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Abstract

Human languages vary in terms of which meanings they lexicalize, but this vari-
ation is constrained. It has been argued that languages are under two competing
pressures: the pressure to be simple (e.g., to have a small lexicon) and to allow
for informative (i.e., precise) communication, and that which meanings get lexical-
ized may be explained by languages finding a good way to trade off between these
two pressures (Kemp and Regier 2012 and much subsequent work). However, in
certain semantic domains, languages can reach very high levels of informativeness
even if they lexicalize very few meanings in that domain. This is due to productive
morphosyntax and compositional semantics, which may allow for construction of
meanings which are not lexicalized. Consider the semantic domain of natural num-
bers: many languages lexicalize few natural number meanings as monomorphemic
expressions, but can precisely convey very many natural number meanings using
morphosyntactically complex numerals. In such semantic domains, lexicon size is
not in direct competition with informativeness. What explains which meanings are
lexicalized in such semantic domains? We will propose that in such cases, languages
need to solve a different kind of trade-off problem: the trade-off between the pres-
sure to lexicalize as few meanings as possible (i.e, to minimize lexicon size) and
the pressure to produce as morphosyntactically simple utterances as possible (i.e,
to minimize average morphosyntactic complexity of utterances). To support this
claim, we will present a case study of 128 natural languages’ numeral systems, and
show computationally that they achieve a near-optimal trade-off between lexicon
size and average morphosyntactic complexity of numerals. This study in conjunc-
tion with previous work on communicative efficiency suggests that languages’ lexi-
cons are shaped by a trade off between not two but three pressures: be simple, be
informative, and minimize average morphosyntactic complexity of utterances.

Keywords: numerals; number; simplicity; informativeness; average morphosyn-
tactic complexity; trade-off
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1 Introduction

Human languages vary in terms of which meanings they lexicalize into simple mor-
phemes.1 There are nonetheless important constraints on this variation: some meanings
or meaning types are very frequently lexicalized, while others very rarely. Such con-
straints have been identified in both content and functional vocabulary. For instance,
in the domain of content words, color terms have a well-established order of appearance
in language evolution — certain semantic contrasts must be established before others
(Berlin and Kay 1969). In addition, color terms label only convex regions of conceptual
color space (Gärdenfors 2014, Jäger 2010). In the domain of function words, multiple
semantic constraints have been identified for quantificational determiners (Horn 1972,
Barwise and Cooper 1981, Keenan and Stavi 1986, Peters and Westerst̊ahl 2006, Hackl
2009). For instance, no language lexicalizes a quantificational determiner whose mean-
ing is not every (Horn 1972). Where do these constraints come from? Three prominent
answers to this questions include learnability (e.g., certain meanings are rarely or not lex-
icalized because they are harder to learn, cf. Hunter and Lidz 2013, Chemla, Buccola, and
Dautriche 2019, Steinert-Threlkeld and Szymanik 2018, 2020, Maldonado and Culbertson
2022), syntax-semantics interface (e.g., certain meanings are not lexicalized because they
would be degenerate due to how syntactic structures are semantically interpreted, cf. Fox
2002, Romoli 2015), and communicative efficiency (e.g., certain meanings are rarely or
not lexicalized because lexicalizing them wouldn’t improve communicative efficiency of a
language, cf. Kemp and Regier 2012 and much subsequent work).

In this paper, we won’t discuss learnability and syntax-semantics interface explana-
tions, and will focus instead on the communicative efficiency explanation. According to
the most prominent version of the communicative efficiency explanation, languages are
under the pressure to be simple (e.g., to have a small lexicon) while simultaneously being
under the pressure to be informative, i.e., to allow for precise communication. These two
pressures are in competition. For instance, if a language only has one word for colors, it
will have a small lexicon, but it won’t allow for very precise communication about colors.
Adding more words for various colors would allow for more precise communication, but at
the cost of having a larger lexicon. Natural languages have been argued to lexicalize the
meanings which allow them to achieve a good compromise between these two pressures,
i.e., to optimize the simplicity/informativeness trade-off (Kemp and Regier 2012, Regier,
Kemp, and Kay 2015, Xu, Regier, and Malt 2016, Kemp, Xu, and Regier 2018, Zaslavsky,
Kemp, Regier, and Tishby 2018, Xu, Liu, and Regier 2020, Steinert-Threlkeld 2019, 2021,
Mollica, Bacon, Zaslavsky, Xu, Regier, and Kemp 2021, Denić, Steinert-Threlkeld, and
Szymanik 2021, 2022, Zaslavsky, Maldonado, and Culbertson 2021, Uegaki 2022).

However, in certain semantic domains, it is possible to reach very high levels of infor-
mativeness even if very few meanings from that semantic domain are lexicalized. This is
due to productive morphosyntax and compositional semantics, which may allow for con-
struction of meanings which are not lexicalized. Consider a semantic domain of natural
numbers in languages with a so-called recursive numeral system2: these are languages in

1We consider that a meaning is lexicalized if there is a simple morpheme carrying this meaning in a
language. Whether this morpheme can or can’t stand alone as a single word is not part of our criterion
for lexicalization. For instance, English lexicalizes the number meaning six into a morpheme which can
stand alone as a single word, and it lexicalizes plural meaning in a morpheme -s, among others, which
cannot stand alone as a single word.

2We will use the the term ‘number’ for arithmetic values, and the term ‘numeral’ for linguistic expressions
denoting numbers. For instance, in English, the numeral one denotes the number 1.
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which (practically)3 any natural number meaning can be expressed precisely (e.g., En-
glish). Many such languages lexicalize few natural number meanings, but can precisely
convey (practically) any natural number meaning using morphosyntactically complex nu-
merals (e.g., sixty-one in English). In such semantic domains, lexicon size is not in direct
competition with informativeness. What explains which meanings are lexicalized in these
domains?

We will propose that, in semantic domains in which productive morphosyntax enables
precise communication even with very few lexicalized meanings, languages are under the
pressure to lexicalize as few meanings as possible (i.e, to minimize lexicon size) and
the pressure to produce as morphosyntactically simple utterances as possible (i.e, to
minimize average morphosyntactic complexity of utterances). Lexicon size and average
morphosyntactic complexity of utterances are in competition in such domains: reducing
average morphosyntactic complexity of utterances will often require lexicalizing more
meanings, and reducing the size of the lexicon will often result in needing utterances
of greater morphosyntactic complexity to communicate. We thus propose that, in such
domains, languages lexicalize those meanings which allow them to optimize the trade-off
between lexicon size and average morphosyntactic complexity of utterances.

We will evaluate this proposal within a case study on lexicalized number meanings in
languages with a recursive numeral system, and present evidence that recursive numeral
systems indeed optimize the trade-off between lexicon size and average morphosyntactic
complexity of numerals. This conclusion is in tension with Xu et al. (2020), who have
instead argued that numeral systems —including recursive numeral systems — optimize
the simplicity/informativeness trade-off. We review their results in Section 4; we will
argue that their results show that other types of numeral systems optimize the simplic-
ity/informativeness trade-off, but that they do not show that recursive numeral systems
optimize the simplicity/informativeness trade-off.

Furthermore, we will discuss several other lines of work (Zipf 1949, Piantadosi, Tily,
and Gibson 2011, Haspelmath 2021, Mollica et al. 2021, Carcassi and Sbardolini 2022)
which share with the present work the idea that speakers attempt to minimize complexity
of their utterances, and explain in what way they are different from the proposal we are
pursuing.

Finally, once our results are in place, we will abstract away from numeral systems
and discuss which notion of communicative efficiency may explain what meanings get
lexicalized across semantic categories more generally. We will propose that, in light of the
present case study on numeral systems and the previous work on simplicity/informativeness
optimization (e.g., Kemp and Regier 2012), in order to explain which meanings get lexi-
calized across languages and across semantic domains, a more general approach may be
that languages are finding a good compromise between not two but three pressures: be
simple, be informative, and minimize average morphosyntactic complexity of utterances.

