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Abstract: In this squib, I argue that the child faces a severe computational complexity problem in 

parsing even the simplest of trees: the number of possible trees consistent with UG grows 

exponentially as a function of the number of lexical items. Economy conditions have the result of 

drastically decreasing the complexity of the parsing task. I also discuss the relationship between 

UG, I-language, economy conditions and explanatory adequacy. 
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1. The Complexity of Trees in Acquisition 

 Imagine a language acquisition scenario. The child who is between 0-4 years old listens to 

their parents and other children speaking, trying to understand what they are saying. There are 

many difficulties facing them in trying to understand the sentences of the PLD (primary linguistic 

data). But surely one difficulty they face is the sheer intractable number of possible trees 

corresponding to any given string of words. I assume that finding the right tree is a prerequisite to 

understanding what is being said. Furthermore, I assume that by the age of four the child performs 

this tree parsing task effortlessly and mostly without deviating from the adult structures. If a tree 

has n leaves (so the child hears n lexical items), there are a vast number of trees consistent with 

those lexical items. How does the child arrive at picking out one tree from amongst all the ones 

possible? 
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Consider a relatively short sentence with four lexical items (or morphemes). Here are the 

possible trees consistent with those four lexical items (excluding unary branching, but allowing in 

other types of branching): 

 

(1) a. [x y z w] 

 b. [[x y z] w] 

c. [[[x y] z] w] 

d. [[x [y z]] w] 

 e. [x [y z w]] 

 f. [x [y [z w]]] 

 g. [x [[y z] w]] 

 h. [[x y] z w] 

 i. [[x y] [z w]] 

 j. [x [y z] w] 

k. [x y [z w]] 

 

 For a very simple sentence with four lexical items there are eleven possible trees that the 

child must sort through to find the exact one needed. It is useless to say that meaning guides the 

choice, because after all the child is trying to understand the meaning that the adult intends to 

communicate. In other words, the child cannot be guided by meaning, because the child is trying 

to recover the meaning of the sentence.  

So how is the parsing task possible for a young child? This paper will argue that economy 

conditions limit the total number of trees that the child needs to consider, radically reducing the 
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computational complexity of the task for the child, and making language acquisition possible. In 

the conclusion, I will suggest that other economy conditions can be seen in the same light. 

I do not discuss any specific theory of natural language parsing, nor do I enter into a specific 

theory of language acquisition. That is, I am not making any specific claims about how parsing or 

language acquisition are actually carried out by the child. Rather, I am claiming that economy 

conditions reduce the total number of possible trees corresponding to a string of words, and 

therefore contribute to reducing the complexity of the task that the child faces. 

 In sections 2 and 3, I give a concrete idea of how complex the parsing task is by discussing 

the so-called Catalan numbers and Super Catalan numbers. In section 4, I discuss binary branching, 

and how it reduces the computational complexity of the parsing task. In section 5, I show how 

binary branching is the result of an economy condition. In section 6, I discuss unary branching. In 

section 7, I discuss the role of economy conditions in explanatory adequacy. Section 8 is the 

conclusion. 

 

2. Catalan Numbers 

 A binary branching tree is defined as follows: 

 

(2)  Each node in a binary branching tree is (a) a terminal or (b) has exactly two daughters.  

 

 The number of binary branching trees with n-leaves is given by the Catalan numbers: 

 

(3) TreesBIN(n)  = (2n-2)!/n!(n-1)! 
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 For example, for two leaves, there will be one tree: (4-2)!/2!(2-1)! = 2!/2! = 1. For one leaf, 

there will also be one tree: (2-2)!/1!(1-1)! = 0!/1!0! = 1. 

 This number can be approximated by the following function, which shows clearly that the 

number of trees grows as an exponential function of the number of leaves: 

 

(4) TreesBIN(n)   =(approx.)   4(n-1)/(n-1)1.5 √π 

 

The first few Catalan numbers are given in (5). For example, for 10 leaves, there will be 

4,862 binary branching trees. For 14 leaves, there are 742,900 binary branching trees.  

 

(5) leaves=n  TreesBIN(n)    

1   1 

2   1 

3   2 

4   5  

5   14  

6   42 

7   132 

8   429 

9   1,430 

10   4,862 

11   16,796 

12   58,786 
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13   208,012 

14   742,900  

15   2,674,440  

16   9,694,845  

17   35,357,670  

18   129,644,790  

19   477,638,700  

20   1,767,263,190 

 

3. Super Catalan Numbers 

 The Super Catalan numbers correspond to the number of trees of n leaves (excluding unary, 

but allowing other types of branching, e.g., binary, ternary, etc.). I have not found a simple formula 

that gives the Super Catalan numbers, rather they are defined recursively in terms of preceding 

Super Catalan numbers. I will write the function for Super Catalan numbers as Trees(n). On the 

relevance of Catalan and Super-Catalan numbers to coordination, see Wagner (2010: 193). 

