6 (ekvsi) 6 (ekvsi)

30 (otsdaati) 20 (ots-) ` (-da-) 10 (-ati)

62 (samotsdaori) 3 (sam-) ¨ 20 (-ots-) ` (-da-) 2 (-ori)

of Hurford (1975, 2007) below) — these are sometimes, but not always, morphosyntac-
tically overt. Furthermore, certain number-denoting morphemes play a special role in
the construction of morphosyntactically complex numerals (the so-called bases). For in-
stance, in ‘base-10 languages’, morphosyntactically complex numerals for numbers up to
99 are in general constructed according to the morphosyntactic pattern x ¨ 10 ` n (e.g.,
Greek). On the other hand, in ‘base-20 languages’ morphosyntactically complex numer-
als for numbers up to 99 are in general constructed according to the morphosyntactic
pattern x ¨ 20 ` n (e.g., Georgian). Many languages behave as ‘base-5’ languages when
it comes to the composition of numerals for numbers 6-9, which they construct as 5 ` n
(e.g., Fulfulde).

Hurford (1975, 2007) in his seminal work proposes that number-denoting morphemes
are of the syntactic category Digits (D) or Multipliers (M). Roughly, morphemes denot-
ing numbers which are ‘bases’ as 10 or 20 in ‘base-10’ or ‘base-20’ languages are of the
syntactic category M ; other morphemes are of the syntactic category D. He proposes
that, across languages, numerals are constructed according to the morphosyntactic rules
in (6). For instance, consider a language whose D “ t1, 2, 3, 4, 5, 6, 7, 8, 9u, M “ t10u —
in this language, 5 ¨ 10 ` 6, 5 ¨ 10 ´ 6, 10 ` 4, 10 ´ 4 are examples of morphosyntactically
well-formed expressions, while 5 ¨ 2, 5` 3 are examples of expressions which are not well-
formed. All numerals in all natural languages in this study can be constructed using the
grammar in (6).7

(6) NUMBER ÝÑ D | PHRASE | PHRASE +/- NUMBER
PHRASE ÝÑ M | NUMBER ¨ M

4.2 Computing lexicon size and the average utterance length

Our measure of lexicon size is the number of lexicalized meanings. As we pointed out
in Section 2, this choice influences how the results are interpreted: we will come back to
this in the discussion.

complex numerals; for instance the numeral fifty in Danish contains morphemes three, half and twenty
((three - half) ¨ twenty). This suggests that there is a limited use of division too involved in the
composition of numerals. As, to our knowledge, the extent to which division can be used productively
in numeral systems is not well understood (e.g., Hurford’s morphosyntactic rules for numerals do not
incorporate it), we assume for simplicity that division is not available, and exclude Danish from the
corpus of natural languages.

7 One language in WALS corpus, Ainu, has numerals which cannot be derived by this grammar. Hurford
(1975) is aware of this and discusses the case of Ainu at length; he considers different extensions of the
grammar in (6) to accommodate Ainu but provides arguments against each of them, thus leaving the
problem of Ainu unresolved. Because we will rely on the grammar in (6) to generate artificial languages
and to estimate the Pareto frontier (cf. Section 4.3), we excluded Ainu from the corpus of natural
languages.
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The average utterance length is computed according to the formula in (4), adapted in
(7) for the the semantic domains of natural numbers in the range 1-99. In (7), ULpn, Lq is
the length of the numeral (i.e., the number of morphemes in it) of the language L denoting
the number n and P pnq is the probability that the number n needs to be communicated.
We assume that the probabilities that different numbers need to be communicated follow
a power-law distribution as in (8) (cf. Dehaene and Mehler 1992, Piantadosi 2016, Xu
et al. 2020). Qualitatively, this probability distribution captures that the larger the
number n, the lower the need to talk about it. Finding the number of morphemes in
a numeral required studying the morphosyntactic patterns according to which numerals
for numbers 1-99 are constructed in each of the 128 languages. In most languages,
the relevant morphosyntacic patterns were described in the descriptive grammars we
consulted, or were otherwise easy to detect. There were however more difficult cases,
even in languages we are closely familiar with (for instance, is there a phonetic variant of
the morpheme for number 2 in English twelve?). In such cases, we applied the following
decision rule: if a numeral is an exception to an established morphosyntactic pattern
in a language, but shows (phonetic or orthographic, depending on the available data)
elements of morpheme(s) which should have been there if the morphosyntactic pattern
was respected, we assume that the numeral follows the morphosyntactic pattern but
with phonetic variants not seen elsewhere; otherwise we assume that the numeral is
monomorphemic. For instance, English is a base-10 language and because of this we may
expect that the numeral for 12 will be built from morphemes for 2 and 10; as the numeral
twelve has elements of other phonetic realizations of the morpheme for the number 2 (e.g.,
two, twe(n?)- from twenty), we assume that English twelve incorporates the morpheme
for number 2 (twe-?) and 10 (-lve?). Of course, one could argue for the application of an
alternative decision rule (unless the morphosyntactic pattern is transparent, assume that
the numeral is monomorphemic). It turns out that in practice applying this alternative
decision wouldn’t qualitatively alter the results; we will elaborate on this point in the
discussion section, once the results are in place.