3Whether recursive numeral systems truly allow to express any natural number, or (just) a very large
range of natural numbers is debated. Greenberg (1990) argues that even recursive numeral systems have
a ceiling, i.e., the largest number that can be generated by that system — e.g., for English, Greenberg
(1990) suggests that this number is 1036 ´ 1. Comrie (2020) however contests this claim, arguing that
English allows reference to any natural number. For the purposes of our study, it won’t matter much
whether recursive numeral systems allow to refer to any natural number, or (just) to a very large range of
natural numbers: as we will explain later on, we will investigate numeral expressions cross-linguistically
for numbers up to 100, and all studied languages had all numerals in that range.
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2 Experiment

We will present an experiment investigating how close natural languages’ recursive nu-
meral systems are to trading off optimally between lexicon size and average morphosyn-
tactic complexity of numerals. We will evaluate this by comparing natural languages to
artificially generated languages. The artificial languages represent the space of possibili-
ties in terms of lexicon size/average morphosyntactic complexity of numerals trade-off in
recursive numeral systems, and will reveal what the (approximately) optimal solutions
to the trade-off problem are.

2.1 Natural languages

We assume that numerals across languages semantically denote numbers (e.g., the nu-
meral two denotes the number 2), noting that this is a simplification (see Bylinina and
Nouwen 2020, Spector 2013). We collected cross-linguistic data on numerals denoting
numbers 1-99 and their morphosyntactic components in recursive numeral systems from
the sample of languages in the Numeral bases chapter in The World Atlas of Language
Structures (WALS) (Comrie 2013). WALS language samples are compiled with an aim
to maximize genealogical and areal diversity of languages in them (Comrie, Dryer, Gil,
and Haspelmath 2013) — we can thus have some confidence that we will be analyzing a
representative sample of world’s languages’ recursive numeral systems.

Two main sources were used to collect the cross-linguistic data. The primary source
were descriptive grammars of individual languages, in most cases those referenced in Com-
rie 2013. When no descriptive grammar of a language was accessible to us, we used as a
secondary source the data from the website https://lingweb.eva.mpg.de/channumerals/,
maintained by Eugene Chan. This website is a collective effort of language scholars to
document world’s language’s numeral systems. Out of 172 recursive numeral systems in
Comrie (2013), 44 were excluded due to: (i) challenges with data collection (when no
complete description of the numeral system was accessible to us) or (ii) challenges with
data interpretation. The challenge with data interpretation that led to the exclusion
of certain languages was, in all but two cases (Danish and Ainu), that morphosyntax
and semantics of numerals were sometimes misaligned (for instance in Zoque, the nu-
meral for number 9 is morphologically 6+4; this is dubbed ‘correct misinterpretation’
in Hurford (1975)). The challenge with data interpretation for Danish is explained in
footnote 4 and the challenge with data interpretation for Ainu is explained in footnote
6. 128 languages were thus included in the analysis: their list is in Appendix A. De-
scriptions of the numeral systems of the 128 languages and the sources used for each
language can be found in online Appendix at: https://drive.google.com/file/d/

1kHm1vwf9bMYZcSgyj41tm1PjlgX3ovb_/view?usp=sharing.
For each of the 128 studied numeral systems, for each numeral denoting a number in

the range 1-99, its morphosyntactic components and their denotations were identified (cf.
Table 1 and Table 2 for a few examples of numerals in Georgian and Fulfulde respectively).
These numeral systems differ in terms of which number meanings they lexicalize. Some
recurring options are listed in (1). The generalization seems to be that (in most cases)
they lexicalize the following numbers from the range 1-99: (i) the first n numbers, with n
varying across languages, often the first five or the first 10, and (ii) a couple of additional
numbers such as 10 and/or 20 as in (1b) or (1c).

(1) Lexicalized numbers:
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a. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (74 languages)
b. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 (20 languages)
c. 1, 2, 3, 4, 5, 10 (9 languages)

Even when they lexicalize the same number meanings, languages sometimes make
different choices in constructing morphosyntactically complex numerals. For instance,
Kunama and Fulfulde lexicalize number meanings in (1c); Kunama constructs the nu-
meral for number 9 as 10 ´ 1, while Fulfulde does it as 5 ` 4. As another example,
Greek and Georgian lexicalize number meanings in (1b); Greek constructs the numeral
for number 45 as 4 ¨ 10 ` 5, while Georgian does it as 2 ¨ 20 ` 5. Morphosyntactically
complex numerals for numbers 1-99 across languages reveal that addition, multiplica-
tion and subtraction are productively involved in their construction4 (cf. Hurford 1975,
2007). Both number-denoting morphemes and morphemes denoting arithmetic operators
can in principle be phonetically overt or covert: in practice, number-denoting morhemes
are very rarely covert, while morphemes denoting arithmetic operators often are.5 Fur-
thermore, certain number-denoting morphemes play a special role in the construction of
morphosyntactically complex numerals (the so-called bases). For instance, in ‘base-10
languages’, morphosyntactically complex numerals for numbers up to 99 are in general
constructed according to the morphosyntactic pattern x ¨ 10 ` n (e.g., Greek). On the
other hand, in ‘base-20 languages’ morphosyntactically complex numerals for numbers
up to 99 are in general constructed according to the morphosyntactic pattern x ¨ 20 ` n
(e.g., Georgian). Many languages behave as ‘base-5’ languages when it comes to the
composition of numerals for numbers 6-9, which they construct as 5 ` n (e.g., Fulfulde).

Finding morphosyntactic components of numerals required studying the morphosyn-
tactic patterns for numerals in each of the 128 languages. In most languages, the relevant
morphosyntacic patterns were explicitly described in the descriptive grammars we con-
sulted, or were otherwise easy to deduce from the list of numerals in the language. Some
numerals may however be an exception to an established morphosyntactic pattern in a
language; we will now describe how different types of exceptions were treated. We can
categorize exceptions into 3 types. Type 1: These are numerals which bear no connec-
tion whatsoever to morphemes we may expect to find in them had the morphosyntactic
patterns been respected. For instance, English is a base-10 language, and we may thus
expect to find morphemes for 1 and 10 in the numeral for 11. The numeral ‘eleven’ how-
ever doesn’t seem to bear any relation to morphemes denoting 1 or 10. In such cases, we
consider the numeral to be monomorphemic. Type 2: These are numerals in which some
of the morphemes are clearly identifiable, while others are not; we can however rely on
the clearly identifiable morphemes to deduce a full morphological analysis. For instance,
in the English numeral twenty, the morpheme -ty is clearly identifiable (it occurs also
in thirty, forty, fifty etc.), and we can thus conclude that twen- is also a morpheme, in

4In the Danish numeral system, a morpheme denoting the fraction half is used to construct certain
complex numerals; for instance the numeral fifty in Danish contains morphemes three, half and twenty
((three - half) ¨ twenty). This suggests that there is a limited use of division too involved in the
composition of numerals. As, to our knowledge, the extent to which division can be used productively
in numeral systems is not well understood (cf. Hurford 1975, 2007), we assume for simplicity that
division is not available, and exclude Danish from the corpus of natural languages.

5We postulate covert morphemes only when this is necessary to account for the semantics of numerals;
for instance, to account that the meaning of the Fulfulde numeral jowe go’o (6) is computed from the
meaning of jowe (5) and go’o (1) (cf. Table 2), we need to assume that these are combined by an
addition operator, which is introduced by a covert morpheme.
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Table 1: Georgian numerals for numbers 6, 30 and 62. H in the ’Morphosyntactic make-
up’ column indicates that a morpheme is covert, i.e., it doesn’t have a phonetic realization.

Denotation (numeral) Morphosyntactic make-up Number of morphemes
6 (ekvsi) 6 (ekvsi) 1
30 (otsdaati) 20 (ots-) ` (-da-) 10 (-ati) 3
62 (samotsdaori) 3 (sam-) ¨ (H) 20 (-ots-) ` (-da-) 2

(-ori)
5

Table 2: Fulfulde numerals for numbers 6, 30 and 62. H in the ’Morphosyntactic make-up’
column indicates that a morpheme is covert, i.e., it doesn’t have a phonetic realization.