The first few Super Catalan numbers are given below (from http://oeis.org/A001003). In 

other words, for a tree of 10 leaves there are 103,049 trees. It is easy to see that the Super Catalan 

numbers are much larger than the Catalan numbers. 

 

(6) leaves=n  Trees(n) 

1   1  

2   1  

3   3  
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4   11  

5   45 

6   197 

7   903 

8   4,279 

9   20,793  

10   103,049  

11   518,859 

12   264,6723 

13   13,648,869 

14   71,039,373 

15   372,693,519 

16   1,968,801,519 

17   10,463,578,353 

18   55,909,013,009 

19   300,159,426,963 

20   1,618,362,158,587 

 

4. Binary Branching 

 Consider again the toy problem introduced in (1). There we saw that the total number of 

bracketings for four morphemes is eleven, which is a Super Catalan number (see (6) above). But 

let’s restrict ourselves to binary branching structures, crossing out the non-binary trees. There are 

only five trees left: 
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(7) a. [x y z w] 

 b. [[x y z] w] 

c. [[[x y] z] w] 

d. [[x [y z]] w] 

 e. [x [y z w]] 

 f. [x [y [z w]]] 

 g. [x [[y z] w]] 

 h. [[x y] z w] 

 i. [[x y] [z w]] 

 j. [x [y z] w] 

k. [x y [z w]] 

 

 Therefore, a child who has binary branching Merge, which excludes unary branching and 

other kinds branching (ternary branching), would have many fewer possible trees to exclude when 

trying to arrive at the correct parse for a sentence. In other words, binary branching Merge allows 

the child to ignore large number of possible analyses of the data (PLD), focusing only on a small 

subset of possibilities. 

 Haegeman (1994: 143) describes the relationship between binary branching and language 

acquisition as follows (see also Kayne 1984): “A child equipped with a UG that implements 

only binary branching will have fewer decisions to make when assigning syntactic structure 

to the data he is exposed to than a child equipped with a less constrained UG which allows 

ternary or four-way branching. It is easy to see that the more elements are involved the more 
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choices are available. The unconstrained theory will consistently offer more choices than the 

binary branching theory and hence will make the child’s task of deciding on the structure 

harder.” 

 For a tree with n leaves, the number of binary branching trees is given by the Catalan 

numbers. The number of trees of any branching (excluding unary branching) is given by the Super 

Catalan numbers. The Super Catalan numbers increase far more rapidly than the Catalan numbers. 

Even for a relatively small number of leaves, such as 6, the ratio of the Super Catalan number to 

the Catalan number is 197/41 = 4.69. Therefore, Merge being restricted to binary branching allows 

the child to reduce the total number of possible trees by a factor of 4.69 in the case of a short 

sentence with six lexical items. 

 In general, for a tree with n-leaves, adopting binary branching allows a computational 

savings by a factor of Trees(n)/TreesBIN(n). A calculation of this ratio for a small range of n is 

given below: 

 

(8)  leaves  Trees(n)  TreesBIN(n)  Ratio 

1  1    1   1 

2  1    1   1 

3  3    2   1.5 

4  11    5   2.2 

5  45   14   3.21 

6  197   42   4.69 

7  903   132   6.84 

8  4,279   429   9.97 
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9  20,793   1,430   14.5 

10  103,049   4,862   21.19 

11  518,859  16,796   30.89 

12  2,646,723  58,786   45.02 

13  13,648,869  208,012  65.62 

14  71,039,373  742,900  95.62 

 

 The following generalization holds: 

 

(9) There are many more (non-unary) unrestricted trees than binary branching trees for a given 

number n of leaves, specified by the ratio: Trees(n)/TreesBIN(n). 

 

5. Binary Branching and Economy 

Following Collins (1997: 75-78), I assume that binary branching is the result of economy 

conditions constraining unrestricted Merge:  

 

(10) “We will see that it is possible to restrict the possible structures allowed by unrestricted 

Merge by appeal to very general principles, including economy of derivation. The basic 

idea is that phrase structure is binary because binary Merge is the smallest operation that 

will ensure that some structure actually gets built. In other words, binary branching will 

be seen to be a result of Minimality. If this idea can be worked out, adopting unrestricted 

Merge will allow us to perceive a deep relationship between movement and phrase 

structure: that both are subject to Minimality.” (pg. 76) 
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 More concretely, Collins (1997: 77) compares two derivations: 

 

(11) Merge(A,B,C) = {A,B,C} 

 

(12) Merge(A,B) = {A,B} 

 Merge(C, {A,B}) = {A,B,C} 

 

Collins notes (pg. 77): “At the point in the derivation where the operation Merge(A,B,C) 

is possible, the operation Merge(A,B) (which involves the merging of fewer elements) is also 

possible. Therefore, we can derive binary branching from Minimality and unrestricted Merge.” 