(7)

ULpr1, 99s, Lq “
ÿ

nPr1,99s

P pnqULpn, Lq

(8) Prior over numbers:
P pnq9n´2

4.3 Estimating Pareto frontier

In order to evaluate whether natural languages optimize the trade-off between lexicon
size and average utterance length, we need to establish how close they are to the Pareto
frontier, i.e., how close they are to the optimal solutions to the lexicon size/average
utterance length trade-off problem.

In order to do that, we use an evolutionary algorithm to estimate the Pareto frontier
(cf. Steinert-Threlkeld 2019, 2021, Denić et al. 2021, Denić et al. 2022), which involves
generations of many artificial languages (i.e., artificial numeral systems). Before we ex-
plain how the evolutionary algorithm works, we explain what an artificial language is.

For our purposes, an artificial language consists of (a) a lexicon of number-denoting
morphemes, which are of category D or M (cf. the grammar in (6)), and (b) a set
of numerals for numbers 1-99 generated according to the morphosyntactic rules in (6)
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from the lexicon, where each numeral is the shortest expression (or one of them, in case
of a tie) for a given number. Due to computational constraints, two restrictions are
imposed on the search for the shortest expression for a given number in a language. (1)
Expressions of depth x (i.e., expressions with at most x number-denoting morphemes
and x ´ 1 arithmetic operators) are incrementally constructed from expressions of lower
depths (e.g., expressions of depth 2 are constructed by combining expressions of depth 1).
However, at all depths, the meaning of expressions is restricted to be a natural number
in r1, 200s. (2) If no expression for a number meaning is found with a depth of at most
7, the search is abandoned, and the language is discarded.

The evolutionary algorithm works as follows. First, the generation 0 is created, which
consists of 2000 artificial languages. The lexicons of these artificial languages are gen-
erated by drawing two random samples of numbers between 1-99; these stand for mor-
phemes of category D and M respectively. As natural languages tend to have very few
morphemes of category M (often only 1 or 2), we restrict the size of the random sample
for the category M to at most 5 (no such restriction is imposed on the category D). The
numerals for numbers 1-99 of these languages are generated as explained above. The
dominant languages of a generation (those for which there is no language which is better
on one dimension of lexicon size and average utterance length without being worse on the
other) each give rise to an equal number of offspring languages, which are obtained via a
small number of mutations (between 1 and 3; these mutations included removing a num-
ber morpheme from D or M , adding a number morpheme to D or M , and interchanging
a number morpheme in D or M , making sure that M is no larger than 5) from domi-
nant languages. The dominant languages from generation 0 together with their offspring
languages constitute generation 1, whose size is limited to 2000 languages. This process
is repeated for 100 generations. Finally, the dominant languages are selected from the
union of the last generation and the natural languages. Each of these dominant languages
is a point in a two-dimensional (lexicon size and average utterance length) space; we do
spline interpolation of these points to form a Pareto frontier.

4.4 Results

The natural languages and the artificial languages generated through the 100 generations
of the evolutionary algorithm are plotted in Figure 1. The estimated Pareto frontier is
plotted as the black curve in Figure 1.

We first note that natural languages all lie along or very close to the Pareto frontier in
Figure 1. This speaks in favor of natural languages’ recursive numeral systems optimizing
the trade-off between lexicon size and average utterance length (Hypothesis 2).