Denotation (numeral) Morphosyntactic make-up Number of morphemes
6 (jowe go’o) 5 (jowe) ` (H) 1 (go’o) 3
30 (chappande tatti) 10 (chappande) ¨ (H) 3 (tatti) 3
62 (chappande jowe go’o i
didi)

10 (chappande) ¨ (H) (5 (jowe) `

(H) 1 (go’o)) ` (i) 2 (didi)
7

particular, that it is an allomorph (i.e., a variant phonetic realization) of the morpheme
two. Type 3: These numerals are in between Type 1 and Type 2: i.e., we cannot divide
them into substrings for which we can argue based on independent evidence that they
are morphemes, but we can nonetheless identify in them (phonetic or orthographic, de-
pending on the available data) elements of morphemes we may expect to find in them
had the morphosyntactic patterns been respected. For instance, in English twelve, we
seem to find some elements of the morpheme for number 2 (i.e., (twe-?) may be an-
other allomorph of 2). We will refer to the cases of the Type 3 as unclear cases. Such
unclear cases were encountered in 34 languages, listed in Appendix B. In most of these
34 languages, only 1 or 2 numerals were concerned (e.g., in English, the only concerned
numeral is twelve). We opted to not exclude these 34 languages from the main analysis
(however, the supplementary analysis with these 34 languages excluded can be seen in
Appendix B), but rather analyze their unclear cases (very simplistically) as morpholog-
ically complex: i.e., when a numeral is an exception to an established morphosyntactic
pattern in a language, but partially overlaps in its phonetic or orthographic elements with
some of the morpheme(s) which should have been there if the morphosyntactic pattern
was respected, we will assume that the numeral follows the morphosyntactic pattern but
with phonetic variants not seen elsewhere. For instance, we will assume that English
twelve incorporates the morpheme for number 2 (twe-?) and 10 (-lve?). As we explain
in footnote 8, potential errors due to this simplification wouldn’t qualitatively alter our
conclusions; cf. also Appendix B.

2.2 Lexicon size and average morphosyntactic complexity

We consider that lexicon size of a language is the number of lexicalized meanings — rather
than the number of form-meaning pairs, e.g., we consider that English has one lexicon
entry for 10 which can be phonetically realized in multiple ways (i.e., the morpheme ten
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has allomorphs, in particular -teen and -ty). This is important to keep in mind as it affects
how our results should be interpreted: we will argue that languages optimize the trade-
off between the number of lexicalized meanings and average morphosyntactic complexity
of utterances, rather than the trade-off between the number of form-meaning pairs and
average morphosyntactic complexity of utterances. Of course, an important question that
remains open is why languages sometimes have multiple phonetic realizations of a single
meaning; we will come back to this point in Section 2.4.4.

Average morphosyntactic complexity of numerals in a language L is computed accord-
ing to the formula in (2). In (2), ms complexitypn, Lq is the morphosyntactic complexity
of the numeral (i.e., the number of morphemes in it) of the language L denoting the
number n and P pnq is the probability that the number n needs to be communicated.
For instance, average morphosyntactic complexity of English is obtained as P p1q ˆ the
number of morphemes in ‘one’ + P p2q ˆ the number of morphemes in ‘two’ +...+ P p99q

ˆ the number of morphemes in ‘ninety-nine’. We assume that the probabilities that
different numbers need to be communicated follow a power-law distribution as in (3) (cf.
Dehaene and Mehler 1992, Piantadosi 2016, Xu et al. 2020). Qualitatively, this probabil-
ity distribution captures that the larger the number n, the lower the need to talk about
it.

(2)

average ms complexitypLq “
ÿ

nPr1,99s

P pnq ¨ ms complexitypn, Lq

(3) Prior over numbers:
P pnq9n´2

The distribution in (3) is an idealization of a more complex cross-cultural reality: while
previous work motivates that probabilities that different numbers need to be commu-
nicated generally follow such a distribution, there are also some deviations from this
distribution across languages (Dehaene and Mehler 1992). Firstly, numerals which can
get round (i.e., approximate) interpretation (e.g., numerals for 10, 20 in English) are used
more frequently than expected given (3) (Dehaene and Mehler 1992). Importantly for our
purposes, however, Krifka (2007) presents empirical evidence that the frequencies of nu-
merals for 10, 20 etc. vary across languages, and that they depend on the specifics of the
numeral system, in particular, on what base(s) the numeral system has. In other words,
which number meanings are lexicalized as bases (multiplicatives) may influence which
expressions can get a round interpretation, and thus influence their frequency. Because
of this, and as our goal is to explain which meanings are lexicalized across languages in
the first place, using a prior which incorporates peaks on numbers such as 10, 20 etc.
would lead to circularity — we thus use the idealized prior distribution in (3) without
such peaks. Secondly, certain numbers may be referred to more or less frequently than
expected given (3) in a language because of culture-specific reasons (e.g., number 13 may
be referred to less frequently than expected given (3) in cultures in which this number is
considered unlucky). While these culture-specific variations should ideally be taken into
account when evaluating average morphosyntactic complexity of languages, we are not in
a position to evaluate per-language probability distributions for each of the 128 studied
languages within the scope of this study. We thus assume that the simplified/idealized
prior in (3) holds for all languages, noting that future research may refine this aspect of
our work.
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2.3 Approximating the Pareto frontier

In order to evaluate whether natural languages with a recursive numeral system optimize
the trade-off between lexicon size and average morphosyntactic complexity of numerals,
we need to establish how close they are to the optimal solutions to the lexicon size/average
morphosyntactic complexity of numerals trade-off problem. The set of optimal languages
— called the Pareto frontier — is a set of (theoretically possible) languages for which there
is no other (theoretically possible) language which is better on one of the two dimensions
(lexicon size, average morphosyntactic complexity of numerals) without being worse on
the other.

The space of theoretically possible languages is too large for an exhaustive search of
optimal languages. We thus use an evolutionary algorithm to approximate the Pareto
frontier (cf. Steinert-Threlkeld 2019, 2021, Denić et al. 2021, 2022), which involves gen-
erations of many artificial languages (i.e., artificial recursive numeral systems). Before
we explain how the evolutionary algorithm works, we explain how artificial languages are
generated.

We use the grammar proposed by Hurford (1975, 2007) for natural language numer-
als generation to generate numerals of artificial languages. Hurford (1975, 2007) in his
seminal work proposes that number-denoting morphemes across languages are of the syn-
tactic category Digits (D) or Multipliers (M). Roughly, morphemes denoting numbers
which are ‘bases’ as 10 or 20 in ‘base-10’ or ‘base-20’ languages are of the syntactic cat-
egory M ; other morphemes are of the syntactic category D. He proposes that, across
languages, numerals are constructed according to the grammar in (4). For instance,
consider a language whose D “ t1, 2, 3, 4, 5, 6, 7, 8, 9u, M “ t10u — in this language,
5 ¨ 10 ` 6, 5 ¨ 10 ´ 6, 10 ` 4, 10 ´ 4 are examples of morphosyntactically well-formed ex-
pressions, while 5 ¨ 2, 5 ` 3 are examples of expressions which are not well-formed.6

(4) NUMBER ÝÑ D | PHRASE | PHRASE ` NUMBER | PHRASE ´ NUMBER
PHRASE ÝÑ M | NUMBER ¨ M

For our purposes, an artificial language consists of (a) a lexicon of number-denoting
morphemes, which are of category D or M (cf. the grammar in (4)), and (b) a set of
numerals for numbers 1-99 generated according to the morphosyntactic rules in (4) from
the lexicon, where each numeral is the shortest expression (or one of them, in case of a
tie) for a given number. For example, an artificial language L may have in its lexicon
morphemes for 1, 2, 4, 6, 8, 10, such that 1, 2 and 4 are of category D and 6, 8 and 10
are of category M . Numerals of L for other numbers in range 1-99 would be generated
from these morphemes as explained above. For instance, the numeral for number 16 in L
would be randomly selected from one of the three morphosyntactically simplest options:
10 ` 6, 2 ¨ 8, 8 ` 8. These can be generated by the grammar in (4) and are of equal
morphosyntactic complexity (each has 3 morphemes). On the other hand, 4 ¨ 4 is not an
option for numeral 16 in L because, even though it would also have three morphemes, it
cannot be generated by the grammar in (4) (because 4 is of category D in L). Similarly,

6 All numerals in all natural languages in this study can be constructed using the grammar in (4). One
language in WALS corpus, Ainu, has numerals which cannot be derived by this grammar. Hurford
(1975) is aware of this and discusses the case of Ainu at length; he considers different extensions of
the grammar in (4) to accommodate Ainu but provides arguments against each of them, thus leaving
the problem of Ainu unresolved. Because we will rely on the grammar in (4) to generate artificial
languages and to estimate the Pareto frontier (cf. Section 2.3), we excluded Ainu from the corpus of
natural languages.