Crucially, this account relies on a notion of economy where the size of particular 

operations is minimized, not necessarily the total length of the derivation (global economy). Even 

though (11) has only one operation, (12) wins out, because Merge(A,B) is a smaller operation 

than Merge(A,B,C).  

Merge (the fundamental operation of UG) constrained by economy conditions (third 

factor conditions not stipulated as part of UG, see Chomsky 2005) has effectively made the task 

of parsing a tree much simpler for a child facing the PLD. It is important to note that I have not 

made any specific claims about how parsing is done. Rather, I am making observations about the 

nature of the task that faces the child in acquiring a language. If Merge (a UG operation applying 

as part of a syntactic derivation) is constrained by economy, yielding binary branching, then the 

total number of possible trees is much smaller than if Merge is not subject to economy conditions 

(and hence does not yield binary branching trees).  
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A very similar economy-based explanation of binary branching is given in Rizzi (2013: 

footnote 10): “One could ask the question of why Merge should be binary, rather than n-ary, 

which would permit more than two elements to be strung together at once. One possible answer 

is that binary Merge is the computationally most parsimonious combinatory principle capable of 

yielding an unbounded set of structures, in the following sense: it requires just two temporary 

buffers of operative memory in which to store the elements to be strung together.... Unary Merge 

would be insufficient to yield an infinity of structures with distinct elements, and n-ary Merge 

would require more memory resources. From this perspective, binary Merge is optimal.” 

Rizzi’s explanation emphasizes the amount of memory resources, while Collins’ 

explanation emphasizes the size of the Merge operation. But both economy-based explanations 

have the effect of forcing binary branching. 

 

6. Unary Branching 

If we allow unary branching nodes, the number of trees (for a given number n of lexical 

items) is unlimited. For any tree constructed, we can just take the root and add a unary branching 

node dominating the root, without changing the number of leaves. We can drastically reduce the 

number of possible trees with the following assumption: 

 

(13) There is no unary branching. 

 

 Given this principle, the child would never even consider unary branching trees, taking an 

unlimited number of possible trees off the table. I will assume that (13) is part of UG, specified 

innately as a property of UG (not reducible to third factor economy principles). 
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7. Explanatory Adequacy 

The above discussion focusses on the role of economy conditions in constraining the 

hypothesis space of a child encountering the PLD. A closely related issue is the role economy 

conditions play in explanatory adequacy. Chomsky (1986: 53) defines explanatory adequacy as 

follows: 

 

(14) “A theory of UG meets the conditions of explanatory adequacy to the extent that it provides 

descriptively adequate grammars under the boundary conditions set by experience.” (pg. 

53): 

 

 The definition of descriptive adequacy is as follows: 

 

(15) “Continuing to think of a grammar as a theory of a language, we may say that a 

grammar is descriptively adequate for a particular language to the extent that it 

correctly describes this language.” (pg. 53) 

 

 But neither UG nor particular I-languages incorporate economy conditions. Chomsky 

(1986) defines UG and I-language as follows: 

 

 (16) a.  “UG may be regarded as a characterization of the genetically determined  

language faculty.” (pg. 3) 
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b. “The I-language, then, is some element of the mind of the person who 

knows the language, acquired by the learner, and used by the speaker-

hearer.” (pg. 22) 

 

 According to these definitions, economy conditions (and structural consequences of 

economy conditions, such as binary branching) are not part of UG or particular I-languages. The 

economy conditions are not genetically specified, and they are independent of particular I-

languages. For the example at hand, unrestricted Merge is a component of UG and of particular I-

languages, but binary branching Merge is the result of economy conditions applying to unrestricted 

Merge. The situation is illustrated as follows: 

 

(17) a. UG:    unrestricted Merge 

 b. I-Language:   unrestricted Merge 

 c. I-Language + economy: binary branching Merge 

 

 To maintain the concepts of explanatory and descriptive adequacy in light of the 

introduction of economy conditions, the following change is needed: 

 

(18) A grammar is descriptively adequate for a particular language to the extent that in 

combination with economy conditions, it correctly describes this language. 