What about Hypothesis 1 — do natural languages’ recursive numeral systems opti-
mize the trade-off between simplicity and informativeness? The results from Figure 1
speak against this. To see why, recall what it would mean for recursive numeral systems
to optimize the trade-off between simplicity and informativeness. As these numeral sys-
tems are maximally informative, optimizing the simplicity/informativeness trade-off boils
down to lexicalizing the smallest number of meanings allowing for maximal informative-
ness. That there is quite some variation among natural languages in terms of their lexicon
size (cf. Figure 1) speaks against the hypothesis that these systems optimize the simplic-
ity/informativeness trade-off. In fact, if they were optimizing simplicity/informativeness
trade-off, one would expect many languages to only lexicalize the number 1, as this would
suffice to construct all numerals using the morphosyntactic rules in (6)!
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Figure 1: Experiment: Lexicon size and average utterance length of natural languages
compared to artificial languages generated via an evolutionary algorithm. Natural lan-
guages lie at or very close to the Pareto frontier (black curve).

Finally, it is interesting to notice another property of the data in Figure 1. Natural
languages lie along the region of the Pareto frontier where both average utterance length
and lexicon size are relatively low. In other words, it would seem that there are levels of
average utterance length and lexicon size above which natural languages are, in a sense,
not willing to go as far as numeral systems are concerned, even if it is still possible to
achieve Pareto-optimality with such higher levels of average utterance length and lexicon
size. This would in turn suggest that the lexicon size/average utterance length trade-
off optimization is not the only pressure shaping numeral systems: there seem to exist
additional pressures, namely to keep lexicon size and average utterance length below a
certain level, pushing towards certain regions of the Pareto frontier.

5 Discussion

The results of the experiment reported in Section 4 speak in favor of natural languages’
recursive numeral systems trading off optimally between lexicon size and average utter-
ance length (Hypothesis 2), and against them trading off optimally between simplicity
and informativeness (Hypothesis 1). We will first discuss in greater detail the interpre-
tation of these findings (Section 5.1). We will then consider these findings from three
perspectives: (1) related work (Section 5.2); (2) the specifics of our analysis (Section 5.3);
and (3) a more general question of which notion of communicative efficiency may explain
which meanings get lexicalized across languages (Section 5.4).

5.1 What number meanings are lexicalized across languages?

Numeral systems differ in terms of which number meanings they lexicalize as monomor-
phemic expressions (cf. (5) for some examples). Languages seem to lexicalize the following
numbers from the range 1-99: (1) the first n number meanings, with n varying across
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languages, often the first five or the first 10, and (2) a couple of additional number mean-
ings such as 10 and/or 20 as in (5b) or (5c) — these are often morphemes of category
M (cf. (6) for the morphosyntactic roles of morphemes of categories D and M). Outside
of the 1-99 range, languages lexicalize number meanings such as 100, 1000, 1000000 as
morphemes of category M . Why don’t languages lexicalize only the first n numbers,
which have the highest prior probability according to the probability distribution in (8)?
According to the results of the experiment reported in Section 4, natural languages’ re-
cursive numeral systems trade off optimally between lexicon size and average utterance
length. This suggests that the reason why languages lexicalize number meanings such as
10, 20, 100, 1000, 1000000 is because these allow to construct numerals denoting large(r)
numbers using very few morphemes, which reduces the average length of numerals.

One may wonder however to what extent this reduction is significant given the prob-
ability distribution in (8), according to which large numbers rarely need to be communi-
cated, and whether the result reported in Section 4 is solely a consequence of (1) above,
namely, of the fact that languages often lexicalize the first few number meanings. In
other words, does lexicalizing the first n number meanings suffice for a nearly optimal
lexicon size/average utterance length trade-off?

To investigate this, we generated a space of artificial languages with the following
properties: (a) they lexicalize the first n numbers, with n between 2 and 10; (b) in addition
to these, they lexicalize at most two other numbers smaller than 100; (c) at most 2 of
number meanings they lexicalize are lexicalized as morphemes of categoryM . We sampled
50000 languages from this space8 and analyzed their lexicon size/average utterance length
trade-off. We plot them in Figure 2 (artificial first n languages) against the natural and
artificial languages from the main experiment. Artificial first n languages are not all
clustered close to the Pareto frontier (black curve) in Figure 2, which demonstrates that
lexicalizing the first n numbers does not guarantee a nearly optimal lexicon size/average
utterance length trade-off.