8



2 ¨ 6 ` 4 is not an option for number 16 in L because, even though it can be generated
by the grammar in (4), it is not one of the morphosyntactically simplest options (it has
5 morphemes).

Due to computational constraints, two restrictions are imposed on the search for the
shortest expression for a given number in a language. (1) Expressions of depth x (i.e.,
expressions with at most x number-denoting morphemes and x´ 1 arithmetic operators)
are incrementally constructed from expressions of lower depths (e.g., expressions of depth
2 are constructed by combining expressions of depth 1). However, at all depths, the
meaning of expressions is restricted to be a natural number in r1, 200s. (2) If no expression
for a number meaning is found with a depth of at most 7, the search is abandoned, and
the language is discarded (extending the search to depths greater than 7 was impractical
because of computational complexity considerations).

The evolutionary algorithm works as follows. First, the generation 0 is created, which
consists of 2000 artificial languages. The lexicons of these artificial languages are gen-
erated by drawing two random samples of numbers between 1-99; these stand for mor-
phemes of category D and M respectively. As natural languages tend to have very few
morphemes of category M (often no more than 2), we restrict the size of the random
sample for the category M to at most 5 (no such restriction is imposed on the category
D). The numerals for numbers 1-99 of these languages are generated as explained above.
The dominant languages of a generation (those for which there is no language which is
better on one dimension of lexicon size and average morphosyntactic complexity without
being worse on the other) each give rise to an equal number of offspring languages, which
are obtained via a small number of mutations (between 1 and 3; these mutations include
removing a number morpheme from D or M , adding a number morpheme to D or M ,
and interchanging a number morpheme in D or M , making sure that M is no larger than
5) from dominant languages. The dominant languages from generation 0 together with
their offspring languages constitute generation 1, whose size is limited to 2000 languages.
This process is repeated for 100 generations. Finally, the dominant languages are selected
from the union of the last generation and the natural languages. Each of these dominant
languages can be represented as a point in a two-dimensional (lexicon size and average
morphosyntactic complexity of numerals) space; we do spline interpolation of these points
to form a Pareto frontier.

2.4 Results

We will start by presenting the main result (Section 2.4.1). To preview, we find that
natural languages’ recursive numeral systems are indeed (near-)optimal solutions to the
lexicon size/average morphosyntactic complexity of numerals trade-off problem. In Sec-
tions 2.4.2 and 2.4.3, we present supplementary analyses which allow to better under-
stand the role of different properties of natural languages’ recursive numeral systems in
the aforementioned trade-off optimization.

2.4.1 Trade-off results

The natural languages and the artificial languages generated through the 100 generations
of the evolutionary algorithm are plotted in Figure 1.7 The approximated Pareto frontier

7Jittering was applied to points corresponding to artificial and natural languages in Figures 1, 2, 3 and
5 to facilitate visualizing individual points (languages).
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Figure 1: Experiment: Lexicon size and average morphosyntactic complexity of natural
languages and of artificial languages generated via an evolutionary algorithm.

— i.e., the set of (nearly-)optimal solutions to the problem of trading off between lexicon
size and average morphosyntactic complexity of numerals — is plotted as the black curve
in Figure 1. Figure 2 represents a zoom into the region of Figure 1 surrounding the
natural languages. Two natural languages — Fulfulde and Georgian — are labeled in
Figure 2 for illustration.

Critically, natural languages all lie along or very close to the Pareto frontier in Figure
2. This speaks in favor of natural languages’ recursive numeral systems optimizing the
trade-off between lexicon size and average morphosyntactic complexity of numerals.8

Interestingly, there is some variation in terms of where along the Pareto frontier
natural languages lie. In other words, natural languages differ in terms of which optimal
solution to the lexicon size/average morphosyntactic complexity of utterances trade-off
problem they are approaching. Take for example cases of Georgian and Fulfulde: a few
examples of their numerals are in Tables 1 and 2 respectively. We have seen that Georgian
lexicalizes numbers in (1b), while Fulfulde lexicalizes those in (1c). The lexicon size of
Georgian is thus 11, and that of Fulfulde 6. The average morphosyntactic complexities of

8 Recall that, when morphologically analyzing unclear cases of natural languages’ numerals, we adopted
the following simplification: if a numeral is an exception to an established morphosyntactic pattern in
a language, but partially overlaps in its (phonetic or orthographic, depending on the available data)
elements with morpheme(s) which should have been there if the morphosyntactic pattern was respected,
we assume that the numeral follows the morphosyntactic pattern but with phonetic variants not seen
elsewhere (cf. Section 2.1). Of course, at least some of these unclear cases, which will be analyzed
as morphologically complex, may be monomorphemic in reality. In other words, for some of the 34
languages with (typically just 1 or 2) unclear cases, we may be somewhat underestimating their lexicon
size and somewhat overestimating their average morphosyntactic complexity. This means that the
correct position of some of these 34 languages would be slightly down-right-wards from where they are
plotted in Figures 1 and 2. It is easy to see that, even if all natural languages plotted in Figures 1 and
2 were to shift slightly down-right-wards, they would nonetheless remain relatively close to the Pareto
frontier. It turns out therefore that the error introduced by our simplification in practice wouldn’t
qualitatively alter our conclusions. For completeness, however, see Appendix B with the supplementary
analysis in which the 34 languages with unclear cases are excluded.
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Figure 2: Experiment: Lexicon size and average morphosyntactic complexity of natural
languages and of artificial languages generated via an evolutionary algorithm (zoom into
the area surrounding natural languages). Two natural languages — Fulfulde and Geor-
gian — are labeled for illustration. Natural languages lie at or very close to the Pareto
frontier (black curve).

numerals of Georgian and Fulfulde (computed according to the formula in (2)) are 1.13
and 1.28 respectively. In other words, Fulfulde has a smaller lexicon size than Georgian,
but Georgian has a lower average morphosyntactic complexity of numerals than Fulfulde.

Finally, it is interesting to notice another property of the data in Figure 2. Natural
languages lie along the region of the Pareto frontier where both average morphosyntactic
complexity of numerals and lexicon size are relatively low. There are (at least) two ways
to interpret this finding. The first is that there are levels of average morphosyntactic
complexity of numerals and lexicon size above which natural languages are, in a sense,
not willing to go, even if it is still possible to achieve Pareto-optimality with such higher
levels of average morphosyntactic complexity of numerals and lexicon size. In other words,
in addition to optimizing the trade-off between lexicon size and average morphosyntactic
complexity of numerals, natural languages’ recursive numeral systems may also be under
the pressure to keep lexicon size and average morphosyntactic complexity of numerals
below a certain threshold. Another possibility is that natural languages are not only
optimizing the trade-off between lexicon size and average morphosyntactic complexity,
but in fact minimizing the sum of (some function of) lexicon size and (some function of)
average morphosyntactic complexity of numerals (with ‘functions’ modulating relative
importances of lexicon size and average morphosyntactic complexity). If this option is on
the right track, one may propose that languages care to minimize their overall complexity,
which may have multiple components (such as lexicon size and average morphosyntactic
complexity of utterances). We leave for future work a more detailed exploration of these
various refinements of our proposal.
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Table 3: Lexicalized meanings in optimal artificial languages whose lexicon size ă 10.
Lexicalized meanings in bold are of category M (bases).

Lexicon size Lexicalized meanings
2 1, 3
3 1, 2, 3
4 1, 2, 3, 10
5 1, 2, 3, 4, 10
6 1, 2, 3, 4, 5, 15
7 1, 2, 3, 4, 5, 6, 15
8 1, 2, 3, 4, 5, 6, 10, 19
9 1, 2, 3, 4, 5, 6, 7, 10, 25

2.4.2 Natural languages vs. optimal artificial languages

In the previous section, we have seen that natural languages are similar in how they
trade-off between lexicon size and average morphosyntactic complexity to the languages
which optimally solve this trade-off problem (i.e., the languages on the approximated
Pareto frontier). The languages on the Pareto frontier are the dominant languages from
the union of the last generation found by the evolutionary algorithm and of natural
languages. Languages at the Pareto frontier may thus be natural or artificial.