 

Chomsky (1986: 77) discusses how attributing principle P to the initial state S0 is a step 

toward explanatory adequacy:  
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(19) “Such general principles as the principle of cyclic application of rules, the island 

constraints, the subjacency condition, conditions on representations, and so 

forth serve to  restrict  the class  of  permissible  rules  because  it  is  no  longer  

necessary  to incorporate within the rule itself  the conditions on its application; 

in effect, these conditions are factored out  of  many rules and  attributed  to  the  

initial  state  S0   Formulation  of  such principles,   then,  is  a  step  toward  

explanatory  adequacy…” 

 

 The reason why attributing P to S0 is a step toward explanatory adequacy is that the 

resulting I-languages will now have P independent of the PLD (“boundary conditions set by 

experience”). In this paper, we are claiming that binary branching is “factored out” of Merge and 

attributed to economy conditions, not the initial state S0. If a principle P is an economy condition, 

then it will also be independent of the PLD, which would also be a step toward explanatory 

adequacy as defined in (14).  

 Discussions of explanatory adequacy are usually focused on the relationship between the 

‘initial state’ and the ‘steady state’ (Chomsky 1986: 25): 

 

(20) “The language faculty is a distinct system of the mind/brain, with an initial state S0 common 

to the species…and apparently unique to it in essential respects. Given appropriate 

experience, this faculty passes from the state S0 to some relatively stable state SS, which 

then undergoes only peripheral modification….The attained state incorporates an I-

language (it is the state of having or knowing a particular I-language).” 
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 A general claim of this paper is that economy conditions constrain all I-languages, 

including stable-state I-languages (mentioned in (20)) as well as the I-languages of new-born 

infants trying to make sense out of the PLD: 

 

(21) Economy conditions constrain all I-languages. 

  

8. Conclusion 

 The child, faced with primary linguistic data (PLD) which includes speech from the adults 

and other children surrounding them, must be able to recover the correct tree for a string of words 

encountered in the PLD. But parsing an individual sentence imposes an apparently 

computationally insurmountable problem. Each sentence with n morphemes has an exponentially 

large number of possible parses (the Super Catalan numbers). 

 The computational complexity of the problem is reduced considerably by the interaction 

of UG (Merge) with economy conditions. In the example presented in this paper, economy 

conditions cut down the hypothesis space for a sentence of length n words by the ratio 

Trees(n)/TreesBIN(n).  

Economy conditions have the following properties: 

 

(22) a. They are not part of UG. 

 b. They are independent of any particular I-language, hence universal. 

c. They are not learned. 

 d. The language faculty is constrained by them at birth. 
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e. They did not evolve. 

 

 Even the I-language of a newborn child will be constrained by economy conditions. The 

child can only generate binary branching trees, without actually having learned that trees are binary 

branching. So, the economy conditions will immediately lead the child to ignore vast numbers of 

alternative possibilities that are otherwise consistent with the PLD. 

 The roles of UG and the economy conditions on this account are different. UG (Merge) 

specifies the kind of mental representations (hierarchical structures) that are available in the mind 

of the child. Without UG, the whole language acquisition task would not even get off the ground. 

But the number of representations consistent with a string of lexical items is vast. Economy 

conditions work to narrow those down. 

It may be that all other economy conditions can be seen in the same light. A preliminary 

list of economy conditions is given below (for formalization and further references, see Collins 

and Stabler 2016):  

 

(23) a. Minimal search for Agree (Chomsky 2000: 122) 

 b. Minimal search for labeling (see Collins 2002, Chomsky 2014) 

 c. Minimality (binary branching, see section 4). 

d. No Tampering Condition (NTC) (see Chomsky 2005) 

e. Inclusiveness (Chomsky 2000: 113) 

 f. Minimal Spell-Out of occurrences at PF/SM-Interface. 

 g. Phase Impenetrability Condition (PIC) (Chomsky 2000: 108) 
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 Economy conditions may also constraint Spell-Out, the mapping of syntactic structure to 

linear order. Putting aside movement, if X and Y are sister {X Y}, then they should be contiguous 

X-Y (X immediately precedes Y) or Y-X (Y immediately precedes X). In other words, the mapping 

of syntactic structures to representations at the SM-interface (PF-interface) is as straightforward 

and simple as possible (see Kayne 1994 for a much stronger constraint) with no strange cases 

allowed (e.g., X and Y are sisters, but Y is spelled-out internal to X or vice versa). These comments 

suggest the following: 

 

(24) Spell-Out obeys economy conditions. 

 

 If the economy conditions in (23) (and perhaps many others) constrain the narrow syntax 

and the mapping to the interfaces, they drastically reduce the number of alternative structural 

hypotheses for any particular sentence, just as we have seen with binary branching above. They 

severely limit the space of hypotheses that the child must navigate during language acquisition. 

Since they are economy conditions, they are unlearned, and therefore available to the child 

immediately. In the ideal case, economy conditions would restrict the number of possible 

hypotheses for a particular sentence to one, or to a very small number.  

Furthermore, as argued above, formulating economy conditions constitutes a major step 

toward a theory achieving explanatory adequacy. 
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