This analysis shows that lexicalizing number meanings such as 10 and/or 20 in addi-
tion to the first n number meanings are good choices in terms of the optimality of the
trade-off between lexicon size and average utterance length. Of course, these might not
be the only good choices: what is the space of optimal choices for lexicalization of number
meanings and whether additional pressures are at play pushing natural languages towards
a subset of that space of optimal choices is an interesting avenue for future work.

5.2 Related work

We discuss three lines of related work. We first discuss how to resolve the tension between
our results, and those of Xu et al. (2020) who argue that numeral systems (recursive
numeral systems included) optimize the simplicity/informativeness trade-off. We then
discuss the connection between the present proposal to three studies highlighting the role
of (notions related to) utterance length in language structure: Zipf (1949), Piantadosi,
Tily, and Gibson (2011), Haspelmath (2021), Mollica et al. (2021) and Carcassi and
Sbardolini (2021) (Section 5.2.2). Finally, we discuss how our results relate to the so-called
packing strategy proposal (Hurford 1975, 2007) for how morphosyntactically complex
numerals are constructed.

8Due to computational constraints, it was not possible to analyze the entire space of such languages.
Numerals for numbers 1-99 in the sampled languages are generated in the same way as for artificial
languages in the main experiment (cf. Section 4.3).
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Figure 2: Lexicon size and average utterance length of natural languages compared to
artificial languages generated via an evolutionary algorithm (artificial evo lang) as in
Figure 1, with 50 000 artificial languages which lexicalize the first n numbers and at most
2 additional number meanings (artificial first n). Artificial first n languages are not all
clustered close to the Pareto frontier (black curve), which demonstrates that lexicalizing
the first n numbers does not guarantee a nearly optimal lexicon size/average utterance
length trade-off.

5.2.1 Numeral systems and the simplicity/informativeness trade-off approach:
Xu et al. (2020)

Xu et al. (2020) analyze the simplicity/informativeness trade-off in 24 restricted and 6
recursive numeral systems. Restricted numeral systems don’t have numerals for all num-
bers: most of them have numerals for only the first few numbers, and use a quantifier
such as many for any higher number. For instance, the language Krenak only has nu-
merals for numbers 1-3 (Hammarström 2010), and the language Rama only has numerals
for numbers 1-5 (Grinevald 1990). Furthermore, the few numerals in restricted numeral
systems are often monomorphemic. Recall that recursive numeral systems too have few
monomorphemic numerals — in fact, not that many more than in restricted numeral sys-
tems — but a numeral for any number can be morphosyntactically constructed. Recursive
numeral systems are considered by Xu et al. (2020) to be maximally informative when
it comes to communicating about number meanings, while restricted numeral systems
have lower degrees of informativeness. On the other hand, according to Xu et al.’s (2020)
approach to measuring complexity, the six studied recursive numeral systems are more
complex than most of the 24 studied restricted numeral systems. Simplifying somewhat,
this is because they assume that the complexity measure of a language should incor-
porate both the complexity of the lexicon and the complexity of morphosyntactic rules
(cf. discussion in 2). As recursive numeral systems always have morphosyntactic rules for
building numerals but restricted numeral systems often don’t have any, recursive numeral
systems tend to have a greater measure of complexity than restricted numeral systems.
Recursive numeral systems are thus more complex and more informative than restricted
numeral systems in Xu et al.’s (2020) study. Xu et al. (2020) further argue that natural
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Figure 3: Reproduction of Figure 4b from Xu et al. (2020) plotting complexity and
communicative cost (the opposite of simplicity and informativeness) measures of natu-
ral languages’ numeral systems (red, green and blue circles) and artificial (hypothetical)
numeral systems. Blue circles represent the 6 natural languages’ recursive numeral sys-
tems, and the blue line are hypothetical recursive numeral systems. The Pareto-optimal
recursive numeral system is the left-most point of the blue line, and natural languages’
recursive numeral systems are not clustered close to it.

languages’ numeral systems optimize the simplicity/informativeness trade-off, without
making a distinction between restricted and recursive languages.