In this section, we focus on the artificial languages on the Pareto frontier (henceforth
optimal artificial languages). Are there interesting differences between natural languages
(optimal or optimizing), and optimal artificial languages? In particular, is there more va-
riety in which number meanings are lexicalized in optimal artificial languages, and/or do
they construct their morphosyntactically complex numerals in more diverse ways than
natural languages? If so, this would suggest that, while natural languages lexicalize
number meanings which allow them to optimize the lexicon size/average morphosyntac-
tic complexity trade-off, there may be additional cognitive or communicative pressures
pushing natural languages towards specific types of optimal solutions to the trade-off
problem.

Let us start with numbers that optimal artificial languages lexicalize. Table 3 lists
lexicalized numbers in optimal artificial languages whose lexicon size ă 10. These lan-
guages have a lot in common with natural languages when it comes to the contents of
their lexicons: both natural languages and optimal artificial languages tend to lexical-
ize the first n numbers, together with a couple of larger numbers, such as around 10 or
around 20. There is nonetheless more diversity in which numbers around 10 or 20 are
lexicalized in optimal artificial languages than in natural languages. For instance, some
of the optimal artificial languages in Table 3 lexicalize 15, 19 or 25: while there are natu-
ral languages which lexicalize 15 in our corpus (e.g., Mixtec, Drehy, Diola; cf. Appendix
referenced in footnote 2.1), there is no natural language in our corpus that lexicalizes 19
or 25. In other words, certain lexicalization patterns which could be good solutions to the
lexicon size/average morphosyntactic complexity of numerals trade-off are not attested
in natural languages (at least not in our corpus of natural languages).

Secondly, optimal artificial languages may differ from natural languages in how they
construct their morphosyntactically complex numerals from the elements of the lexicon.
To illustrate this difference, let us look into how the optimal artificial language which
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Table 4: Numerals for numbers 10-20 in the optimal artificial language which lexicalizes
5 numbers (1, 2, 3, 4, 10)

Numeral’s denotation Numeral’s morphosyntax
10 10
11 10 ` 1
12 3 ¨ 4
13 10 ` 3
14 10 ` 4
15 10 ` 2 ` 3
16 4 ¨ 4
17 4 ¨ 4 ` 1
18 p10 ´ 1q ¨ 2
19 10 ` 10 ´ 1
20 2 ¨ 10

lexicalizes 5 numbers (i.e., 1, 2, 3, 4, 10, cf. Table 3) constructs numerals for numbers
10-20: these are listed in Table 4.

Numerals in Table 4 differ from numerals in natural languages: intuitively, there is too
much variation in bases with which these numerals are constructed (e.g., numerals for 11,
13, 14, 15 and 19 are constructed with base 10, numerals for 12, 16 and 17 with base 4, and
numeral for 18 with base 2). In other words, there isn’t a unique morphosyntactic pattern
according to which numerals in Table 4 are constructed (cf. Section 2.1 for discussion of
morphosyntactic patterns in natural languages).

The source of this ‘unorderliness’ is that, for each number, artificial languages select at
random one of the morphosyntactically simplest expressions for that number constructed
from the elements of their lexicon. For instance, as far as the artificial language in Table 4
is concerned, the numeral for 12 could be constructed either as 3¨4 or as 10`2, as these are
both well-formed expressions in this language and they are equally morphosyntactically
complex.

Contrary to artificial languages, in most natural languages, there is (typically) exactly
one way to express each number. For instance, the French numeral for 40, quarente, is
morphosyntactically 4 ¨ 10 (and 40 cannot be expressed as, for instance, equally mor-
phosyntactically complex 2 ¨ 20 in French), while the French numeral for 80, quatre-vingt,
is morphosyntactically 4 ¨ 20 (and 80 cannot be expressed as, for instance, equally mor-
phosyntactically complex 8 ¨ 10 in French)9. This means that each natural language has
additional constraints on the application of morphosyntactic rules in (4). For instance,
French speakers need to memorize that, in the rule PHRASE Ñ NUMBER¨M (cf. (4)), M
is 10 when they are constructing the expression for 40, but 20 when they are constructing
the expression for 80. Furthermore, such constraints across languages most often apply
not to a single numeral but to a sizeable range of numerals (e.g., French speakers know
that, in the rule PHRASE Ñ NUMBER ¨M (cf. (4)), M is 20 when they are constructing
expressions for numbers in the range 80-99). This results in natural languages recur-
sive numeral systems exhibiting regular morphosyntactic patterns for larger groups of

9 These data are restricted to the variety of French spoken in France; numerals in other varieties of
French are constructed differently.
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numerals, unlike artificial languages (cf. Table 4).
The two identified differences between natural and optimal artificial languages —

namely, that natural and optimal artificial languages differ in certain lexical and mor-
phosyntactic properties — suggest that considerations related to lexicon size, average
morphosyntactic complexity and their trade-off are not the only pressures shaping natu-
ral languages’ recursive numeral systems: there are other cognitive and/or communicative
pressures (which may be specific to numeral systems or applicable more generally across
semantic categories) shaping them. What may these pressures be? We discuss here two
natural directions to be pursued in future work.

First, we established above that in natural languages, there is (typically) exactly one
way to construct a numeral for any number, which demonstrates that each language has
a set of constraints for how the rules in (4) are applied to construct numerals. These
additional constraints are something that needs to be memorized by a learner, and it is
plausible that a pressure to minimize the number and/or complexity of such constraints is
an additional pressure shaping specifically numeral systems. An important direction for
future work would be to operationalize how to measure complexity of these constraints
in language, and how to integrate the pressure to minimize the complexity of these
constraints within the model of lexicon size/average morphosyntactic complexity trade-
off optimization presented here, and evaluate whether some of the differences between
natural and optimal artificial languages disappear.

Second, it may be that numbers differ in how difficult they are to cognitively represent
independently of the numeral system used by the language. There are several ways to
make this hypothesis more concrete, depending on one’s approach to cognitive represen-
tations of numbers. For instance, according to the language-of-thought approach (Fodor
1975), some numbers may be cognitive primitives, while others may be cognitively com-
plex (even if they were labeled by a single morpheme in some languages). For instance,
1, 2 and 3 may be cognitive primitives, and the cognitive representation of 4 may be
constructed as 3+1 or 2+2. One could then hypothesize that languages are not exactly
under the pressures to minimize lexicon size and average morphosyntactic complexity,
but rather under the cognitive-representations versions of these pressures: namely, under
the pressures to minimize the size of cognitive representations of lexicalized items, and to
mimimize average complexity of cognitive representations of expressions. For instance,
if 1, 2 and 3 were cognitive primitives, but 4 wasn’t, lexicalizing 1, 2 or 3 would be less
costly than lexicalizing 4, and if 4 was lexicalized, constructing the numeral for five as
(morpheme for) 3 + (morpheme for) 2 would be cognitively less costly than constructing
it as (morpheme for) 4 + (morpheme for) 1. If one had a language-independent method to
evaluate cognitive complexities of various numbers, one could explicitly test this hypoth-
esis, and evaluate whether some of the differences between natural and optimal artificial
languages disappear.

Critically for our purposes, the fact remains that natural languages are trading off
nearly optimally between lexicon size and average morphosyntactic complexity (cf. Sec-
tion 2.4.1). In other words, while exploring which additional cognitive and communicative
pressures push recursive numeral systems towards specific types of optimal solutions to
the lexicon size/average morphosyntactic complexity trade-off, and how they do so, are
important directions for future work, our results demonstrate that the pressure to min-
imize lexicon size, the pressure to minimize average morphosyntactic complexity, and
their trade-off, play a role in shaping language’s lexicons.
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2.4.3 Importance of lexicalized larger numbers

According to the results in Section 2.4.1, natural languages’ recursive numeral systems
trade off optimally between lexicon size and average morphosyntactic complexity of nu-
merals. This suggests that the reason why languages lexicalize number meanings they do
— i.e., the first n numbers, in addition to a few larger numbers such as 10 and 20 (and
outside of the 1-99 range, 100, 1000, 1000000), cf. Section 2.1 — is because these allow
to construct numerals using very few morphemes on average, in a way that optimizes the
trade-off between lexicon size and average morphosyntactic complexity of numerals.

Given the probability distribution in (3), according to which low numbers need to be
communicated frequently, it is unsurprising that it may be a good strategy for languages
to lexicalize the first n number meanings if their goal is to optimize the trade-off between
lexicon size and average morphosyntactic complexity. However, one may wonder whether
lexicalizing larger number meanings such as 10 and/or 20 plays an important role in
the trade-off optimization, given the probability distribution in (3), according to which
large numbers rarely need to be communicated. In other words, is lexicalizing the first
n numbers — independently of which larger numbers are lexicalized, if any at all —
sufficient for languages to trade off nearly optimally between lexicon size and average
morphosyntactic complexity? Or is the choice of which larger numbers they lexicalize
important — i.e., do they lexicalize some of the larger numbers which significantly help
with the trade-off optimization?

To investigate this, we generated a space of artificial languages with the following
properties: (a) they lexicalize the first n numbers, with n between 2 and 10; (b) in ad-
dition to these, they lexicalize at most two other numbers smaller than 100; (c) at most
2 of number meanings they lexicalize are lexicalized as morphemes of category M . We
sampled 50000 languages from this space10 and analyzed their lexicon size/average mor-
phosyntactic complexity of numerals trade-off. We plot them in Figure 3 (artificial first n
languages) against the natural and artificial languages from the main analysis (cf. Sec-
tion 2.4.1). Critically, artificial first n languages are not all clustered close to the Pareto
frontier (black curve) in Figure 3. Here are three examples of these far-from-optimal
languages which lexicalize the first few number meanings, simply to illustrate how these
languages may look like. (i) A language which lexicalizes 1, 2, 3 and 4 as morphemes
of category D, and 23 and 58 as morphemes of category M has average morphosyn-
tactic complexity of 1.98, while the optimal language with the same lexicon size has
average morphosyntactic complexity 1.25. (ii) A language which lexicalizes 1, 2, 3, 4, 5
as morphemes of category D, and 51 and 70 as morphemes of category M has average
morphosyntactic complexity of 1.8, while the optimal language with the same lexicon size
has average morphosyntactic complexity 1.21. (iii) A language which lexicalizes 1, 2, 3,
4, 5, 6 as morphemes of category D, and 45 and 65 as morphemes of category M has
average morphosyntactic complexity of 1.56, while the optimal language with the same
lexicon size has average morphosyntactic complexity 1.19.

This analysis demonstrates that lexicalizing the first n numbers does not guarantee a
nearly optimal lexicon size/average morphosyntactic complexity of numerals trade-off. In
other words, natural languages’ choices to lexicalize number meanings such as 10 and/or
20 (in addition to the first n number meanings) are important choices from the perspective

10Due to computational constraints, it was not possible to analyze the entire space of such languages.
Numerals for numbers 1-99 in the sampled languages are generated in the same way as for artificial
languages in the main analysis (cf. Section 2.3).
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Figure 3: Lexicon size and average morphosyntactic complexity of natural languages com-
pared to artificial languages generated via an evolutionary algorithm (artificial evo lang)
as in Figure 2, with 50 000 artificial languages which lexicalize the first n numbers and
at most 2 additional number meanings (artificial first n). Artificial first n languages are
not all clustered close to the Pareto frontier (black curve), which demonstrates that lex-
icalizing the first n numbers does not guarantee a nearly optimal lexicon size/average
morphosyntactic complexity trade-off.

of lexicon size/average morphosyntactic complexity of numerals trade-off optimization.

2.4.4 Results summary and discussion

In Section 2.4.1, we establish that natural languages’ recursive numeral systems are in-
deed (near-)optimal solutions to the lexicon size/average morphosyntactic complexity of
numerals trade-off problem.

In Section 2.4.2, we discuss how optimal artificial languages look like. This allows
to highlight two important differences between optimal artificial languages and natural
languages. In particular, certain lexicalization patterns which could be good solutions to
the lexicon size/average morphosyntactic complexity trade-off problem are not attested
in natural languages (e.g., solutions which include lexicalizing numbers such as 19 and 25,
cf. Table 3). Furthermore, natural languages have more regular morphosyntactic patterns
than optimal artificial languages. These two identified differences between natural and
optimal artificial languages suggest that there are additional cognitive and/or commu-
nicative pressures pushing natural languages towards specific types of optimal solutions
to the lexicon size/average morphosyntactic complexity trade-off problem.

In Section 2.4.3, we zoom into the specific numbers natural languages choose to lex-
icalize and investigate their role in the lexicon size/average morphosyntactic complexity
trade-off optimization. Namely, we have seen in Section 2.1 that natural languages of-
ten lexicalize (a) the first n numbers, e.g., first 5 or first ten numbers, and (b) a couple
of additional numbers, such as 10 and/or 20. In Section 2.4.3, we show that the lex-
icon size/average morphosyntactic complexity trade-off optimization is not driven only
by property (a), but also by (b). In other words, natural languages make good choices
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from the trade-off perspective for which numbers to lexicalize in addition to the first n
numbers.

It is important to reiterate that we have operationalized lexicon size in this study as
the number of lexicalized meanings, and not the number of form-meaning pairs. This is
important to keep in mind because morphemes across languages — including number-
denoting morphemes — may have allomorphs (variant phonetic realizations) (e.g., we
have seen in Section 2.2 that the morpheme ten in English has allomorphs -teen and
-ty). According to our results then, which meanings are lexicalized is shaped by the
optimization of the trade-off between the number of lexicalized meanings and average
morphosyntactic complexity of utterances (rather than by the optimization of the trade-
off between the number of form-meaning pairs and average morphosyntactic complexity of
utterances). While in this project we have focused on the question of which meanings are
lexicalized across languages, a related but separate question which hasn’t been addressed
is: which meanings have multiple phonetic realizations in a language, and why (essentially,
why is there allomorphy across languages?). This is an important question for future
work.

To summarize, we have learnt that natural languages’ recursive numeral systems opti-
mize lexicon size (as number of lexicalized meanings)/average morphosyntactic complex-
ity of numerals trade-off, and that the numbers they lexicalize are good choices from the
perspective of that trade-off optimization. The trade-off optimization can thus explain
in part why natural languages lexicalize the numbers they do, as well as the range of
variation we see across languages in numbers they lexicalize.

3 Discussion: Previous work on minimization of ut-

terance complexity

As mentioned in Introduction, several other lines of work incorporate the idea that speak-
ers attempt to minimize complexity of their utterances. We will now discuss these pro-
posals in detail, and explain in what way they differ from the proposal we are pursuing.

Zipf (1949) and related work Multiple studies have found that meanings that are
conveyed more frequently tend to be associated to shorter forms (with length often oper-
ationalized as the number of phonemes) (Zipf 1949, Piantadosi et al. 2011, Haspelmath
2021, Mollica et al. 2021). For instance, in recent work, Mollica et al. (2021) conduct
two types of analyses: the first type of analysis shows that languages lexicalize meanings
which allow them to optimize the simplicity/informativeness trade-off; the second type
of analysis shows that the forms attached to lexicalized meanings are such that average
phonetic length of utterances is minimized. Association of shorter forms to more frequent
meanings is an instance of Zipf’s principle of least effort (Zipf 1949), according to which
humans are prone to spending the least amount of effort to accomplish a task.

The pressure to minimize average morphosyntactic complexity of utterances can be
viewed as another instance of the same principle. The novelty of our proposal is in show-
ing that this pressure plays a role in determining which meanings get lexicalized, and not
only how long forms are associated with lexicalized meanings. According to our proposal,
this pressure on its own doesn’t suffice to explain which meanings are lexicalized across
languages: we have shown that, in semantic domains in which productive morphosyn-
tax enables precise communication, languages lexicalize meanings which allow them to
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optimize the trade-off between this pressure and the pressure to minimize lexicon size.