Their conclusion may seem to be in tension with our findings. However, a careful
examination of Xu et al.’s (2020) results reveals that, while restricted numeral systems
are indeed close to being Pareto-optimal in trading off simplicity and informativeness,
recursive numeral systems are not. Given that recursive numeral systems are maximally
informative, if they were optimizing the simplicity/informativeness trade-off, we would
expect to find them in the proximity of the minimally complex numeral system which is
maximally informative (cf. Hypothesis 1 in Section 3.) According to Xu et al.’s (2020)
results (cf. Figure 4b in Xu et al. 2020, reproduced here as Figure 3), the maximally
informative system with minimal complexity has complexity « 50. Strikingly, the six
recursive numeral systems examined by Xu et al. (2020) have much higher complexity
than that, ranging between « 75 and « 150. The results of Xu et al. (2020) thus also
speak against recursive numeral systems optimizing the simplicity/informativeness trade-
off — in other words, there is no tension between the results of Xu et al. (2020) and our
findings. Of course, Xu et al.’s (2020) conclusions still hold for restricted numeral systems
which are much closer to being Pareto-optimal than recursive numeral systems (cf. Figure
3. We will come back to this point in Section 5.4.
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5.2.2 Utterance length

Zipf (1949) and related work We have argued that languages are under pressure
to minimize lexicon size, i.e., the number of lexicalized meanings, as well as to minimize
average utterance length, i.e., the average morphosyntactic complexity of produced ex-
pressions. The latter pressure is an instance of Zipf’s principle of least effort (Zipf 1949),
according to which humans are prone to spending the least amount of effort to accom-
plish a task. In the case of utterance length minimization, humans would be prone to
spending the least amount of morphosyntactic structure-building effort to accomplish a
communicative task.

Zipf’s principle of least effort has mostly been discussed in connection to morpheme
or word length: meanings that need to be conveyed more frequently tend to be associated
to shorter linguistic forms, where length is operationalized as the number of phonemes
in the linguistic form (for data and refinements, see Piantadosi et al. 2011, Haspelmath
2021, Mollica et al. 2021).

It would thus seem that the principle of least effort is operating on two levels, shaping
which meanings get lexicalized and how long the linguistic forms associated to them
should be: (i) given the number of meanings languages decide to lexicalize, they lexicalize
specifically those meanings which allow them to construct as morphosyntactically simple
utterances as possible; and (ii) among the lexicalized meanings, the more frequent ones
are associated with shorter linguistic forms.

Carcassi and Sbardolini (2021) There is another recent proposal that gives a cen-
tral role to utterance length in explaining typological patterns, put forward by Carcassi
and Sbardolini (2021) for the semantic domain of Boolean connectives. They aim to
explain the so-called nand -puzzle: across languages, connectives and and or are often
lexicalized; in addition to them, the negated disjunction nor is sometimes lexicalized, but
a negated conjunction *nand is never lexicalized (Horn 1972). Carcassi and Sbardolini
(2021) propose that the systems of Boolean connectives are optimal solutions to two
pressures. The first pressure is the desire to minimize production effort when expressing
observations (what we have called average utterance length). For instance, if languages
don’t lexicalize nand, they have to use syntactically more complex not (A and B) instead
of A nand B to express the observation that at least one of A and B is false: lexicalizing
nand thus reduces the average utterance length. The second pressure, labeled conceptual
complexity in Carcassi and Sbardolini (2021), relates to how sentences with connectives
are used to update the information shared by conversational participants (= context),
which is modeled as the set of possible worlds (Stalnaker 1978, 1999). According to their
proposal, upon accepting a sentence A nor B, the conversational participants update the
context C as follows: first, they restrict C to the set of worlds where A is false, and then
they further restrict C to the set of worlds where B is false. On the other hand, upon
accepting a sentence A nand B, the conversational participants update the context C as
follows: first they consider a hypothetical context C 1, obtained by restricting the original
context C to the set of worlds where A is true, followed by a further restriction of C 1 to
the set of worlds where B is true. They then remove the hypothetical context C 1 from the
original context C. Carcassi and Sbardolini (2021) assume that how context is updated
by A nand B is more conceptually complex that how context is updated by A nor B
because of the creation of the hypothetical context C 1 in the former but not in the latter
case. They propose that languages are under pressure to minimize the total conceptual
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complexity of contextual updates of the connectives they lexicalize. They argue that the
nand -puzzle can be explained on the assumption that languages optimize the trade-off
between average utterance length and the conceptual complexity of contextual update
procedures of lexicalized connectives.

Our proposal shares with Carcassi and Sbardolini (2021) the idea that languages are
under pressure to minimize average utterance length. Where the two proposals differ is
what the competing pressure is: in our case, the pressure to minimize how many meanings
are lexicalized, while in Carcassi and Sbardolini (2021) the competing pressure relates
to another aspect of language use, namely, how conversational participants proceed to
update contextual information with sentences with lexicalized connectives.

5.2.3 Packing strategy

Recall that Hurford (1975, 2007) proposes that morphosyntactically complex numerals
are constructed according to the grammar in (6) (see Section 4.1). He also observes that
this grammar overgenerates — for a given lexicon, it may predict that multiple numerals
for the same number are available, which is usually not the case in natural languages.
For instance, consider a language L whose D “ t1, 2, 3, 4, 5, 6, 7, 8, 9u, M “ t10, 20u. The
grammar in (6) predicts that the numeral for 80 in L can be constructed as 4 ¨20, as 8 ¨10,
as 5 ¨20´20, as 10 ¨10´20, etc. How does L ‘decide’ on one of these options? Our results
suggests that utterance length (i.e., the number of morphemes in a numeral) is a major
factor, otherwise natural languages wouldn’t be nearly optimal in trading off between
lexicon size and average utterance length (recall that numerals of artificial languages in
our study are the shortest expressions with appropriate denotations constructed according
to the grammar in (6)). This would for instance explain why natural languages with a
lexicon as that of L may be more likely to construct the numeral for number 80 as 4 ¨ 20
or as 8 ¨ 10 rather than 5 ¨ 20 ´ 20 or 10 ¨ 10 ´ 20. However, how would L choose between
4 ¨ 20 and 8 ¨ 10, which have the same number of morphemes?

Hurford (1975, 2007) proposes a constraint called packing strategy to select between
multiple expressions denoting the same number, according to which the sister constituent
of Number category in the expression should denote the highest possible number (cf. the
grammar in (6) for morphosyntactic configurations of Number category). As Hurford
(1975) discusses in detail, packing strategy covers a lot of empirical ground. However, it
also faces many empirical challenges. For instance, it predicts that languages with D “

t1, 2, 3, 4, 5, 6, 7, 8, 9u, M “ t10, 20u should construct 80 as 4 ¨ 20 and not as 8 ¨ 10 because
10 and 20 would be the sister constituent to Number category in these constructions and
20 ą 10. However, in our corpus, out of 19 language with this lexicon, there doesn’t seem
to be a clear tendency for one or the other option: approximately the same number of
languages opts for 4 ¨ 20 as for 8 ¨ 10.

To our knowledge, there haven’t been attempts to improve on the packing strategy
proposal and address its empirical challenges. It is thus an interesting avenue for future
research: what considerations, in addition to utterance length, influence how languages
construct their numerals when grammar allows for multiple options?

5.3 Choice points

Our analysis of lexicon size/average utterance length in numeral systems included (at
least) three important choice points.
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The first choice point relates to how the lexicon size is computed. As explained in
Section 4.2, we consider the lexicon size to be the number of abstract morphemes (i.e., the
number of lexicalized meanings), rather than the total number of different phonetic real-
izations of different meanings. This simply means that our result shows that languages
optimize the trade-off between the number of lexicalized meanings and the average utter-
ance length, and it doesn’t show that they optimize the trade-off between the number of
phonetic form-meaning pairs and the average utterance length. Of course, an important
question that remains open is why languages have different phonetic realizations of a
single abstract morpheme.

The second choice point relates to how the number of morphemes in a numeral is
computed (cf. Section 4.2). Recall that, when the number of morphemes in a numeral
was difficult to establish, we applied the following decision rule: if a numeral is an ex-
ception to an established morphosyntactic pattern in a language, but shows (phonetic or
orthographic, depending on the available data) elements of morpheme(s) which should
have been there if the morphosyntactic pattern was respected, we assume that the nu-
meral follows the morphosyntactic pattern but with phonetic variants not seen elsewhere;
otherwise we assume that the numeral is monomorphemic. The alternative would have
been to treat all difficult cases as monomorphemic. Importantly, however, applying the
alternative decision rule (treat all difficult cases as monomorphemic) wouldn’t alter the
results qualitatively. With such an alternative decision rule, natural languages would
have slightly larger lexicon sizes and slightly lower average utterance lengths. In other
words, they would be shifted slightly down-right-wards in Figure 1. It is easy to see that
they would remain close to the Pareto frontier under such a shift.