Carcassi and Sbardolini (2022) Another recent proposal gives a central role to ut-
terance complexity in explaining typological patterns, focusing on the semantic domain
of Boolean connectives (Carcassi and Sbardolini 2022). They aim to explain the so-called
nand -puzzle: across languages, connectives and and or are often lexicalized; in addition
to them, the negated disjunction nor is sometimes lexicalized, but a negated conjunction
*nand is never lexicalized (Horn 1972). According to the proposal by Carcassi and Sbar-
dolini (2022) (but see Bar-Lev and Katzir 2022, Enguehard and Spector 2021, Incurvati
and Sbardolini 2023, Katzir and Singh 2013, Uegaki 2022, a.o. for competing proposals),
the systems of Boolean connectives are optimal solutions to two pressures. The first pres-
sure is the desire to minimize production effort when expressing observations (what we
have called average morphosyntactic complexity). For instance, if languages don’t lexical-
ize nand, they have to use syntactically more complex not (A and B) instead of A nand
B to express the observation that at least one of A and B is false: lexicalizing nand thus
reduces average morphosyntactic complexity. The second pressure, labeled conceptual
complexity in Carcassi and Sbardolini (2022), relates to how sentences with connectives
are used to update the information shared by conversational participants (= context),
which is modeled as the set of possible worlds (Stalnaker 1978, 1999). According to their
proposal, upon accepting a sentence A nor B, the conversational participants update the
context C as follows: first, they restrict C to the set of worlds where A is false, and then
they further restrict C to the set of worlds where B is false. On the other hand, upon
accepting a sentence A nand B, the conversational participants update the context C as
follows: first they consider a hypothetical context C 1, obtained by restricting the original
context C to the set of worlds where A is true, followed by a further restriction of C 1 to
the set of worlds where B is true. They then remove the hypothetical context C 1 from the
original context C. Carcassi and Sbardolini (2022) assume that how context is updated
by A nand B is more conceptually complex than how context is updated by A nor B
because of the creation of the hypothetical context C 1 in the former but not in the latter
case. They propose that languages are under pressure to minimize the total conceptual
complexity of contextual updates of the connectives they lexicalize. They argue that
the nand -puzzle can be explained on the assumption that languages optimize the trade-
off between average morphosyntactic complexity and the total conceptual complexity of
contextual update procedures of lexicalized connectives.

Our proposal shares with Carcassi and Sbardolini (2022) the idea that languages
are under the pressure to minimize average morphosyntactic complexity. Where the
two proposals differ is what the competing pressure is: in our case, the pressure to
minimize how many meanings are lexicalized, while in Carcassi and Sbardolini (2022) the
competing pressure relates to another aspect of language use, namely, how conversational
participants proceed to update contextual information when they hear an expression.

Memory/computation trade-off optimization in morphological processing The
work on psycholinguistic processing of morphologically complex expressions has studied
the trade-off between memory and computation (e.g. Frauenfelder and Schreuder (1992),
and much related work, including more recently e.g., Kuperman, Bertram, and Baayen
(2010), O’Donnell, Snedeker, Tenenbaum, and Goodman (2011) and O’Donnell (2015)).
The central question in that line of work is: which morphologically complex linguistic
expressions are retrieved from memory as a chunk, rather than computed morphosyn-
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tactically at each use? Of course, language users must store in memory morphologically
simple linguistic expressions, such as ‘walk’, and the past tense morpheme ‘-ed’. But
do they also store in their memory ‘walked’, so that when they construct a sentence
‘John walked’, they retrieve ‘walked’ as a chunk, rather than construct it as ‘walk’+‘ed’?
One response is that complex expressions are stored in memory in a way that optimizes
the memory/computation trade-off in language processing (e.g, O’Donnell et al. 2011,
O’Donnell 2015). Simplifying a lot, if some morphologically complex expression needs to
be used very frequently, we are more likely to store it in memory as a chunk and retrieve
it as a whole in language use. At least some English speakers (those who use the linguistic
expression ‘walked’ a lot) will end up storing it as a chunk in their memory.

That line of work has thus established the existence of memory/computation trade-off
optimization bias in morphological processing. This connects to our work in an interesting
way. What we have shown is that lexicon size/average morphosyntactic complexity of
utterances trade-off optimization — which is essentially memory/computation trade-off
optimization — ends up shaping the primitives (monomorphemic expressions) of the
linguistic system, and explains typological diversity in what these primitives are. It is
conceivable that this is an outcome of the accumulated effect in the course of language
evolution of the aforementioned morphological processing bias. To explore this possibility,
an interesting direction for future work may be to directly model the evolution of numeral
systems across generations, with language users biased to optimize memory/computation
trade-off in their morphological processing, and examine whether this (possibly together
with some additional assumptions about how language transmission proceeds) results
in numeral systems which optimize the lexicon size/average morphosyntactic complexity
trade-off.

4 Discussion: Xu et al. (2020)

Xu et al. (2020) analyze the simplicity/informativeness trade-off in 24 restricted and 6
recursive numeral systems. Restricted numeral systems don’t have numerals for all num-
bers: most of them have numerals for only the first few numbers, and use a quantifier
such as many for any higher number. For instance, the language Krenak only has nu-
merals for numbers 1-3 (Hammarström 2010), and the language Rama only has numerals
for numbers 1-5 (Grinevald 1990). Furthermore, the few numerals in restricted numeral
systems are often monomorphemic — in other words, the use of morphosyntax for nu-
meral construction is often limited. Recursive numeral systems are considered by Xu
et al. (2020) to be maximally informative when it comes to communicating about num-
ber meanings, while restricted numeral systems have lower degrees of informativeness.
On the other hand, according to Xu et al.’s (2020) approach to measuring complexity,
the six studied recursive numeral systems are more complex than most of the 24 studied
restricted numeral systems. Simplifying somewhat, this is because they assume that the
complexity measure of a language should incorporate both the complexity of the lexi-
con and the complexity of morphosyntactic rules. As recursive numeral systems always
have morphosyntactic rules for building numerals but restricted numeral systems often
don’t have any, recursive numeral systems tend to have a greater measure of complex-
ity than restricted numeral systems. Recursive numeral systems are thus more complex
and more informative than restricted numeral systems in Xu et al.’s (2020) study. Xu
et al. (2020) further argue that natural languages’ numeral systems optimize the sim-
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Figure 4: Reproduction of Figure 4b from Xu et al. (2020) plotting complexity and
communicative cost (the opposite of simplicity and informativeness) measures of natu-
ral languages’ numeral systems (red, green and blue circles) and artificial (hypothetical)
numeral systems. Blue circles represent the 6 natural languages’ recursive numeral sys-
tems, and the blue line are hypothetical recursive numeral systems. The Pareto-optimal
recursive numeral system is the left-most point of the blue line, and natural languages’
recursive numeral systems are not clustered close to it.

plicity/informativeness trade-off, without making a distinction between restricted and
recursive languages.

Their conclusion may seem to be in tension with our findings. However, a careful
examination of Xu et al.’s (2020) results reveals that, while restricted numeral systems
are indeed close to being Pareto-optimal in trading off simplicity and informativeness,
recursive numeral systems are not. Given that recursive numeral systems are maximally
informative, if they were optimizing the simplicity/informativeness trade-off, we would
expect to find them in the proximity of the minimally complex numeral system which
is maximally informative. According to Xu et al.’s (2020) results (cf. Figure 4b in Xu
et al. 2020, reproduced here as Figure 4), the maximally informative system with minimal
complexity has complexity « 50. Strikingly, the six recursive numeral systems examined
by Xu et al. (2020) have much higher complexity than that, ranging between « 75 and
« 150. The results of Xu et al. (2020) thus also do not support the hypothesis that
recursive numeral systems optimize the simplicity/informativeness trade-off — in other
words, there is no tension between the results of Xu et al. (2020) and our findings.
Importantly, however, Xu et al.’s (2020) conclusions still hold for restricted numeral
systems which are much closer to being Pareto-optimal than recursive numeral systems
(cf. Figure 4). We will now discuss the implications of their result for restricted systems
and our result for recursive systems for the larger question: what pressures determine
which meanings get lexicalized across semantic domains and languages?
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5 Discussion: Three pressures

Recursive and restricted numeral systems are, in a sense, two extremes. In recursive
numeral systems, languages allow to unambiguously express (practically) any number
meaning if we consider both morphosyntactically simple and morphosyntactically com-
plex expressions. Such languages lexicalize those meanings which allow them to optimize
the trade-off between lexicon size and average morphosyntactic complexity of numerals.