The third choice point relates to the prior over numbers. As explained in Section 4.2,
we assume that the probabilities that different numbers need to be communicated follow a
power-law distribution as in (8) (cf. Dehaene and Mehler 1992, Piantadosi 2016, Xu et al.
2020). Importantly, we also assume that this prior is the same for all cultures/languages
(at least those with a recursive numeral system). These assumptions may ultimately
prove to be wrong. One could however test the robustness of our findings under different
assumptions about priors.

5.4 Outlook — three pressures

We have argued that, in a semantic domain in which languages achieve the maximal
degree of informativeness, they lexicalize those meanings which allow them to optimize
the trade-off between lexicon size and average utterance length (Hypothesis 2). They
do not lexicalize the smallest number of meanings which allows them to be maximally
informative in view of the language’s morphosyntax (Hypothesis 1).

However, semantic domains in which languages do not allow for the maximal degree
of informativeness are arguably more common. Consider for example colors: morphosyn-
tactically complex expressions can improve how precisely we communicate about colors
compared to the communication with monomorphemic color terms only, but the improve-
ment is arguably limited (sea blue, sky blue, etc.). Furthermore, there are cross-linguistic
differences with respect to whether the maximal degree of informativeness is achieved even
within a single semantic domain: we have seen that recursive numeral systems achieve
the maximal degree of informativeness for the semantic domain of natural numbers, while
restricted numeral systems do not. It is an interesting question why restricted numeral
systems do not achieve the maximal degree of informativeness: do they lack morphemes
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for arithmetic operators, or are some other components of morphosyntactic rules in (6)
lacking in these languages? Be that as it may, the simplicity/informativeness trade-off
approach seems to provide a good explanation for which number meanings get lexicalized
in restricted numeral systems (cf. Xu et al. 2020 and the discussion in Section 5.2.1). In
other words, in semantic domains in which the maximal degree of informativeness cannot
be reached, considerations related to maximizing informativeness seem to play a role in
determining which meanings get lexicalized.

We thus have evidence that (at least) three pressures are shaping which meanings get
lexicalized across languages: minimize complexity of the lexicon, minimize average ut-
terance length and maximize informativeness. We thus propose the following hypothesis
to be pursued in future work: languages lexicalize those meanings which allow them to
be optimal solutions to the three pressures. In the extreme case where informativeness
is maximal (as in recursive numeral systems), this reduces to finding optimal solutions
to the complexity of the lexicon/average utterance length trade-off problem, for which
we have seen evidence in the present study. In the other extreme case where interlocu-
tors communicate about meanings from a semantic domain using single monomorphemic
words only (possibly in restricted numeral systems), this reduces to finding optimal so-
lutions to the simplicity of the lexicon/informativeness trade-off problem, as in Xu et al.
(2020).

6 Conclusion

In this paper, we ask what explains which meanings get lexicalized across languages.
We pursue the explanation according to which languages lexicalize meanings which allow
them to support efficient communication. We however put forward a novel proposal for
what it means for a language to support efficient communication.

In particular, we show that the standard approach to communicative efficiency —
the simplicity/informativeness trade-off optimization approach — cannot explain which
meanings get lexicalized in natural languages’ recursive numeral systems. We put forward
a different approach to communicative efficiency, according to which languages are under
the pressure to lexicalize as few meanings as possible (i.e, to minimize lexicon size) and
the pressure to produce as morphosyntactically simple utterances as possible (i.e, to
minimize average utterance length). We show that natural languages’ recursive numeral
systems indeed optimize the lexicon size/average utterance length trade-off.

Importantly, recursive numeral systems are an extreme case in the sense that they
allow for a maximally informative communication about natural numbers. Arguably,
achieving the maximal degree of informativeness is not possible in many semantic do-
mains, and there is evidence that the pressure to maximize informativeness plays a role
in determining which meanings are lexicalized in such domains (cf. Section 5.4). We thus
put forward a more general proposal how supporting efficient communication shapes
which meanings get lexicalized across languages:

(9) Simplicity/informativeness/average utterance length trade-off
Languages lexicalize those meanings which allow them to solve the trade-off prob-
lem between the simplicity, informativeness, and average utterance length in a
(nearly) optimal way.
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