In restricted numeral systems, number meanings are typically conveyed using one of
the few (often monomorphemic) numerals, and in most cases it is not possible to unam-
biguously single out a number meaning with an expression of a language. Such languages
lexicalize those meanings which allow them to optimize the simplicity/informativeness
trade-off (cf. Section 4).

However, many semantic domains in many languages are arguably in-between these
two extremes. Consider for example colors: morphosyntactically complex expressions
can improve how precisely we communicate about colors compared to the communication
with monomorphemic color terms only, but the improvement is arguably limited (e.g.,
blue-green, dark-blue). What approach should one pursue to explain which meanings get
lexicalized in such domains?

The results on restricted and recursive numeral systems provide evidence that (at
least) three pressures are shaping which meanings get lexicalized across languages: min-
imize complexity of the lexicon, minimize average morphosyntactic complexity of utter-
ances and maximize informativeness. It is plausible to expect that these pressures are
not specific to the semantic domain of number, i.e., that they are applicable across se-
mantic domains and languages. We thus propose the following hypothesis to be pursued
in future work: languages lexicalize those meanings which allow them to be optimal so-
lutions to the three pressures. In the extreme case where any meaning can be conveyed
precisely and informativeness is maximal (as in recursive numeral systems), this reduces
to finding optimal solutions to the lexicon size/average morphosyntactic complexity of
utterances trade-off problem, for which we have seen evidence in the present study. In
the other extreme case where interlocutors communicate about meanings from a semantic
domain using single monomorphemic words only (as is arguably most often the case in
restricted numeral systems), this reduces to finding optimal solutions to the simplicity of
the lexicon/informativeness trade-off problem, as in Xu et al. (2020).

What semantic domain could be investigated as a case study of the interaction of the
three pressures? The aforementioned color domain could be a good starting point, for
multiple reasons. (i) The meaning space for colors has been usefully formalized in mul-
tiple works (e.g., Zaslavsky et al. 2018, Steinert-Threlkeld and Szymanik 2019), building
on cognitive models of human color representations. (ii) In many if not all natural lan-
guages, not every element of the color meaning space (i.e., not every color nuance) can
be expressed precisely, be it with a morphosyntactically simple or a morphosyntactically
complex expression, which paves way for the role of informativeness maximization in lexi-
calization. (iii) Morphosyntactically complex expressions in many languages improve how
precisely we can communicate about colors (e.g., blue-green, dark-blue), which paves way
for the role of average morphosyntactic complexity minimization in lexicalization. Here
is one possible starting point for such a case study. Languages may differ in whether they
employ syntactic strategies for color modification, and if so, how complex these strategies
are (e.g., if they allow for expressions such as blue-green, dark-blue, between blue and
green). One could investigate whether and how the meanings of lexicalized color terms
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vary with availability and complexity of syntactic color modification across languages.
For instance, if simple syntactic modification strategies are available in a language, one
may expect the language to divide their color space into fewer basic color categories. If
so, that would be initial evidence of morphosyntactic considerations playing a role in the
lexicalization of color terms. One could then build on that finding, as well as on the find-
ings about the role of simplicity of the lexicon and informativeness in the lexicalization
of color terms (Zaslavsky et al. 2018), to develop and test a three-pressures interaction
model. We hope to pursue this avenue in future work.

6 Conclusion

In this paper, we ask what explains which meanings get lexicalized across languages.
We pursue the explanation according to which languages lexicalize meanings which allow
them to support efficient communication. We however argue for a refinement of what
it means for a language to support efficient communication. In particular, the standard
approach to communicative efficiency — the simplicity/informativeness trade-off opti-
mization approach — cannot explain which meanings get lexicalized in semantic domains
in which lexicon size and informativeness are not in direct competition. Using recursive
numeral systems as a case study, we have argued that in such domains languages lexi-
calize meanings which allow them to optimize the lexicon size/average morphosyntactic
complexity of utterances trade-off.

Our work in combination with previous work thus evidences that there are (at least)
three pressures shaping lexicons of natural languages: minimizing lexicon size, maximiz-
ing informativeness, and minimizing average morphosyntactic complexity of utterances.
A more general proposal for how supporting efficient communication shapes which mean-
ings get lexicalized across languages may thus be that languages lexicalize those meanings
which allow them to solve the trade-off problem between these three pressures in a (nearly)
optimal way.

A 128 studied natural languages

Abkhaz, Abun, Acoma, Albanian, Arabic (Egyptian), Arawak, Archi, Armenian (East-
ern), Aymara, Bagirmi, Bambara, Basaa, Basque, Batak (Karo), Bawm, Berber Middle
Atlas (Tamazigt), Bribri, Burmese, Burushaski, Cahuilla, Chamorro, Chinantec (Lealao),
Chuukese, Chuvash, Comanche, Damana, Diola-Fogny, Drehu, English, Evenki, Ewe, Fi-
jian, Finnish, French, Fulfulde, Garo, Georgian, German, Goajiro, Gola, Greek (Modern),
Guarani, Haida, Hausa, Hebrew, Hindi, Hmong Njua, Huave, Hungarian, Hunzib, Hupa,
Igbo, Indonesian, Ingush, Iraqw, Irish, Japanese, Jaqaru, Kabardian, Kana, Kannada,
Kanuri, Kayah Li (Eastern), Khalaj, Khalkha (Mongolian), Khanty, Kilivila, Kiribati
(Gilbertese), Korean, Koromfe, Koyraboro Seni, Kunama, Lak, Lakhota, Lango, Lat-
vian, Lavukaleve, Lega, Lezgian, Malagasy, Mandarin, Mangab-Mbula, Maori, Mapudun-
gun, Mixtec (Atatlahuca), Mixtec (Chalcatongo), Nahuatl (Sierra de Zacapoaxtla), Nama
Hottentot (Khoekhoe), Navajo, Ndyuka (Aukan), Nenets (Tundra), Nez Perce, Nivkh,
Nkore-Kiga, Noon, Nubian (Dongolese), Oneida, Oromo (Harar), Otomi (Mezquital),
Paiwan, Persian, Pohnepeian, Quechua Imbabura, Quileute, Rapanui, Russian, Sahu,
Sango, Sapuan, Sorbian Upper, Spanish, Supyire, Swahili, Taba-East Makian, Tagalog,
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Figure 5: Experiment: Lexicon size and average morphosyntactic complexity of natural
languages without unclear cases (N “ 94) and of artificial languages generated via an
evolutionary algorithm (zoom into the area surrounding natural languages). Two natural
languages — Fulfulde and Georgian — are labeled for illustration. Natural languages lie
at or very close to the Pareto frontier (black curve).

Tarahumara (Western), Telugu, Thai, Tommo So Dogon, Tsez, Tuareg, Tukang Besi,
Turkish, Vietnamese, Yagua, Yakut, Yucatec, Yipik, Zulu

B 34 languages with unclear cases

Below is a list of 34 languages in which the morphosyntactic content of some of the
numerals was difficult to determine (when a numeral is an exception to an established
morphosyntactic pattern in a language, but partially overlaps in its (phonetic or ortho-
graphic, depending on the available data) elements with morpheme(s) which should have
been there if the morphosyntactic pattern was respected).

34 languages with unclear cases : Arabic (Egyptian), Archi, Armenian, Chinantec (Lealao),
Chuukese, Chuvash, English, Ewe, Hausa, Hindi, Hungarian, Ingush, Kannada, Khalkha
(Mongolian), Khanty, Koromfe, Kunama, Lak, Lezgian, Ndyuka, Nez Perce, Nkore Kiga,
Oneida, Oromo, Otomi, Persian, Quileute, Rapanui, Russian, Spanish, Swahili, Telugu,
Tukang Besi, Turkish

For completeness, we exclude these 34 languages from the original 128 plotted in
Figure 2, and include the updated plot (with 94 natural languages) in Figure 5.
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